Publications

-- -- -- Scopus -- ResearchGate --

  ,   

73 publications were found.

1) Calvo de Anta, R.; Luís, E.; Febrero-Bande, M.; Galiñanes, J.; Macías, F.; Ortíz, R. and Casás, F. (2020). "Soil organic carbon in peninsular Spain: Influence of environmental factors and spatial distribution". Geoderma 370. Elsevier . Google Scholar

2) Ateba, FF; Sagara, I; Sogoba, N; Touré, M; Konaté, D; Diawara, SI; Diakité, SAS; Diarra, A; Coulibaly, MD; Dolo, M; Dolo, A; Sacko, A; Thiam, SM; Sissako, A; Sangaré, L; Diakité, M; Koita, OA; Cissoko, M; Traore, SF; Winch, PJ; Febrero-Bande, M.; Shaffer, JG; Krogtad, DJ; Marker, HC; Doumbia, S and Gaudart, J (2020). "Spatio-Temporal Dynamic of Malaria Incidence: A Comparison of Two Ecological Zones in Mail". International Journal of Environmental Research and Public Health 17(13), 4698 . Google Scholar

3) Cuesta-Albertos, JA; García-Portugués, Eduardo; Febrero-Bande, M. and González-Manteiga, W. (2019). "Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes". Annals of Statistics 47, Nº 1, 439-467. IMS . Google Scholar

4) Febrero-Bande, M.; Galeano, P. and González-Manteiga, W. (2019). "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random". Computational Statistics and Data Analysis 131, 91--103. Elsevier . Google Scholar

5) Febrero-Bande, M.; González-Manteiga, W. and Oviedo, M (2019). "Variable selection in Functional Additive Regression Models". Computational Statistics 34, 469-487. Springer . Google Scholar

6) Cordeiro, C.; Ordoñez-Mayán, L.; Lendoiro, E.; Febrero-Bande, M.; Vieira, D.N. and Muñoz Barús, JI (2019). "A reliable method for estimating the postmortem interval from the biochemistry of the vitreous humor, temperature and body weight". Forensic Science International 295, 157-168. Elsevier . Google Scholar

7) Fernández-Delgado, M.; Sirsat, MS; Cernadas, E.; Alawadi, S.; Barro, S. and Febrero-Bande, M. (2019). "An extensive experimental survey of regression methods". Neural Networks 111, 11--34 . Google Scholar

8) Oviedo, M; Febrero-Bande, M.; Muñoz, MP and Domínguez, A. (2018). "Predicting seasonal influenza transmission using functional regression models with temporal dependence". PloS One 13 (4), 1-18. Public Library of Science . Google Scholar

9) Carballeira, R.; Vieira, D.N.; Febrero-Bande, M. and Muñoz Barús, JI (2018). "A valid method to determine the site of drowning". International Journal Legal Medicine 132(2), 487--497. Springer . Google Scholar

10) Lloret-Caulonga, L.; Bartolomé-Lozano, J.L.; Febrero-Bande, M.; Ginzo-Villamayor, M.J.; Martínez-Diz, P.; Díaz-Losada, E. and Gramaje-Pérez, D. (2018). "Grupo operativo EVID: prácticas innovadoras para combatir las enfermedades de la madera de la vid". Internet Journal of Viticulture and Enology 11(3), 1-4 . Google Scholar

11) Amhaz-Escanlar, S.; Jorge-Mora, A.; Jorge-Mora, T; Febrero-Bande, M. and Diez-Ulloa, MA (2018). "Proposal for a new trajectory for subaxial cervical lateral mass screws.". European Spine Journal 27 (11), 2738--2744. Springer . Google Scholar

12) González-Manteiga, W.; Febrero-Bande, M. and Piñeiro-Lamas, M. (2018). "Semiparametric prediction models for variables related with energy production". Journal of Mathematics in Industry 8 (7), 1--16. SpringerOpen . Google Scholar

13) Febrero-Bande, M.; Galeano, P. and González-Manteiga, W. (2017). "Functional Principal Component Regression and Functional Partial Least--squares Regression: An Overview and a Comparative Study". International Statistical Review 85(1), 61-83. Wiley . Google Scholar

14) Cuesta-Albertos, JA; Febrero-Bande, M. and Oviedo, M (2017). "The DD^G-classifier in the functional setting". TEST 26, 119-142. Springer . Google Scholar

15) González-Manteiga, W.; Febrero-Bande, M. and Piñeiro-Lamas, M. (2017). "Semiparametric Prediction Models for Variables Related with Energy Production". Progress in Industrial Mathematics at ECMI 2016, 3-15. Springer. ISBN 978-3-319-63082-3 . Google Scholar

16) González-Manteiga, W.; Zubelli, J.; Monsalve-Cobis, Abelardo E. and Febrero-Bande, M. (2017). "Goodness of Fit Test for Stochastic Volatility Models". , 89-104. From Statistics to Mathematical Finance. Festschrift in Honour of Winfried Stute. Springer . Google Scholar

17) Cuesta-Albertos, JA; García-Portugués, Eduardo; González-Manteiga, W. and Febrero-Bande, M. (2017). "Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes". arXiv e-prints . Google Scholar

18) Febrero-Bande, M.; González-Manteiga, W. and Oviedo, M (2017). "Variable selection in Functional Additive Regression Models". Functional Statistics and Related Fields, 113-122. Springer, Cham. . Google Scholar

19) Febrero-Bande, M. (2016). "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data". TEST 25(1), 35-40. Springer . Google Scholar

20) Ordoñez-Mayán, L.; Represas, C.; Miguens, X.; Rodríguez-Calvo, M.S.; Febrero-Bande, M. and Muñoz Barús, JI (2015). "How reliable is the Spanish bodily harm assessment scale?". Journal of Forensic and Legal Medicine 32, 16--20. Elsevier . Google Scholar

21) García-Portugués, Eduardo; González-Manteiga, W. and Febrero-Bande, M. (2014). "A goodness-of-fit test for the functional linear model with scalar response". Journal of Computational and Graphical Statistics 23, 761-778. Elsevier Science Bv . Google Scholar

22) Rodríguez, S.; González, A.; Simón, A.; Rodríguez-Calvo, M.S.; Febrero-Bande, M.; Cordeiro, C. and Muñoz Barús, JI (2014). "The use of computerized tomography in determining stature and sex from metatarsal bones". Legal Medicine 16(5), 252-257. Elsevier . Google Scholar

23) Febrero-Bande, M. and Oviedo, M (2014). "Functional Regression Models with Temporal and/or Spatial Dependence". Contributions in infinite-dimensional statistics and related topics, 107-112. Società Editrice Esculapio . Google Scholar

24) Febrero-Bande, M. and González-Manteiga, W. (2013). "Generalized Additive Models for Functional Data". TEST 22, 2, 278-292. Springer . Google Scholar

25) Rodríguez, S.; Miguens, X.; Rodríguez-Calvo, M.S.; Febrero-Bande, M. and Muñoz Barús, JI (2013). "Estimating adult stature from radiographically determined metatarsal length in a Spanish population". Forensic Science International 226, 1-3 , 297.e1-297.e4. Elsevier Ireland Ltd . Google Scholar

26) Febrero-Bande, M. (2013). "Comments on: Model-free model-fitting and predictive distributions". TEST 22, 2, 224-226. Springer . Google Scholar

27) Inácio, V.; González-Manteiga, W.; Febrero-Bande, M.; Gude-Sampedro, F.; Alonzo, T.A. and Cadarso Suárez, Carmen María (2012). "Extending induced ROC methodology to the functional context". Biostatistics 13 (4), 594-608. Oxford Journals . Google Scholar

28) Febrero-Bande, M. and Oviedo, M (2012). "Statistical computing in functional data analysis: the R package fda.usc". Journal of Statistical Software 51 (4) , 1-28 . JOURNAL STATISTICAL SOFTWARE, UCLA DEPT STATISTICS . Google Scholar

29) García-Portugués, Eduardo; González-Manteiga, W. and Febrero-Bande, M. (2012). "A goodness of fit test for the functional linear model with scalar response". . EIO-USC . Google Scholar

30) Monsalve-Cobis, Abelardo E.; González-Manteiga, W. and Febrero-Bande, M. (2011). "Goodness-of-fit test for interest rate models: An approach based on empirical processes". Computational Statistics & Data Analysis 55 (12), 3073–3092. Elsevier Science Bv . Google Scholar

31) Oviedo, M and Febrero-Bande, M. (2011). "Utilities for Statistical Computing in Functional Data Analysis: The R package fda.usc". 06/05/2011. EIO-USC . Google Scholar

32) Monsalve-Cobis, Abelardo E.; González-Manteiga, W. and Febrero-Bande, M. (2010-03). "Goodness of Fit Test for Interest Rate Models: an approach based on Empirical Process". 28/06/2010. EIO-USC . Google Scholar

33) Matías, J.M.; Febrero-Bande, M.; González-Manteiga, W. and Reboredo, J.C. (2010). "Boosting GARCH and neural networks for the prediction of heteroskedastic time series". Mathematical and Computer Modelling 51, 256-271. Pergamon-Elsevier Science Ltd . Google Scholar

34) Febrero-Bande, M.; Galeano, P. and González-Manteiga, W. (2010). "Measures of influence for the functional linear model with scalar response". Journal of Multivariate Analysis 101, 327-339. Elsevier Inc . Google Scholar

35) Muñoz Barús, JI; Rodríguez-Calvo, M.S.; Suárez-Peñaranda José M; Duarte N Vieira; Cadarso Suárez, Carmen María and Febrero-Bande, M. (2010). "PMICALC: An R code-based software for estimating postmortem interval (PMI) compatible with Windows, Mac and Linux operating systems. ". Forensic Science International 194, 1, 49-52. Elsevier Ireland Ltd . Google Scholar

36) Cuesta-Albertos, JA and Febrero-Bande, M. (2010). "A simple multiway ANOVA for functional data". TEST 19, 537-557. Springer . Google Scholar

37) Castellano Méndez, M.; Franco, A.; Cartelle, D.; Febrero-Bande, M. and Roca, E, (2009). "Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis". Water, Air and Soil Pollution 198, 95–110. Springer . Google Scholar

38) Menezes, R.; García-Soidán, Pilar and Febrero-Bande, M. (2008). "A kernel variogram estimator for clustered data". Scandinavian Journal of Statistics 35, 1, 18-37. Wiley-Blackwell Publishing, Inc . Google Scholar

39) Febrero-Bande, M.; Galeano, P. and González-Manteiga, W. (2008). "Outlier detection in functional data by depth measures with application to identify abnormal NOx levels". Environmetrics 19, 4, 331-345. John Wiley & Sons Ltd . Google Scholar

40) Barús, JI; Febrero-Bande, M. and Cadarso Suárez, Carmen María (2008). "Flexible regression models for estimating postmortem interval (PMI) in forensic medicine". Statistics in Medicine 27, 5026-5038. John Wiley & Sons, Ltd . Google Scholar

41) Matías, J.M.; Febrero-Bande, M.; González-Manteiga, W. and Reboredo, J.C. (2008). "Gradient Boosting GARCH and Neural Networks for Time Series Prediction". Supervised and Unsupervised Ensemble Methods and Their Applications Studies in Comp. Intelligence, 153-164. Springer . Google Scholar

42) Febrero-Bande, M. (2008). "A present overview on functional data analysis". Boletín de la SGAPEIO 24, 7-14. Informest . Google Scholar

43) Febrero-Bande, M.; Galeano, P.; González-Díaz, J. and Pateiro-López, B. (2008). "Estadística. Ingeniería Técnica en Informática de Sistemas". . Departamento de Estadística e Investigación Operativa. Universidad de Santiago de Compostela. ISBN: 13: 978-84-691-0974-8, DL: C-351-2008 . Google Scholar

44) Febrero-Bande, M.; Galeano, P.; González-Díaz, J. and Pateiro-López, B. (2008). "Prácticas de Estadística en R. Ingeniería Técnica en Informática de Sistemas". . Departamento de Estadística e Investigación Operativa. Universidad de Santiago de Compostela. ISBN-13: 978-84-691-0975-1, DL: C-350-2008 . Google Scholar

45) Febrero-Bande, M.; Galeano, P. and González-Manteiga, W. (2007). "A functional analysis of NOx levels: location and scale estimation and outlier detection". Computational Statistics 22, 3, 411-427. Springer Heidelberg . Google Scholar

46) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2007). "Robust estimation and classification for functional data via projection-based depth notions". Computational Statistics 22, 3, 481-496. Springer Heidelberg . Google Scholar

47) Febrero-Bande, M.; Galeano, P. and González-Manteiga, W. (2006-03). "A functional analysis of NOx levels: location and scale estimation and outlier detection". 16/06/2006. EIO-USC . Google Scholar

48) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2006). "On the use of the bootstrap for estimating functions with functional data". Computational Statistics & Data Analysis 51, nº 2, 1063-1074. Elsevier Science Bv . Google Scholar

49) Menezes, R.; García-Soidán, Pilar and Febrero-Bande, M. (2005). "A comparison of approaches for valid variogram achievement". Computational Statistics 20 4, 623-642. Springer Heidelberg . Google Scholar

50) García-Soidán, Pilar; Febrero-Bande, M. and González-Manteiga, W. (2004). "Nonparametric kernel estimation of an isotropic variogram". Journal of Statistical Planning and Inference 121, 65-92. Elsevier Science Bv . Google Scholar

51) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2004). "An anova test for functional data". Computational Statistics & Data Analysis 47, 111-122. Elsevier Science Bv . Google Scholar

52) Roca Pardiñas, Javier; González-Manteiga, W.; Febrero-Bande, M.; Prada-Sánchez, J. M. and Cadarso Suárez, Carmen María (2004). "Predicting binary time series of SO2 using generalized additive models with unknown link function". Environmetrics 15, 729-742. John Wiley & Sons Ltd . Google Scholar

53) Castellano Méndez, M.; González-Manteiga, W.; Febrero-Bande, M.; Prada-Sánchez, J. M. and Lozano Calderón, Román (2004). "Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods". Journal of Hydrology 296, 38-58. Elsevier . Google Scholar

54) Fernández de Castro, Belén M.; Prada-Sánchez, J. M.; Febrero-Bande, M.; Bermúdez Cela, José Luis; Hernández Hernández, J. J. and González-Manteiga, W. (2003). "Prediction of SO2 level using neural networks". Journal of the air and waste management association 53, 532-538. Air & Waste Management Association . Google Scholar

55) Fernández-Casal, R.; González-Manteiga, W. and Febrero-Bande, M. (2003). "Flexible spatio-temporal stationary variogram models". Statistics and Computing 13, 127-136. Springer . Google Scholar

56) Fernández-Casal, R.; González-Manteiga, W. and Febrero-Bande, M. (2003). "Space-time dependency modeling using general classes of flexible stationary variogram models". Journal of Geophysical Research 108, NO.D24, 8779. Amer Geophysical Union . Google Scholar

57) García-Soidán, Pilar; González-Manteiga, W. and Febrero-Bande, M. (2003). "Local linear regression estimation of the variogram". Statistics & Probability Letters 64, 169-179. Elsevier Science Bv . Google Scholar

58) Febrero-Bande, M.; Alonso Morales, Francisco Javier; Angulo Ibañez, José Miguel and González-Manteiga, W. (2002). "Semi-parametric statistical approaches for space-time process prediction. Some Applications". Spatial Statistics Through Applications, 127-146. Witpress . Google Scholar

59) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2002). "Linear functional regression: The case of fixed design and functional response". The Canadian Journal of Statistics 30, (2), 285-300. Wiley-Blackwell Publishing, Inc . Google Scholar

60) Yebra Pimentel Vilar, Eva; Giráldez Fernández, María Jesus; Arias, F. L.; González, J.; González, J. M.; Parafita Mato, Manuel Ángel and Febrero-Bande, M. (2001). "Rigid gas permeable contact lens and corneal topography". Ophthalmic And Physiological Optics 21, nº 3, 236-242. Wiley-Blackwell Publishing, Inc . Google Scholar

61) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2001). "Cluster analysis: a further approach based on density estimation". Computational Statistics & Data Analysis 36-4, 441-459. Elsevier Science Bv . Google Scholar

62) Prada-Sánchez, J. M.; Febrero-Bande, M.; Cotos-Yáñez, T.R.; Bermúdez Cela, José Luis and González-Manteiga, W. (2000). "Prediction of SO2 pollution incidents near a power station using partially linear models and an historical matrix of predictor-response vectors". Environmetrics 11, 209-225. John Wiley & Sons Ltd . Google Scholar

63) Cuevas, A.; Febrero-Bande, M. and Fraiman, R. (2000). "Estimating the number of clusters". The Canadian Journal of Statistics 28, (2), 367-382. Wiley-Blackwell Publishing, Inc . Google Scholar

64) Lado-Abeal, J; Prieto, D.; Lorenzo Solar, Mónica; Lojo, Santiago; Febrero-Bande, M.; Camarero Gonzalez, Emma Paz and Cabezas-Cerrato, J. (1999). "Differences between men and women as regards the effects of protein-energy malnutrition on the hypothalamic-pituitary-gonadal axis". Nutrition 15, nº 5, 351-358. Elsevier Science Inc . Google Scholar

65) Angulo Ibañez, José Miguel; Febrero-Bande, M.; Alonso Morales, Francisco Javier and González-Manteiga, W. (1998). "Semi-parametric statistical approaches for space-time process prediction". Environmental and Ecological Statistics 5, 297-316. Springer . Google Scholar

66) García-Soidán, Pilar and Febrero-Bande, M. (1998). "Comment on "The Kriged Kalman Filter"". TEST 7, (2), 264-266. Springer Verlag . Google Scholar

67) Cao, R.; Febrero-Bande, M.; Prada-Sánchez, J. M.; García-Jurado, I. and González-Manteiga, W. (1997). "Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes". Communications in Statistics: Simulation and Computation 26, 3, 961-978. Taylor & Francis Inc . Google Scholar

68) Prada-Sánchez, J. M. and Febrero-Bande, M. (1997). "Parametric, Nonparametric and mixed approaches to prediction of sparsely distributed pollution incidents: A case study". Journal of Chemometrics 11, nº 1, 13-32. John Wiley & Sons Ltd . Google Scholar

69) Lado-Abeal, J; Liz, JL; Rey, C.; Febrero-Bande, M. and Cabezas-Cerrato, J. (1996). "Effects of valproate-induced alteration of the GABAergic system on pulsatile luteinizing hormone secretion in ovariectomized women". European Journal of Endrocrinology 135, 293-298. Bioscientifica Ltd . Google Scholar

70) García-Jurado, I.; Cao, R.; Febrero-Bande, M.; Prada-Sánchez, J. M. and González-Manteiga, W. (1995). "Prediction using Box-Jenkins, nonparametric and bootstrap techniques". Technometrics 37, 3, 303-310. Amer Statistical Assoc . Google Scholar

71) Cao, R.; Febrero-Bande, M.; García-Jurado, I.; González-Manteiga, W. and Prada-Sánchez, J. M. (1994). "Un estudio de simulación comparativo de técnicas no paramétricas, semiparamétricas y Box-Jenkins para la predicción con datos dependientes". Estadística Española 36, 135, 5-20. INE . Google Scholar

72) González-Manteiga, W.; García-Jurado, I.; Cao, R.; Febrero-Bande, M.; Prada-Sánchez, J. M. and Lucas Domínguez, Tomás (1993). "Time Series Analysis for ambient concentrations". Atmospheric Environment 27A, 2, 153-158. Pergamon-Elsevier Science Ltd . Google Scholar

73) Cao, R.; González-Manteiga, W.; Prada-Sánchez, J. M.; García-Jurado, I. and Febrero-Bande, M. (1992). "Forecasting using a semiparametric model". Computational Statistics 1, 327-330. Springer Heidelberg . Google Scholar