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Abstract 

 

Phenylketonuria (PKU) is a rare disease that affects the growth of children and 

Hyperphenylalaninemia (HPA) is a medical condition which mostly results in PKU. 

The objective of this study is to compare the long-term growth of children with PKU 

and HPA. To this aim, we model the growth of children on the basis of a flexible mixed 

model including subject - specific curves and factor by curve interactions (Durban et al, 

2005).  
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Chapter 1 

Introduction 

1.1. Motivating study : Impact of Phenylketonuria in the growth of 

children 

Phenylketonuria (PKU) is a rare metabolic disorder that affects the way the body breaks 

down protein. If not treated shortly after birth, PKU can be destructive to the nervous 

system, causing mental retardation. 

PKU is caused by a mutation in a gene on chromosome 12. The gene codes for a protein 

called PAH (phenylalanine hydroxylase), an enzyme in the liver. This enzyme breaks 

down the amino acid phenylalanine into other products the body needs. When this gene 

is mutated, the shape of the PAH enzyme changes and it is unable to properly break 

down phenylalanine. Phenylalanine builds up in the blood and poisons nerve cells 

(neurons) in the brain. 

Hyperphenylalaninemia (HPA) is a medical condition characterized by mildly or 

strongly elevated levels of the amino acid phenylalanine in the blood. Severe 

hyperphenylalaninemia results in phenylketonuria. 

While in HPA Benigna isn`t necessary to realize a therapeutic intervention, in PKU,  for 

the correct physical and mental development of the patients, it is fundamental to have a 

treatment. The patients of PKU are treated with a special diet and in case of having  this 

treatment they have a favorable evolution.  

The objective of this study is to model and to compare the growth of children with PKU 

and HPA followed up in “Unidad de Diagnóstico y Tratamiento de Enfermedades 

Congénitas del Metabolismo del Hospital Clínico Universitario in Santiago de 

Compostela” between the years 1978 and 2011. The dataset contains observations from 

109 children, followed in the center from 6 months up to 18 years from successive 

controls that were realized during the consultation and from the revision of the clinical 

histories of the patients. 

The patients were classified depending on the level of their PAH, divided in three 

categories: Classical PKU(PAH > 1200 mol/L), Moderated PKU(PAH 360-1200 

mol/L), HPA Benigna(PAH 120-360 mol/L). In the first two groups the patients follow 

a dietetic treatment restricted in natural proteins and the third one follow a normal diet. 

For the purpose of this study we compared the group of individuals with PKU (either 

classical or moderated) and the group HPA, in order to evaluate the effect of the 

pathology (HPA and PKU) on the growth of the children. 

http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Phenylketonuria
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To model the growth curves of the children measured over time we need to use some 

flexible regression techniques to handle possible non linear effects. 

In this study we used a flexible mixed model (Durban, 2005) to study the growth of 

children based on the representation of penalized-splines (Eilers and Marx, 1996) as 

mixed models (Currie,Durban, 2002). Also it has been applied subject specific curves 

for each child and factor by curve interactions to detect if there is any difference 

between the two types of pathologies. 

 

1.2.  Data Source 

For each child included in the srudy, we have the following measurements; 

Height: Height (kg) of the children measured every six months from 6 months to 18 

years. 

Z-score:  Measure that express the distance between an individual child's height and the 

average height of comparable children in the reference population. 

Age: Age of the children (6 months up to 18 years) when the measures were taken.  

Type of pathology: Categorical covariate that indicates the type of pathology of the 

children (either HPA or PKU). 

Gender: Gender of the children (Female-Male). 

 

1.3. Longitudinal  study 

Longitudinal studies are mostly designed to investigate changes in a characteristic 

during a period of time repeatedly for each study participant. Multiple measurements 

are obtained from each individual at different times and possibly under changing the 

experimental conditions. We cannot fully control all the conditions when the 

measurements are taken and so there may be considerable variation among individuals. 

This is mostly analyzed using some variant of a two-stage model (Laird and Ware, 

1982). In this formulation we have fixed and random effects. The mixed effects models 

(Pinheiro and Bates, 2000) allow modeling and analysis of between and within 

individual variation.  

However, in some circumstances in the analysis of longitudinal data, the parametric 

assumption in linear mixed models may not always be appropriate. It could be 

erroneous using traditional parametric regression techniques to model the growth curves 
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measured over time as in our application study. So that it is fundamental to use flexible 

techniques such as smoothing splines (Ruppert et al, 2003). 

For independent data, there is a rich literature on kernel and spline methods for 

nonparametric and semiparametric regression (Green and Silverman, 1994; 

Speckman, 1988). Wahba (1978) proposed a Bayesian model for spline smoothing. 

However, only limited work has been done on nonparametric and semiparametric 

regression for correlated data.  

There are several considered different types of smoothers (kernel, smoothing spline 

etc…) but they modeled the random effects by parametric functions. Zhang et al 

considered semiparametric models accounting for within subject correlation but they 

didn`t consider smooth curves for individual subjects. Brumback and Rise (1998) 

modeled both population mean and subject specific curves non-parametrically with 

smoothing splines and used their mixed model representation. However they ran into 

computational problems because they assumed fixed slopes and intercepts for the 

subject-specific curves. Rice and Wu (2001) partially solved this problem by modeling 

individual curves as spline functions with random coefficients. However, in their low-

rank spline basis approach the number and location of the knots used to construct the 

basis became an important issue. Consequently, the fit of their models involved the use 

of some selection criteria to choose these parameters. More recently Guo (2002), took a 

functional data analysis approach by introducing functional random effects which are 

modeled as realizations of a zero-mean stochastic process. He also used the connection 

between smoothing splines and mixed models for fitting and estimating this model, 

However Guo also faced computational problems due to large matrices (since 

smoothing splines use as many knots as data points) and consequently developed a 

sequential estimation procedure using Kalman filtering. 

Durban et al, (2005) proposed an approach which is a trade-off between spline 

regression and smoothing splines. The equivalence between a penalized smoother and 

the optimal predictor in a mixed model is used to present an unified approach for model 

estimation. The penalty approach relaxes the importance of the number and location of 

knots and the use of a low-rank smoother solves the computational problems of other 

approaches when analyzing large data sets. In this study this approach is applied to 

model the growth of children using the penalized smoothing splines represented as 

mixed models. 
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The primary focus in designed experiments and longitudinal studies in medicine usually 

involves treatment comparisons, possibly factorial in nature. If a quantitative variable 

impacts on treatments, e.g. age in the longitudinal setting, the interaction of treatments 

with the quantitative variable is generally of interest. This study illustrate such 

situations to compare the two different pathological types in the growth of the children 

building and comparing a wide range of additive mixed models, from a simple additive 

mixed model up to an additive mixed model with subject specific curves and factor by 

curveinteractions.
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Chapter 2  

Mixed models for longitudinal data 

Linear mixed models is one of the methodologies for analysis of the longitudinal data. 

Some of the advantages of this methodology is that it simplifies the complexity of 

typical longitudinal datasets and the existentce of a widely available software 

developments for this methodology. 

The linear mixed models methodology also will be used in the following chapters to 

represent p-spline regression models. Therefore in this chapter we present a brief 

introduction to linear mixed models (Laird and Ware , 1982), the covariance structures 

and the estimation of the fixed and random effects. 

 

2.1      Fixed and Random Effects  

The mixed model extends the fixed effects model by including random effects, random 

coefficients and/or covariance terms in the residual variance matrix. In longitudinal 

study the factors levels are randomly selected from a population of all possible factor 

levels. In our study the patients are the random factor levels.  If we have also some fixed 

factors with the random factors we call the model as a mixed-effect model.   

For a fixed-effects factor, we assume that there is a finite set of levels that contains all 

levels of interest for the study. For a random-effects factor we assume that there is an 

infinite set of levels (a population of levels) and we think about the levels present in the 

study as a sample from that population. The interest is in drawing inferences that are 

valid for the complete population of levels. As a simple example we could think about 

the patients in our application study. The appropriate model for our data would be a 

mixed-effect model with type of pathology as a fixed effect factor and patients as 

random-effect factor. 

 

2.2        A two-stage analysis 

In some researches, the data has repeated measures over time. For example, in studying 

the growth of the children, as in our application study, their height and z-scores are 

measured yearly for some specified number of years and we are interested the rate of 

change of this variable over age. One of the methods that can be used in this context can 

be a linear regression. The response, height or z.score of the children can be assumed to 

have a constant rate of change over age. This assumption may be unreasonable and 

variations on the basic linear regression method would be needed. Moreover a limitation 
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of the usual linear regression model in this situation is that it ignores the fact that 

observations on the same subject are dependent.  

If the quantities of interest are the average heights at each age point (without assuming 

constant rate of change), a repeated measures analysis of variance (ANOVA) may be 

used. Repeated measures ANOVA, under certain restrictive assumptions, does account 

for the within-subject dependence in the data. However, linear regression and ANOVA 

provide estimates of the population average of the rate of change or the means. No 

measure of between subject variability is given. Measurements on the same subject are 

much more similar than the measurements on different subjects (this is what is meant by 

"within-subject dependence"). Both simple linear model and the ANOVA method 

ignore this fact and average over subjects to obtain estimates.  

In the linear mixed model extension (Laird and Ware, 1982 ; Harville, 1977) the 

repeated measurements are modeled using a linear regression model, with parameters 

which are allowed to vary over individuals, and which are therefore called random 

effects or subject-specific regression coefficients. The subject-specific regression 

parameters reflect the natural heterogeneity in the population and they are usually 

assumed to follow a Gaussian distribution.  

Often, subject-specific longitudinal profiles can be well approximated by linear 

regression functions which lead to two-stage analyses  (Laird and Ware, 1982). In this 

formulation, the probability distribution for the multiple measurements has the same 

form for each individual, but the parameters of that distribution vary over individuals. 

The distribution of these parameters, or “random effects” constitutes in the second stage 

of the model. 

Such two-stage models have several desirable features; 

 There is no requirement for balance data. 

 

 They allow explicit modeling and analyses of between and within individual 

variation. 

 

 They facilitate the study of the effects of background variables on the response 

of interest. 

 

Two-stage model formulation 

 

Two stage random-effects models are based on explicit identification of individual and 

population characteristics, and their form extends to the unbalanced situation. Most of 

the two stage models in the literature can be described either as growth models or 

repeated measures models. 
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In this section we will introduce these two stage analysis formulation (Laird and 

Ware,  1982). Population parameters, individual effects and within-person variation are 

introduced in Stage 1, and between-person variation at Stage 2. 

 

Before presenting  the main ideas behind the two stage model, we introduce some 

notation; 

 

 Let    be the response vector (nix1) where ni is the number of observations in the 

ith individual i=1,….N. 

 

 Let   denote a px1 vector of unknown population parameters and Xi be a known 

nixp design matrix linking   to      

 

 Let    denote a kx1 vector of unknown individual effects and Zi a known nixk 

design matrix linking    to   .  

 

Laird and Ware, (1982) proposed the following model; 

 

 

 

Stage 1 

 

For each individual unit it is assumed that  

 

 

               

 

where    is distributed as N(0,Ri) (normal with mean 0 and covariance matrix Ri.) Here 

Ri is an nixni positive definitive covariance matrix; it depends on i through its dimension 

ni , but the set of unknown parameters in Ri will not depend upon ni. At this stage,   

and    are considered fixed, and the    are assumed to be independent. It should be 

noted that, in this stage,   represents the population parameters and              

represents the individual effects. 

 

 

 

Stage 2 

 

In the second stage the     are assumed to be N(0,Gi) , independently of each other and 

of the   . Here Gi  is a kxk positive definitive covariance matrix. The population 

parameters,  , are treated as fixed effects.  
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The regression model defined in the second stage receives the name of Linear Mixed 

Model. Specifically this model can be expressed in matrix notation as; 

 

                                                                                                                                

 

where; 

 

   is the vector of the observed responses  

  

 
  

  

 

  
 

   

   

 
    

   

  

  
 

 

 

   is the fixed effects parameters vector, 

 

   =  

  

  

 
  

  is the residual vector 

 

    
    
   
    

   

 

    
  

 
  

   

 

    

  

 
  

  

 

 

 

2.3    Covariance Matrix V 

 

Marginally the covariance of  , var( )=  , can be written as; 

 

                

 

Since we assume that the random effects and the residuals are uncorrelated. 
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Since   describes the fixed effects parameters,         = 0. Also, Z is a matrix of 

constants. Therefore; 

 

                    

 

If we let G denote var( ) , and since the random effects are assumed to follow normal 

distribution,   ~N(0,G) and  var( )=R. We have, 

 

 

         

 

 

where  

 

 

   
    
   
    

                             
    
   
    

  

 

 

 

 

2.4          The random effects model covariance structure 
 

The G Matrix 

 

Gi is a matrix with dimension kxk which is the dimension of random effects parameters. 

The Gi matrix has different forms depends on the model structure. 

 

Usually the following structure is assumed;  

 

    

   
   

   
     

 
  

 

 

where the    
   (j=1,..k) is the variance of jth random effect parameter in   . 
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The R Matrix 

 

In linear mixed models the residuals are usually assumed to be uncorrelated, therefore 

we have a diagonal residual matrix R,  

 

            
 

 

 

    
    
   
    

  

 

 

 

 

The covariance pattern model covariance structure 

 

Covariance patterns can be fitted into the linear mixed model definition using matrix 

notation. In covariance pattern models, the covariance structure of the data is defined by 

specifying a pattern for the covariance terms directly into R. Observations within a 

chosen blocking variable (e.g. patients) are allowed to be correlated and a pattern for 

their covariances is specified. This pattern is usually chosen to depend on a variable 

such as age. In such cases, R will have a block diagonal form and can be written as; 

 

 

   
    
    
   

  

 

 

The sub matrices   , are covariance blocks corresponding to the ith blocking effect (for 

e.g. ith patient). They have dimension equal to the number of repeated measurements on 

each patient. The 0 represents the matrix blocks of zeros giving zero covariances for 

observations on different patients.  

 

  matrix can have different forms as simple structure, compound symmetric structure, 

autoregressive structure depending on the correlation between the observations in each 

subject (Brown and Prescott , 1962). 
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2.5         Random Intercept and slope models 
 

 

In this section we present two of the most important mixed effect models which are 

called the random intercept model and the random intercept and slope model. The 

random intercept model allows a random shift around the intercept resulting in “fitted” 

individual lines parallel to the population fitted line, whereas the random intercept and 

slope model also allows a change in the slopes of the fitted lines. 

 

 

 

For the sake of illustration we consider here our application study, where we have only 

one continuous covariate (age), and the objective is to model the growth of the 

individuals along the time of the study.  

 

 

Specifically, in this case, the random intercept model takes the form; 

 

                                                         

 

where                   
   denotes the ages at which the measurements were taken for 

individual i and    is the z-score of individual i at these ages. 

 

Accordingly in this case, 

 

           

    
  
     

                  
 
 
 
                      

         

 

 

 

On the other hand the random intercept and slope model adopts this form; 

 

 

                                                               

 

 

 

In this case the model matrices    and    have the form; 
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      where                   

 

 

As can be observed, the only difference between the random intercept and the random 

intercept and slope model is the modification in matrix Z, which permits a slope 

variation between the subjects. 

 

 

2.6        Model fitting methods 
 

 

In this section the methodology to numerical methods for fitting mixed models is given. 

The model fitting process has three distinctive components: estimating fixed effects, 

estimating random effects, and estimating variance parameters.  

 

 

2.6.1       The likelihood function 

 

The mixed model can be fitted by maximizing the likelihood function. The likelihood 

function, L, measures the likelihood of the model parameters given the data and is 

defined using the density function of the observations. In models where the observations 

are assumed independent (e.g. fixed effects models), the likelihood function is simply 

the product of the density functions for each observations. However, observations in a 

mixed model are not independent and the likelihood function therefore needs to be 

based on a multivariate normal distribution for  . As random effects have expected 

values of zero and therefore do not affect the mean, this distribution has a mean vector 

   and a covariance matrix V which depends on several variance parameters. The 

likelihood function based on the multivariate normal density function is then 
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In practice, the log likelihood function is usually used in place of the likelihood function 

since it is simpler to work with and its maximum value coincides with that of the 

likelihood. The log likelihood is given by ; (Brown and Prescott , 1962) 

 

                    
 

 
                                                     

 

where 

 

    
 

 
         (a constant can be ignored in the maximization process). 

 

n= number of observations. 

 

 
 

 
2.6.2         Estimation of Fixed Effects 

 
 

The estimates of fixed effects parameters can be obtained by maximizing the likelihood 

by differentiating the log likelihood (2.4) with respect to   and setting the resulting 

expression to zero (see Brown and Prescott, 1962). 

 

This leads to; 

 

               

 

Rearranging, 

 

                                                                                                                              

  

and the variance of    is obtained as, 
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2.6.3        Estimation (or prediction) of random effects coefficients 

 

In general, random effects coefficients are defined to have normal distributions with 

zero means and the specific values they take must be thought of as realizations of a 

sample from a distribution. Thus their expected values are, by definition, zero. But it is 

possible to obtain predictions of them. 

 

The prediction of the   is (see Brown and Prescott, 1962), 

 

                             

 

 

In random effects models the R matrix is diagonal, R=  , so we can write alternatively; 

 

 

                           

 

 

 

Also recalling the equation  

 

         

 

 

                                                                                                    

 

 

 

And the variance of    

 

                                          

 

 

It should be noted that in order to estimate   and   (see equations (2.5) and (2.6)) we 

need an estimate of   and therefore of the covariance components involve in its 

definition denoted by  . There are several approaches to estimate      which are all 

based (directly and indirectly) on maximizing the likelihood function.  
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2.7         Estimation of Variance Components 

 

2.7.1  Maximum likelihood (ML) and Restricted Maximum likelihood 

Estimation (REML) 

 

 

This method is based on the concept of maximizing the log likelihood (2.4) with respect 

to the variance parameters while treating the fixed effects,  , as constants. This 

approach would yield an estimator for the covariance matrix of    which would take 

into account the extra variability due to the estimation of  .  

 
 

Restricted maximum likelihood estimation was first suggested by Patterson and 

Thompson (1971). In this approach the parameter   is eliminated from the log 

likelihood so that it is defined only in terms of the variance parameters.  

 

First we obtain a likelihood function based on the residual terms,      . This 

contrasts with the likelihood which is based directly on the observations,  . We notice 

that these residuals differ from the ordinary residuals which has to be         

   , in that     is not deducted.  

 

Brown and Prescott (1962) explained that also referring to the       as residuals is 

not unreasonable since they can be considered as error terms that include sources of 

random variation (residual and random effects). They referred to       as the full 

residuals in order to differentiate them from the ordinary residuals.  

 

The REML described by Brown and Prescott (1962) as; 

 

                    
 
 
      

 
      

 

 
                     

 

Accordingly the REML log likelihood is described as; 

 

                  
 

 
                   

  
         

 
            

 

where the   are the variance parameters. 
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We see that the differences between the REML log likelihood and the ordinary log 

likelihood (2.4) is caused by the extra term            
  

 which is the log 

determinant of        .  

 

REML is sometimes referred to as a “marginal method” because it takes account of the 

fact that   is a parameter and not a constant, therefore the resulting variance parameter 

estimates are unbiased.  

 

 

 

2.7.2  Comparasion between ML and REML 
 

Maximum likelihood estimation and restricted maximum likelihood estimation both 

have the same merits of being based on the likelihood principle which leads to useful 

properties such as; 

 

 Consistency 

 

 Asymptotic normality  

 

 Efficiency  

  

ML estimation also provides estimators of the fixed effects, while REML estimations, 

on itself, does not. On the other hand, for balanced mixed models, the REML estimates 

for the variance components are identical to classical ANOVA-type estimates obtained 

from solving the equations which set mean squares equal to their expectations, which 

have optimal minimum variance properties and which do not rely on any normality 

assumption since only moment assumptions are involved (Veerbeke and 

Molenberghs, 1997). 

 

 

2.8        Model testing 

 

 

It is shown in section 2.7.1 that the parameters in mixed models can be estimated by 

maximum likelihood. Ruppert et. al (2003), explained that the likelihood ratio 

procedure also can be used for model testing.  

 

Consider that we want to test the following hypothesis; 
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where the     is the ith entry of  . 

 

 

Let       be the likelihood function under the null hypothesis and       under the 

alternative hypothesis. The likelihood ratio statistic for testing a null restricted model 

against an alternative restricted model is, 

 

                  

 

It is more common to work with log likelihood functions, 

 

                                       

 

The classical result for determining the significance of the observed value of       is 

one that states, under    (see Ruppert et al, 2003) 

 

                                                 
                                     

 

 

Where the right hand side is the chi-squared distribution with   degrees of freedom and 

 

 

                                                        

                                                

 

where the     for the hypothesis test                             . 

 

 

In some circumstances we are also interested in hypothesis test for the covariance 

matrix parameters to investigate whether the corresponding random effects are 

necessary for the model. For instance, in the random intercept model (2.2) we could be 

interested in the following hypothesis to test if the variance parameter of the random 

intercept is zero therefore it would be not appropriate for the model; 

 

  

              
                               

                          

 

For this hypothesis the approximation (2.7) may not be appropriate because it assumes 

that the parameter of interest is not on the boundary of its parameter space. Since the 

parameter space for   
  is [0,∞), this assumption is violated. (Ruppert et al , 2003) 
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Stram and Lee (1994) proved that the likelihood ratio test L for testing this hypothesis 

(2.8) has a    
     

 

 
     

   asymptotic distribution where s is the number of fixed 

effects parameters constrained under the null hypothesis. For the null hypothesis in 

(2.8), s=0 and therefore, 

 

 

               
 

 
  

     
 

 
   

   

 

 

This means that the log likelihood function has an approximate density function equal to 

a 50:50 mixture of the   
  and   

  densities.  

 

Furthermore Fabian Scheipl and Ben Bolker (2013) have realized some simulations of 

restricted log likelihood value and implemented to R-project. ( Package “RLRsim”). We 

have used this package and exactRLRT() function to compare two models with more 

than one random effects. 
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Chapter 3 

P-splines  

 

In Chapter 2 we have presented the linear mixed model methodology to afterwards represent the 

p-spline regressions using these techniques.  

In our application part, to model the growth curves of the children we have to adopt non 

parametric model to allow sufficient flexibility. For that reason, in this section an 

introduction for P-splines and the representation of a P-splines regression models as a 

mixed model are given to obtain more flexible regression models. (Brumback et al., 

1999; Currie and Durban, 2002). 

 

 

3.1      Introduction to P-splines 

 

In statistic research the smoothing term is frequently used in many areas and two factors 

made these smoothing techniques to become recently so popular. One of them is the 

increasing complexity of the data that is used and the advances in computing that has 

facilitated these kinds of models reducing significantly the computational cost. 

There are several ways of smoothing as regression splines, smoothing splines or 

penalized smoothing splines (Green and Silverman, 1994). Splines is a method of 

smoothing which are polynomials pieces that are joined at points, called “knots”.In 

regression splines the smoothing function depends on the election of knots and this can 

be complicated to compute in multidimensional situations. In smoothing splines the 

number of knots are equal to the number of observations which can be also a problem 

when we have large datasets. 

Splines with penalizations or P-Splines (Eilers and Marx, 1996) combine the best part 

of these two methods:  it uses less parameters than smoothing splines and the selection 

of the knots are not so determinant like in regression splines. They are low range splines 

in which the number of knots are much lower than the dimension of the data. Also P-

Splines relax the importance of the localization and the number of knots. Finally the 

representation of a P-Spline regression model as mixed models permits, in some case, 

the use of the methodology of the mixed models. 
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Consider a flexible regression model 

 

                                                                                                     

 

where      is the response variable for the observations        and      is smooth 

function of covariate  . 

To estimate the function      it is assumed that this function can be represented by a 

linear combination of d known basis functions   . Therefore 

        

 

   

      

where           
   is a vector of unknown regression coefficients. Under this 

representation of model (3.1) is parametric and it can be easily estimated using ordinary 

least squares; 

 

              

 

where  

    
             

   
             

  

 

and              . 
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3.2          Basis and knots 

There are several alternatives for the choice of the basis functions    such as; truncated 

polynomials, thin plate splines (Wood, 2003) and B-splines (de Boor, 2001).  

Truncated polynomial bases are useful for understanding the mechanics of spline-based 

regression and they can be used if the knots are selected carefully or a penalized fit is 

used (Durban et al , 2005). However, the truncated power bases have the disadvantage 

that they are far from orthogonal.  Therefore it is more recommendable to use 

equivalent bases with more table numerical properties. This study is focused on  

B-splines basis as a recommendation of Durban et al (2005) who indicate that these 

basis are more stable basis for P-splines. 

 

With respect of the number of knots, in most of the situations, the suggestion is to use a 

moderately large number of equally-spaced knots. The first goal for any algorithm for 

selecting number of knots (K) is to make certain that K is sufficiently large to fit the 

data. The second goal is to choose K not so large that computation time is excessive 

(Durban et al , 2005). As regards this issue, Ruppert et. al (2003) advise the following 

equation for the selection of the number of knots , 

 

                                                 

 

3.3.       Penalizations 

In regression spline, the number and also the location of the knots have a great impact 

on the final estimates. When the number of knots increases the estimated curve (in 

comparison with the true curve ) becomes too wiggly, meaning that the data are over 

fitted. The proposed methods for the selection of knots (Fried and Silverman, 1989) 

have the disadvantage of being computationally intensive. Therefore, to solve this 

problem, O`Sullivan (1986) introduced the idea of penalized splines, where a 

smoothness penalty is added to the least squares criterion when estimating the 

regression coefficients  . 

For the sake of simplicity, we first present the idea of the penalization based on the 

second derivative function of     . In this case of penalized splines, model (3.1) is fitted 

by minimizing the penalized sum of squares: 
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where    is the smoothing parameter which controls the trade-off between fidelity to the 

data and roughness of the function estimate.  

 

Later Eilers and Marx (1996) proposed a penalization based on the q order differences 

between the coefficients of the B-splines basis functions which is a more flexible 

method and independent from the degree of the polynomial that is used to construct the 

B-splines. In this approach the penalty becomes        where      , and   is a 

known (d-q)xd matrix whose elements depend on the chosen q-order difference. 

 

 

 

For example for a second order penalty, the D matrix has the form; 

 

 

   

      
      
      
     

  

 

 

As can be observed, this penalization is discrete and penalizes the coefficients instead of 

the whole curve as in       which reduces the dimensional problem. 

 

 

3.4.           Smoothing parameter   selection 

The critical point of the penalized spline smoothing is the choice of the smoothing 

parameter  . If a large smoothing parameter is chosen the resulting curve is very 

smooth, but if we choose a small smoothing parameter the resulting estimate becomes 

too wiggly. There are several methods to choose the optimal value of   such as 

Generalized Cross Validation (Hastie and Tibshirani, 1990 ;  Wood, 2006) or Akaike 

Information Criterion (Wood, 2008). A different approach to choose the optimal 

smoothing parameter   comes from the fact that a P-spline regression model can be 

reformulated as a linear mixed model (Brumback et al, 1999 ; Currie and Durban,  

2002). In this study we will focus on this later approach.  
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3.5.         Penalized Splines Mixed Model Representation 

The representation of penalized splines as mixed models has several advantages in 

estimating a semi parametric or non parametric models (Brumback et al., 1999; 

Currie and Durban, 2002). 

 

 It allows to use the methodology and the several softwares for mixed models.  

 

 It is a model-based approach to smoothing that uses two basic principles of 

statistics: Maximum likelihood and best prediction. The incorporation of 

likelihood based models for complications such as dependence, measurement 

error, and missing data is more straightforward. 

 

 It comes equipped with an automatic smoothing parameter choice that 

corresponds to maximum likelihood and/or restricted maximum likelihood 

estimation of variance components. Their availability in software packages 

makes ML and REML smoothing parameter selection quite attractive. 

 

The interest of this representation is coming from the difficulties of identification of an 

additive model. P-Splines as mixed models modify the basis which can be decomposed 

as a sum of a polynomial component and a non-polynomial component.  

 

One of the most attractive parts of this representation is that the smoothing parameter, 

becomes the ratio between the variance of residuals and the variance of the random 

effects        
  (which will be defined in this Section). Therefore, the selection of 

smoothing parameter   which becomes a problem of variance components estimation.  

 

Recall that we are interested on estimating the model, 

 

                                                                    

 

The aim is to formulate the P-spline model into a mixed model      . This 

reformulation can be viewed as a reparametrization of the original non parametric 

model, for which we transform the model B-spline basis into a new model basis (Lee, 

2010), 

        

This representation decomposes the fitted values as the sum of a unpenalized part (  ) 

and a non linear penalized part      smooth term.  
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We follow the approach of Lee (2010) and use the B-spline basis and the usual penalty 

       to reparametrize the original model into a mixed model. Let 

         

be the singular value decomposition (SVD) of the penalty matrix P, where U is a matrix 

that contains the eigenvectors of the SVD and   is a diagonal matrix containing the 

eigenvalues, with q null eigenvalues. 

 Then, we can compose the penalty as (see Lee (2010)) 

            
   

   
  

  

  
  

 

where    is square matrix of zeroes of order q and    are the (c - q) positive eigenvalues 

and    contains the  eigenvector associated with the null eigenvalues and    (with 

dimension dxq)  contains the non null part of the decomposition (eigenvectors of the 

non null eigenvalues). 

 

Let           be the singular value decomposition of the penalty matrix, the matrix 

of the eigen values can be splitted by, 

          

 

.Given the singular value decomposition of     , the fixed and random effects matrices 

are (see Lee (2010)) 

                                                         

                                                                          

where n=dxq (d=basis dimension and q=orden of the penalization) and s=dx(d-q). 

And the coefficients, 

                         
               

              

                             
                  

Therefore the model (3.3) becomes as, 
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With the new reparametrization, the variance components matrix,   becomes 

             
  

 
       

      

 

Therefore   becomes, 

  
  

  
 
 

 

It should be noted that the fixed parameters   in model (3.4) are unpenalised. Accordingly 

(see Lee, 2010) the fixed effect matrix      may be replaced by any sub-matrix 

such that: 

 The composed matrix [X : Z] has full rank. This also implies that both X and Z 

have full column rank. 

 X and Z are orthogonal, i.e.        

 

Assuming a second order penalty, i.e. q = 2, the diagonal matrix of eigenvalues has two 

zeroes and d-2 positive eigenvalues. Then, the fixed effects matrix can be taken as: 

 

        

where 1 is a vector of ones and x is the covariate vector. 

Morever, by taking the random effect matrix as        
     (instead of      ) 

we obtain that     
        (Lee and Durban, 2009). This new feature has attractive 

properties from a computational point of view, specially it allows to use standard 

software. 
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Chapter 4 

Flexible mixed models 

As we mentioned before, in many longitudinal studies the response variable should be 

modeled as a non-linear function of age for each individual. In some circumstances the 

parametric assumption of the linear mixed models may not be appropriate.  

In Chapter 3, we introduced P-splines to obtain more flexible regression models. The 

mixed model representation of the P-splines regression models allows us to take 

advantage of the methodology and software existent for mixed model analysis and 

makes possible a simple implementation of otherwise complicated models.  

In this chapter we introduce how to include the P-spline methodology that we defined in 

Chapter 3, in to usual mixed model framework. For the sake of illustration, we will 

present the models that will be applied to our dataset from the simplest linear mixed 

model which is a random intercept model, up to a more complicated model with 

interaction between age and the type of pathology and with individual curves for each 

subject. 

The variables of the dataset are; 

Height: Height (kg) of the children measured in each six months from 6 months to 18 

years. 

Z-score:  Measure that express the distance between an individual child's height and the 

average height of comparable children in the reference population. 

Type of pathology: The categorical covariate that indicates the type of pathology of the 

children (either HPA or PKU). 

Age: Age of the children (6 months up to 18 years) when the measures are taken.  

Gender: Gender of the children (Female-Male). 
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The aim of the study is to model the z-score of the children and to evaluate the long-

term pathology type effect on children`s z-score. Figure 4 represents the z-score 

measurements of each individual divided by gender and the two types of pathology; 

PKU and HPA. 

 

 Figure 4.1: The dataset that corresponds to z-score measurements of 109 children that 

are taken between the age 6 months up to 18 years. 

 

As can be observed in Figure 4.1 the measurements of z-scores for each individual 

behaves different during the period of the study and as we see in the graphic the 

parametric assumption of the traditional linear mixed models may not be appropriate to 

study these individual trajectories.  Furthermore we will discuss this behavior applying 

different kind of linear and flexible models. 

 

4.1.    Random intercept model 

Let     denote the z-score of a child i, i=1,…N, the first model that we can propose for 

the data may be a linear mixed model, 

 

                                                             

 

Where     is the response variable vector           
   which is z-scores in our 

application,     is the vector of covariates (in this case the covariate is the age variable) 

          
   .    is the overall mean and    is a random intercept for the child i , which 

is treated as a random sample from the population of children and requires just a single 

variance parameter,   
 .  
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The model can be written in matrix notation as; 

 

          

 

Where   is the response vector which is z-scores in our example and   is the vector of 

covariates. and   ~      )  and    ~       . The matrices in this model have the form 

of, 

 

                                           
   
  
   

                     

     
     
    
     

         

 

           

   

                                                           
           

    

 

This model is a random intercept model which we have already introduced in Chapter 2 

(2.2), that allows a random shift over the intercept and assume that the age effect is 

lineal (    ). 

 

4.2       Random Intercept and Slope Model 

 

As we see in Figure 4.1 the individual trajectories are not only change over intercept but 

also in slope. Therefore we define a new model which is explained in Chapter 2 (2.3) 

where the extension is to assume that the subject-specific differences are straight lines; 
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where the   is a unstructured 2x2 matrix for the intercept and slope    
   

  

    
  . 

Here, the random part of the model is represented as           which allows us to 

model individual straight lines not just changes over the intercept    but also changes in 

slope   . 

In this model, the random part have the variance parameters;    
  which corresponds the 

random intercept and    
  which corresponds the random slope. 

 

In matrix notation, 

          

 

The matrix Z now incorporates the subject-specific lines, 

 

       
   
  
   

          

      
      
     
      

    

      
      
    
      

        

 

                                   
            

 

                       
    
   
    

          
   

  

    
                          

 

Model (4.2) assumes a linear trend for the z-score along age but this linear assumption 

may not be appropriate for our data as we can see the behavior of the z-score 

measurements over the age (Figure 4.1). Therefore we can use P-splines smoothing to 

model the effect of age on the response variable z-score.  
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4.3.    Non linear effect of age plus random intercept and slope 

 

                                                                                                                     

where; 

yi = z-score of the patient i, i=1,…N.      is a smooth function which reflects the 

overall increasing trend of z-score overall age.      is estimated by penalized splines 

          where    is the B-spline basis for the function      . As we described the 

representation of the P-splines regression model as mixed models (3.4) a penalized 

spline model for (4.3) is, 

 

                                                                                    

                                                                 

 

               
                  

                          
       

 

Where           ,           
      ,              

  (we use q=2 by assuming a 

second order penalty. 

 

In matrix notation, 
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The random parts of the model are the following; 

 

                         
   

 

                                    

   
   

 
   
   
   

   
   

   

                 
      

 

Here the random part of the smooth function which reflects the overall increasing trend 

of the z-score over time has the following distribution; 

            
       

 

4.4.     Subject Specific Curves 

To adjust a more flexible model, that allows subject-specific ltrends to be non linear the 

individual trends can be smoothed by using penalized splines. In this case. We assume 

the following regression model, 

 

                                                                                                                      

 

yi = z-score of the patient i, i=1,…N.       is a smooth function which reflects the 

individual curves.       is estimated by penalized splines            . Following the 

ideas presented in Chapter 2 and 3, the mixed model representation of       becomes: 
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where                     
               ,             and             

 ,      

 

In model (4.3), the individual trajectories were lineal,            , therefore in the 

model (4.4), we have individual curves (subject specific curves) which have two 

components: a linear part    
   (similar in model 4.3), and a non linear part     

  , 

which allows more flexibility in the model. Both components are random part of the 

model as described by Durban et al (2005). 

 

 

In matrix notation, 

          

 

The complex model (4.4), can be easily described in the mixed model framework as ; 

 

    
   

  
   

              

       
       
     

       

     
     
    
     

  

 

                                                     

 

           

   
       

                 

                    
     

  

 

As we can see in the mixed model framework representation, the random part of the 

model includes,                  which means that both the linear part and the non-

linear part of the subject specific curves are taken as random. The G matrix has an 

additional term in comparison with model (4.3) which is the variance parameter 

associated with the penalized/non linear part of the subject specific curves. As can be 

observed, the same amount of smoothing was assumed for each individual     
     .  

 



[33] 
 

Z matrix have 3 components; the first component             
  represents the       

which is the population effect of age, the second matrix is the random intercept and 

slope part of the model and the last matrix is the penalized/non linear part for each 

individual. 

 

4.5.     Factor by Curve Interactions 

As in the application part of this study, one of the purposes of the analyses is  to 

compare the long-term effects of two different pathology types. So we are interested in 

fitting separate curves for each pathology type.  

 

 

                                                         

 

where           if the pathology of individual i is PKU and 0 otherwise. Based on 

the previous parameterization      represents the smooth effect of age in the group 

with HPA, whereas      represents the deviation from this effect for those individuals 

with PKU. Accordingly, the age effect in an individual with PKU is            . 

Therefore if           , it means that no interaction between age and type of 

pathology is present. 

The mixed model representation of model       is, 

 

                                                         
      

      

                                                                                                                      

 

where       

   
 

    

  . It should be noted that the column of ones in    has been removed 

in order to identify the model and 
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In matrix notation,  

          

 

  

 
 
 
 
 
 
     
    
       

 

         
       

    
       

 
 
 
 
 

         

 

where      is the number of individuals with HPA and                 

 

    

 
 
 
 
 
 

           
         

     
       

     
       

        

        
               

       
       
      
      
      
        

 
 
 
 
 

 

                      

                                 
 
         

 

  

 

 
 

   
     

   
    

                  

                      
   

 
 

 

                                                                 

In this model, the random part of the deviation of HPA from PKU has the following 

distribution; 

        
       

 

Furthermore, we will discuss if this random part is necessary for the model, by 

investigating whether this variance parameter   
  is zero. 
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CHAPTER 5 

Application to real data 

 

5.1       Children Growth Data 

 

In Chapter 4, we have introduced some flexible mixed models with P-spline regression 

models to furthermore apply to the data of children growth. The data contains the 

patients followed up in “Unidad de Diagnóstico y Tratamiento de Enfermedades 

Congénitas del Metabolismo del Hospital Clínico Universitario in Santiago de 

Compostela”  between the years 1978 and 2011 which are controlled with a dietetic 

treatment. The data has 102 children followed up from 6 months up to 18 years in the 

center.  

For the correct physical development of children with PKU, it is important to have a 

special diet while for those with HPA it isn`t necessary a medical intervention. The 

objective of this study is to model the growth of these children with PKU and HPA and 

see if there is any difference between these two types of pathologies during a period of 

time. (from 6 months to 18 years). 

 

The variables are; 

Height: Height (kg) of the children measured in each six months from 6 months to 18 

years. 

Z-score:  Measure that express the distance between an individual child's height and the 

average height of comparable children in the reference population. 

Type of pathology: The categorical covariate that indicates the type of pathology of the 

children (either HPA or PKU). 

Age: Age of the children (from 6 months up to 18 years) when the measures are taken.  

Gender: Gender of the children (Female-Male). 

The characteristics of the dataset are, 
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The dataset has 75 columns in total which are,  

 “Patient Id” indicates the id number of the children 

 

 “Type of Pathology” indicates if the child has HPA or PKU. 

 

 “Gender” indicates the gender of each child 

 

 (“Heigth 0.5” , “Height 1” , “Height 1.5”, … , “Height 18” ) which indicate the 

measures of height for each child at different ages. 

 

 (“Z-score 0.5” , “Z-score 1” , “Z-score 1.5”, … , “Z-score 18” ) which indicate 

the measures of z-scores for each child at different ages. 

 

It is necessary to reshape the data to obtain a longitudinal format in which we have the 

z-scores, type of pathology, id number and the age variable for each child. 

data.long <- reshape(data, varying = list(names(data)[seq(4,74,2)], 

+names(data)[seq(5,75,2)]), direction = "long", v.names = c("Height", "z_score"), 

+idvar = "Patient Id", ages = seq(0.5, 18, by = 0.5)) 

 

> summary(data.long)              

 

Patient.Id Type.of.Pathology Gender time Height z_score Patient Id 

 Min.   :  1 HPA :1980 Male :1584 Min.   : 0.500 Min.   : 59.5 Min.   :-21.8294 Min.   :  1.0   

 1st Qu.: 28 PKU :1944 Female:2340 1st Qu.: 4.875 1st Qu.: 94.0 1st Qu.: -0.5900 1st Qu.: 36.0   

 Median : 55 NA's:1188 NA's :1188 Median : 9.250 Median :116.5 Median :  0.1100 Median : 71.5   

 Mean   : 55    Mean   : 9.250 Mean   :117.7 Mean   : -0.0152 Mean   : 71.5   

 3rd Qu.: 82   3rd Qu.:13.625 3rd Qu.:140.0 3rd Qu.:  0.6700 3rd Qu.:107.0   

 Max.   :109   Max.   :18.000 Max.   :182.5 Max.   :  3.6800 Max.   :142.0   

 NA's  :1188    NA's   :2971 NA's   :2967  

 

As can be observed, we create a sequence from 0.5 up to 18 by 0.5 which indicates the 

variable “Age”. This new shape of the dataset has a longitudinal data format. 

We want to apply the models will be defined in Chapter 4 for both gender separately, 

therefore we divide the dataset in two groups (male, female). 
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In the following tables, the mean, standart deviation of z-scores with the p-values of 

Kruskal-Wallis test for two groups for each age is presented to see descriptively if there 

are any differences between the z-score means of the children with PKU and with HPA 

in any age. 

 HPA PKU p-value 

6 months 0.31 (1.001) - 23 -0.092 (1.404) - 21 0.768 

1 years 0.301 (1.053) - 23 -0.174 (1.18) - 21 0.253 

1.5 years 0.151 (1.072) - 23 0.231 (1.261) - 21 0.671 

2  years 0.255 (0.967) - 22 0.062 (0.929) - 21 0.535 

2.5 years 0.498 (1.027) - 22 0.026 (0.709) - 20 0.075 

3  years 0.324 (0.891) - 22 0.123 (0.697) - 19 0.44 

3.5  years 0.425 (0.926) - 19 0.317 (0.764) - 19 0.588 

4  years 0.522 (0.85) - 19 0.189 (0.593) - 19 0.095 

4.5  years 0.695 (0.664) - 18 0.359 (0.552) - 19 0.131 

5  years 0.632 (0.843) - 17 0.436 (0.772) - 19 0.333 

5.5  years 0.667 (1.007) - 18 0.429 (0.708) - 19 0.301 

6   years 0.468 (0.981) - 17 0.402 (0.695) - 19 0.399 

6.5  years 0.605 (0.972) - 16 0.606 (0.813) - 18 0.704 

7  years 0.568 (1.085) - 16 0.434 (0.842) - 18 0.501 

7.5  years 0.745 (1.075) - 16 0.475 (0.737) - 16 0.273 

8   years 0.533 (1.05) - 16 0.388 (0.802) - 16 0.346 

8.5 years 0.696 (0.957) - 14 0.39 (0.949) - 15 0.213 

9   years 0.624 (1.049) - 13 0.413 (0.844) - 16 0.456 

9.5 years 0.501 (1.069) - 12 0.347 (0.765) - 15 0.66 

10  years 0.479 (1) - 12 0.285 (0.788) - 14 0.718 

10.5 years 0.448 (1.026) - 12 0.333 (0.846) - 12 0.862 

11  years 0.413 (1.143) - 10 0.32 (1.039) - 10 0.649 

11.5 years 0.696 (1.11) - 8 0.346 (1.032) - 10 0.328 

12  years 0.7 (1.347) - 7 0.375 (1.031) - 10 0.494 

12.5 years 0.387 (1.387) - 6 0.265 (1.148) - 10 0.588 

13  years 0.318 (1.467) - 6 0.182 (1.081) - 10 0.48 

13.5 years -0.118 (1.476) - 5 0.228 (1.011) - 9 0.894 

14  years -0.242 (1.314) - 5 0.168 (0.881) - 9 0.639 

14.5 years -0.625 (1.173) - 4 -0.009 (0.927) - 8 0.395 

15  years -0.763 (1.021) - 3 -0.169 (0.828) - 8 0.347 

15.5 years 0.24 (0.391) - 3 -0.161 (0.73) - 8 0.539 

16   years 0.717 (1.231) - 3 -0.15 (0.658) - 8 0.357 

16.5 years 0.23 (0.225) - 3 -0.159 (0.567) - 8 0.303 

17  years 0.405 (0.134) - 2 -0.472 (1.032) - 9 0.125 

17.5  years 0.824 (NA) - 1 -0.484 (1.015) - 9 0.116 

18 years 0.851 (NA) - 1 -0.388 (1.032) - 8 0.12 

 

Table 5.1: Means, standart deviations, p-values of Kruskal-Wallis test for two groups 

and frequencies for each age of the male individuals and for each type of pathology. 
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              HPA PKU p-value 

6 months 0.374 (0.833) - 32 0.412 (1.099) - 33 0.849 

1 years 0.257 (1.007) - 32 -0.05 (0.996) - 32 0.412 

1.5 years -0.025 (0.718) - 29 -0.381 (1.055) - 33 0.268 

2  years -0.261 (0.767) - 28 -0.33 (0.884) - 30 0.809 

2.5 years -0.062 (0.8) - 23 -0.079 (1.043) - 30 0.879 

3  years -0.019 (0.855) - 21 -0.102 (1.066) - 28 0.952 

3.5  years 0.096 (0.574) - 18 -0.257 (0.997) - 26 0.176 

4  years 0.302 (0.629) - 17 -0.246 (1.03) - 28 0.084 

4.5  years 0.235 (0.417) - 16 -0.349 (0.89) - 28 0.01 

5  years 0.166 (0.529) - 15 -0.331 (1.019) - 28 0.062 

5.5  years 0.316 (0.707) - 14 -0.29 (0.995) - 28 0.033 

6   years 0.249 (0.707) - 14 -0.234 (0.898) - 28 0.142 

6.5  years 0.322 (0.606) - 13 -0.201 (0.961) - 28 0.133 

7  years 0.221 (0.739) - 10 -0.154 (1.08) - 26 0.447 

7.5  years 0.171 (0.775) - 7 -0.206 (0.937) - 26 0.402 

8   years 0.143 (0.822) - 6 0.024 (0.842) - 25 0.707 

8.5 years -0.102 (0.885) - 5 -0.048 (0.873) - 25 0.759 

9   years -0.128 (0.981) - 5 -0.017 (0.846) - 24 0.685 

9.5 years -0.09 (0.837) - 4 -0.124 (0.804) - 24 1 

10  years -0.022 (1.007) - 4 -0.192 (0.797) - 24 0.767 

10.5 years -0.1 (1.005) - 4 -0.205 (0.881) - 23 0.973 

11  years 0.005 (0.889) - 4 -0.089 (1.01) - 23 0.891 

11.5 years -0.213 (0.993) - 4 -0.246 (1.016) - 22 0.972 

12  years -0.162 (0.956) - 4 -0.336 (1.002) - 21 0.738 

12.5 years -0.254 (1.028) - 4 -0.417 (0.986) - 21 0.795 

13  years -0.198 (0.959) - 4 -0.548 (1.097) - 19 0.516 

13.5 years -0.477 (0.382) - 3 -0.647 (1.101) - 17 0.711 

14  years -0.643 (0.326) - 3 -0.732 (1.089) - 17 0.751 

14.5 years -0.67 (0.354) - 2 -0.715 (1.021) - 17 0.74 

15  years -0.715 (0.46) - 2 -0.678 (0.882) - 16 0.778 

15.5 years -0.79 (0.453) - 2 -0.683 (0.866) - 16 0.888 

16   years -0.74 (0.311) - 2 -0.667 (0.872) - 16 0.725 

16.5 years -0.775 (0.318) - 2 -0.605 (0.861) - 15 0.94 

17  years -0.58 (NA) - 1 -0.52 (0.89) - 14 0.907 

17.5  years NaN (NA) - 0 -0.556 (0.924) - 13 NA 

18 years NaN (NA) - 0 -0.541 (0.958) - 13 NA 

 

Table 5.2: Means, standart deviations, p-values of Kruskal-Wallis test for two groups 

and frequencies for each age of the female individuals and for each type of pathology 
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The Kruskal-Wallis test results shows us that there isn`t any differences between the z-

score means of the two type of pathologies in any age except the 4.5 and 5.5 years old 

females. 

In this Chapter we will present the application of the regression models presented in 

Chapter 4 to analyze the children growth data.  

First of all we present the R code of the function to create the P-spline regression basis, 

>bspline <-function(X., XL., XR., NDX., BDEG.){ 

   dx <- (XR. - XL.)/NDX. 

   knots <- seq(XL. - BDEG.*dx, XR. + BDEG.*dx, by=dx) 

   B <- spline.des(knots, X., BDEG.+1, 0*X.)$design 

   B 

} 

 

>MM.basis <- function (x, xl, xr, ndx, bdeg, pord, decom = 2) { 

   B = bspline(x,xl,xr,ndx,bdeg) 

   m = ncol(B) 

   n = nrow(B) 

   D = diff(diag(m), differences=pord) 

   P.svd = svd(crossprod(D)) 

   U = (P.svd$u)[,1:(m-pord)] # eigenvectors 

   d = (P.svd$d)[1:(m-pord)]  # eigenvalues 

   Delta = diag(1/sqrt(d)) 

   Z = B%*%U%*%Delta 

   X = NULL 

   for(i in 0:(pord-1)){ 

     X = cbind(X,x^i) 

   } 

  > list(X = X, Z = Z, d = d, B = B) 

} 

 

As it can be observed, in this code we calculated             
     as it mentioned in 

Section 3.5.  

Before applying the defined regression models presented in Chapter 4 to our data we 

introduce some basic code. 

>attach(data.male) 

>Id <- factor(rep(1, length = length(z_score))) 

>K <- max(5,min(floor(length(unique(age))/4),40)) 

>MM = MM.basis(age, min(age)- 0.5, max(age) + 0.5, K, 3, 2) 

>Z = MM$Z 
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>MM.subject <- MM.basis(age, min(age)- 0.5, max(age) + 0.5, K, 3, 2) 

>Z.subject <- MM.subject$Z 

>n = length(z_score) 

where K is the optimum number of knots defined in Section 3.2. 

 

5.2       The model with factor by curve interactions 

 

The model that we applied for the data was with the subject specific curves and factor 

by curve interactions (4.5), 

 

                                                             

 

The aim of the study is too see the long-term effect of the two types of pathologies so 

that we have used an interaction model in which a categorical factor (pathology type) 

interacts with a continuous factor (age). 

We introduce matrices defined for the model (4.5) in Chapter 4 to the model, 

R Code 

>X <- model.matrix(z_score ~ Type.of.Pathology*age) 

>Z.interact <- model.matrix(z_score ~ Z*Type.of.Pathology)[,-c(1,ncol(Z)+2)] 

>Z.1 <- Z.interact[,1:ncol(Z)] 

>Z.2 <- Z.interact[,(ncol(Z)+1):(2*ncol(Z))] 

>Z.block <- list(Id = pdIdent(~Z.1-1), Id = pdIdent(~Z.2-1), Patient.Id = 

pdSymm(~age), +Patient.Id = pdIdent(~Z.subject - 1)) 
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where Z.block is the design matrix for the model (4.5), and have four parts, 

 

1. Id = pdIdent(~Z.1-1) indicates      

 

2. Id = pdIdent(~Z.2-1) indicates      

 

3. Patient.Id = pdSymm(~age) indicates the linear part of the       

 

4. Patient.Id = pdIdent(~Z.subject - 1)) indicates the non-linear part of the       

 

And pdIdent specifies that the variance structure of the random effects is a multiple of 

the identitiy matrix, pdSymm specifies covariance structure for the random intercept and 

slope. 

It is necessary to create a structure for the data for the reason of working with matrices 

not with the variables. 

>data.fr <- groupedData(z_score ~ X[,-1]|rep(1, length = length(z_score)), data = 

+data.frame(z_score, X, Z.1, Z.2, Z.subject, Patient.Id, Type.of.Pathology)) 

>fit1 <- lme(z_score ~ X[,-1], random = Z.block, data = data.fr)  

We applied the model (4.5) according to steps in R code for both males and females. 

The numerical output for the applied (4.5) model for the boys shows that the estimated 

variance parameter of non-linear time effect is    
            and the variance 

parameter of the deviation is   
             . 

The variance parameter of the non-linear part of the individual curves     
  is estimated 

          . 

     

            which is the variance parameter of intercept and      

            

is the variance parameter of the slope. Also there is a correlation between the random 

intercept and slope, which is estimated,        . The Akaike Information Criterion 

for this model is 1317.416. 

The numerical output for the adjusted (4.5) model for the girls shows that the variance 

parameters are the following, the estimated variance parameter of non-linear time effect 

is    
             , and the variance parameter of the deviation is   

            . 

The variance parameter of the non-linear part of the individual curves is estimated 

    
            and the intercept and slope variance parameters are      

  

         ,      

             and the correlation is        . The Akaike 

Information Criterion for this model is 1521.956. 
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The estimated curves for PKU and HPA and the difference between these curves with 

the confidence intervals obtained with bootstrap method are represented in Figure 5.1 

for boys and in Figure 5.2 for girls.  

Figure 5.1 The estimated curves for two types of pathology for the boys (left) and the 

difference between these two curves (right). 

As we can observe in Figure 5.1 the male individuals with PKU has a lower z-scores 

which means the male individuals with HPA have a favorable evaluation especially 

during 5-15 years. This is observed from the graphic of the complete model but 

furthermore we will discuss whether the random parts of these model is necessary for 

the dataset. 

 

Figure 5.2 The estimated curves for two types of pathology for the girls (left) and the 

difference between these two estimated curves (right) 
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In Figure 5.2 we observe that the children with PKU and the children with HPA have 

different behavior along the age which they begin with a higher z-scores then 0 and 

changes during the time of the study. We can observe that for the female individuals the 

children with HPA have a more favorable evolution then those with PKU until 

approximately 7 years old and then they become nearly equal to each other. After 14 

years old the children with HPA becomes having a more favorable evolution.  

Furthermore we will discuss if the observed differences between these two groups are 

statistically significant. 

To see the differently estimated individual curves, in Figure 5.3 we present the 

estimated curves for some male and female individuals. 

 

Figure 5.3 Estimated individual curves for patients with patient ID 2,15,43,53, 63, 82  

 

5.3       The model without the non-linear part of the subject specific 

curves 

 

We want to see if the assumption of individual curves is appropriate for our data. For 

this objective we extended the model (4.3) with the model (4.5) to obtain the model 

without assuming presence of the individual curves. 
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and we compare this model with the model (4.5) to test whether the random part of the 

subject specific curves is necessary for the model. To test this assumption we 

investigate if the variance parameter of this random part (    
 )  is zero or not, which is 

equivalent to testing, 

 

        
                

      

 

To fit the given model       we introduce the matrices, 

 

R Code 

>X <- model.matrix(z_score ~ Type.of.Pathology*age) 

>Z.interact <- model.matrix(z_score ~ Z*Type.of.Pathology)[,-c(1,ncol(Z)+2)] 

>Z.1 <- Z.interact[,1:ncol(Z)] 

>Z.2 <- Z.interact[,(ncol(Z)+1):(2*ncol(Z))] 

>Z.block <- list(Id = pdIdent(~Z.1-1), Id = pdIdent(~Z.2-1), Patient.Id = 

pdSymm(~age)) 

>data.fr <- groupedData(z_score ~ X[,-1]|rep(1, length = length(z_score)), data = 

>data.frame(z_score, X, Z.1, Z.2, Patient.Id, Type.of.Pathology)) 

>fit2 <- lme(z_score ~ X[,-1], random = Z.block, data = data.fr) 

 

The difference between the model (5.1) and (4.5) is that we have removed the non-

linear part of the individual curves, which is indicated by Patient.Id = 

pdIdent(~Z.subject - 1)) in R code. 

 

The numerical output for the applied (5.1) model for the boys shows that the estimated 

variance parameter    
            and    

             . The variance 

parameters,      

            which is the variance parameter of intercept and 

     

            is the variance parameter of the slope. Also there is a correlation 

between the random intercept and slope, which is estimated,        . The Akaike 

Information Criterion for this model is 1550.223. 
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The numerical output for the adjusted (5.1) model for the girls shows that the variance 

parameters are the following,    
             ,   

            and the intercept 

and slope variance parameters are      

           ,      

            and the 

correlation is         . The Akaike Information Criterion for this model is 

1818.985. 

The estimated curves for PKU and HPA for the model (5.1) for both males and females 

are presented in Figure 5.3 and Figure 5.4 

 

 

 

 

 

 

 

 

                                  Figure 5.4 Estimated curves for males for the model (5.1) 

 

 

 

 

 

 

 

 

 

 

                               Figure 5.5 Estimated curves for females for the model (5.1) 
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As we can observe the model without different individual curves changes the estimated 

curves for each type of pathology because a same curve for all individuals is estimated 

instead of different smoothness for each of them. 

 

Model Comparison 

As it is described in Section 2.7 (Hypothesis testing in mix models) , the likelihood ratio 

test can be used for hypothesis tests for covariance matrix parameters. 

 

        
                

      

 

The Restricted log-likelihood value (RLRT) is 234.8164 and the p-value is < 2.2e-16 

based on 10.000 simulated values for the male individuals and RLRT is 299.0287 with 

the p-value < 2.2e-16 again based on 10.000 simulated values for the female individuals 

(see Annex 1). 
 
 

For both of the models there is an enough evidence to suggest that the null hypothesis is 

false which shows that the subject specific curves would be appropriate.  

 

5.4       The model without the non-linear part of the factor by curve 

interactions 

 

In model (4.5) it is assumed that the curves describing the effect of the pathology have 

different smoothness.  

 

                                                                                            

 

To test this assumption we compare the models (4.5) with (5.2) we investigate whether 

the random part of the subject specific curves is necessary for the model If the variance 

parameter of this random part (    
 )  is zero it would mean that the random part of the 

deviation may not be necessary for the model, which means that the different smooth 

curves for each pathology type would not be appropriate to study the dataset. 
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So the hypothesis is; 

 

      
                     

      

 

 

To apply the given model       we introduce the matrices, 

 

R Code 

>X = model.matrix(z_score ~ age*Type.of.Pathology) 

>Z.block = list(list(Id = pdIdent(~Z-1)),list(Patient.Id = pdSymm(~age)),list(Patient.Id 

= +pdIdent(~Z.subject-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score~ X[,-1]|Id, data = data.frame(z_score, X, Z, 

Z.subject, +Patient.Id)) 

>fit3 <- lme(z_score ~ X[,-1], data = data.fr, random = Z.block) 

The only difference between the model (4.5) and (5.2) is that we removed the Z.interact 

matrix from the model which indicates the different smooth curves for each type of 

pathology. 

The numerical output for the applied (5.2) model for the boys shows that the estimated 

variance parameter    
            . The variance parameter of the non-linear part of 

the individual curves is estimated     
           .The variance parameters,      

  

         which is the variance parameter of intercept and      

           is the 

variance parameter of the slope. Also there is a correlation between the random 

intercept and slope, which is estimated,        . The Akaike Information Criterion 

for this model is 1315.416. 

The numerical output for the adjusted (5.2) model for the girls shows that the variance 

parameters are the following,    
              ,     

            and the intercept 

and slope variance parameters are      

           ,      

            and the 

correlation is         . The Akaike Information Criterion for this model is 

1523.141. 

 

 



[48] 
 

Model Comparison 

 

The hypothesis test is 

      
                     

          

 

The Restricted log-likelihood value (RLRT) is 1 and the p-value is 1 based on 10.000 

simulated values for the male individuals and RLRT is 3.1845 with the p-value 0.0186 

again based on 10.000 simulated values for the female individuals. (see Annex 1) 

 

For the model which is applied to male individuals there is no evidence to suggest that 

the null hypothesis is false which shows that the assumption of the different variance 

parameters for the deviation and for the time-effect of PKU would not be appropriate. In 

which we prefer the model without the random part of the deviation.  

For the female individuals` model has a p-value 0.0186, therefore we don`t have a 

strong evidence to accept the null hypothesis. It shows us that the deviation of the 

children with HPA from the children with PKU have a variance parameter different 

form zero which says that the random part of the smoothing would be appropriate for 

this model. 

 

5.5       The model without the random part of the non linear effect of 

age 

 

As the random part of the deviation of the complete model is appropriate for the female 

individuals, but for the male ones not, now we have a different models for each gender. 

For the male ones we remove the random part of the deviation and for the female ones 

we keep it.  

In this section we want to test if the smooth assumption of the effect of the age is 

appropriate for the model of the male and female individuals. We compare the model 

(5.2) with (5.3) for male individuals,  
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And for the female individuals we compare (5.1) with (5.4) 

 

                                 
 
  

 
                                        

 

The random part of the non linear effect of age has the following distribution; 

            
   so we have to test whether this variance parameter is zero, which is 

equivalent to test the hypothesis, 

 

       
            

     

 

To apply the model (5.3), 

R Code 

>X = model.matrix(z_score ~ age*Type.of.Pathology) 

>Z.block = list(list(Patient.Id = pdSymm(~age)),list(Patient.Id = pdIdent(~Z.subject-

1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score~ X[,-1]|Id, data = data.frame(z_score, X, Z, 

Z.subject, Patient.Id)) 

>fit4 <- lme(z_score ~ X[,-1], data = data.fr, random = Z.block) 

 

To apply the model (5.4), 

>X <- model.matrix(z_score ~ Type.of.Pathology*age) 

>Z.interact <- model.matrix(z_score ~ Z*Type.of.Pathology)[,-c(1,ncol(Z)+2)] 

>Z.1 <- Z.interact[,1:ncol(Z)] 

>Z.2 <- Z.interact[,(ncol(Z)+1):(2*ncol(Z))] 

>Z.block <- list(Id = pdIdent(~Z.2-1), Patient.Id = pdSymm(~age), +Patient.Id = 

pdIdent(~Z.subject - 1)) 

>data.fr <- groupedData(z_score~ X[,-1]|Id, data = data.frame(z_score, X, Z, 

Z.subject, Patient.Id)) 
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>fit5 <- lme(z_score ~ X[,-1], data = data.fr, random = Z.block) 

 

The only difference between the model (5.2) and (5.3) is that we removed the non-linear 

part of the age effect which is indicated by Id = pdIdent(~Z-1)) in R code. And the 

difference between (5.1) and (5.4) is that we removed the same part by Id = 

pdIdent(~Z.1-1). 

 

The numerical output for the applied (5.3) model for the boys shows that the estimated 

variance parameter of the non-linear part of the individual curves is estimated     
  

         .The variance parameters,      

            which is the variance 

parameter of intercept and      

            is the variance parameter of the slope. 

Also there is a correlation between the random intercept and slope, which is 

estimated,        . The Akaike Information Criterion for this model is 1316.336. 

 

The numerical output for the applied (5.4) model for the girls shows that the variance 

parameters are the following ,  
               

            and the intercept and 

slope variance parameters are      

           ,      

           and the correlation 

is       . The Akaike Information Criterion for this model is 1553.136. 

 

Model Comparison 

 

       
            

    

 

The Restricted log-likelihood value (RLRT) is 2.92 and the p-value is 0.0319 based on 

10.000 simulated values for the male individuals and RLRT is 33.1793 with the p-value 

2.2e-16 again based on 10.000 simulated values for the female individuals. (see Annex 

1) 

 

For the both models for male and female individuals there is an evidence to reject the 

null hypothesis, therefore the non linear effect of age would be appropriate for models. 
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5.6      The model without the linear part of the interaction between age 

and type of pathology 

 

In Section 5.4 according to the likelihood ratio test the assumption of factor by curve 

interactions would not be appropriate, therefore we removed the non linear part of the 

factor by curve interactions from the model for the male individuals. In this section, we 

will remove the linear part of this interaction from the model to test if the linear part of 

the interaction between age and pathology is appropriate for the data. 

We remove the linear part of the interaction from the model (5.2) that we have fitted for 

the male individuals, 

 

                                                                          

 

> X = model.matrix(z_score ~ age+Type.of.Pathology) 

> Z.block = list(list(Patient.Id = pdSymm(~age)),list(Patient.Id = pdIdent(~Z.subject-

1))) 

> Z.block <- unlist(Z.block, recursive=FALSE) 

> data.fr <- groupedData(z_score~ X[,-1]|Id, data = data.frame(z_score, X, Z, 

Z.subject, Patient.Id)) 

> fit4.1 <- lme(z_score ~ X[,-1], data = data.fr, random = Z.block) 

 

As can be observed we only changed the model matrix, and we removed the interaction 

between age and type of pathology. 

We compare the two models with the Akaike Information Criterion,  

AIC of model (5.2) = 1315.416 

AIC of model (5.4) = 1310.022 

We choose the model without the linear part of the interaction between the age and the 

type of pathology for the male individuals. 
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5.7       Conclusions 

We have fitted four different models to model the z-scores of the children and we 

obtained the following results, 

 

    
    

      
       

       

       AIC 

Model 4.5                                                           1317.416 

Model 5.1                     -                           1550.223 

Model 5.2           -                                    1315.416 

Model 5.3 - -                                    1316.336 

Model 5.5           -                                    1310.022 

 

Table 5.3 : The variance parameters and Akaike Information Criterion values of the 

each models fitted for male individuals. 

 

    
    

      
       

       

       AIC 

Model 4.5                                                         1521.956 

Model 5.1                     -                            1818.985 

Model 5.2           -                                      1523.141 

Model 5.3 - -                                    1580.407 

Model 5.4                                             1553.136 

 

Table 5.4 : The variance parameters and Akaike Information Criterion values of the 

each models fitted for female individuals. 

To test the non-linear parts of the models we used the likelihood ratio test to contrast if 

the variance parameters are different from zero. Table 5.5 and 5.6 shows the results for 

each model testing, 

 

HYPOTHESIS RLRT p-value 

        
                

    234.8164 < 2.2e-16 

      
                

    0 1 

       
              

    2.92 0.025 

 

Table 5.5 Likelihood ratio test statistics values for each model testing for the male 

individuals. 
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HYPOTHESIS RLRT p-value 

        
                

    299.0287 < 2.2e-16 

      
                

    3.1845 0.0186 

       
              

    33.1793 < 2.2e-16 

 

Table 5.6 Likelihood ratio test statistics values for each model testing for the female 

individuals. 

The p-values of RLRT test are obtained using “RLRsim” package implemented in R by 

Fabian Scheipl and Ben Bolker (2008) based on 10.000 simulations. 

 

As conclusion, the appropriate model (5.5) for the male individuals includes just one 

curve over time for the mean constructed by subject specific curves for each individual 

and its results are the following; 

                                             . 

 

 

 

(Intercept) 

Time 

Type.of.PathologyPKU 

 

 

Value 

0.4536873 

-0.0175212 

-0.3759156 

 

 

Std.Error 

0.19720838 

0.01333553 

0.27041493 

 

 

DF 

902 

902 

42 

 

 

t-value 

2.300548 

-1.313873 

-1.390144 

 

 

p-value 

0.0216 

0.1892 

0.1718 

 

Table 5.7 Estimations of the fixed effects from the model (5.5) for male individuals. 

As we observe the fixed effect of the time and type of pathology are not statistically 

significant, but we keep them in the model because the corresponding random parts are 

necessary for the model. 

And the appropriate model (4.5) for the female individuals includes different curves for 

each type of pathology and also subject specific curves and its results are; 
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(Intercept) 

Time 

Type.of.PathologyPKU 

Type.of.PathologyPKU:time 

 

 

Value 

0.9138604 

-0.0896243 

-0.1465574 

-0.017258 

 

 

Std.Error 

0.21225067 

0.01892408 

0.19003366 

0.03790231 

 

 

DF 

1125 

1125 

63 

1124 

 

 

t-value 

4.305571 

-4.735995 

-0.771218 

-0.455337 

 

 

p-value 

0.0015 

0.0398 

0.8889 

0.6490 

 

 

Table 5.8 Estimations of the fixed effects from the model (5.1) for female individuals. 

We observe almost the same results for the female individuals that the fixed part of the 

effect of the type of pathology and its interaction with time are not significant but we 

keep them because their corresponding random effects are necessary for the model. 
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Annex 1 

R Code for the RLRT test. 

Package RLRsim 

################################################### 

##    FOR MALE  AND FEMALE INDIVIDUALS 

################################################### 

> attach(data.male) /  attach(data.female) 

>Id <- factor(rep(1, length = length(z_score))) 

# Numero de nodos optimo 

>K <- max(5,min(floor(length(unique(time))/4),40)) 

>MM = MM.basis(time, min(time)- 0.5, max(time) + 0.5, K, 3, 2) 

>Z = MM[[2]] 

>MM.subject <- MM.basis(time, min(time)- 0.5, max(time) + 0.5, K, 3, 2) 

>Z.subject <- MM.subject[[2]] 

>n = length(z_score) 

######################################## 

####################################### 

 

#  FIRST HYPOTHESIS:  

#  H0: Model without the non linear part of the subject specific curves 

#  H1: Complete Model 

#  m : Model with only the fixed effects and the random part of the subject specific curves 

############# 

##COMPLETE MODEL 

############ 

>X <- model.matrix(z_score ~ Type.of.Pathology*time) 

>XX <- X[,-1] 

>Z.interact <- model.matrix(z_score ~ Z*Type.of.Pathology)[,-c(1,ncol(Z)+2)] 

>Z.1 <- Z.interact[,1:ncol(Z)] 
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>Z.2 <- Z.interact[,(ncol(Z)+1):(2*ncol(Z))] 

>Z.block <- list(Id = pdIdent(~Z.1-1), Id = pdIdent(~Z.2-1), Patient.Id = pdSymm(~time), Patient.Id = 

+pdIdent(~Z.subject - 1)) 

>data.fr <- groupedData(z_score ~ XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z.1, Z.2, 

+Z.subject, Patient.Id, Type.of.Pathology)) 

 

>fit1 <- lme(z_score ~ XX, random = Z.block, data = data.fr) 

>summary(fit1) 

############ 

##MODEL WITHOUT SUBJECT SPECIFIC CURVES 

############ 

>X <- model.matrix(z_score ~ Type.of.Pathology*time) 

>XX <- X[,-1] 

>Z.interact <- model.matrix(z_score ~ Z*Type.of.Pathology)[,-c(1,ncol(Z)+2)] 

>Z.1 <- Z.interact[,1:ncol(Z)] 

>Z.2 <- Z.interact[,(ncol(Z)+1):(2*ncol(Z))] 

 

>Z.block <- list(Id = pdIdent(~Z.1-1), Id = pdIdent(~Z.2-1), Patient.Id = pdSymm(~time)) 

>data.fr <- groupedData(z_score ~ XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z.1, Z.2, 

+Patient.Id, Type.of.Pathology)) 

>fit2 <- lme(z_score ~ XX, random = Z.block, data = data.fr) 

>summary(fit2) 

############# 

##MODEL "m" 

############ 

>X <- model.matrix(z_score ~ Type.of.Pathology*time) 

>XX <- X[,-1] 

>Z.block <- list(Patient.Id = pdIdent(~Z.subject - 1)) 

>data.fr <- groupedData(z_score ~ XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z.subject, 

+Type.of.Pathology)) 

>fitm <- lme(z_score ~ XX, random = Z.block, data = data.fr) 

>summary(fitm) 
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############################################### 

###  RLRT TEST  ######################## 

############################################### 

 

>library(RLRsim) 

>exactRLRT(m=fitm, mA=fit1, m0=fit2) 

 

############################################################################

######### 

############################################################################

###### 

#  SECOND HYPTOHESIS:  

#  H0: Model without the non linear part of the factor by curve interactions 

#  H1: Complete Model 

#  m : Model with only the fixed effects and the random part of the factor by curve interactions 

 

############################################################################

######### 

############# 

##COMPLETE MODEL 

############ 

>X <- model.matrix(z_score ~ Type.of.Pathology*time) 

>XX <- X[,-1] 

>Z.interact <- model.matrix(z_score ~ Z*Type.of.Pathology)[,-c(1,ncol(Z)+2)] 

>Z.1 <- Z.interact[,1:ncol(Z)] 

>Z.2 <- Z.interact[,(ncol(Z)+1):(2*ncol(Z))] 

>Z.block <- list(Id = pdIdent(~Z.1-1), Id = pdIdent(~Z.2-1), Patient.Id = pdSymm(~time), Patient.Id = 

+pdIdent(~Z.subject - 1)) 

>data.fr <- groupedData(z_score ~ XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z.1, Z.2, 

+Z.subject, Patient.Id, Type.of.Pathology)) 

>fit1 <- lme(z_score ~ XX, random = Z.block, data = data.fr) 

>summary(fit1) 
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############# 

##MODEL WITHOUT FACTOR BY CURVE INTERACTIONS 

############ 

>X = model.matrix(z_score ~ time*Type.of.Pathology) 

>XX <- X[,-1] 

>Z.block = list(list(Id = pdIdent(~Z-1)),list(Patient.Id = pdSymm(~time)),list(Patient.Id = pdIdent(~Z.subject-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score~ XX|Id, data = data.frame(z_score, X, Z, Z.subject, Patient.Id)) 

>fit2 <- lme(z_score ~ XX, data = data.fr, random = Z.block) 

############# 

##MODEL "m" 

############ 

>X <- model.matrix(z_score ~ Type.of.Pathology*time) 

>XX <- X[,-1] 

>Z.block <- list(Id = pdIdent(~Z.2-1)) 

>data.fr <- groupedData(z_score ~ XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z.1,Z.2, 

+Patient.Id, Type.of.Pathology)) 

>fitm <- lme(z_score ~ XX, random = Z.block, data = data.fr) 

>summary(fitm) 

############################################### 

###  RLRT TEST  ######################## 

############################################### 

>library(RLRsim) 

>exactRLRT(m=fitm, mA=fit1, m0=fit2) 

######################################## 

####################################### 
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#  THIRD HYPOTHESIS:  

#  H0: Model without the non linear part of the f(time) 

#  H1: Complete Model 

#  m : Model with only the fixed effects and the random part of the f(time) 

############################################################################

######## 

############# 

##COMPLETE MODEL 

############ 

>X = model.matrix(z_score ~ time*Type.of.Pathology) 

>XX <- X[,-1] 

>Z.block = list(list(Id = pdIdent(~Z-1)),list(Patient.Id = pdSymm(~time)),list(Patient.Id = pdIdent(~Z.subject-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score~XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z, Z.subject, 

+Patient.Id)) 

>fit1 <- lme(z_score ~ XX, data = data.fr, random = Z.block) 

>summary(fit1) 

############################################################################

###### 

############# 

##MODEL WITHOUT f(time) 

############ 

>X = model.matrix(z_score ~ time*Type.of.Pathology) 

>XX <- X[,-1] 

>Z.block = list(list(Patient.Id = pdSymm(~time)),list(Patient.Id = pdIdent(~Z.subject-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score~ XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z, Z.subject, 

+Patient.Id)) 

>fit2 <- lme(z_score ~ XX, data = data.fr, random = Z.block) 
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############# 

##MODEL "m" 

############ 

>X <- model.matrix(z_score ~ time*Type.of.Pathology) 

>XX <- X[,-1] 

>Z.block <- list(list(Id = pdIdent(~Z-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score ~ XX|Id, data = data.frame(z_score, X, Z)) 

>fitm <- lme(z_score ~ XX, random = Z.block, data = data.fr) 

>summary(fitm) 

############################################### 

###  RLRT TEST  ######################## 

############################################### 

>library(RLRsim) 

>exactRLRT(m=fitm, mA=fit1, m0=fit2) 

############################################################################

###### 

###### TESTING NON LINEAR PART OF THE INTERACTION ########## 

>X = model.matrix(z_score ~ time*Type.of.Pathology) 

>XX <- X[,-1] 

>Z.block = list(list(Id = pdIdent(~Z-1)),list(Patient.Id = pdSymm(~time)),list(Patient.Id = pdIdent(~Z.subject-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 

>data.fr <- groupedData(z_score~XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z, Z.subject, 

+Patient.Id)) 

>fit1 <- lme(z_score ~ XX, data = data.fr, random = Z.block) 

>summary(fit1) 

######################## 

>X = model.matrix(z_score ~ time+Type.of.Pathology) 

>XX <- X[,-1] 

>Z.block = list(list(Id = pdIdent(~Z-1)),list(Patient.Id = pdSymm(~time)),list(Patient.Id = pdIdent(~Z.subject-1))) 

>Z.block <- unlist(Z.block, recursive=FALSE) 
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>data.fr <- groupedData(z_score~XX|rep(1, length = length(z_score)), data = data.frame(z_score, X, Z, Z.subject, 

+Patient.Id)) 

>fit2 <- lme(z_score ~ XX, data = data.fr, random = Z.block) 

>summary(fit2) 

>anova(fit1,fit2) 

################################################### 


