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Master in Statistical Techniques

University of Vigo

January 7, 2013



1
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Abstract

In a recent paper (de Uña-Álvarez, 2012) a correction of SGoF multitesting method

for possibly dependent tests was introduced. This correction enhanced the field of ap-

plications of SGoF methodology, initially restricted to the independent setting, to make

decisions on which hypotheses are to be rejected in a multiple hypothesis testing problem

involving dependence.

In this work we make a contribution to that topic through an intensive Monte Carlo

simulation study of that correction, called BB-SGoF (from Beta-Binomial). In these

simulations several number of blocks, within-block correlation values, effect levels, and

proportion of true effects are considered. The allocation of the true effects is taken to be

random. False discovery rate, power, and conservativeness of the method (with respect

to the number of existing effects with p-values below the given significance threshold)

are computed along the Monte Carlo trials. Comparison to the original SGoF and

Benjamini-Hochberg adjustments is provided. In de Uña-Álvarez (2012) FDR and power

weren’t reported so this implies a new contribution to the study of BB-SGoF procedure.

Another contribution of this work is the development of an R code for the implementation

of BB-SGoF method.

Part of this work is included in the forthcoming publication Castro Conde and de

Uña-Álvarez J (2013).
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Chapter 1

Introduction

1.1 Multiple Hypothesis Testing

Multiple testing refers to any instance that involves the simultaneous testing of several

hypotheses. Nowadays, there exist many statistical inference problems in areas such

genomic and protenomics which involve the simultaneous test of thousands, or tens of

thousands, of null hypotheses producing as a result a number of significant p-values or

effects. Moreover, these hypotheses may have complex and unknown dependence struc-

ture among themselves. See e.g. Dudoit and Van der Laan (2008) for an introduction

to this area.

One of the main problems in multiple hypotheses testing is that, if one does not

take the multiplicity of tests into account, then the probability that some of the true null

hypotheses are rejected may be overly large. So, in the multitesting setting, a specific

procedure for deciding which null hypotheses should be rejected is needed.

The decision to reject or not the null hypotheses is usually based on tests statistics,

defined as functions of the data which provide rejection regions for each of the n hypothe-

ses. Some multitesting methods (SGoF, BB-SGoF, Bonferroni, Benjamini-Hochberg...)

do not make a direct use of test statistics; rather they use the p-values to decide which

hypotheses are to be rejected. Let us define formally the concept of unadjusted p-value

in this multitest setting (Dudoit and Van der Laan, 2008).

3



CHAPTER 1. INTRODUCTION 4

Definition 1.1.1 (Unadjusted p-value) The unadjusted p-value pi, for the single test

of null hypothesis H0i, is defined as

pi ≡ inf{α ∈ [0, 1] : Reject H0i at single test nominal level α}, i = 1, ..., n.

That is, the unadjusted p-value pi, for null hypothesis H0i, is the smallest nominal

Type I error level of the single hypothesis testing procedure at which one would rejectH0i.

The smaller the unadjusted p-value pi, the stronger evidence against the corresponding

null hypothesis H0i.

Specifically, null hypothesis H0i is rejected at single test nominal Type I error level

α if pi ≤ α. That is, the set of rejected null hypotheses at single test nominal Type I

error level α is

Rn(α) = {i : pi ≤ α}.

In any testing problem, two types of error can be committed. A Type I error, or

false positive, is committed by rejecting a true null hypothesis. A Type II error, or false

negative, is committed by failing to reject a false null hypothesis.

Consider the problem of testing simultaneously n null hypotheses, of which h0 are

true and Rn is the number of hypotheses rejected. Table 1.1 summarizes the number of

errors committed:

Non rejected, Rcn Rejected, Rn total

H0 True Wn Vn h0

H1 True Un Sn h1

total n-Rn Rn n

Table 1.1: Classification of errors committed in multiple testing.

According to this classification, Vn is the number of null hypotheses which are

rejected (Type I errors) while Un are the false nulls which are not rejected (Type II

errors). Ideally, one would like to simultaneously minimize the probability of both errors.
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But this is not feasible and one seeks for a trade-off between the two types of error. This

trade-off typically involves the minimization of the probability of Type II error, i.e.,

maximization of power, subject to a Type I error constraint.

Traditionally great importance is given to the control of Type I error. The problem

that arises when multiple tests are performed is that this Type I error control gets lost.

Hence, there is a need for multitest correction methods aiming to control for this error.

However when the number of tests is very large, control of Type I error usually entails

an important increase of the Type II error i.e. a great loss of statistical power. As a

result, in recent years many efforts have been made to improve methods of multitest

correction looking for a balance between control of Type I error and power.

1.2 Error criteria. Type I error rates

When testing multiple hypotheses, there are many possible definitions for the Type I

error rate of a testing procedure. Accordingly, we define a Type I error rate as a function

of the number of Type I errors Vn and rejected hypotheses Rn.

1.2.1 Type I error rates based on the distribution of the number of

Type I errors

Definition 1.2.1 (FWER) The family-wise error rate is the probability of having

at least one Type I error,

FWER ≡ P (Vn > 0).

The family-wise error rate (FWER), defined as the probability of committing at

least one Type I error through the several hypotheses under consideration, works as a

substitute for the significance level in the traditional (single hypothesis) context. One

can differentiate between two types of control for FWER:

• A procedure controls the FWER in the weak sense if the FWER control at level α
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is guaranteed only when all null hypotheses are true (complete, intersection or global

null hypothesis).

• A procedure controls the FWER in the strong sense if the FWER control at level

α is guaranteed for any configuration of true and non-true null hypotheses (including

the global null hypothesis).

Typically FWER control is required in the strong sense, i.e. independently of the

amount and location of true and false hypotheses. Unfortunately, methods controlling

the FWER have a remarkable lack of power, that is, they are unable to detect a rea-

sonable amount of effects (Benjamini and Hochberg, 1995). In fact, the power to detect

a specific hypothesis while controlling the FWER is greatly reduced when the number

of hypotheses in the family increases. A relaxation of FWER is the generalized FWER

criterion.

Definition 1.2.2 (gFWER) The generalized family-wise error rate for a user-

supplied integer k ∈ {0, ..., n−1}, is the probability of having at least k+1 Type I errors.

That is,

gFWER(k) ≡ P (Vn > k).

When k=0, the gFWER reduces to usual family-wise error rate, FWER.

Most multiple testing procedures focus on control of the FWER, e.g., Bonferroni

procedure (See section 1.5.1).

1.2.2 Type I error rates based on the distribution of the proportion of

Type I errors among the rejected hypotheses

Definition 1.2.3 (FDR) The false discovery rate is the expected value of the pro-

portion of Type I errors among the rejected hypotheses,

FDR ≡ E
[
VnI{Rn>0}

Rn

]
= E

[
Vn
Rn
|Rn > 0

]
Pr(Rn > 0)
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where IA is the indicator function of an event A.

Under the complete null hypothesis, all Rn rejected hypothesis are Type I errors,

hence Vn/Rn = 1 whenever Rn > 1 and FDR = FWER = P (Vn > 0). FDR controlling

procedures therefore also control the FWER in the weak sense. In general, because

Vn/Rn ≤ 1 (IVn≥1 ≥ Vn/Rn ⇒ E(IVn≥1) ≥ E(Vn/Rn) ⇒ P (Vn > 0) ≥ E(Vn/Rn)),

we have FDR ≤ FWER for any given multiple testing procedure. Thus, procedures

controlling the FWER are typically more conservative, i.e., they lead to fewer rejected

hypotheses, than those controlling the FDR.

The family-wise error rate (FWER) and the false discovery rate (FDR) have been

proposed as suitable significance criteria for multiple testing. See Benjamin and Hochberg

(1995), Nichols and Hayasaka (2003) or Dudoit and Van der Laan (2008).

1.2.3 Other Type I error rate criteria

As we have said, there are many criteria for the control of Type I error rates. Table 1.2

shows a classification of different measures of Type I error in multiple testing problems.

In this table, F−1ξ stands for the quantile function of a random variable ξ.

1.3 Power

Definition 1.3.1 (Power) The probability that no Type II error occurs is called test

power. That is, the power is a measure of the skill of the test to detect an effect which

is present.

In the setting of multiple testing one needs to adjust the usual definition of power.

Then, the power is defined as the expected value of the proportion of rejected hypotheses

among the true effects. For a rejection region of type Rn(α) = {i : pi ≤ α} we have:

Power(α) = E

[
1

h1

n∑
i=1

I{pi≤α,H0i=1}

]
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where h1 =
n∑
i=1

I{H0i=1} is the unknown number of non-true nulls among the n hypotheses

and H0i = 1 indicates that the null hypothesis H0i is false.

As a drawback of the FWER- and FDR-based methods, their power may be rapidly

decreased as the number of tests grows, being unable to detect even one effect in par-

ticular situations (Carvajal-Rodŕıguez el al., 2009). This typically happens in situations

with a large number of tests, when the effect in the non-true nulls is weak relative to the

sample size. Otherwise, Benjamin and Hochberg (1995) demonstrated that the direct

control of FDR increase considerably the statistical power of multitest adjustment.

Type I error rate Definition

Family-wise error rate FWER = P (Vn > 0)

Generalized family-wise error rate gFWER(k) = P (Vn > k)

Per-comparison error rate PCER = E[Vn]/n

Per-family error rate PFER = E[Vn]

Median-based per-family error rate mPFER = F−1Vn
(1/2)

Quantile number of false positives QNFP (δ) = F−1Vn
(δ)

Tail probability for the proportion TPPFP (q) = P

(
Vn
Rn

> q

)
of false positives

False discovery rate FDR = E[VnI{Rn>0}/Rn]

Proportion of expected false positives PEFP = E[Vn]/E[Rn]

Quantile proportion of false positives QPFP (δ) = F−1Vn/Rn
(δ)

Generalized tail probability error rate gTP (q, g) = P (g(Vn, Rn) > q)

Generalized expected error rate gEV (g) = E[g(Vn, Rn)]

Table 1.2: Commonly-used Type I error rates. Taken from Dudoit S. and Van der Laan

M.J. (2008).
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1.4 An example

As an illustrative example, we consider the micro array study of hereditary breast cancer

of Hedenfalk et al. (2001). Many cases of hereditary breast cancer are due to mutations

in either the BRCA1 or the BRCA2 gene. The histopathological changes in these cancers

are often characteristic of the mutant gene. They hypothesized that the genes expressed

by these two types of tumors are also distinctive, perhaps allowing to identify cases of

hereditary breast cancer on the basis of gene-expression profiles.

The patients consisted of 23 with BRCA1 mutations, 17 with BRCA2 mutations,

20 with familial breast cancer, 19 with possibly familial breast cancer and 34 with spo-

radic breast cancer to determine whether there are distinctive patterns of global gene

expression in these three kinds of tumors.

One of the goals of this study was to find genes differentially expressed between

BRCA1- and BRCA2-mutation positive tumors. Thus, for each of the 3,226 genes of

interest, a p-value was assigned based on a suitable statistical test for the comparison.

Following previous analysis of these data, 56 genes were eliminated. This left n =3,170

genes.

Figure 1.1 shows the histogram of these 3170 p-values:

It can be seen from Figure 1.1 that the p-values present an asymmetry and they are

concentrated around the zero, which possibly indicates the existence of effects (non-true

null hypotheses). The set of p-values is available in the library qvalue of the software R

(R Development Core Team, 2008).
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1.5 Methods

In this section we describe some of the existing multitesting methods, which are based

only on the p-values and aim to control Type I error and power in a simultaneous way.

1.5.1 Bonferroni

The Bonferroni correction is a method used to counteract the problem of multiple com-

parisons. It is considered the simplest and most conservative method to control the

familywise error rate.

The correction is based on the idea that, if an experimenter is testing n dependent

or independent hypotheses on a set of data, then one way of maintaining the familywise

error rate is to test each individual hypothesis at a statistical significance level of 1/n

times what it would be if only one hypothesis were tested. So, if it is desired that the

significance level for the whole family of tests should be (at most) α, then the Bonferroni

correction would be to test each of the individual tests at a significance level of α/n.

The Bonferroni correction states that rejecting all pi smaller than
α

n
will control

the FWER at level α. The proof follows from Boole’s inequality:

FWER = P

{⋃
i0

(pi ≤
α

n
)

}
≤
∑
i0

P (pi ≤
α

n
) = h0

α

n
≤ nα

n
= α

where i0 represents the index going along all the true null hypotheses and h0 is the

number of true null hypotheses.

This result does not require the tests to be independent.

1.5.2 BH

The Benjamini–Hochberg procedure (BH step-up procedure) controls the false discovery

rate (at level α). The procedure works as follows:

i) For a given α, let k be the largest i for which p(i) ≤ i
nα, where p(1) ≤ p(2) ≤ ... ≤ p(n)
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are the ordered p-values.

ii) Then reject (i.e. declare positive discoveries) all H0(i) for i = 1, 2, . . . , k, where H0(i)

is the null hypotheses attached to p(i).

The BH procedure controls the FDR al level α when the n tests are independent,

and also in various scenarios of dependence (see Benjamini and Yekutieli, 2001). It also

satisfies the inequality:

FDR ≤ h0
n
α ≤ α.

So the above procedure controls the FDR at level
h0
n
α.

It becomes clear from last inequalities that knowledge on h0 is relevant for improving

the BH procedure. However, if an estimator of h0 is inserted into the BH procedure in

a obvious way, the FDR control at the desired level is no longer guaranteed.

The BH procedure was proven to control the FDR by Benjamini and Hochberg

(1995). Simes (1986) introduced the same procedure in order to control the FWER in

the weak sense i.e. under the intersection or complete null hypothesis. Hommel (1988)

showed that Simes procedure does not control the FWER in the strong sense. Based on

the Simes procedure, Hochberg (1988) proposed a step-up procedure which does control

the FWER in the strong sense.

In Storey (2003), a modified version of the FDR called the ‘positive false discovery

rate’ (pFDR) was introduced. Moreover, a new quantity called the ‘q-value’ was intro-

duced and investigated. It was motivated as a natural ‘Bayesian posterior p-value’, or

rather the pFDR analogue of the p-value.

The q-value is defined to be the FDR analogue of the p-value. The q-value of

an individual hypothesis test is the minimum FDR at which the test may be called

significant. One approach is to directly estimate q-values rather than fixing a level at

which to control the FDR.

1.5.3 SGoF

Recently, Carvajal-Rodŕıguez et al. (2009) proposed a new method for p-value threshold-

ing in multitesting problems. This method, called SGoF (from Sequential- Goodness-of-
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Fit), can be summarized as follows. Let Fn be the empirical distribution of the p-values,

and let γ be an initial significance level, typically γ = 0.05. Under the complete (or

intersection) null that all the n null hypotheses are true (i.e., no effects), the expected

amount of p-values below γ is just nγ. On the other hand, when nFn(γ) is much larger

than nγ, one gets evidence about the existence of a number of non-true nulls, or effects,

among the n tests. Let F be the underlying distribution function of the p-values; SGoF

multitest (Carvajal-Rodŕıguez et al., 2009; de Uña-Álvarez, 2011) starts by performing a

standard one-sided binomial test for H0 : F (γ) = γ versus the alternative H1 : F (γ) > γ,

based on the critical region
Fn(γ)− γ√
V ar(0)(Fn(γ))

> zα,

where V ar(0)(Fn(γ)) = γ(1− γ)/n and zα is the 1− α quantile of the standard normal.

Here, α = γ is usually taken. If H0 is rejected, the number of effects declared by SGoF

is given by

N (0)
α (γ) = n[Fn(γ)− γ]− n

√
V ar(0)(Fn(γ))zα + 1,

which is the excess in the number of observed p-values below threshold γ when compared

to the expected amount, beyond the critical point zα. Then, SGoF claims that the effects

correspond to the N
(0)
α (γ) smallest p-values. In this metatest, the FWER is controlled at

level α in the weak sense (Carvajal-Rodŕıguez et al., 2009), but not in the strong sense.

Besides, SGoF does not control FDR at any level, being liberal to this regard. We denote

the corresponding threshold p-value by p∗n,α(γ), that is, Nα(γ) = nFn(p∗n,α(γ)). We have

that p∗n,α(γ) ≤ γ .

A more conservative version of SGoF is obtained when declaring as true effects the

N
(1)
α (γ) smallest p-values, where

N (1)
α (γ) = n[Fn(γ)− γ]− n

√
V ar(1)(Fn(γ))zα + 1,

and where V ar(1)(Fn(γ)) = Fn(γ)(1− Fn(γ))/n.

In short, SGoF multitesting procedure makes a decision on the number of effects

among those p-values smaller than a significance level γ. This method is an useful al-
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ternative to FDR-based methods (e.g. Benjamini-Hochberg) when the number of tests

is large, the proportion of effects is small, and the effects are weak to moderate. In such

situation the power of BH methods is usually poor and will be improved by SGoF pro-

ceed. Unfortunately, SGoF is very sensitive to correlation among the tests and, indeed,

it may be very anticonservative (it tends to reject more than it should) in dependent

scenarios. See Carvajal-Rodŕıguez et al. (2009) and de Uña-Álvarez (2011) for more

information.

SGoF method is based on the binomial distribution, which serves as a null model for

the test statistic nFn(γ) when the tests are independent. An extension of the binomial

model which allows for correlated Bernoulli outcomes is the betabinomial distribution

(see e.g. Johnson and Kotz, 1970). The beta-binomial model is the basis for the correc-

tion of SGoF introduced in the next Section.

1.5.4 BB-SGoF

The beta-binomial model has been used in several applications, including the analy-

sis of point quadrat data (Kemp and Kemp, 1956), the consumer purchasing behavior

(Chatfield and Goodhart, 1970), the household distribution of incidence of disease (Grif-

fiths, 1973), toxicological experiments (Williams, 1975) and, more recently, in proteomics

(Pham et al., 2010).

BB-SGoF (from Beta-Binomial SGoF, de Uña-Álvarez 2012) is a correction of SGoF

for correlated tests. It is assumed that there exist k independent blocks of correlated

p-values, where k is unknown. As SGoF, BB-SGoF makes a decision on the number of

effects with p-values smaller than α, but depending on the number of blocks k and the

within block correlation.

Given the initial significance threshold γ, BB-SGoF starts by transforming the ini-

tial set of p-values u1, ..., un into n realizations of a Bernoulli variable: Xi = I{ui≤γ}, i =

1, ..., n. Here we change the notation for the p-values since p will be used to represent

a population parameter. Then, by assuming that there are k independent blocks of

p-values of sizes n1, ..., nk (where n1 + ... + nk = n), the number of successes sj within

each block j, j = 1, ..., k, is computed. Here, Xi = 1 is called success. After that, a set

of independent observations {(sj , nj), j = 1, ..., k} is available, where sj (j = 1, ..., k) is
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assumed to be a realization of a beta-binomial variable with parameters (nj , p, ρ), where

n1, ..., nk may be distinct. In this setting, p = F (γ) represents the average proportion of

p-values falling below γ, which under the complete null is just γ; while ρ is the correlation

between two different indicators Xi and Xj inside the same block (i.e. the within-block

correlation).

Tarone (1979) introduced a test for the binomial model HT
0 : ρ = 0 against the

beta-binomial alternative HT
1 : ρ > 0, which in the case of equal nj ’s is based on the

Z–statistic

Z =
nρn − k√

2k
,

where (recall) n =
∑k

j=1 nj and ρn is a estimator of the correlation ρ, rejecting HT
0

for large values of Z. That is, significant positive correlation is found when ρn is large

relative to its expected value under the binomial (k/n).

Model-based estimators for p and ρ may be derived by maximum-likelihood princi-

ples under the beta-binomial assumption. As usual with maximum-likelihood estimates,

the maximizer (p̂, ρ̂) of the likelihood on the [0, 1]× [0, 1] rectangle is an efficient, asymp-

totically normal estimator of (p, ρ). The main goal of BB-SGoF is to provide inferences

on the value of p = F (γ), while allowing for dependences among the tests (ρ > 0).

More specifically, BB-SGoF aims to construct a one-sided confidence interval for the

excess of significant cases τn(γ) = n(p − γ) = n(F (γ) − γ), similarly as original SGoF

does but considering the possible existing correlation. This confidence interval may be

constructed from the asymptotic normality of p̂.

Consider the reparametrization of the beta-binomial model given by the logit trans-

formation of p and ρ, that is β1 = log(p/(1 − p)) and β2 = log(ρ/(1 − ρ)). With this

reparametrization, an unrestricted maximization of the likelihood can be performed.

The following 100(1− α)% confidence intervals for β1 and β2 can be computed:

I(βi) = (β̂i ± se(β̂i)zα/2), i = 1, 2,

where se(β̂i) denotes the estimated standard error of β̂i, and where zα/2 stands for the

(1−α/2)-quantile of the standard normal distribution. Respectively, confidence intervals
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for p and ρ may be obtained by logit-backtransforming the limits of I(βi).

As mentioned, of particular interest is the 100(1−α)% one-sided confidence interval

for τn(γ) = n(p−γ), since this parameter represents the excess of significant features (at

level γ) with respect to the expected amount under the complete (or intersection) null.

Therefore, we consider the interval I(τn(γ)) = (n(exp(low1)/(1 + exp(low1)) − γ),∞)

where low1 = β̂1 − se(β̂1)zα.

Formally, BB-SGoF acts as follows. If 0 ∈ I(τn(γ)) the complete null is accepted

and no effect is declared. On the contrary, if 0 /∈ I(τn(γ)) then BB-SGoF declares as

effects the smallest NBB
α (γ; k) p-values, where

NBB
α (γ; k) = n(exp(low1)/(1 + exp(low1))− γ).

By definition, and according to the asymptotic normality of β̂1, BB-SGoF weakly

controls the FWER at level α when the number of tests n is large. It is also clear

that the number of declared effects will grow with the number of tests. This is because

se(β̂1) goes to zero at a
√
n-rate, and therefore the lower limit low1 = β̂1 − se(β̂1)zα

is shifted-up towards β̂1 as n → ∞. In practice, this translates into a power of BB-

SGoF which increases with the number of tests, a property which is not shared by other

multiple tests adjustments as e.g. FDR-controlling procedures (Carvajal-Rodŕıguez et

al.,2009). Another consequence of the definition of BB-SGoF method is that the influence

of the FWER-controlling parameter α is small or even negligible when the number of

tests is large; that is, moving from α = 0.05 to e.g. α = 0.001 will have almost no

impact in NBB
α (γ; k) when n is large since the normal quantile zα will be divided by

√
n. Finally, it is also interesting that the threshold p-value reported by BB-SGoF, i.e.

F−1(NBB
α (γ; k)/n), will be approximately F−1(F (γ) − γ) as n grows; this threshold is

below the initial significance level γ regardless the shape of the cumulative distribution

of the p-values F . All these properties of BB-SGoF were also indicated for the original

SGoF formulation for independent tests (de Uña-Álvarez, 2011).

A crucial practical issue of this method is how to choose the value of k; once k is

fixed, the nj ’s may be computed for example as nj = n/k, j = 1, ..., k, so every block has

the same size. Few independent blocks (k small) implies a strong correlation structure.

In this situation, the value of NBB
α (γ; k) may be much smaller than N

(0)
α (γ) or N

(1)
α (γ).

On the contrary, a large number of blocks (k large) implicitly states weak dependence,
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leading to a value of NBB
α (γ; k) which may be close to the number of effects declared by

original SGoF for independent tests.

A reasonable automatic choice for k is kN = arg minkN
BB
α (γ; k), corresponding

to the most conservative decision of declaring the smallest number of effects along k.

In this criterion, minimization may be performed along a grid k = kmin, ..., kmax where

kmin is the smallest number of existing blocks (i.e. the strongest allowed correlation),

and kmax = n/nmin where nmin is the smallest allowed amount of tests in each block.

Clearly, this kN ensures the weak control of FWER at the nominal level α as long as

the number of existing blocks falls between kmin and kmax.

BB-SGoF in practice

In this section we refer a detailed application of BB-SGoF to Hedenfalk data set as

provided in de Uña-Álvarez (2012). As mentioned in Section 1.4, this data set contains

a sequence of 3170 p-values corresponding to tests performed on gene expression levels

concerns to a study of hereditary breast cancer by Hedenfalk et al. (2001).

Assuming independence among the tests and taking γ = 0.05 as initial threshold,

the number of effects declared by SGoF at level α = 0.05 was N
(0)
α (γ) = 428.32 and

N
(1)
α (γ) = 412.08 effects when using the conservative version of SGoF which estimates

the variance of Fn(γ) without any restriction. The independence assumption among

the tests was checked through the runs test for randomness of a dichotomous (binary)

sequence, giving a two-sided p-value of 0.002654.

Under dependence, inferences provided by SGoF above are not valid and, therefore,

the number of significant genes must be re-evaluated.

The minimum value of NBB
α (γ; k) along k (k = 2, ..., 501) is obtained for k = 266,

namely NBB
α (γ; kN ) = 389.1544 or about 389 declared effects. This value of k also

corresponds to the minimum p-value of Tarone’s test (p = 4.86e − 11). This is smaller

than the 412 or the 428 effects declared by the binomial SGoFs for independent tests.

This is not surprising, since the variance in the estimation of p = F (γ) is larger when

the tests are dependent; moreover, for the Hedenfalk data it happens that the value of

F (γ) estimated under the beta-binomial model is smaller than Fn(γ) for most of the
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values of k.

It is interesting to point out that the most conservative decision provided by BB-

SGoF (389 discoveries) at level α = 0.05 is still much more powerful than that obtained

from standard methods which control the FDR at 5%. Indeed, Benjamini-Hochberg

FDR-based method at that level gives for this data set only 157 discoveries, which are

less than half the discoveries declared by NBB
α (γ; kN ). The reason for this is that BB-

SGoF only controls for FWER in the weak sense, being liberal about the proportion of

false discoveries otherwise.

1.6 Contributions of this work

In the recent paper, The Beta-Binomial SGoF method for multiple dependent tests (de

Uña-Álvarez, 2012), a simulation study of BB-SGoF was carried out. The study reported

the average number of effects declared by BB-SGoF when based on different decisions

for the number of existing blocks and the average number of effects declared by original

SGoF and its conservative version, both corresponding to the independent setting. The

averages were computed along 250 Monte Carlo simulations. Standard deviations for

the number of rejected nulls were reported too.

Furthermore, the familywise rejection rate (FWRR) was given, defined as the pro-

portion of trials for which one or more than one effect was declared; note that, in the

case of the complete null, this is just the FWER or the FDR. But in situations with

effects no information about the FDR was reported. Power was not reported either in

that simulation study. The reason was in the specific planing for the generation of the

outcomes. Indeed, only the indicators I{ui≤γ} were generated, without allowing for the

identification of true and non-true nulls.

The contribution of this work is a more intensive simulation study (112 simulated

scenarios) where 1000 trials of Monte Carlo are performed in each simulation, and a

more extensive results report. Specifically, FDR and power are computed for SGoF,

conservative SGoF, BB-SGoF based on four different decisions for the number of blocks

(true number of blocks k, k/2, 2k and automatic data-driven choice) and BH method. We

also report the proportion of trials for which the number of declared effects was not larger
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than the number of effects with p-value below γ. All these calculations were possible due

to the fact that in our simulations, we have perfectly identified which p-values correspond

to true hypotheses and which with false ones. This makes an important difference with

respect to the mentioned paper.

Another relevant difference is that, since we inspire the simulations in the data of

Hedenfalk (2-sample tests), we simulate a model which falls out of the scope of the beta-

binomial family. In this sense, the provided simulations allows to investigate robustness

properties of the BB-SGoF approach.

In this work, R code for the implementation of BB-SGoF procedure has been de-

veloped. In particular, code for the computation and optimitation of the beta-binomial

likelihood along a grid of values for the number of existing blocks of dependent tests

is given. This is an important contribution since, so far, the only available implemen-

tation of BB-SGoF (cfr. http://webs.uvigo.es/jacobo/BB-SGoF.htm) was based on the

function vglm of the library VGAM, for which some problems were detected.



Chapter 2

Simulation Scenario and

Simulation Results

2.1 Simulated scenario

In order to further explore the performance of BB-SGoF method, we have carried out

the following simulation study where 1000 Monte Carlo simulations were performed.

Having in mind the study of Hedenfalk data, we simulated n=500 or n=1000 2-

sample t-tests for comparison of normally distributed ‘gene expression levels’ in two

groups A and B with sizes 7 and 8 respectively. The proportion of true nulls (i.e. genes

equally expressed) Π0 was 1 (complete null), 0.9 (10% of effects), or 0.67 (33% of effects).

Mean was always taken as zero in group A, while in group B it was µ for 1/3 of the

effects and −µ for the other 2/3 of effects, with µ = 1 (weak effects), µ = 2 (intermediate

effects), or µ = 4 (strong effects). Random allocation of the effects among the n tests

(genes) was considered. Within-block correlation levels of ρ = 0, 0.1, 0.2 and 0.8 were

taken (note that this ρ refers to the correlation between gaussian outcomes and not to

the ρ parameter of the discussed beta-binomial model). With regard to the number

of blocks, we considered k = 10 or k = 20, so we had 50 or 25 tests per block when

n = 500, and 100 or 50 tests per block when n = 1000. For random generation, the

function rmvnorm of the R software was used.

19
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BB-SGoF method with γ = α = 0.05 was applied under perfect knowledge on the

true value of k but also when underestimating (k/2) or overestimating (2k) the true

number of blocks. We also applied an automatic (data-driven) choice of k by minimizing

the number of effects declared by BB-SGoF along the grid k = 2, ..., 61.

For each situation, we computed the FDR, the power (both averaged along the 1000

Monte Carlo trials), and the proportion of trials for which the number of declared effects

was not larger than the number of effects with p-value below γ (this is just 1-FDR under

the complete null); as indicated in de Uña-Álvarez (2012), BB-SGoF guarantees that this

proportion (labeled as Coverage in Tables below) is asymptotically (i.e. n→∞) larger

than or equal to 1 − α, a property which is not shared by other multitesting methods.

Computation of these quantities for the original SGoF method for independent tests and

its conservative version and for the BH method (with a nominal FDR of 5%) was also

included to compare.

2.2 Principal results

Tables 2.1 to 2.9 reported in this section are a sample of the full set of results of the

simulations. Due to the large extension of the results, they are restricted to case k=10

and k=20 blocks, n=1000 tests, no effects, 10% of effects or 33% of effects, weak or

strong effects (µ = 1 or µ = 4), and within-block correlation ρ = 0 (independent

setting), ρ = 0.2 (moderate correlation), and ρ = 0.8 (strong correlation). We collect

the remaining Tables in Section 2.3 and Appendix A.

In each table we report the FDR, Power (POW) and the Coverage of seven meth-

ods: SGoF, conservative SGoF, BH, BB-SGoF(k), BB-SGoF(k/2), BB-SGoF(2k) and

Auto BB-SGoF (the automatic BB-SGoF procedure based on KN ). In these tables we

represent by Π0 the proportion of true nulls (1-proportion of effects).

• Complete null hypothesis

In first place we are going to analyze the case of no effects (Π0 = 1), i.e. we

consider the complete null hypothesis. It should be recalled that under the complete

null hypothesis, all Rn rejected hypothesis are Type I errors and FDR = FWER.

Obviously, the power in all these situations is 100% since there aren’t effects. Moreover,
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Table 2.1: n = 1000, ρ = 0, k = 10, µ = 1.

Table 2.2: n = 1000, ρ = 0, k = 20, µ = 1.

the coverage coincides to 1− FDR as explained above.

For analizing this case, we have to focus on the first columns (Π0 = 1) in Tables

from 2.1 to 2.6 where we report the results of no effects in the scenario of weak effects

(µ = 1). In the case of strong effects (µ = 4) the results observed are the same because

we are considering the global null hypothesis, i.e., we consider that there aren’t effects

so that parameter is irrelevant.

From Tables 2.1 and 2.2 we see that all the methods respect the nominal FDR

of 5% fairly well in the independent setting. For example, SGoF, BH and BB-SGoF(k)

report an FDR of 0.059, 0.057 and 0.047, respectively, in Table 2.1 (ρ = 0, k = 10, µ = 1)

and 0.044, 0.047, 0.035, respectively, in Table 4.2 (ρ = 0, k = 20, µ = 1). The automatic

BB-SGoF reports an FDR below nominal (0.019 for k=10 and 0.01 for k=20), something

expected due to its conservativeness.

As correlation grows, original SGoF for independent tests loses control of FWER;

for example, when ρ = 0.2 and k = 10 (Table 2.3), FDR = 0.166 and when ρ = 0.8

and k = 10 (Table 4.5), FDR = 0.351, i.e., it is almost 7 times the nominal. The

same happens to conservative SGoF. It should be pointed out that this loss of control is
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Table 2.3: n = 1000, ρ = 0.2, k = 10, µ = 1.

Table 2.4: n = 1000, ρ = 0.2, k = 20, µ = 1.

lesser when k = 20 (Tables 2.4 and 2.6). This occurs because more blocks implies less

dependence.

On the other hand, BB-SGoF methods adapt well to the correlated settings, this is

particularly true for the benchmark method which uses the true k and for the automatic

method. When the researcher overestimates the number of blocks, the FDR of BB-SGoF

is above the nominal as we can see in the Table 2.5 (FDR=0.118 for ρ = 0.8); this is

because BB-SGoF decision becomes more liberal as the assumed dependence structure

gets weaker. As regards BH method, it respects the nominal FDR regardless the value

of ρ, which is expected due to its robustness for dependences. For example, it reports

exactly a FDR of 0.05 in Table 2.3 (ρ = 0.2), although it is very conservative in the case

ρ = 0.8 (FDR=0.028).

Summarizing, the results for BB-SGoF are relevant since they suggest FWER con-

trol (in the weak sense) even when the simulated model is not beta-binomial.

•Weak effects

The situation with 33% (Π0 = 0.67) of weak effects (Tables from 2.1 to 2.6) reveals

that SGoF-type strategies are not controlling FDR at any given level. For example,
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Table 2.5: n = 1000, ρ = 0.8, k = 10, µ = 1.

Table 2.6: n = 1000, ρ = 0.8, k = 20, µ = 1.

in the independent setting, original SGoF and benchmark BB-SGoF report a FDR of

13.3% and 12.5% respectively (Table 2.1), more than two times the nominal FDR for

BH procedure. Results for the dependent setting are of the same order, although for

strong correlation (ρ = 0.8) these FDRs go down to 11.5% and 8.5% respectively (Table

2.5). However, the proportion of true effects detected by SGoF-type methods is between

5 and 9 times that of BH, the relative performance of SGoF getting better as correlation

decreases. At the same time, one may say that BB-SGoF is not detecting ‘too many

effects’ in the sense that, in at least 98.1% of the trials (worst situation, Table 2.5), the

number of declared effects is below the number of true effects with p-value below γ. It is

not strange that this proportion is just 100% for BH since this method is rejecting only

between 3% and 4% of the existing effects. Interestingly, automatic BB-SGoF does not

lose much power to respect to its optimal version based on the true number of blocks:

its power is 6.4% smaller in the worse situation (ρ = 0.8).

With respect to the situation with 10% (Π0 = 0.9) of weak effects shown in Tables

2.1-2.6, we see that the only method which respects the FDR al level α is BH. BB-SGoF

shows in Table 2.1 a FDR of 0.295 with 10% of weak effects which is more than twice

its value with 33% of weak effects (0.125).
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On the other hand, the power of automatic BB-SGoF relative to BH was 17 under

independence (POW=0.136 and 0.008 respectively, Table 2.1) and above 15 with ρ = 0.2

(POW=0.126 and 0.008 respectively, Table 2.3).

• Strong effects

Information corresponding to strong effects (µ = 4) is shown in Tables from 2.7 to

2.9.

Table 2.7: n = 1000, ρ = 0, k = 10, µ = 4.

The case with 33% of strong effects allows to see that, in some instances, the FDR

of SGoF-type methods may be very small compared to γ (the p-value threshold) or α

(the FWER-controlling parameter under the complete null). For example, Tables 2.7,

2.8 and 2.9 indicate that, for the simulated settings, the average proportion of false

discoveries of benchmark BB-SGoF lies between 0.07/1000 and 0.4/1000, being even

smaller for its automatic version. The reason for this is that, with such strong effects,

the non-true nulls report very small p-values, which are clearly separated from those of

the true nulls. Still, automatic BB-SGoF is able to detect more than 80% of the existing

effects (POW=0.85,0.85, 0.81 in the Tables 2.7-2.9 respectively).

Table 2.8: n = 1000, ρ = 0.2, k = 10, µ = 4.
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On the other hand, the power of BH procedure is larger than that, according to its

higher FDR (0.03); indeed, this power is almost 100% in all the cases. This situation

may be regarded as non-optimal however in the sense of the coverage; for example, in the

case ρ = 0.8, k = 10 (Table 2.9), only for 17% of the 1000 Monte Carlo trials the number

of effects declared by BH was below the true number of effects with p-value smaller than

0.05, showing an anticonservative performance in this sense (this percentage was even

smaller for the other correlation levels and values of k). Also importantly, as for the

case with weak effects, the automatic choice of the number of blocks results in a small

loss of power (smaller than 2.5% in this case).

Table 2.9: n = 1000, ρ = 0.8, k = 10, µ = 4.

The case of 10% of strong effects shows that, as in the case of 33% of strong effects,

the FDR of SGoF-type methods may be small compared to γ or α although in a lesser

degree and excepting SGoF(k) and SGoF(2k), which tend to report a FDR close to 0.05.

The lowest FDR and power is reported by Auto BB-SGoF in every case. In particular,

Auto BB-SGoF loses about 30% of power compared to its benchmark version.

On the other hand, the performance of BH method is very similar to the case of

33% of strong effects, reporting a power of nearly one and a coverage of 0.016, 0.03 and

0.378 in Tables 2.7, 2.8 and 2.9.

Finally, as a overview of the ‘Coverage’ of the different methods we have observed

that in the case of weak effects (µ = 1), the proportion of trials for which the number of

declared effects was not larger than the number of effects with p-value below γ (which

should be 95% in SGoF-type methods) is between the 83% and the 100%, increasing

with the proportion of effects. See Tables from 2.1 to 2.6. Moreover, in the scenarios

where exists strong correlation (ρ = 0.8), we see that the ‘Coverage’ is a bit lower.
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On the other hand, when we consider strong effects (µ = 4), we observe a difference.

While before the ‘Coverage’ of BH method was rounding the 100%, in this situation this

proportion is zero (Tables 2.7 and 2.8) and a little bit higher in the case of strong

correlation (Table 2.9).

2.3 Mention to other scenarios

• Intermediate effects

Important differences were seen when considering intermediate effects (µ = 2)

rather than weak (µ = 1) or strong (µ = 4) effects.

When we consider the case of 33% of intermediate effects, shown e.g. in Tables

2.10 and 2.11, we note that BH and BB-SGoF procedures performed similarly in FDR,

power and coverage.

But if we consider the 10% of intermediate effects we see that BH and SGoF-type

strategies reports very different values of FDR. In this context, Auto BB-SGoF is very

conservative and loses much power (around 30%). The other SGoF-type methods do not

control the FDR at level α = 0.05. On the other hand, BH reported a FDR of 0.045 in

Tables 2.10 and 2.11 although it performed similarly to the other procedures in power

and coverage.

Table 2.10: n = 1000, ρ = 0, k = 10, µ = 2.
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Table 2.11: n = 1000, ρ = 0.2, k = 10, µ = 2.

• Correlation of ρ = 0.1

When we consider a correlation of ρ = 0.1 the simulations reported similar results

of the case of correlation of ρ = 0.2 as we can see comparing Tables 2.10 and 2.12.

Table 2.12: n = 1000, ρ = 0.1, k = 10, µ = 2.

• Influence of the number of test (n)

We end this section by summarizing the simulations with n = 500 tests. The full

set of tables are reported in Appendix A. As an example we show two cases.

In first place we show the tables corresponding to the situation of ρ = 0.1, k = 20,

µ = 1 and n = 1000, 500, respectively.

Table 2.13: n = 1000, ρ = 0.1, k = 20, µ = 1.
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Table 2.14: n = 500, ρ = 0.1, k = 20, µ = 1.

In Tables 2.13 and 2.14 we see that under the complete null the results reported are

very similar although the FDR tends to be higher when n=500, contrary what happens

to the coverage. In the cases with effects, it occurs that the FDR and power reported by

BH is lower when n=1000. On the other hand, SGoF-type methods reported lower FDR,

power and coverage with n=500. This fact has an theoretical explanation based in the

construction of this kind of methods because an increase in n produces also an increase

of the threshold p-value although this result is not so clear when strong correlation is

present. These results have already been obtained in previous simulation studies.

In second place, we show Tables 2.15 and 2.16 corresponding to a situation of strong

effects.

Table 2.15: n = 1000, ρ = 0.8, k = 20, µ = 4.

Table 2.16: n = 500, ρ = 0.8, k = 20, µ = 4.
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The results reported by SGoF-type strategies in this case are the same to the

previous ones. With the 10% and 33% of effects, the FDR and the power reported

is always lower when n = 500. Moreover, these methods are more conservative when

n = 1000 in the sense of the coverage.

On the other hand, due to the strong effects, the results reported by BH are similar

when n=500 and n=1000. Another fact that we observe on these tables is that, in this

scenario, the power of BH is very high, in fact, it is the higher power of all methods. It

seems that the nominal level α = 0.05 results very high in this context because SGoF-

type methods reported a FDR very low compared to 0.05. Moreover, if we focus on the

situation of 33% of effects, we see that the coverage of this method is very low, i.e., BH

rejected more hypothesis than it should.

2.4 Automatic number of blocks

The number of blocks of dependent tests detected by automatic BB-SGoF was not always

close to the true k. In order to illustrate this result we report in the Tables 2.17, 2.18 and

2.19 the number of blocks detected on average and it standard deviations (in brackets),

in the case of the true number of blocks is k=10 and n=1000.

In the first table we show the situation of the complete null hypothesis in which

case the number of blocks detected was 18.1 (independent setting), 10.4 (ρ = 0.2),

or 6.9 (ρ = 0.8) on average, therefore being decreasing with an increasing correlation.

Corresponding standard deviations were 16.7, 12.4, and 10.5, showing a large variability

of the selected number of blocks along replicates.

Table 2.17: n = 1000, k = 10, µ = 1.

On the other hand, in the other two tables we see that the average number of blocks

detected was decreasing for an increasing proportion of effects although it is not so clear
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when ρ = 0.8, because in the case of µ = 1 (Table 2.18) this affirmation isn’t true.

Table 2.18: n = 1000, k = 10, µ = 1.

Table 2.19: n = 1000, k = 10, µ = 4.

Whatever the case, one should keep in mind that the role of automatic BB-SGoF

is not to perfectly estimate the number of existing blocks but rather to allow for error

control in the multitesting procedure when the value of k is unknown.

2.5 Tarone test

As we said, Tarone (1979) introduced a test for the binomial model HT
0 : ρ0 = 0 against

the beta-binomial alternative HT
1 : ρ0 > 0. Here we denote by ρ0 the correlation between

Bernoulli outcomes I{ui≤γ} sharing the same block, which is not the ρ in the simulations

(but we have ρ0 = 0 if ρ = 0). In Tables 2.20, 2.21 and 2.22 we show the mean and

standard deviation of the p-values obtained in our simulations applying this test and

the proportion of p-values that have fallen below 0.05 along the 1000 simulations, in the

case when the value of k is correctly specified.

Table 2.20: n = 1000, k = 10, µ = 1, Π0 = 1.
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Table 2.21: n = 1000, k = 10, µ = 1, Π0 = 0.9.

Table 2.22: n = 1000, k = 10, µ = 1, Π0 = 0.67.

When ρ = 0 (null hypothesis of independence) the proportion of p-values below

0.05 is close to 5%, indicating that Tarone’s test respects the level well. As ρ departs

from zero, this proportion grows (as expected); this power of Tarone’s test is decreasing

for an increasing proportion of effects when ρ ≤ 0.2, which means that dependence is

more early detected under the complete null. However, the situation is the opposite for

ρ = 0.8; in the case of strong dependence. The power is maximum with a 33% of effects.

More investigation of this issue seems to be needed before reaching general conclusion

on this regard.



Chapter 3

Conclusion and Future research

• Conclusion

In this work we have investigated through simulations the performance of BB-

SGoF method. Rate of false discoveries (FDR), proportion of detected effects (power),

and conservativeness with respect to the true number of effects with p-value smaller than

the given threshold have been computed. One conclusion of our research is that BB-

SGoF method may control for FWER in the weak sense even when the underlying model

is not beta-binomial. BB-SGoF method is also robust with respect to miss-specification

of the number of existing blocks, although it becomes too liberal when this parameter is

overestimated. As a compromise, the automatic BB-SGoF procedure introduced in de

Uña-Álvarez (2012) performs well, with only a small loss of power with respect to the

benchmark version when the effects are weak or the proportion of effects is moderate

(33%). Another interesting finding was the ability of Tarone’s test to detect dependence

in practice.

Summarizing, BB-SGoF is a correction of SGoF method with a suitable error con-

trol in the presence of dependent tests; its advantages over classical FDR-controlling

strategies (e.g. the BH method) remain the same in the dependence scenario as for

SGoF in the independent setting, these are: greater power in the case of large number

of tests and small to moderate number of weak effects. In such cases application of

BB-SGoF is recommended due to its compromise between FDR and power.

32
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• Future research

Future lines of research include the study of BB-SGoF in simulated scenarios with

blocks of unequal sizes, and the modification of BB-SGoF for dependence situations

other than beta-binomial.

Moreover, we aim to develop a R package to apply the SGoF and BB-SGoF methods

to real data where unadjusted p-values are the only input needed.



Appendix A

Tables

In this appendix we show the remainder of the tables obtained in our simulations. They

basically correspond to the case of n=1000 test and intermediate effects (µ = 2), n=1000

test and within-block correlation ρ = 0.1, and to the case of n=500 tests.

Table A.1: n = 500, ρ = 0, k = 10, µ = 1.

Table A.2: n = 500, ρ = 0, k = 20, µ = 1.

34



APPENDIX A. TABLES 35

Table A.3: n = 500, ρ = 0.2, k = 10, µ = 1.

Table A.4: n = 500, ρ = 0.2, k = 20, µ = 1.

Table A.5: n = 500, ρ = 0.8, k = 10, µ = 1.

Table A.6: n = 500, ρ = 0.8, k = 20, µ = 1.
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Table A.7: n = 500, ρ = 0, k = 10, µ = 4.

Table A.8: n = 500, ρ = 0.2, k = 10, µ = 4.

Table A.9: n = 500, ρ = 0, k = 20, µ = 4.

Table A.10: n = 500, ρ = 0.2, k = 20, µ = 4.
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Table A.11: n = 500, ρ = 0.8, k = 10, µ = 4.

Table A.12: n = 500, ρ = 0.1, k = 10, µ = 1.

Table A.13: n = 500, ρ = 0.1, k = 10, µ = 4.

Table A.14: n = 500, ρ = 0.1, k = 20, µ = 4.
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Table A.15: n = 500, ρ = 0, k = 10, µ = 2.

Table A.16: n = 500, ρ = 0, k = 20, µ = 2.

Table A.17: n = 500, ρ = 0.1, k = 10, µ = 2.

Table A.18: n = 500, ρ = 0.1, k = 20, µ = 2.
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Table A.19: n = 500, ρ = 0.2, k = 10, µ = 2.

Table A.20: n = 500, ρ = 0.2, k = 20, µ = 2.

Table A.21: n = 500, ρ = 0.8, k = 10, µ = 2.

Table A.22: n = 500, ρ = 0.8, k = 20, µ = 2.
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Table A.23: n = 1000, ρ = 0.1, k = 10, µ = 1.

Table A.24: n = 1000, ρ = 0, k = 20, µ = 4.

Table A.25: n = 1000, ρ = 0.2, k = 20, µ = 4.

Table A.26: n = 1000, ρ = 0.1, k = 10, µ = 4.
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Table A.27: n = 1000, ρ = 0.1, k = 20, µ = 4.

Table A.28: n = 1000, ρ = 0, k = 20, µ = 2.

Table A.29: n = 1000, ρ = 0.1, k = 20, µ = 2.

Table A.30: n = 1000, ρ = 0.2, k = 20, µ = 2.
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Table A.31: n = 1000, ρ = 0.8, k = 10, µ = 2.

Table A.32: n = 1000, ρ = 0.8, k = 20, µ = 2.



Appendix B

R code

In this second appendix we provide the code used in the R software to get the simula-

tions. This includes the code for the computation and optimitation of the beta-binomial

likelihood, which is a novelty of this work.

##########################################

#Introduction of the data:

##########################################

M=1200 #no of trials

ro=0.2 #the correlation inside the blocks

s=1000 #number of tests

s0=900 #the number of true nulls

pio=s0/s #the proportion of true nulls

ss1=7;ss2=8 #the sample sizes group 1, group 2

mu1=0 #mean in group 1

mu2=2 #mean in group 2 for effects, 1/3 of cases

mu22=-2 #mean in group 2 for effects, 2/3 of cases

ki=20 #the number of blocks

j0=1 #independent blocks

n1i=s%/%ki #block size, j=1,...,ki

sigma=matrix(0,s,s) #the correlation matrix

43
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#############################

#correlation only in effects:

#s1=s-s0

#mymatrix <- function(s1, l, ro)

#{

#k<-s1/l

#sigma1<-matrix(0,nrow=s1,ncol=s1)

#for (i in seq(1, s1, k))

#{

#j <- i +k -1

#sigma1[i:j,i:j]<-diag(1-ro,k)+matrix(ro,k,k)

#}

#sigma1

#}

#sigma[(s0+1):s,(s0+1):s]<-mymatrix(8,4,0.3)

#sigma[1:s0,1:s0]=diag(1,s0)

#############################

#correlation only in true nulls:

#mymatrix <- function(s0, l, ro)

#{

#k<-s0/l

#sigma1<-matrix(0,nrow=s0,ncol=s0)

#for (i in seq(1, s0, k))

#{

#j <- i +k -1

#sigma1[i:j,i:j]<-diag(1-ro,k)+matrix(ro,k,k)

#}

#sigma1

#}

#sigma[1:s0,1:s0]<-mymatrix(12,1,0.3)

#sigma[-(1:s0),-(1:s0)]=diag(1,s-s0)

#############################

#correlation in both:
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#l=n de bloques

mymatrix <- function(s, l, ro)

{

k<-s/l

sigma<-matrix(0,nrow=s,ncol=s)

for (i in seq(1, s, k))

{

j <- i +k -1

sigma[i:j,i:j]<-diag(1-ro,k)+matrix(ro,k,k)

}

sigma

}

sigma<-mymatrix(s,ki,ro)

#############################

nblocks2=rep(ki/2,M)

nblocks3=rep(2*ki,M)

t12=matrix(nrow=M,ncol=s) #statistics

x=matrix(nrow=M,ncol=s) #the p-values of the t-test

g=0.05 #the gamma value of SGoF

abh=0.05 #FDR of BH

a=0.05 #the alpha controlling FWER for SGoF (weak sense)

Fng=vector(length=M) #empirical distribution of the p-values in g

ka=qbinom(a,s,g,lower.tail=F) #automatic choice of ka (we reject when k>=ka)

x=matrix(nrow=M,ncol=s)#matrix of p-values

k=vector(length=M)#number of p-values below gamma

n=vector(length=M) #effects declared by SGoF( k-ka+1 smallest p-values )

n1=vector(length=M)

power=rep(1,M)

v=vector(length=M) #times that the rank of a p-value of a true null is less than

or equal to n, entering to effects declared by SGoF (false positive)

#aprox normal SGoF:

nz=vector(length=M)
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n1z=vector(length=M)

powerz=rep(1,M)

vz=vector(length=M)

# BH

nbh=vector(length=M)

vbh=vector(length=M)

powerbh=rep(1,M)

# conservative SGoF

Nindep0=vector(length=M) #effects declared

vc=vector(length=M)

powerc=rep(1,M)

#SGOF BB-SGOF Benchmark

Ndepbench=vector(length=M) #effects declared

vb=vector(length=M)

powerb=rep(1,M)

#BB-SGOF underestimation

nblocks2=vector(length=M) #no. of blocks

Ndepauto2=vector(length=M) #effects declared

vu=vector(length=M)

poweru=rep(1,M)

#BB-SGOF overestimation

nblocks3=vector(length=M) #no. of blocks

Ndepauto3=vector(length=M) #effects declared

vo=vector(length=M)

powero=rep(1,M)

#automtico1

nblocks51=vector(length=M) #no. of blocks
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Ndepauto51=vector(length=M) #effects declared

va1=vector(length=M)

powera1=rep(1,M)

#################################

#Simulation

#################################

dm=matrix(nrow=M,ncol=s)

se0g=vector(length=M)

for (j in 1:M) {

dm[j,]=rbinom(s,1,pio) #indicator of true/non-true null,1=true null

d=dm[j,]

s0=sum(d) #n0. of true nulls

s1a=(s-s0)%/%3

s1b=s-s0-s1a

library(mvtnorm)

xx1=rmvnorm(ss1, rep(mu1,s), sigma,method="chol")

per<-sample(c(rep(mu1,s0),rep(mu2,s1a),rep(mu22,s1b)))

xx2=rmvnorm(ss2,per,sigma,method="chol")

per=per*as.numeric(per>=0)-per*as.numeric(per<0)

ii<-which(per==mu2)

jj<-which(per==0)

per[ii]=0

per[jj]=1

for (k in 1:s){

t12[j,k]=t.test(xx1[,k],xx2[,k],var.equal=T)$statistic

}
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x[j,]=2*(1-pt(abs(t12[j,]),df=ss1+ss2-2))

dm[j,]=per

h=x[j,]

Fng[j]=ecdf(h)(g)

se0g[j]=sqrt(ecdf(h)(g)*(1-ecdf(h)(g))/s) #variance of Fng under H0: Fng(g)=g

}

Zvalue=matrix(nrow=60,ncol=M)

pvalue=matrix(nrow=60,ncol=M)

low=matrix(nrow=60,ncol=M)

tarone=vector(length=M)

sebench=vector(length=M)

prob=matrix(nrow=60,ncol=M)

ro=matrix(nrow=60,ncol=M)

vp=matrix(nrow=60,ncol=M)

vb1=matrix(nrow=60,ncol=M)

logver=matrix(nrow=60,ncol=M)

for (j in 1:M) {

w=as.numeric(x[j,]<=g)

p=mean(w)

for (l in j0:6) {

k=l+1 #dependent blocks

A=vector(length=k) #sj

n11=s%/%k

for (i in 1:k){A[i]=sum(w[((i-1)*n11+1):(i*n11)])}

A[k]=sum(w[((k-1)*n11+1):s])

B=c(rep(n11,k-1),length(w[((k-1)*n11+1):s])) #nj

l1=vector(length=(length(A)))
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L1<-function(pe,rho){

for(i in 1:length(A)){

if(A[i]==0){l1[i]=0} else {l1[i]<-sum(log(pe+(-rho/(rho-1))*(0:(A[i]-1))))}

}

return(sum(l1))}

l2=vector(length=(length(B-A)))

L2<-function(pe,rho){

for(i in 1:length(B-A)){

if((B[i]-A[i])==0){l2[i]=0} else

{l2[i]<-sum(log(1-pe+(-rho/(rho-1))*(0:(B[i]-A[i]-1))))}

}

return(sum(l2))}

l3=vector(length=(length(B)))

L3<-function(pe,rho){

for(i in 1:length(B)){

if(B[i]==0){l3[i]=0} else {l3[i]<-sum(log(1+(-rho/(rho-1))*(0:(B[i]-1))))}

}

return(sum(l3))}

L<-function(pe,rho){

L<-L1(pe,rho)+L2(pe,rho)-L3(pe,rho)

return(L)

}

l111=vector(length=(length(A)))

L111<-function(pe,rho){

for(i in 1:length(A)){

if(A[i]==0){l111[i]=0} else

{l111[i]<-sum((-1)/((pe+(-rho/(rho-1))*(0:(A[i]-1)))^2))}
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}

return(sum(l111))}

l112=vector(length=(length(B-A)))

L112<-function(pe,rho){

for(i in 1:length(B-A)){

if((B[i]-A[i])==0){l112[i]=0} else

{l112[i]<-sum((-1)/((1-pe+(-rho/(rho-1))*(0:(B[i]-A[i]-1)))^2))}

}

return(sum(l112))}

der11<-function(pe,rho){

der11<-L111(pe,rho)+L112(pe,rho)

return(der11)}

l121=vector(length=(length(A)))

L121<-function(pe,rho){

for(i in 1:length(A)){

if(A[i]==0){l121[i]=0} else

{l121[i]<-sum((-(0:(A[i]-1)))/((pe+(-rho/(rho-1))*(0:(A[i]-1)))^2))}

}

return(sum(l121))}

l122=vector(length=(length(B-A)))

L122<-function(pe,rho){

for(i in 1:length(B-A)){

if((B[i]-A[i])==0){l122[i]=0} else

{l122[i]<-sum((0:(B[i]-A[i]-1))/((1-pe+(-rho/(rho-1))*(0:(B[i]-A[i]-1)))^2))}

}

return(sum(l122))}
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der12<-function(pe,rho){

der12<-L121(pe,rho)+L122(pe,rho)

return(der12)}

l221=vector(length=(length(A)))

L221<-function(pe,rho){

for(i in 1:length(A)){

if(A[i]==0){l221[i]=0} else

{l221[i]<-sum((-((0:(A[i]-1))^2))/((pe+(-rho/(rho-1))*(0:(A[i]-1)))^2))}

}

return(sum(l221))}

l222=vector(length=(length(B-A)))

L222<-function(pe,rho){

for(i in 1:length(B-A)){

if((B[i]-A[i])==0){l222[i]=0} else

{l222[i]<-sum((-((0:(B[i]-A[i]-1))^2))/((1-pe+(-rho/(rho-1))*(0:(B[i]-A[i]-1)))^2))}

}

return(sum(l222))}

l223=vector(length=(length(B)))

L223<-function(pe,rho){

for(i in 1:length(B)){

if((B[i])==0){l223[i]=0} else

{l223[i]<-sum(((0:(B[i]-1))^2)/((1+(-rho/(rho-1))*(0:(B[i]-1)))^2))}

}

return(sum(l223))}

der22<-function(pe,rho){
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der22<-L221(pe,rho)+L222(pe,rho)+L223(pe,rho)

return(der22)}

MM<-function(pe,rho){

matrix(c(der11(pe,rho),der12(pe,rho),der12(pe,rho),der22(pe,rho)),2,2)

}

LL<-function(pe,rho){

LL<-sum(log(choose(B[1:k],A[1:k])))+L1(pe,rho)+L2(pe,rho)-L3(pe,rho)

return(LL)

}

Max<- function(x) L(x[1], x[2])

opt<-optim(c(0.01,0.01), Max,lower = 0.001, upper = 0.999,

method = "L-BFGS-B",control=list(fnscale=-1))

pmodel<-opt$par[1]

rho<-opt$par[2]

nI<-(-1)*MM(pmodel,rho)

varp=(solve(nI))[1,1]

beta1=log(pmodel/(1-pmodel))

g2=(exp(2*beta1))/((1+exp(beta1))^4)

varb1=varp/g2

se=sqrt(varb1)

prob[l,j]=pmodel

ro[l,j]=rho

vp[l,j]=varp

vb1[l,j]=varb1

##############################

#Tarone statistic:

S=sum((A-p*B)^2)/(p*(1-p))
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Zvalue[l,j]=(S-sum(B))/sqrt(2*sum(B*(B-1)))

pvalue[l,j]=1-pnorm(Zvalue[l,j])

########################################

low[l,j]=log(pmodel/(1-pmodel))-se*qnorm(.95)

}

tarone[j]=pvalue[ki-1,j]

sebench[j]=(log(prob[ki-1,j]/(1-prob[ki-1,j]))-low[ki-1,j])/qnorm(.95)

}

###########################

########################

gg=vector(length=M)

for (i in 1:M){

gg[i]=sum(vb1[,i]<=0)

}

ii=which(gg>0)#trials con errores

yy=which(vb1[ki-1,]<0)

ll<-M-length(yy)

r=ro[ki-1,-yy][-(1001:ll)]

mean(r)

sd(r)

p=prob[ki-1,-yy][-(1001:ll)]

mean(p)

sd(p)

yy=which(vb1[2*ki-1,]<0)

ll<-M-length(yy)

r=ro[2*ki-1,-yy][-(1001:ll)]

mean(r)

sd(r)

p=prob[2*ki-1,-yy][-(1001:ll)]
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mean(p)

sd(p)

yy=which(vb1[ki/2-1,]<0)

ll<-M-length(yy)

r=ro[ki/2-1,-yy][-(1001:ll)]

mean(r)

sd(r)

p=prob[ki/2-1,-yy][-(1001:ll)]

mean(p)

sd(p)

##############end simulation#############################

#####################################################################

#FDR and POWER:

#####################################################################

N1=vector(length=M)#p-values of false nulls <=g

I1=vector(length=M)

I2=vector(length=M)

I3=vector(length=M)

Ic=vector(length=M)

Ib=vector(length=M)

Io=vector(length=M)

Iu=vector(length=M)

Ia1=vector(length=M)

Ia1=vector(length=M)

for (j in 1:M) {

tlow=exp(low[,j])/(1+exp(low[,j]))-.05

d=dm[j,]

#d=rep(1,s) #activate this when there are no effects
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r=rank(x[j,])

k[j]=length(x[j,][x[j,]<=g])

#SGoF

n[j]=max(k[j]-ka+1,0)

v[j]=length(r[r<=n[j]&d==1])

n1[j]=max(k[j]-ka+1,1,na.rm = T)

if (sum(d)<s) power[j]=(n[j]-v[j])/(s-sum(d))

#normal SGoF

nz[j]=round(max(k[j]-s*g-qnorm(1-a)*sqrt(s*Fng[j]*(1-Fng[j]))+1,0,na.rm = T))

vz[j]=length(r[r<=nz[j]&d==1])

n1z[j]=round(max(k[j]-s*g-qnorm(1-a)*sqrt(s*Fng[j]*(1-Fng[j]))+1,1))

if (sum(d)<s) powerz[j]=(nz[j]-vz[j])/(s-sum(d))

#bh

#nbh[j]=round(max(c(r[x[j,]<=(r/sum(d))*abh],0),na.rm = T) ) #BH ptimo

#activamos el BH original

nbh[j]=round(max(c(r[x[j,]<=(r/s)*abh],0),na.rm = T) )

vbh[j]=length(r[r<=nbh[j]&d==1])

if (sum(d)<s) powerbh[j]=(nbh[j]-vbh[j])/(s-sum(d))

#conservative SGoF

w=s*Fng[j]

Nindep0[j]=round(max(sum(w)-s*.05-sqrt(0.05*(1-0.05)*s)*qnorm(.95)+1,0,na.rm = T))

vc[j]=length(r[r<=Nindep0[j]&d==1])

if (sum(d)<s) powerc[j]=(Nindep0[j]-vc[j])/(s-sum(d))

#BB-SGoF Benchmark

Ndepbench[j]=round(max(s*tlow[ki-1],0,na.rm = T))

vb[j]=length(r[r<=Ndepbench[j]&d==1])

if (sum(d)<s) powerb[j]=(Ndepbench[j]-vb[j])/(s-sum(d))
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#BB-SGoF underestimation

nblocks2[j]=ki/2

Ndepauto2[j]=round(max(s*tlow[nblocks2[j]-1],0,na.rm = T))

vu[j]=length(r[r<=Ndepauto2[j]&d==1])

if (sum(d)<s) poweru[j]=(Ndepauto2[j]-vu[j])/(s-sum(d))

#BB-SGoF overestimation

nblocks3[j]=2*ki

Ndepauto3[j]=round(max(s*tlow[nblocks3[j]-1],0,na.rm = T))

vo[j]=length(r[r<=Ndepauto3[j]&d==1])

if (sum(d)<s) powero[j]=(Ndepauto3[j]-vo[j])/(s-sum(d))

#automatic

Mini=min(tlow,na.rm = T)

Aux2=min(which(tlow==Mini))

nblocks51[j]=Aux2

Ndepauto51[j]=round(max(s*tlow[nblocks51[j]],0,na.rm = T))

va1[j]=length(r[r<=Ndepauto51[j]&d==1])

if (sum(d)<s) powera1[j]=(Ndepauto51[j]-va1[j])/(s-sum(d))

}

for (j in 1:M){

#coverage

N1[j]<-sum(x[j,]<=g&dm[j,]==0)

I1[j]<-sum(n[j]<=N1[j])

I2[j]<-sum(nz[j]<=N1[j])

I3[j]<-sum(nbh[j]<=N1[j])

Ic[j]<-sum(Nindep0[j]<=N1[j])

Ib[j]<-sum(Ndepbench[j]<=N1[j])

Iu[j]<-sum(Ndepauto2[j]<=N1[j])

Io[j]<-sum(Ndepauto3[j]<=N1[j])

Ia1[j]<-sum(Ndepauto51[j]<=N1[j])
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}

ll<-M-length(ii)

fdr=v[-ii][-(1001:ll)]/n1[-ii][-(1001:ll)]

afdr=mean(fdr)

apower=mean(power[-ii][-(1001:ll)])

fdrz=vz[-ii][-(1001:ll)]/n1z[-ii][-(1001:ll)]

afdrz=mean(fdrz)

apowerz=mean(powerz[-ii][-(1001:ll)])

fdrbh=rep(0,M)

fdrbh[nbh>0]=vbh[nbh>0]/nbh[nbh>0]

afdrbh=mean(fdrbh[-ii][-(1001:ll)])

apowerbh=mean(powerbh[-ii][-(1001:ll)])

fdrc=rep(0,M)

fdrc[Nindep0>0]=vc[Nindep0>0]/Nindep0[Nindep0>0]

afdrc=mean(fdrc[-ii][-(1001:ll)])

apowerc=mean(powerc[-ii][-(1001:ll)])

fdrb=rep(0,M)

fdrb[Ndepbench>0]=vb[Ndepbench>0]/Ndepbench[Ndepbench>0]

afdrb=mean(fdrb[-ii][-(1001:ll)])

apowerb=mean(powerb[-ii][-(1001:ll)])

fdru=rep(0,M)

fdru[Ndepauto2>0]=vu[Ndepauto2>0]/Ndepauto2[Ndepauto2>0]

afdru=mean(fdru[-ii][-(1001:ll)])

apoweru=mean(poweru[-ii][-(1001:ll)])

fdro=rep(0,M)
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fdro[Ndepauto3>0]=vo[Ndepauto3>0]/Ndepauto3[Ndepauto3>0]

afdro=mean(fdro[-ii][-(1001:ll)])

apowero=mean(powero[-ii][-(1001:ll)])

fdra1=rep(0,M)

fdra1[Ndepauto51>0]=va1[Ndepauto51>0]/Ndepauto51[Ndepauto51>0]

afdra1=mean(fdra1[-ii][-(1001:ll)])

apowera1=mean(powera1[-ii][-(1001:ll)])

afdr;afdrz;afdrbh;afdrc;afdrb;afdru;afdro;afdra1;

apower;apowerz;apowerbh;apowerc;apowerb;apoweru;apowero;apowera1;

mean(I1[-ii][-(1001:ll)]);mean(I2[-ii][-(1001:ll)]);mean(I3[-ii][-(1001:ll)]);

mean(Ic[-ii][-(1001:ll)]);mean(Ib[-ii][-(1001:ll)]);mean(Iu[-ii][-(1001:ll)]);

mean(Io[-ii][-(1001:ll)]);mean(Ia1[-ii][-(1001:ll)]);mean(N1[-ii][-(1001:ll)])

###parameters of the simulation:

M #trials

s;s0;pio #tests, true nulls (random, last trial), average proportion of true nulls

mu2;mu22;mean(Fng) #alternative means and mean proportion of p-values <=gamma

ki #number of blocks

mean(nblocks51)

sd(nblocks51)

mean(nblocks52)

sd(nblocks52)

#plot(colMeans(dm)) #average proportion of true nulls for each test

#plot(rowMeans(dm)) #proportion of true nulls for each trial

M-length(ii)

sum(ii<=1000)
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