Ficha membro


RODRíGUEZ PENAS, DAVID

Departamento: Estatística, Análise Matemática e Optimización
Universidade: USC
Teléfono: 881563100
Extensión: 13381
Correo electrónico: Este enderezo de correo está a ser protexido dos robots de correo lixo. Precisa activar o JavaScript para velo.
Páxina persoal: https://sites.google.com/view/davidrpenas

PUBLICACIÓNS

Atopáronse 14 rexistros.

1) R Penas, David and Raydan, M. (2020). A metaheuristic penalty approach for the starting point in nonlinear programming RAIRO - Operations Research Vol. 54 , pp. 451–469 Google Scholar

2) R Penas, David; Gómez Tato, A.; Fraguela, B.B.; Martín M.J. and Cerviño, S. (2019). Enhanced global optimization methods applied to complex fisheries stock assessment models Applied Soft Computing Vol. 77, pp. 50-66 Google Scholar

3) González, P.; Argüeso-Alejandro, P.; R Penas, David; Pardo, X.; Saez-Rodriguez, J.; Banga, J.R. and Doallo, R. (2019). Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology The Journal of Supercomputing Vol. 75, pp. 3471–3498 Google Scholar

4) González, P.; R Penas, David; Pardo, X.; Banga, J.R. and Doallo, R. (2018). Multimethod optimization in the cloud: A case-study in systems biology modelling Concurrency and Computation: Practice and Experience Vol. e4488 Google Scholar

5) González, P.; R Penas, David; Pardo, X.; Banga, J.R. and Doallo, R. (2018). Multimethod Optimization for Reverse Engineering of Complex Biological Networks. In Proceedings of the 6th International Workshop on Parallelism in Bioinformatics, pp. 11-18. ACM Google Scholar

6) R Penas, David; D Henriques; González, P.; Doallo, R.; Saez-Rodriguez, J. and Banga, J.R. (2017). A parallel metaheuristic for large mixed-integer nonlinear dynamic optimization problems, with applications in computational biology. PLOS ONE Vol. 12, pp. 1-32 Google Scholar

7) González, P.; Pardo, X.; R Penas, David; Teijeiro, D.; Banga, J.R. and Doallo, R. (2017). Using the Cloud for Parameter Estimation Problems: Comparing Spark vs MPI with a Case-Study. Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 797-806. IEEE Press Google Scholar

8) R Penas, David; González, P.; Banga, J.R. and Doallo, R. (2017). A cloud-based enhanced differential evolution algorithm for parameter estimation problems in computational systems biology Cluster Computing Vol. 20, pp. 1937--1950 Google Scholar

9) R Penas, David; González, P.; Egea, J.A.; Doallo, R. and Banga, J.R. (2017). Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy BMC Bioinformatics Vol. 18, pp. 52 Google Scholar

10) R Penas, David; González, P.; Banga, J.R. and Doallo, R. (2016). Evaluation of parallel Differential Evolution implementation on MapReduce and Spark Proceedings of the 22nd International Conference on Parallel and Distributed Computing, Euro-Par 2016, pp. 397-408. Springer Google Scholar

11) R Penas, David; Banga, J.R.; González, P. and Doallo, R. (2015). Enhanced parallel Differential Evolution algorithm for problems in computational systems biology Applied Soft Computing Vol. 33, pp. 86-99 Google Scholar

12) R Penas, David; González, P.; Egea, J.A.; Banga, J.R. and Doallo, R. (2015). Parallel Metaheuristics in Computational Biology: An Asynchronous Cooperative Enhanced Scatter Search Method Procedia Computer Science Vol. 51, pp. 630-639. Elsevier Google Scholar

13) R Penas, David; Banga, J.R.; González, P. and Doallo, R. (2014). A Parallel Differential Evolution Algorithm for Parameter Estimation in Dynamic Models of Biological Systems Proceedings of 8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014), pp. 173-181. Springer Google Scholar

14) Iglesias Allones, J.L.; R Penas, David; Taboada, M.; Martínez, D. and Tellado, S. (2013). A study of semantic proximity between archetype terms based on SNOMED CT relationships Process Support and Knowledge Representation in Health Care. Lecture Notes in Computer Science. Vol. 7738, pp. 98-112. Springer Google Scholar