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Summary

This paper analyzes the NOx levels measured by a control station near a
power plant by using techniques for functional data. First, we test for differ-
ences between the levels on working and non working days. Second, we obtain
several location estimators and confidence sets of the center of the functional
distribution. Third, we provide scale estimators and confidence sets of the
dispersion of the functional distribution. Finally, a distance based procedure
provides a criterion to determinate the presence of outlying observations,
which allows to detect relevant NOx levels.
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1 Introduction

NOx (nitrogen oxides) is the term for a group of gases which mainly con-
tents nitrogen and oxygen. Nitrogen oxides are, not only ones of the most
important pollutants, but also ones of the precursors of ozone formation and
contributors to global warming. Although NOx can be formed naturally, it is
primarily caused by combustion processes in sources such us motor vehicles,
electric utilities, industries and any other system that burn fuels. Nowa-
days, many governments have develop directives to put limit values for NOx
emissions which mainly affect industries, airports and motor vehicles, among
others. Therefore, it is necessary to develop procedures to study NOx emis-
sions, for instance, in order to know if the NOx levels are different at different
times of the week or if, occasionally, the levels are significatively large or small
due to some abnormal effects.

The main purpose of this paper is to analyze the NOx levels measured by
an environmental control station by means of techniques for functional data
analysis, hereafter FDA. FDA is concerned with the analysis of functional
random variables. We say that X is a functional random variable if it takes
values in an infinite dimensional space. In the particular case of the NOx
levels here analyzed, the observation space is a closed interval [tmin, tmax]
and the variable is observed at a discretized set of different times t1, . . . , tm
belonging to [tmin, tmax], providing an observation of the functional variable,
x (t1) , . . . , x (tm). Therefore, a dataset of n independent and identically dis-
tributed functional variables values, x1, . . . , xn, observed at a grid of points
t1, . . . , tm is given by,

{xi (tj) ; i = 1, . . . , n; j = 1, . . . , m} .

Monographs on FDA can be found in Ramsay and Silverman (2004, 2005),
which presents a large variety of methods and case studies and Ferraty and
Vieu (2006), which presents a non parametric approach to analyze functional
data. See also the references therein.

The dataset of NOx emissions that we have at hand have been taken by a
control station in Barcelona, Spain, during the first semester of 2005 and can
be downloaded from the webpage http://www.gencat.net. In particular the
levels have been observed at every hour of every day of the observation period
providing a long sample of measures that we split in functional samples of 24
hours observations. Thus, each curve represents the evolution of the levels
in one day. Our analysis is composed of four aspects. First, we carry out an
exploratory analysis of the data which allows us to characterize the behavior
of the observed NOx levels as of a functional nature. After that, we analyze
if there are differences between the levels on working and non working days
by using an anova test for functional data. Second, we locate the center of
the functional distribution of the NOx levels by means of location estimates
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and confidence sets. Third, we analyze the dispersion of the sample with two
scale estimators: the functional standard deviation and the trimmed standard
deviation, which, as far as we know, is firstly analyzed here in functional
settings. Finally, it is important to identify days or periods in which the
NOx levels are abnormally large or small, because these outlying observations
may allow us to find out sources which produce large NOx emissions. Thus,
we develop a distance based method for outlier detection in functional data
which relies on a bootstrap procedure which allows to obtain percentiles of
the distribution of functional distances of the curves with respect to a location
estimator. If this distance for a curve relative to one scale estimator is large
enough compared with the ones for the rest of curves, we assume that the
curve is a functional outlier.

The rest of this paper is organized as follows. In section 2, we present the
collected data and summarize their principal characteristics. In section 3,
we analyze the presence of two groups of curves in the data. In section 4
we study location estimates and confidence sets for the NOx data, while in
section 5 we obtain scale estimates, including the trimmed standard deviation
for functional data. In section 6, we look for outliers in the NOx data by
means of a distance based method. These outliers represent days in which
the NOx levels are significatively large or small compared with the rest of
the sample. Finally, in section 7, we conclude.

2 The NOx data

The data correspond to levels measured by a environmental control station
in Poblenou, a neighborhood in Barcelona, which is around an industrial area
in Besòs. The control station measures NOx levels in µg/m3 every hour of
every day. The dataset consists of the amount of 127 days of data, from
February, 23th, to June, 26th in 2005. Figures 1 and 2 show boxplots of the
data in terms of two factors: the hours (Fig. 1) and the day of the week (Fig.
2). The first graphic shows the boxplot of the data for the 24 hours of the
day. The graphic gives us a first look of the behavior of the data. The NOx
levels increase in the morning, attaining their largest values around 8:00am.
Then the levels decrease until 14:00am approximately and increase again at
the evening. As the control station is located at the city center, apparently
there is a large influence of traffic on the measured NOx levels, as, on the
other hand, it may be expected. The boxplot also suggest the presence of
several outliers in most of the hours. The second graphic shows the boxplots
of the data for two different subsamples: (1) working days, which are the
weekdays, and (2) non working days, which are the Saturdays, Sundays and
festive days. From the plot, we conclude that apparently may be differences
on the levels of both groups. In both graphics, it is really meaningful the
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Figure 1: Boxplot of the NOx data by hour of the day.
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Figure 2: Boxplot of the NOx data by day of the week.
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Figure 3: Sample curves of the NOx data: working days (up); non working
days (down).
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presence of several extreme values, especially on working days. These both
aspects, the existence of two groups and the presence of outliers, will be
primarily the subjects of our ongoing analysis.

In order to make a functional analysis of the data, we assume that each
curve is formed by the 24 observations of a day. Therefore, we have 127
curves corresponding to 127 days. Some of the measures are missing for
several consecutive hours of some days, so that only 115 days are complete
for the analysis. We decided to discard the days with incomplete periods.
Figure 3 shows the 115 observed curves divided in two groups: working days
(up) and non working days (down). As we can see, the shape of the observed
curves are rather similar except for some of them that are different for the
whole or some hours of the day. Note also that most of the largest values are
attained for the working days, as expected from Figure 2.

3 Testing for the equallity of means

Once that we have introduced the data, the first step in our analysis is to
determinate if there are significant differences between the levels depending
on the day of the week. For that, we split the dataset in the two group of
curves formed by the working and the non working days, and use the anova
test for functional data proposed by Cuevas, Febrero and Fraiman (2004),
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for which we first need to introduce three important notions, which will be
further used along the paper: sample mean, sample covariance and norms
for functional data. Let x1 (t) , . . . , xn (t) be the n = 115 sample curves. The
functional sample mean for the n curves is given by:

µ̂M (t) =
1
n

n∑

i=1

xi (t) , (1)

while the functional sample covariance is a matrix with size m × m and
elements is given by:

Σ̂ (tj , tk) =
1

n− 1

n∑

i=1

(xi (tj)− µ̂M (tj)) (xi (tk)− µ̂M (tk)) ,

for j, k = 1, . . . , m. The sample functional mean is an estimator of the center
of the functional distribution, while the sample functional covariance is an
estimator of the scale and correlation structure of the functional distribution.
Both estimators will be further analyzed for the NOx data in sections 4 and
5. Although several norms for functional data have been proposed, the most
relevant ones are the Lp norms, where p = 1, 2, . . . ,∞, which, for a curve
x1 (t), are given by:

‖x1‖p =




tmax∫

tmin

|x1 (t)|p dt




1
p

‖x1‖∞ = sup
t∈(tmin,tmax)

|x1 (t)| .

The distances between two curves x1 (t) and x2 (t) associated with these
norms, dp (x1, x2), p = 1, 2, . . . ,∞, are defined in the usual way as the norm of
the functional difference, x1 (t)−x2 (t). For more information and definitions
of alternative distances see Ferraty and Vieu (2006).

The anova test proposed by Cuevas, Febrero and Fraiman (2004) is based on
the statistic:

V =
G∑

g<h

ng ‖µ̂M,g − µ̂M,h‖2 , (2)

where G is the number of groups, ng is the number of curves in group g and
µ̂M,g denotes the functional sample mean for the curves in group g. We can
conclude that the G groups are different if the statistic V is large enough. The
asymptotic distribution of the statistic (2) can be approximated by means of
a Monte Carlo procedure which, in the homoscedastic case, depends on the
functional sample covariance matrix of the curves, and, in the heteroscedastic
case, depends on the functional sample covariance matrices of the curves in
each group g = 1, . . . , G. We refer to Cuevas, Febrero and Fraiman (2004)
for a more detailed exposition of the properties of the statistic (2) and its
asymptotic distribution.
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For the NOx data, we have G = 2 groups with n1 = 76 and n2 = 39 curves
in each group, respectively. We apply the anova test assuming heteroscedas-
ticity. The results indicated a strong evidence of the hypothesis that the two
group of curves are different as the resulting p-value was 0. We conclude that
there are significatively differences between the working and non working
days. This conclusion may be expected because, as we have seen in Figures 1
and 2, the traffic appears to have a large influence on NOx levels. One may
wonder if we can go further and look for differences between Saturdays and
the subgroup of Sundays and festive days. Note that there are only 18 and
21 curves in the first and second subgroups, respectively, which is less than
the 24 hours of the day. Thus, results obtained with these small groups may
be unreliable, so we prefer to consider them as members of the same group.

Consequently, in what follows, we are going to do a parallel analysis of the
NOx data, for the whole dataset and for both groups by separate. The rest
of our analysis explores three different aspects: (1) location estimation; (2)
scale estimation; and (3) outlier detection.

4 Location estimation: mean, trimmed mean,
median and mode for functional data

Our second step in analyzing the NOx data is to provide location estimators
and confidence sets of the central curve. Obviously, the first candidate to
estimate the center of the distribution is the sample mean defined in (1),
introduced in the previous section, but alternative location estimates have
been proposed. As an attempt to obtain a robust location estimator of the
center of the distribution, Fraiman and Muniz (2001) introduced the func-
tional α−trimmed mean which is defined as the mean of the most central
n− [αn] curves, where α is such that 0 ≤ α ≤ (n− 1) /n and [ ] denotes the
integer part. The notion of depth is used to define what the most central
curve means. Depths for multivariate data points were introduced to measure
the centrality of a multivariate observation within a given data cloud. For
continuous one-dimensional random variables, the most popular depths are
the halfspace depth, proposed by Tukey (1975), which, for a point x, drawn
from a random variable with distribution function F , is given by:

HD (x) = min {F (x) , 1− F (x)} ,

and the simplicial depth, proposed by Liu (1990), which is given by:

SD (x) = 2F (x) (1− F (x)) .

Also, Fraiman and Muniz (2001) considered a depth of the form:

FMD (x) = 1−
∣∣∣∣
1
2
− F (x)

∣∣∣∣ . (3)
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In practice, the distribution function F is substituted by the empirical dis-
tribution function of the observed sample. Thus, if D is a univariate depth
defined on <, the univariate depth of the point xi (t) with respect to the
sample points x1 (t) , . . . , xn (t), is given by D (xi (t)), which allows to define
the functional depths of the curves x1 (t) , . . . , xn (t) as follows:

FD (xi (t)) =

tmax∫

tmin

D (xi (t)) dt, i = 1, . . . , n.

Therefore, each curve xi (t) is associated with its corresponding functional
depth FD (xi (t)), such that the deepest and the less deepest curves are the
ones with attains the maximum and minimum values of the functional depths.
If the curves are ranked according to decreasing values of their depths, we
get the ordered curves x(1) (t) , . . . , x(n) (t), such that x(1) (t) is the deepest
curve and x(n) (t) is the less deepest one. The functional trimmed mean of
x1 (t) , . . . , xn (t) for a given value α, is defined as:

µ̂TM,α (t) =
1

n− [αn]

n−[αn]∑

i=1

x(i) (t) .

Note that the trimmed means range from the functional mean to the median
by considering α from 0 to (n− 1) /n. Thus, by product we obtain that a
trimmed mean in conjunction with a depth measure, provide different alter-
native ways to define a functional median. In what follows, we consider the
functional median using the depth (3) which is denoted by µ̂MED (t).

Finally, Cuevas, Febrero and Fraiman (2006) extended the concept of mode to
the functional framework. Their idea was to select the curve most densely sur-
rounded by the rest of curves of the dataset. The functional mode, µ̂MOD (t)
of a set of curves x1 (t) , . . . , xn (t), is then defined as:

µ̂MOD (t) = arg max {gh (xi (t)) , i = 1, . . . , n} ,

such that,

gh (xi (t)) =
1

nh

n∑

j=1

K

(‖xj (t)− xi (t)‖
h

)
,

where ‖ ‖ is a norm in the functional space and K : <+ → <+ is a kernel
function. Note that only the median and the mode are curves belonging to
the dataset, while the mean and trimmed means are just linear combinations
of all the curves.

We define the confidence set of a curve x1 (t) at the confidence level β as the
set of curves c (t) which have the same distribution that x1 (t) and such that:

CS (x1 (t)) = {c (t) : d (x1 (t) , c (t)) < Dβ} ,
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where Dβ is such that Pr (d (x1 (t) , c (t)) < Dβ) = β, and d is a functional
distance. A sample of curves belonging to the confidence set of a location
estimator µ̂ (t), CS (µ̂ (t)), can be obtained using the smoothed bootstrap
approach proposed by Cuevas, Febrero and Fraiman (2006) which works as
follows. Let µ̂ (t) be a location estimate based on the curves x1 (t) , . . . , xn (t)
observed at times t1, . . . , tm. First obtain B standard bootstrap samples from
the curves that we denote by xb

i (t), for i = 1, . . . , n and b = 1, . . . , B. Then,
obtain smoothed bootstrap samples:

yb
i (t) = xb

i (t) + zb
i (t) ,

where zb
i (t) is such that

(
zb
i (t1) , . . . , zb

i (tm)
)

is normally distributed with
mean 0 and covariance matrix γΣx, where Σx is the covariance matrix of
x (t1) , . . . , x (tm) and γ is a bootstrap smoothing parameter. Each smoothed
bootstrap sample provides a location estimate, namely µ̂b (t), such that a
sample of curves belonging to CS (µ̂ (t)) for confidence level β is defined by
calculating the value DB such that the (100× β)% of the smoothed boostrap
replications µ̂b (t) are within a distance from their average smaller than DB .
The sample of curves obtained with this procedure will be called a bootstrap
confidence set.

Now, we obtain the location measures and their respective bootstrap con-
fidence sets for the NOx data. Figure 4, 5 and 6 show the mean, median,
trimmed mean and mode for the whole sample, the working days and the
non working days, joint with their respective bootstrap confidence sets. In
the three cases, we take α = 0.10 to compute the trimmed mean, so that, the
less 10% deepest curves are not taken into account for averaging. In order to
compute the mode, as in Cuevas, Febrero and Fraiman (2006), we consider
the Gaussian kernel:

K (x) =
2√
2π

exp
(
−x2

2

)
, x > 0

and bandwidth h = 0.2max
{‖xj (t)− xk (t)‖2 : j, k = 1, . . . , n

}
, where ‖ ‖2

is the L2 norm. For the bootstrap confidence sets, we have taken B = 200
bootstrap samples, bootstrap smoothing parameter γ = 0.05, confidence level
β = 0.95 and the L2 distance. Some conclusions are as follows. First, the
location estimates of the working and non working days are clearly different,
as expected from the results in section 3. Second, note that the functional
mean and trimmed mean are much less rough than the median and the mode.
Obviously, this is due to the smoothing provided by the average of the curves
in the computation of the means. Third, for the whole sample and the non
working days, both the mean and trimmed mean and the median and mode,
look very close to each other. This is not the case with the working days as
the median and the mode strongly differ at the evenings, being the median
closer to both means. Fourth, note also that the median and the mode for
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Figure 4: Location estimates and bootstrap confidence sets for the whole
sample.
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the whole sample and the working days have a peak around 3:00pm, which is
not observed for both means. This peak may be due to the traffic as this is
the hour at which many people take their cars to come back home after work.
Finally, the differences between the bootstrap confidence sets widths for the
mean and trimmed mean with respect to the median and mode are quite
large. This is also a consequence of the averaging made for the means, which
considerably reduces the variability of these estimators in contrast with the
median and mode.

5 Scale estimation: the standard deviation and
trimmed standard deviation for functional
data

As a third step in our analysis, we study the scale properties of the NOx
data. The simplest candidate to estimate the dispersion of the curves is the
sample standard deviation, which is defined by,

σ̂SD (t) =

(
1

n− 1

n∑

i=1

(xi (t)− µ̂M (t))2
) 1

2

.

A more robust estimator of the dispersion of a univariate distribution is the
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Figure 5: Location estimates and bootstrap confidence sets for the working
days.
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Figure 6: Location estimates and bootstrap confidence sets for the non work-
ing days.
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trimmed standard deviation. The idea is similar to the trimmed mean: obtain
the sample standard deviation of the deepest points. We generalize this
estimator for functional settings by introducing the functional α−trimmed
standard deviation of x1 (t) , . . . , xn (t), which is defined as follows:

σ̂TSD,α (t) =


 1

n− [αn]

n−[αn]∑

i=1

(
x(i) (t)− µ̂TM,α (t)

)2




1
2

.

As we are considering variation of the curves with respect to a trimmed
mean, it is expected that σ̂TSD,α (t) is less affected by extreme curves because
the less deepest ones have no influence on the calculation of the trimmed
standard deviation. As in the case of the trimmed mean, note that different
trimmed standard deviations are defined by considering alternative depth
measures. For both estimates, bootstrap confidence sets can be obtained with
the bootstrap samples and the procedure described for location estimates.

Now, we obtain the scale measures and their respective bootstrap confidence
sets for the NOx data. Figures 7 and 8 show the standard deviation and the
trimmed standard deviation for the whole sample, the working days and the
non working days, joint with their respective bootstrap confidence sets. In
the three cases, we take α = 0.10 to compute the trimmed standard deviation,
so that, the less 10% deepest curves are not taken into account for averaging.
The main conclusion from the plots is that the trimmed standard deviations
in the three cases attain smaller values than the standard deviations. For
instance, the reduction after trimming in the case of the working and non
working days is as large as the 20%. Although it is expected that the trimmed
deviation will give smaller values than the standard deviation, the amount of
reduction getting here suggests that some curves which attain abnormal large
values may be present in the sample. This conjecture is further analyzed in
section 6. Finally, note that the bootstrap confidence sets widths are quite
similar in both cases.

6 Outlier detection

The last step in our analysis is concerned with detection of outliers in the
NOx data. Although the presence of outliers may have significative impact
on FDA in many different ways, no outlier detection procedures have been
proposed for functional data. Here, in order to look for outliers in the NOx
data, we develop an algorithm based on distances and analyze its behavior
for the NOx data. First of all, it is necessary to introduce some idea of what
an outlier in functional settings is.

We consider that a curve is an outlier if it has been generated by a stochastic
process with a different distribution than the rest of curves, which are as-
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Figure 7: Scale estimates and bootstrap confidence sets for the whole sample.
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Figure 8: Scale estimates and bootstrap confidence sets for the working (up)
and non working days (down).
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sumed to be identically distributed. Note that this definition is wide enough
to include curves which are different from the rest for all the observation
period but also curves which are different from the rest only during some
subinterval of the observation period.

It is well known that if z1, . . . , zn is a sample drawn from the normal distri-
bution, the likelihood ratio test statistic for testing that the observation zi is
an outlier is asymptotically the most powerful test, see, for instance, Barnett
and Lewis (1994). This statistic is given by:

LRT (zi) =
zi − z

σ̂
, (4)

where z and σ̂ are the sample mean and standard deviation of the sample.
In practice, the number and location of outliers are unknown a priori, so it is
needed to check every observation for i = 1, . . . , n and employ the statistic:

λ = max
1≤i≤n

|LRT (zi)| . (5)

By comparing the test statistic (5) with some threshold, and an iterative
procedure, one can determinate the presence of outliers. If the observations
have been not drawn from the normal distribution, the likelihood ratio test
statistic (4) can be seen as a quasi likelihood ratio test and still works well.
Neither the sample mean nor the sample standard deviation are resistant to
the presence of outliers, and this produces the effect known as “masking”: a
big outlier inflates the standard deviation, masking the presence of others.
Thus, to avoid this effect, the mean and variance are replaced by some ro-
bust estimates such as the median or the trimmed mean, for the mean, and
the median absolute deviation or the trimmed standard deviation, for the
standard deviation.

In accordance with the reasoning for the univariate case, we proceed as fol-
lows. Let Oα (xi (t)) be the statistic:

Oα (xi (t)) =
∥∥∥∥

xi (t)− µ̂TM,α (t)
σ̂TM,α (t)

∥∥∥∥ , (6)

where ‖ ‖ is a norm in the functional space (‖ ‖1, ‖ ‖2 or ‖ ‖∞), µ̂TM,α (t)
is the α−trimmed mean and σ̂TSD,α (t) is the α−trimmed standard devia-
tion. Thus, Oα (xi (t)) is the distance between xi (t) and µ̂TM,α (t) relative
to σ̂TSD,α (t). We look for functional outliers in the NOx data by using the
statistic:

Λ = max
1≤i≤n

Oα (xi (t)) , (7)

in conjunction with the following procedure:

Functional outlier detection procedure
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1. Given the functional sample x1 (t) , . . . , xn (t), obtain the statistic (7).

2. Let xI (t) be the curve that attains the maximum value of the statistic
(7). If Λ = Oα (xI (t)) > C, assume that xI (t) is an outlier, remove it
from the sample, and repeat steps 1. and 2., until no more outliers are
found.

The key point in the application of the algorithm is to obtain the threshold
C. For that we propose the following bootstrap procedure, which make use
of the smoothed bootstrap samples needed to obtain the confidence intervals
of the location and scale estimators, and works as follows:

Bootstrap procedure for the threshold

1. Let yb
i (t), i = 1, . . . , n and b = 1, . . . , B, be the B smoothed bootstrap

samples. For each b = 1, . . . , B, obtain:

Λb = max
1≤i≤n−[αn]

Iα

(
yb
(i) (t)

)
,

where yb
(i) (t), i = 1, . . . , n, are the ordered smoothed bootstrap curves

according with their depths, where α is the one taken to obtain µ̂TM,α (t)
and σ̂TSD,α (t) in the outlier detection procedure.

2. The maximum value of the sample Λ1, . . . , ΛB is the threshold C used
in step 2. of the functional outlier detection procedure.

It is important to note that we compute the values Λ1, . . . , ΛB using only the
n − [αn] most deepest smoothed bootstrap curves. This is done in order to
avoid the presence of outliers in the bootstrap curves. But, if the dataset has
no outliers, this choice may be not appropriate because the threshold C will
be downward biased. Thus, we try to avoid the detection of false outliers by
taking the threshold as the maximum of the set Λ1, . . . , ΛB , which is expected
to be large enough.

We apply the outlier detection procedure for the NOx data. Table 1 shows the
outliers detected by the procedure with the three norms ‖ ‖1, ‖ ‖2 and ‖ ‖∞.
Rows 3 to 6, 7 to 9 and 10 to 11 show the outliers detected by the procedure for
the whole sample, the working and non working days, respectively. Columns
2, 5 and 8 show the threshold obtained with the bootstrap procedure for each
dataset and norm, respectively. Columns 3, 6 and 9 shows the values of the
statistic Λ for the outliers detected by the procedure, which are shown in
columns 4, 7 and 10. Note that the outliers detected with the three norms
coincide for the working and non working days. This does not happen for
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Table 1: Outliers detected by the procedure for the NOx data.

‖ ‖1 ‖ ‖2 ‖ ‖∞
Dataset C Λ Outliers C Λ Outliers C Λ Outliers

Whole Sample 42.57 77.71 03/18 10.68 16.78 03/18 4.87 5.96 03/11
61.20 04/29 14.42 04/29 5.94 03/18
49.48 03/11 12.52 03/11 5.14 04/29

10.87 05/02 5.06 05/02

Working Days 47.12 76.46 03/18 11.83 16.47 03/18 4.90 6.01 03/11
60.38 04/29 14.26 04/29 5.61 03/18
50.08 03/11 12.48 03/11 5.09 04/29

Non Working Days 55.84 61.63 04/30 11.23 13.76 04/30 3.98 4.43 04/30
64.16 03/19 13.55 03/19 4.12 03/19

the outliers detected in the whole sample. This is not surprising as the whole
sample is formed by two different groups of curves and the outliers have been
detected not taken this fact into account. About the days in which the outliers
has been detected, the Friday, 03/18 and Saturday, 03/19 correspond to the
beginning of the Eastern vacation in Spain in the year 2005. The Friday,
04/29, Saturday, 04/30 and Monday, 05/02 correspond to a long weekend.
Also the Friday, 03/11 is the beginning of a weekend. All these periods of
time are related with vacation days, so that we conclude that the abnormal
observations detected are linked to a strong increase in traffic due to small
vacation periods. Figure 9 shows the observed curves divided in the two
groups with the outliers detected by the procedure with the three norms.
This plot confirms the results obtained by the proposed algorithm.

7 Conclusions

In this paper, we have analyzed a dataset of NOx emissions by using tech-
niques for functional data analysis. First, we have found differences between
the means of the groups formed of working and non working days by using
an anova test. Second, several location estimates, including the mean, the
median, the trimmed mean and the mode have been analyzed for the NOx
emissions, joint with their respective confidence bands, which show differences
between the estimates. Third, two scale estimates, including the standard
deviation and the trimmed standard deviation have been obtained for the
NOx emissions, joint with their respective confidence bands, suggesting the
presence of outliers. Finally, we have found outliers in the NOx data by using
an outlier detection procedure for functional data. All the outliers detected
are linked to small vacation periods producing large traffic concentrations.
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Figure 9: Outliers in the curves of the NOx data: working days (up) and non
working days (down). Outliers are in green.
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