CUEVAS GONZáLEZ, ANTONIO |
Departamento: | Matemáticas |
Universidade: | Univ. Autónoma de Madrid |
Teléfono: | (+34)914973810 |
Correo electrónico: | Este enderezo de correo está a ser protexido dos robots de correo lixo. Precisa activar o JavaScript para velo. |
Páxina persoal: | http://www.uam.es/antonio.cuevas |
PUBLICACIÓNS
Atopáronse 19 rexistros.
1) Cuevas, A. and Pateiro-López, B. (2018). Polynomial volume estimation and its applications Journal of Statistical Planning and Inference Vol. 196, pp. 174-184 |
2) Berrendero, J.R.; Cuevas, A. and Pateiro-López, B. (2016). Shape classification based on interpoint distance distributions Journal of Multivariate Analysis Vol. 146, pp. 237-247 |
3) Cuevas, A.; Llop, P. and Pateiro-López, B. (2014). On the estimation of the medial axis and inner parallel body Journal of Multivariate Analysis Vol. 129, pp. 171-185 |
4) Berrendero, J.R.; Cuevas, A. and Pateiro-López, B. (2012). A multivariate uniformity test for the case of unknown support Statistics and Computing Vol. 22(1), pp. 259-271 |
5) Cuevas, A.; Fraiman, R. and Pateiro-López, B. (2012). On statistical properties of sets fulfilling rolling-type conditions Advances in Applied Probability Vol. 44(2), pp. 311-329 |
6) Berrendero, J.R.; Cuevas, A. and Pateiro-López, B. (2012). Testing uniformity for the case of a planar unknown support The Canadian Journal of Statistics Vol. 40, pp. 378–395 |
7) Cuevas, A.; Fraiman, R. and Rodríguez-Casal, A. (2007). A nonparametric approach to the estimation of lengths and surface areas Annals of Statistics Vol. 35, pp. 1031-1051 |
8) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions Computational Statistics Vol. 22, 3, pp. 481-496 |
9) Cuevas, A.; González-Manteiga, W. and Rodríguez-Casal, A. (2006). Plug-in estimation of general level sets Australian & New Zealand Journal of Statistics Vol. 48, pp. 7-19 |
10) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2006). On the use of the bootstrap for estimating functions with functional data Computational Statistics & Data Analysis Vol. 51, nº 2, pp. 1063-1074 |
11) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2004). An anova test for functional data Computational Statistics & Data Analysis Vol. 47, pp. 111-122 |
12) Cuevas, A. and Rodríguez-Casal, A. (2004). On boundary estimation Advances in Applied Probability Vol. 36, pp. 340-354 |
13) Cuevas, A. and Rodríguez-Casal, A. (2003). "Set estimation: an overview and some recent developments". In: Advances and Trends in Nonparametric Statistics (pp. 251-264). Elsevier (North Holland) |
14) Cuevas, A. and González-Manteiga, W. (2002). Past editors' report TEST Vol. 11 (1), pp. 1-4. Springer Verlag |
15) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2002). Linear functional regression: The case of fixed design and functional response The Canadian Journal of Statistics Vol. 30, (2), pp. 285-300 |
16) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2001). Cluster analysis: a further approach based on density estimation Computational Statistics & Data Analysis Vol. 36-4, pp. 441-459 |
17) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2000). Estimating the number of clusters The Canadian Journal of Statistics Vol. 28, (2), pp. 367-382 |
18) Cao, R.; Cuevas, A. and González-Manteiga, W. (1994). A Comparative Study of Several Smoothing Methods in Density Estimation Computational Statistics & Data Analysis Vol. 17, pp. 153-176 |
19) Cuevas, A. and González-Manteiga, W. (1991). Data-driven smoothing based on convexity properties. (Editor G. Roussas) Nonparametric functional estimation and related topics. Nato advanced institute. Kluwer, pp. 225-240 |