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Prefacio

En este proyecto de fin de máster se presenta una aportación nueva al campo de los datos
funcionales. Esta idea surge a partir de los conocimientos adquiridos al cursar las asignaturas
“Contrastes de especificación” y “Datos funcionales” del Máster en Técnicas Estad́ısticas. En
particular, el trabajo realizado para esta última materia en el curso 2011/2012 representa el
punto de partida de este proyecto. El presente documento recoge la maduración de esas ideas y
su implementación en el paquete fda.usc.

Cabe destacar que el documento ha sido redactado en inglés para su uso en una futura publicación
y que su versión en formato de art́ıculo está públicamente disponible en el repositorio arXiv:
http://arxiv.org/abs/1205.6167.
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Abstract

In this work, a goodness–of–fit test for the null hypothesis of a functional linear model with
scalar response is proposed. The test is based on a generalization to the functional framework of
a previous one, designed for the goodness–of–fit of regression models with multivariate covariates
using random projections. A simulation study illustrates the finite sample properties of the test
for several types of basis and under different alternatives. Finally, the test is applied to two
datasets for checking the assumption of the functional linear model.

Keywords: Functional data; Goodness–of–fit; Functional linear model; Bootstrap calibration.
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and Prof. Manuel Febrero Bande, for their support, advice and valuable contributions. I would
also like to especially thank Prof. Rosa M. Crujeiras for her guidance in my research. I also
acknowledge the interesting contributions that Prof. César Sánchez Sellero has made in several
aspects of this work.

I acknowledge the support of the FPU grant AP2010–0957 from the Spanish Ministry of Educa-
tion, Project MTM2008–03010 from the Spanish Ministry of Science and Innovation and Project
10MDS207015PR from Dirección Xeral de I+D, Xunta de Galicia.

vii





Contents

Contents ix

1 Introduction 1

2 Background 3
2.1 Functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Functional linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Random projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The test 9
3.1 Theoretical arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Bootstrap resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Simulation study 17
4.1 Testing for simple hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Testing for composite hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Data application and graphical tool 27

6 Extensions 31

7 Conclusions 35

A Contributed code to fda.usc 37
dfv.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
flm.Ftest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
flm.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
PCvM.statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
rber.gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51

ix



x CONTENTS



Chapter 1

Introduction

Functional data analysis has grown in popularity for the last years due to the increasingly data
availability for continuous time processes. Typical examples of functional data include the tem-
perature evolution, stock prices and path trajectories for objects in movement. New statistical
methods have been developed to deal with the richer nature of functional data, being Ramsay
and Silverman (2005), Ferraty and Vieu (2006) and Ferraty and Romain (2011) some of the
main reference books in this area.

In many situations, the functional data is related to a scalar variable. For this cases, it is in-
teresting to assess the relation of the variables via a regression model, which can be used to
predict the scalar response from the functional input. Analogue to the multivariate situation,
the simplest functional regression model corresponds to the functional linear model with scalar
response (see Ramsay and Silverman (2005) for a review).

An interesting methodology approach to deal with functional data is the use of random projec-
tions. The objective is to characterize the behaviour of a functional process, which has infinite
dimension, via the behaviour of the one dimensional inner products of the functional process
with suitable random functions. This method has interesting applications for the goodness–of–
fit of the distribution of the process, as it can be seen in Cuesta-Albertos et al. (2007). More
recently, Patilea et al. (2012) provide a projection–based test for functional covariate effect in a
functional regression model with scalar response. In their paper, the authors adapt the tests of
Zheng (1996) and Lavergne and Patilea (2008), based on smoothing techniques, to the context
of functional covariates.

In this work, a first goodness–of–fit test for the null hypothesis of the functional linear model,
H0 : m ∈ {〈·, β〉 : β ∈ H}, being H the Hilbert space of square integrable functions, is proposed.
The statistic test is of a Cramér–von Mises type and is based on a generalization of a previous
test of Escanciano (2006) designed for the case of a regression model with multivariate covari-
ates. The test statistic is easy to compute using geometrical arguments and simple to calibrate
in its distribution by a wild bootstrap on the residuals. Further, although the test is given for
the functional linear model, it can be extended to other functional models with scalar response,
as it is based on the residuals of the model.

This work is organized as follows. Some background on functional data, the functional linear
model and the random projections paradigm are introduced on Chapter 2. The main part of
the work is Chapter 3, where the theoretical arguments of the test, jointly with the bootstrap
calibration procedure, are presented. The finite sample properties of the test are illustrated by a
simulation study in Chapter 4. Chapter 5 illustrates the application of the test to two datasets

1



2 Chapter 1. Introduction

and introduces a graphical tool to evaluate the goodness–of–fit of the functional linear model
with scalar response. Possible extensions of the test are discussed in Chapter 6 and conclusions
are given in Chapter 7. Finally, Appendix A presents the reference manual of the contributed
code to the R package fda.usc (see Febrero-Bande and Oviedo de la Fuente (2012)).



Chapter 2

Background

The main goal of this work is to propose a goodness–of–fit test for the null hypothesis of the
functional linear model with scalar response. Bearing in mind the different nature of the func-
tional variables, some background on functional data, the functional linear model and the use
of random projections is introduced.

2.1 Functional data

One of the first and most important problems when we deal with functional data is to choose a
suitable functional space to work. The most used functional spaces are the metric, the Banach
and the Hilbert spaces. This is a sequence of functional spaces with increasing richer structure,
where the tools available for the former space are included in the latter. Specifically, in a metric
space we can measure distances between functions; in addition, in a Banach space we can also
measure the functions and Cauchy sequences are convergent; and finally, in a Hilbert space we
have inner product, which allows to consider functional basis.

While there are a lot of types of metrics and norm spaces, the Lp spaces are one of the most
used. The Lp[0, 1] space, 1 ≤ p < ∞, is defined as the set of all functions f : [0, 1] → R such
that their norm ||f ||p is finite, where

||f ||p =

(∫ 1

0
|f(t)|p dt

) 1
p

.

The choice of the interval [0, 1] is done only to fix the integration limits and other intervals
can be considered without major changes. The most important Lp space corresponds to p = 2,

because is the only which has an associated inner product 〈·, ·〉 such that ||f ||p = 〈f, f〉
1
2 . For

two functions f, g ∈ L2[0, 1], their inner product is defined as

〈f, g〉 =

∫ 1

0
f(t)g(t) dt.

In what follows we will consider as our working space the Hilbert space H = L2[0, 1], bearing
in mind that [0, 1] can be trivially replaced by another interval. The inner product allows for a
basis representation of the elements of H and, given a functional basis {Ψj}∞j=1 of H, then any
function X in H can be expressed by the linear combination:

X =

∞∑
j=1

xjΨj ,

3



4 Chapter 2. Background

where xj = 〈X ,Ψj〉, j ≥ 1. A basis is said to be orthogonal if 〈Ψi,Ψj〉 = 0, i 6= j and orthonor-
mal if, in addition, 〈Ψj ,Ψj〉 = 1, j ≥ 1. Typical examples of basis of H are the Fourier basis,
{1, sin (2πjx) , cos (2πjx)}∞j=1 and the B–splines basis (see de Boor (2001)).

For the development of the test statistic, we will also need to introduce a p–truncate basis
{Ψj}pj=1, which corresponds to the first p elements of the infinite basis {Ψj}∞j=1. The represen-
tation of X in this truncated basis is denoted by

X (p) =

p∑
j=1

xjΨj .

We will denote by x and by xp the vector of coefficients of X in the original and in the p–
truncated basis, respectively.

The choice of the number of basis elements p is crucial to have a reliable representation of the
function X by X (p). Although there exists several methods to select an appropriate p, we will
refer to the GCV criteria (see Ramsay and Silverman (2005), page 97) to select p and represent
adequately the function X in {Ψi}pi=1. This criteria will be used in Section 4.1 to select a suitable
p for the case of the simple hypothesis.

To deal with functional random projections we will need to define the functional analogue of the
euclidean p–sphere Sp = {x ∈ Rp : ||x||Rp = 1}. In the functional case we have the functional
sphere of H, defined as SH = {f ∈ H : ||f ||H = 1}, and the functional sphere of dimension p,
which is the set of functions of H that, expressed in the p–truncated basis, have unit norm:

SpH =
{
f =

∑p
j=1 xjΨj ∈ H : ||f ||H = 1

}
.

The relationship between Sp and SpH is particularly interesting to develop the test. Let be Ψ =
(〈Ψi,Ψj〉)ij the matrix of inner products of the p–truncated basis, SpΨ =

{
x ∈ Rp : xTΨx = 1

}
the p–ellipsoid generated by this matrix and RTR the Cholesky decomposition of Ψ (a semi–
positive matrix). First of all, we have the trivial isomorphism that maps elements of SpH to
elements of SpΨ by means of the functional coefficients: φ : f =

∑p
j=1 xjΨj ∈ SpH 7→ φ(f) = x ∈

SpΨ. Recall that functions φ and φ−1 are well defined because

||f ||2H =

〈
p∑
j=1

xjΨj ,

p∑
j=1

xjΨj

〉
= xTΨx.

We must consider also a linear transformation from Sp to SpΨ, which is given by ρ : x ∈ Sp 7→
ρ(x) = R−1x ∈ SpΨ and whose Jacobian is |R|−1, the determinant of the matrix R−1.

Using these two transformations, the integration of a functional operator T with respect to a
functional covariate γ(p) in SpH can be reduced to a real integration on the p–sphere:

∫
SpH
T
(
γ(p)

)
dγ(p) =

∫
SpΨ
T

(
p∑
j=1

gjΨj

)
dgp =

∫
Sp
|R|−1 T

(
p∑
j=1

(
R−1g

)
j

Ψj

)
dgp. (2.1)

In the case where the basis is orthonormal, Ψ and R are the identity matrix of order p. Then
the coefficients of γ(p) ∈ SpH in the basis {Ψj}pj=1 belong to Sp without any transformation.
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2.2 Functional linear model

Suppose that X is a functional random variable in H and Y is a real random variable. If both
variables are centred, i.e., E [X (t)] = 0 for a.e. t ∈ [0, 1] and E [Y ] = 0, the Functional Linear
Model (FLM) with scalar response claims for the following relation:

Y = 〈X , β〉+ ε =

∫
X (t)β(t) dt+ ε,

where the functional parameter β belongs to H and ε is a random variable with zero mean,
variance σ2 and such that E [X (t)ε] = 0, ∀t. The prediction of Y is done with the conditional
expectation of Y given X :

m(X ) = E [Y |X ] = 〈X , β〉 .

Saying that (X , Y ) share the functional linear model is equivalent to saying that the regression
function of Y on X , m, belongs to the family M = {〈·, β〉 : β ∈ H}.

Given a sample (X1, Y1), . . . , (Xn, Yn), the estimation of the functional parameter can be done
by minimising the Residual Sum of Squares (RSS):

β̂ = arg min
β∈H

n∑
i=1

(Yi − 〈Xi, β〉)2 .

A possible method to search for the parameter β that minimises the RSS is representing the
functional data and the functional parameter in the truncated functional basis {Ψj}pXj=1 and

{θj}
pβ
j=1, respectively:

Xi =

pX∑
j=1

cijΨj , β =

pβ∑
j=1

bjθj , i = 1, . . . , n.

Using the vector notation x = (Xi)i, C = (cij)ij , ψ = (Ψj)j , b = (bj)j and θ = (θj)j , the
previous representation can be expressed as x = Cψ and β = θTb. The functional linear model
results in

Y = 〈X , β〉+ ε ≈ CJb + ε = Zb + ε, (2.2)

where J = (〈Ψi, θj〉)ij . Then, basis representation allows to express the FLM as a standard linear

regression, where the estimated coefficients of β in the basis {θj}
pβ
j=1 are given by b̂ = (ZTZ)−1

ZTY. Although different combinations of {Ψj}pXj=1 and {θj}
pβ
j=1 are possible, the usual choice

is {Ψj}pj=1 = {θj}pj=1, being {Ψj}pj=1 an orthogonal basis because in that case the matrix J is
diagonal.

There are several alternatives to represent the functional process and estimate the parameter
β in a truncated basis. For instance, a general review of the estimation based on the use of
basis expansions such as Fourier series or B–splines can be found in the book by Ramsay and
Silverman (2005) and also has been analysed by Cardot et al. (2003), Li and Hsing (2007) and
Crambes et al. (2009), among others. The so called Functional Principal Component regres-
sion estimation (FPC) was proposed by Cardot et al. (1999) and also studied by Cardot et al.
(2003), Hall and Hosseini-Nasab (2006) and Cai and Hall (2006), among others. The FPC pro-
vide an orthogonal data–driven basis that gives the most rapidly convergent representation of
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the functional dataset predictor when speed of convergence is defined in a L2 sense (see Hall
and Hosseini-Nasab (2006) and Hall and Horowitz (2007)). Preda and Saporta (2002) have pro-
posed the Functional Partial Least Squares regression method (FPLS) that produces iteratively
a sequence of orthogonal functions, as the FPC are, but with maximum predictive performance.
In order to implement any of the methods shown before, it is required to fix the number of basis
elements (or functional principal components, functional partial least squares components) that
are used in the estimation.

The optimal number of components, p, has to be fixed based on the information provided
by the data. To do this, Hall and Hosseini-Nasab (2006) and Preda and Saporta (2002) use
the predictive cross–validation criterion (PCV), Cardot et al. (2003) and Ferraty and Romain
(2011) consider the generalized cross–validation criterion (GCV) and Chiou and Müller (2007)
and Febrero-Bande et al. (2010) consider those methods based on information approaches: the
Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (AICc) and
the Bayesian Information Criterion (BIC).

Let denote by Ŷ
(p)
i =

〈
X (p)
i , β̂(p)

〉
and Ŷ

(p)
i,(−i) =

〈
X (p)
i , β̂

(p)
(−i)

〉
the prediction of Yi using p

components with the whole sample and with the whole sample excluding the i–th element,
respectively. The PCV is defined as:

PCV(p) = arg min
p

1

n

n∑
i=1

(
Yi − Ŷ (p)

i,(−i)

)2
,

which is computationally expensive because it involves the estimation of the β̂
(p)
(−i) n times. This

is especially expensive in the case of data–driven basis (FPC, FPLS) because the basis has to
be calculated for every datum. As an alternative, GCV avoids recalculating the β̂(p) for every
datum introducing a penalty term. The GCV is defined as

GCV(p) = arg min
p

∑n
i=1

(
Yi − Ŷ (p)

i

)2

n
(

1− df
n

) , (2.3)

where df is the number of degrees of freedom consumed by the model. GCV is closely related
with AIC, AICc and BIC although they come from different perspectives. For example, doing
some simple calculations, it is easy to show that

n log GCV(p) = AIC(p) +O(n−1).

2.3 Random projections

Random projections are becoming quite popular when dealing with high dimensional data, as a
way to overcome the well known curse of the dimensionality. The main idea behind is to reduce
the dimension, and characterize the distribution of the multidimensional data by the distribution
of the randomly projected data.

In the goodness–of–fit field, this is specially interesting, as the test procedures tend to become
less efficient, less powerful, when the dimension of the model increases. Escanciano (2006) used
this technique to develop a goodness–of–fit test for multivariate regression models based on
random projections. According to his simulation study, their test has an excellent power perfor-
mance and has the best empirical power for most situations when comparing to their competitors
in the finite dimensional context.
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In the functional framework, it is also possible to consider random projections. Usually, this
is achieved by considering the inner product of the functional variable X of H and a suitable
family of projectors, i.e. random functions γ in H. For example, using with this approach
Cuesta-Albertos et al. (2007) developed some goodness–of–fit tests for parametric families of
functional distributions, which includes goodness–of–fit tests for Gaussianity and for the Black–
Scholes model.

A very interesting result on projections can be found in Patilea et al. (2012). In their paper,
the authors provide a characterization of the conditional expectation of a scalar variable Y with
respect to a functional variable X given in terms of the conditional expectation of Y with respect
to the projected X . The result is stated here in the following lemma.

Lemma 1 (Patilea et al. (2012)). Let Y be a random variable and X a functional random
variable in the functional space H. The following statements are equivalent:

I. E [Y |X = x] = 0, for almost every (a.e.) x ∈ H.

II. E [Y | 〈X , γ〉 = u] = 0, for a.e. u ∈ R and ∀γ ∈ SH.

III. E [Y | 〈X , γ〉 = u] = 0, for a.e. u ∈ R and ∀γ ∈ SpH, ∀p ≥ 1.
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Chapter 3

The test

The presentation of the goodness–of–fit test that we propose in this work is divided into three
sections. The first and most important presents the theoretical fundamentals, with starting point
in Lemma 2. The second shows the effective implementation of the test statistic in practise.
Finally, the bootstrap resampling for the calibration of the test distribution is presented in the
last section.

3.1 Theoretical arguments

Let Y be a real random variable and X a functional random variable in the space H. Given a
random sample {(Xi, Yi)}ni=1, we are interested in checking if a functional linear model is suitable
to explain the relation between the functional covariate and the scalar response, i.e., test for the
composite hypothesis:

H0 : m ∈ {〈·, β〉 : β ∈ H} ,

versus a general alternative of the form:

H1 : P {m /∈ {〈·, β〉 : β ∈ H}} > 0.

Further, the simple hypothesis, i.e. checking for a specific functional linear model:

H0 : m (X ) = 〈X , β0〉 , for a fixed β0 ∈ H,

is also of interest as it includes the important case of no interaction between the functional
covariate and the scalar response (considering β0(t) = 0, ∀t). In what follows we will focus on
the procedure for the composite hypothesis, given that the simple is obtained in an easier way,
just considering that the functional parameter is known and substituting β̂ and β̂(p) by β0 and

β
(p)
0 , respectively.

The key point to test the null hypothesis H0 is the following lemma, an adaptation of the Lemma
1 to our setting, which gives the characterization of H0 in terms of the random projections of X .

Lemma 2. Let β be an element of H. The following statements are equivalent:

I. m(X ) = 〈X , β〉, ∀X ∈ H.

II. E [Y − 〈X , β〉 |X = x] = 0, for a.e. x ∈ H.

III. E [Y − 〈X , β〉 | 〈X , γ〉 = u] = 0, for a.e. u ∈ R and ∀γ ∈ SH.

9



10 Chapter 3. The test

IV. E [Y − 〈X , β〉 | 〈X , γ〉 = u] = 0, for a.e. u ∈ R and ∀γ ∈ SpH, ∀p ≥ 1.

V. E
[
(Y − 〈X , β〉)1{〈Xi,γ〉≤u}

]
= 0, for a.e. u ∈ R and ∀γ ∈ SH.

VI. E
[
(Y − 〈X , β〉)1{〈Xi,γ〉≤u}

]
= 0, for a.e. u ∈ R and ∀γ ∈ SpH, ∀p ≥ 1.

Proof of Lemma 2. Let β be an arbitrary element of H. We will proceed by proving equivalences
by pairs.

First of all, equivalence of I and II is immediately by the definition of m(x) = E [Y |X = x].
Equivalences of II, III and IV follow by Lemma 1.

The equivalence of III and V is based on the definition of the integrated regression function and is
given by a chain of equivalences. Let denote Uγ = 〈X, γ〉, for any γ ∈ SH, mγ(u) = E [Y |Uγ = u]
and m0,γ(u) = E [〈X , β〉 |Uγ = u]. The integrated regression functions for mγ and m0,γ are
given by:

Iγ(u) = E
[
Y 1{Uγ≤u}

]
= E

[
E
[
Y 1{Uγ≤u}|Uγ

]]
= E

[
E [Y |Uγ ]1{Uγ≤u}

]
= E

[
mγ(Uγ)1{Uγ≤u}

]
=

∫ ∞
−∞

mγ(u)1{u≤x} dFγ(u) =

∫ x

−∞
mγ(u) dFγ(u), (3.1)

I0,γ(u) = E
[
〈X , β〉1{Uγ≤u}

]
= E

[
E
[
〈X , β〉1{Uγ≤u}|Uγ

]]
= E

[
E [〈X , β〉 |Uγ ]1{Uγ≤u}

]
= E

[
m0,γ(Uγ)1{Uγ≤u}

]
=

∫ ∞
−∞

m0,γ(u)1{u≤x} dFγ(u) =

∫ x

−∞
m0,γ(u) dFγ(u), (3.2)

where Fγ represents the distribution function of Uγ . Statement III can be expressed as

mγ(u) = m0,γ(u), for a.e. u ∈ R,

which by (3.1) and (3.2) is equivalent to

Iγ(u) = I0,γ(u), for a.e. u ∈ R. (3.3)

As V is equivalent to (3.3), this proofs the equivalence of III and V. The same argument can be
applied to prove the equivalence between IV and VI, which ends the proof.

Then H0 is characterized by the null value of the moment E
[
(Y − 〈X , β〉)1{〈Xi,γ〉≤u}

]
, for a.e.

u ∈ R and ∀γ ∈ SH (or ∀γ ∈ SpH, ∀p ≥ 1) and a possible way to measure the deviation of the
data from H0 is by the empirical process arising from the estimation of this moment:

Rn(u, γ) = n−
1
2

n∑
i=1

(
Yi −

〈
Xi, β̂

〉)
1{〈Xi,γ〉≤u}, (3.4)

that will be denoted as the Residual Marked empirical Process based on Projections (RMPP).
The marks of (3.4) are given by the residuals

{
Yi −

〈
Xi, β̂

〉}n
i=1

and the jumps by the projected
functional regressor in the direction γ, {〈Xi, γ〉}ni=1. The estimation of β can be done by different
methods as described in Chapter 2. Note that the RMPP only depends on the residuals of the
model considered (in this case the residuals of the FLM) and therefore it can be easily extended
to other regression models (see Chapter 6 for discussion).
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To measure the distance of the empirical process (3.4) from zero, two possibilities are the classical
Cramér–von Mises and Kolmogorov–Smirnov norms, adapted to the projected space Π = R×SH:

PCvMn =

∫
Π
Rn(u, γ)2 Fn,γ(du)ω(dγ), (3.5)

PKSn = sup
(u,γ)∈Π

|Rn(u, γ)| , (3.6)

where Fn,γ is the empirical cumulative distribution function (ecdf) of the projected functional
data in the direction γ (i.e. the ecdf of the data {〈Xi, γ〉}ni=1) and ω represents a functional
measure on SH.

Unfortunately, the infinite dimension of the space SH makes infeasible to compute the function-
als (3.5) and (3.6) and some kind of discretization is needed. A solution to this problem is to
consider the properties of the Hilbert space H and use a basis representation.

Up to this end, let us introduce some notation. Let {Ψj}∞j=1 be a basis of H and consider the

basis representation of the functions Xi and γ as Xi =
∑∞

j=1 xijΨj and γ =
∑∞

j=1 gjΨj , for

i = 1, . . . , n. For any integer p ≥ 1, denote by X (p)
i =

∑p
j=1 xijΨj and γ(p) =

∑p
j=1 gjΨj the

representation of the functions Xi and γ in the p–truncated basis {Ψj}pj=1, for i = 1, . . . , n. Also,
denote by Ψ the matrix of inner products of the p–truncated basis. The vectors of coefficients

of X (p)
i and γ(p) are denoted by xi,p = (xi1, . . . , xip) and gp = (g1, . . . , gp), respectively. Using

this, and bearing in mind that {Ψj}∞j=1 is any basis, we have that〈
X (p)
i , γ(p)

〉
= xTi,p Ψ gp.

By analogy with the previously defined Fn,γ , we will denote Fn,γ(p) to the ecdf of the projected
functional data expressed in the p–truncated basis, both for the projector γ and for the functional
data. Then, the RMPP can be expressed in terms of a p–truncated basis, yielding

Rn,p

(
u, γ(p)

)
= n−

1
2

n∑
i=1

(
Yi −

〈
X (p)
i , β̂(p)

〉)
1{〈X (p)

i ,γ(p)
〉
≤u

}

= n−
1
2

n∑
i=1

(
Yi − xTi,p Ψ bp

)
1{xTi,p Ψ gp≤u}

= Rn,p (u,gp) ,

where bp represents the coefficients of β̂ in the p–truncated basis {Ψj}pj=1.

Bearing in mind this, our test statistic propose is a modified version of PCvMn that results from
expressing all the functions in a p–truncated basis of H:

PCvMn,p =

∫
SpH×R

Rn,p

(
u, γ(p)

)2
Fn,γ(p)(du)ω(dγ(p)). (3.7)

We have decided to choose the Cramér–von Mises statistic because, as we will see, presents
important computational advantages and can be adapted to the given framework of Escanciano
(2006) for the finite dimensional case. The most important advantage is that we can derive
an explicit expression where there is no need to compute the RMPP for different projections,
property that does not hold for the Kolmogorov–Smirnov statistic.
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Using that the integration in the p–sphere of H can be expressed as the integration in the
p–sphere of Rp via the transformations defined in Section 2.1 and the relation (2.1), we have:

PCvMn,p =

∫
SpΨ×R

Rn,p(u,gp)
2 Fn,gp(du)ω(dgp)

=

∫
Sp×R

|R|−1Rn,p(u,R
−1gp)

2 Fn,R−1gp(du)ω(dgp)

=

∫
Sp×R

|R|−1

(
n−

1
2

n∑
i=1

(
Yi − xTi,p Ψ bp

)
1{xTi,p RT gp≤u}

)2

Fn,R−1gp(du)ω(dgp),

where ω now represents a measure in the p–sphere Sp that, for simplicity purposes, will be
considered as the uniform distribution on Sp. Thus, our simplified version of the statistic (3.7) is:

PCvMn,p =

∫
Sp×R

|R|−1Rn,p(u,R
−1gp)

2 Fn,R−1gp(du) dgp. (3.8)

Essentially, what we have done is to treat the functional process as a p–multivariate process,
expressing the functions in a basis of p elements. The methods to choose the number of elements
p and to estimate the parameter β both for the simple and for the composite hypothesis are
the ones introduced in Chapter 2. These methods will be illustrated in the simulation study of
Chapter 4.

3.2 Implementation

Following the steps of Escanciano (2006) it is possible to derive a simpler expression for (3.8).
Using the definition of the RMPP in a p–truncate basis and the fact that Fn,R−1gp is the ecdf

of
{
xTi,pΨR−1gp

}n
i=1

=
{
xTi,pR

Tgp
}n
i=1

, by simple algebra:

PCvMn,p =

∫
Sp×R

|R|−1Rn,p(u,R
−1gp)

2 Fn,R−1gp(du) dgp

= n−1
n∑
i=1

n∑
j=1

ε̂iε̂j

∫
Sp×R

|R|−1
1{xTi,pRT gp≤u}1{xTj,pRT gp≤u} Fn,R−1gp(du) dgp

= n−2
n∑
i=1

n∑
j=1

n∑
r=1

ε̂iε̂j

∫
Sp
|R|−1

1{xTi,pRT gp≤xTr,pR
T gp}1{xTj,pRT gp≤xTr,pR

T gp} dgp

= n−2
n∑
i=1

n∑
j=1

n∑
r=1

ε̂iε̂jAijr,

with ε̂i = Yi −
〈
X (p)
i , β̂(p)

〉
. The terms Aijr represent the integrals

Aijr =

∫
Sp
|R|−1

1{xTi,pRT gp≤xTr,pR
T gp}1{xTj,pRT gp≤xTr,pR

T gp} dgp

=

∫
Sp
|R|−1

1{(Rxi,p−Rxr,p)T gp≤0, (Rxj,p−Rxr,p)T gp≤0} dgp

= |R|−1
∫
Sijr

dgp

= |R|−1 S (Sijr) ,
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where Sijr =
{
ξ ∈ Sp : π2 ≤ ]

(
x′i,p − x′r,p, ξ

)
≤ 3π

2 ,
π
2 ≤ ]

(
x′j,p − x′r,p, ξ

)
≤ 3π

2

}
, S(Sijr) repre-

sents the surface area of Sijr and ] (a,b) represents the angle between vectors a and b. To sim-
plify notation, we denote x′k,p = Rxk,p (x′k,p = xk,p if the basis is orthonormal) for k = 1, . . . , n.
Depending on x′i,p, x′j,p, x′r,p, the region Sijr can be the whole sphere Sp (x′i,p = x′j,p = x′r,p), a
hemisphere of Sp (x′i,p = x′j,p, x′i,p = x′r,p or x′j,p = x′r,p) or a spherical wedge (see Figure 3.1 for
a graphical interpretation) of width angle given by∣∣∣∣∣π − arccos

(
(x′i,p − x′r,p)

T (x′j,p − x′r,p)

||x′i,p − x′r,p|| · ||x′j,p − x′r,p||

)∣∣∣∣∣ . (3.9)

Figure 3.1: Spherical wedge Sa,b =
{
ξ ∈ Sp : π2 ≤ ] (ξ,a) ≤ 3π

2 ,
π
2 ≤ ] (ξ,b) ≤ 3π

2

}
defined by

points a and b in S2.

Thus Aijr is the product of the surface area of a spherical wedge of angle A
(0)
ijr times |R|−1, and

is given by

Aijr = A
(0)
ijr

πp/2−1

Γ
(p

2 + 1
) |R|−1 ,

where A
(0)
ijr is given by

A
(0)
ijr =


2π, x′i,p = x′j,p = x′r,p,

π, x′i,p = x′j,p,x
′
i,p = x′r,p or x′j,p = x′r,p,

(3.9), else.

We also have a symmetric property, Aijr = Ajir, which simplifies the evaluation of the test

statistic from O(n3) to O
(
n3+n2

2

)
computations. The memory requirement is expensive, because

we need store the n3+n2

2 elements of the three dimensional array A, which is symmetric in its two
first indexes. However, this requirement can be stretched if we consider the following expression
for the statistic:

PCvMn,p = n−2ε̂TA•ε̂, (3.10)

where A• = (
∑n

r=1Aijr)ij is a n×n matrix and ε̂ is the vector of the residuals. By the definition

of A
(0)
ijr and its symmetry in the first two entries, the matrix A• is symmetric and its diagonal
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terms are given by (n + 1)π. Although the order of computations remains similar, O
(
n3−n2

2

)
,

the memory required for storing the matrix A• is substantially lower and drops to n2−n+2
2 el-

ements. This fact improves drastically the time of computation of the statistic and allows to
apply the test to larger datasets.

Again, let us remark that the expression derived for the PCvMn,p statistic remains valid for any
functional regression model with scalar response and not just for the FLM, as the expression is
based on the residuals of the model.

3.3 Bootstrap resampling

To calibrate the distribution of (3.8), a wild bootstrap on the residuals is applied. This bootstrap
procedure is consistent in the finite dimensional case, as it was shown in Stute et al. (1998), and
is adequate to situations with potential heterocedasticity, quite common in functional data. The
resampling process for the case of the composite hypothesis, given an initial estimation β̂ of the
functional parameter, is the following:

I. Construct the estimated residuals: ε̂i = Yi −
〈
X (p)
i , β̂(p)

〉
, i = 1, . . . , n.

II. Draw independent random variables V ∗1 , . . . , V
∗
n satisfying

E∗ [V ∗i ] = 0 and E∗
[
V ∗2i

]
= 1.

For example, if V ∗ is a discrete random variable with distribution weights

P

{
V ∗ =

1−
√

5

2

}
=

5 +
√

5

10
and P

{
V ∗ =

1 +
√

5

2

}
=

5−
√

5

10
,

we have the golden section bootstrap.

III. Construct the bootstrap residuals ε∗i = V ∗i ε̂i, i = 1, . . . , n.

IV. Set Y ∗i =
〈
X (p)
i , β̂(p)

〉
+ ε∗i , i = 1, . . . , n and estimate β∗,(p) for the sample {(Xi, Y ∗i )}ni=1.

V. Obtain the estimated bootstrap residues ε̂∗i = Y ∗i −
〈
X (p)
i , β̂∗,(p)

〉
, i = 1, . . . , n.

Then, the procedure to calibrate the test is the following. In step I we compute the test statistic
with the residuals under H0 using the implementation (3.10) of the previous section:

PCvMn,p = n−2ε̂TA•ε̂.

Then repeat steps II–V for b = 1, . . . , B, computing each time the bootstrap statistic

PCvM∗,bn,p = n−2ε̂∗,b,TA•ε̂
∗,b

and estimate the p–value of the test by Monte Carlo: p–value ≈ #
{

PCvMn,p ≤ PCvM∗,bn,p
}
/B.

For computational efficiency, it is important to note that we do not have to compute again the
matrix A• in the bootstrap replicates.

A very interesting fact of the FLM is that step V can be easily performed using the properties
of the estimation of β̂(p). From (2.2) it is clear that the vector of coefficients of β̂(p) is estimated
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throughout b̂ =
(
ZTZ

)
ZTY. Then, the estimated bootstrap residuals, represented by the vector

ε̂∗, can be obtained as

ε̂∗ =
(
Ip − Z

(
ZTZ

)
ZT
)
Y∗,

where Y∗ is the vector of bootstrap responses given by step IV and Ip is the identity matrix
of order p. The projection matrix

(
Ip − Z

(
ZTZ

)
ZT
)

remains the same for all the bootstrap
replicates, so it can be stored without the need of computing it again. Obtaining the residuals
in this way implies a significative computational saving.

The bootstrap resampling in the case of the simple hypothesis is easier: just replace β̂(p) by β
(p)
0

and omit steps IV and V, considering ε̂∗i = ε∗i , i = 1, . . . , n.
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Chapter 4

Simulation study

To illustrate the finite sample properties of the proposed test, a simulation study was carried out
for the simple and the composite hypotheses. Before starting with these two cases, we describe
briefly the simulation setting.

The functional process considered for the functional covariate X is an Ornstein–Uhlenbeck pro-
cess in [0, 1], which is the solution to the stochastic differential equation

dX (t) = θ(µ(t)−X (t))dt+ σdB(t), (4.1)

where B is a Brownian motion, µ is the functional mean and θ and σ are positive parameters.
This process corresponds to a Brownian motion with functional mean µ and covariance function
given by

Cov(X (s),X (t)) =
σ2

2θ
e−θ(s+t)

(
e2θmin(s,t) − 1

)
.

We have considered θ = 1
3 , σ = 1 and the functional mean µ(t) = 0, ∀t ∈ [0, 1]. Figure 4.1 shows

a set of 100 simulated observations of the functional process (4.1) and their representation in
three different functional basis: B–splines, FPC and FPLS. As said before, the choice of the right
basis type and number of elements is crucial to capture correctly the structure of the functional
process.

Let us remark that all the functional data in this simulation study is represented in 201 equidis-
tant points in the interval [0, 1] and that, in the following, the number of bootstrap replicates
considered will be B = 1000 and the number of Monte Carlo replicates for determining the em-
pirical sizes and powers will be M = 1000. The sample size, except otherwise stated, is n = 100.
Lastly, in order to properly compare the effect of the kind of basis, the number of elements and
the sample sizes, the initial seed for the random generation of the functional underlying process
is the same for each model.

4.1 Testing for simple hypothesis

The simulation study for the simple hypothesis is centred on the caseH0 : m(X ) = 〈X , β0〉, where
β0(t) = 0, t ∈ [0, 1]. This is equivalent to test that the functional covariate X has no effect on
the scalar response, i.e., test the null hypothesis H0 : m(X ) = 0. There is an extensive collection
of goodness–of–fit tests for finite dimensional covariates (see González-Manteiga and Crujeiras
(2011)), although for the case of functional covariates the literature is more limited. Therefore,
we will focus on the competing procedures of Delsol et al. (2011) and González-Manteiga et al.

17
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(2012) to compare the different tests in terms of level and power. Let us describe briefly these
two test statistics.
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Figure 4.1: From up to down and left to right: simulated data process from the Ornstein–
Uhlenbeck process (4.1); representation in a B–splines basis of 50 elements; representation in a
FPC basis of 5 elements; representation in a FPLS basis of 5 elements, using an independent
scalar response distributed as a N (0, 1).

Delsol et al. (2011) propose a test statistic for H0 : m(X ) = m0(X ), deriving its asymptotic law
and giving a bootstrap procedure based on the residuals. The statistic, inspired in the propose
of Härdle and Mammen (1993), is

Tn =

∫ ( n∑
i=1

(Yi −m0(Xi))K
(
d(X ,Xi)

h

))2

ω(X )dPX (X ),

where K is a kernel function, d is a semimetric and h is the bandwidth parameter. PX represents
the probability distribution of the functional process and ω is a suitable weight function. The test
used in our implementation results from considering no functional effect, i.e. H0 : m0(X ) = 0,
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and from approximating the integral with respect to dPX by the empirical mean of the sample:

Tn =
1

n

n∑
j=1

(
n∑
i=1

YiK

(
d(Xj ,Xi)

h

))2

ω(Xj).

We have also considered the kernel K(t) = 2φ(|t|), t ∈ R, being φ the density of a N (0, 1), the
L2 distance in H for d and the uniform weight function. For the crucial choice of the bandwidth
parameter we have considered the grid of bandwidths 0.25, 0.50, 0.75 and 1.00. Implementation
of bootstrap resampling was done using golden wild bootstrap.

The other competing test is the one proposed by González-Manteiga et al. (2012) and is based
on the idea of extending the covariance to functional–scalar data:

Dn =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)∣∣∣∣∣
∣∣∣∣∣
H

,

where X̄ is the functional mean of {Xi}ni=1 and is Ȳ the usual scalar mean of {Yi}ni=1. The authors
extend the ideas of the classical F–test to the functional framework, resulting a statistic to test
the null hypothesis of no interaction inside the functional linear model. The test is consistent
and the authors derived the asymptotic distribution of the process 1

n

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
,

resulting in a Brownian motion with mean E [(X − µX )(Y − µY )] and a particular covariance
structure. This test can be viewed as a possible benchmark in our simulation study and, recalling
its similarity with the classical F–test, will be denoted as the functional F–test. The bootstrap
resampling was also performed using golden wild bootstrap.

As said before, the null hypothesis will be H0 : m(X ) = 〈X , β0〉, where β0(t) = 0, t ∈ [0, 1]. Two
different kinds of deviations from the null are considered. The first one represents a deviation
inside the linear model, i.e., considering different functions βj,k, j = 1, 2, k = 1, 2, 3, instead of
β0. The linear functions β1,k(t) = γk · (t− 0.5), k = 1, 2, 3 with coefficients γ1 = 0.25, γ2 = 0.65
and γ3 = 1.00 represent the first block of alternatives, H1,k. The other block, H2,k, is formed
by the sinusoidal functions β2,k(t) = ηk · sin(2πt3)3, k = 1, 2, 3, with η1 = 0.10, η2 = 0.20 and
η3 = 0.50. The upper row of Figure 4.2 shows the deviations of β1,k and β2,k from β0.

The second kind of deviation from the null hypothesis consists on adding a second order term
〈X ,X〉 to the regression function, thus the model is no longer linear. Different weights for the
second term are represented in the alternatives

H3,k : Y = 〈X , β0〉+ δk 〈X ,X〉+ ε,

where k = 1, 2, 3 is the index for the deviation from the null and the deviation coefficients are
δ1 = 0.005, δ2 = 0.010 and δ3 = 0.015. The difficulty to distinguish between the null hypothe-
sis and the alternatives is reflected on the difference between the densities of the response (see
Figure 4.2). As before, the larger the index of the deviation, the easier to distinguish from the
null hypothesis and the more different the densities under the null and under the deviation are.
The estimation of the densities of the response has been done with kernel smoothing from a
sample of 1000 observations. The bandwidth is the same in the four densities of each model,
and is computed by the method of Sheather and Jones (1991), for the case of the null hypothesis.

Further, we can measure the relation between the variance of the response with respect to the
variance of the error using the following signal–to–noise ratio: snr = σ2/

(
σ2 + E

[
m(X )2

])
. For

Model 1 the signal–to–noise ratios of the alternatives are 0.956, 0.765 and 0.579, respectively
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for H1,k, k = 1, 2, 3. For Model 2, the snr’s of the alternatives are 0.981, 0.850 and 0.671. For
Model 3, we have 0.985, 0.914 and 0.728.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Model 1: deviations from β0(t) = 0

t

β(
t)

β0(t)
β1, 1(t)
β1, 2(t)
β1, 3(t)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Model 2: deviations from β0(t) = 0

t
β(

t)

β0(t)
β2, 1(t)
β2, 2(t)
β2, 3(t)

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

Model 1: density of Y = 〈X, β1, k〉 + ε

Y = 〈X, β1, k〉 + ε

D
en

si
ty

β0(t)
β1, 1(t)
β1, 2(t)
β1, 3(t)

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

Model 2: density of Y = 〈X, β2, k〉 + ε

Y = 〈X, β2, k〉 + ε

D
en

si
ty

β0(t)
β2, 1(t)
β2, 2(t)
β2, 3(t)

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

Model 3: density of Y = δk〈X, X〉 + ε

Y = δk〈X, X〉 + ε

D
en

si
ty

δ0
δ1 = 0.005
δ2 = 0.010
δ3 = 0.015

Figure 4.2: Upper row: functional coefficient deviations of the simple null hypothesis for H1,k

(left) and H2,k (right), k = 1, 2, 3. Lower row: densities of the scalar response under the null
hypothesis (H0) and for the three deviations (Hj,k, k = 1, 2, 3, for each model j = 1, 2, 3).

In the case of the simple hypothesis there is no estimation of the parameter β0, as it is known.
However, it is necessary to express the functional process p and the function β0 in a suitable
basis in order to compute the test statistic. Up to this end, we consider a B–splines basis and
we choose its number of elements by the GCV criteria commented in Section 2.1.

The results of the study for the simple hypothesis are collected in Tables 4.1, 4.2 and 4.3. Firstly,
Table 4.1 shows the empirical sizes and powers of the functional F–test, the Delsol’s test and the
PCvM test for simple hypothesis, under the null hypothesis and for the three blocks of deviations
from the null. The noise considered has a normal distribution with zero mean and standard de-
viation 0.10. All of the tests seem to calibrate well the significance level, α = 0.05. With respect
to the power, the functional F–test has in average a superior behaviour in the alternatives H1,k

and H2,k, k = 1, 2, 3, which represents deviations from the null inside the linear model. The
test of Delsol performs also well, but the choice of the bandwidth has an important impact on
the power performance (for example, in H1,k the bandwidth with more power is h = 0.25 but
in H2,k is h = 0.50). As expected, the PCvM test performs worse than the functional F–test
for alternatives H1,k and H2,k and similarly to the Delsol’s test. Nevertheless, for alternatives
that are not in the linear model, the functional F–test is not a benchmark any more, resulting
the PCvM test the most powerful. Delsol’s test also performs well, but seems to have less power.
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Table 4.2 shows the same comparison of Table 4.1 but with a noise with a re–centred exponential
distribution (i.e. the random variable X−λ−1, where the density function of X is λe−λx, x > 0)
with parameter λ−1 = 0.10. The results are quite similar to Table 4.1, and show that the test
for the simple hypothesis is robust with respect to a non symmetric random error.

Models F–test PCvM test
Delsol’s test

h = 0.25 h = 0.50 h = 0.75 h = 1.00

H0 0.058 0.043 0.055 0.050 0.047 0.041

H1,1 0.063 0.069 0.070 0.069 0.069 0.066
H1,2 0.166 0.079 0.358 0.115 0.063 0.055
H1,3 0.422 0.137 0.819 0.245 0.087 0.066

H2,1 0.253 0.053 0.068 0.078 0.068 0.055
H2,2 0.952 0.336 0.314 0.447 0.392 0.273
H2,3 1.000 0.904 0.795 0.887 0.870 0.775

H3,1 0.036 0.173 0.051 0.096 0.116 0.126
H3,2 0.057 0.691 0.207 0.361 0.457 0.523
H3,3 0.056 0.998 0.802 0.928 0.956 0.977

Table 4.1: Empirical power of the competing tests for the simple hypothesis H0 : m(X ) =
〈X , β0〉, β0(t) = 0, ∀t and significance level α = 0.05. Noise has a normal distribution with zero
mean and standard deviation 0.10.

Models F–test PCvM test
Delsol’s test

h = 0.25 h = 0.50 h = 0.75 h = 1.00

H0 0.042 0.051 0.034 0.053 0.057 0.057

H1,1 0.054 0.052 0.052 0.056 0.050 0.052
H1,2 0.196 0.087 0.337 0.134 0.063 0.059
H1,3 0.461 0.166 0.779 0.265 0.099 0.073

H2,1 0.269 0.071 0.051 0.093 0.074 0.071
H2,2 0.933 0.343 0.312 0.459 0.408 0.306
H2,3 0.999 0.900 0.746 0.876 0.857 0.775

H3,1 0.057 0.125 0.035 0.066 0.077 0.094
H3,2 0.052 0.725 0.135 0.351 0.445 0.527
H3,3 0.061 1.000 0.806 0.985 0.993 0.994

Table 4.2: Empirical power of the competing tests for the simple hypothesis H0 : m(X ) =
〈X , β0〉, β0(t) = 0, ∀t and significance level α = 0.05. Noise has a centred exponential distribu-
tion with λ−1 = 0.10.

Finally, Table 4.3 gives the trace of the PCvM test for the simple hypothesis as a function of
the number of FPC considered in the representation of the functional process. The trace is
computed from one to six FPC, for the null hypothesis and for the intermediate deviations of
the three models, i.e, Hj,2, j = 1, 2, 3. Unlike smoothing tests, the dependence on the equivalent
of the smoothing parameter, the number of FPC components p, is very low. It turns out that,
for the considered scenarios, there is no remarkable difference in terms of power and calibration
for p ≥ 3.
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Models p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

H0 0.035 0.037 0.037 0.036 0.036 0.037
H1,2 0.043 0.098 0.085 0.080 0.074 0.074
H2,2 0.529 0.407 0.375 0.359 0.350 0.347
H3,2 0.657 0.703 0.707 0.708 0.709 0.709

Table 4.3: Empirical power of the PCvM test for the simple hypothesis H0 : m(X ) = 〈X , β0〉,
β0(t) = 0, ∀t, for different numbers p of FPC. The significance level is α = 0.05 and noise has a
normal distribution with zero mean and standard deviation 0.10.

4.2 Testing for composite hypothesis

To see the performance of the test under the composite hypothesis H0 : m ∈ {〈·, β〉 : β ∈ H} we
have considered three different null models of the form

Hj,0 : Y = 〈X , βj〉+ ε, (4.2)

with j = 1, 2, 3 being the index of the three different models. The functional coefficients of the
three FLM are β1(t) = sin(2πt) − cos(2πt), β2(t) = t − (t− 0.75)2 and β3(t) = t + cos(2πt),
t ∈ [0, 1]. The first one corresponds to a difference between trigonometric functions that can
not be perfectly represented in a B–splines basis. On the other hand, the second function is a
polynomial of order two that can be exactly described by B–splines. The third one is the sum of
a linear and a trigonometric function and is also not perfectly described in the B–splines basis.
The upper row of Figure 4.3 shows these three functions.
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Figure 4.3: Upper row: functional coefficients of the linear models for the composite hypothesis.
Lower row: densities of the scalar response under the null hypothesis (Hj,0, for each model
j = 1, 2, 3) and for the three quadratic deviations (Hj,k, k = 1, 2, 3, for each model j = 1, 2, 3).



4.2. Testing for composite hypothesis 23

In order to check the power performance of the test, a set of possible deviations from the linear
regression model is considered. Again, a second order term 〈X ,X〉 is introduced to transform the
model into a non–linear one. Three different weights for this term are considered, representing
the alternatives Hj,k:

Hj,k : Y = 〈X , βj〉+ δk 〈X ,X〉+ ε. (4.3)

The index for the model is denoted by j = 1, 2, 3 and k = 1, 2, 3 is the index that measures
the degree of the deviation from the null hypothesis. The weights of the quadratic term are
δ1 = 0.01, δ2 = 0.05 and δ3 = 0.10. The lower row of Figure 4.2 shows how these deviations af-
fect the densities of the scalar response, giving an idea of how difficult are to distinguish from the
null hypothesis. The densities are computed in the way described for the simple hypothesis. The
snr’s for Model 1 are 0.177, 0.176, 0.166 and 0.140, respectively for H1,k, k = 0, 1, 2, 3. For Model
2, the snr’s are 0.050, 0.050, 0.050 and 0.047. For Model 3, we have 0.029, 0.029, 0.029 and 0.028.

Four estimation methods for the functional parameter β will be considered. The first three ones
are designed in order to provide automatic selectors of the number of elements considered in the
basis estimation of β. The fourth method is the FPC estimation described in Section 2.2, for a
fixed number p of FPC. So, the first automatic method considered is the optimal representation
in a B–splines basis of the functional process {Xi}ni=1. The number of elements p in the basis
is chosen by the GCV criteria (2.3) and then the β is estimated as a linear combination of p
B–splines. Secondly, FPC estimation relies on the BIC criteria to choose the optimal number of
elements in the FPC basis derived from the process {Xi}ni=1 to estimate β. Finally, the FPLS
method also uses PCV to select the adequate number of elements in the FPLS basis derived
from the joint sample {(Xi, Yi)}ni=1.

Coefficient estimation

Models
B–splines estimation FPC estimation FPLS estimation

α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01

H1,0 0.119 0.059 0.012 0.102 0.051 0.008 0.104 0.061 0.017
H1,1 0.160 0.095 0.024 0.118 0.056 0.014 0.151 0.081 0.023
H1,2 0.845 0.750 0.512 0.418 0.352 0.211 0.809 0.716 0.467
H1,3 1.000 0.997 0.986 0.474 0.435 0.396 1.000 0.997 0.972

H2,0 0.111 0.055 0.015 0.090 0.046 0.010 0.092 0.049 0.014
H2,1 0.161 0.082 0.023 0.148 0.072 0.020 0.155 0.074 0.019
H2,2 0.847 0.748 0.512 0.814 0.717 0.489 0.812 0.724 0.494
H2,3 0.997 0.997 0.986 0.999 0.997 0.984 0.999 0.997 0.984

H3,0 0.109 0.053 0.007 0.093 0.049 0.006 0.100 0.044 0.008
H3,1 0.157 0.081 0.018 0.155 0.076 0.014 0.147 0.074 0.014
H3,2 0.856 0.765 0.516 0.839 0.750 0.498 0.834 0.752 0.485
H3,3 0.999 0.999 0.988 0.999 0.997 0.988 0.999 0.998 0.985

Table 4.4: Empirical power of the PCvM test for the composite hypothesis H0 : m ∈
{〈·, β〉 : β ∈ H} and for three estimating methods of β. Noise has a normal distribution with
zero mean and standard deviation 0.10.

Table 4.4 shows the rejection frequencies of the null hypothesis for the test computed from ob-
servations of the null models (4.2) and from models (4.3) (H0 false), for the significance levels
α = 0.10, 0.05, 0.01. The rejection rates were computed for the three types of estimation of the
functional coefficient and basis representation, in order to see the possible effects of estimation
method in the power performance. At sight of the rejection frequencies for the three models,
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several comments must be done. Firstly, the test respects the significance levels for the null
hypothesis in the three models considered. Secondly, as it is expected, the power increases when
the alternatives are spreading apart from the null. Finally, in general, there seems to be no
big differences in the rejection frequencies but for two exceptions: B–splines estimation tends
to have slightly larger powers and, more notoriously, FPC estimation gives considerably lower
rates in alternatives H1,k.

As far as we know, this problem is caused by the way that optimal FPC are chosen. The optimal
FPC obtained by the BIC criteria does not have to be ordered (in the sense of percentage of
variance explained) and, for example, the components PC3, PC2 and PC4 could be the optimal
to estimate β for predicting Y . However, these components could lead to a conservative test if
they are not able to capture properly the deviations from the null, as they are less informative
about the functional process. If instead of these FPC we consider PC1, PC2 and PC3, although
the estimation of β is not optimal, the test will detect better the deviations from the null. This
is clearly seen in the comparison of Tables 4.4 and 4.7. While for the former the empirical power
for FPC is almost the half, for the latter the powers are quite similar to the other estimation
methods. It is also important to note that for the FPLS estimation method this problem does
not appear. The components of the FPLS are optimal to estimate the β but take into account
the response Y , and therefore detect deviations from the model correctly. Therefore, for practi-
cal implementation of the test procedure is important to keep in mind this disadvantage of the
FPC method, which can be solved by considering a fixed number of components p.

Analogously to the simple hypothesis, in Table 4.5 we show the rejection frequencies of the three
estimation methods but with a non symmetric random noise. It turns out that the test for the
composite hypothesis is robust with respect to a non symmetric random error.

Coefficient estimation

Models
B–splines estimation FPC estimation FPLS estimation

α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01

H1,0 0.103 0.040 0.005 0.083 0.033 0.003 0.105 0.043 0.006
H1,1 0.145 0.072 0.020 0.098 0.040 0.004 0.144 0.076 0.020
H1,2 0.825 0.736 0.498 0.431 0.366 0.233 0.804 0.720 0.481
H1,3 0.998 0.996 0.987 0.479 0.453 0.427 0.996 0.996 0.983

H2,0 0.088 0.039 0.009 0.089 0.038 0.009 0.089 0.035 0.010
H2,1 0.155 0.076 0.016 0.147 0.079 0.018 0.133 0.078 0.016
H2,2 0.831 0.743 0.493 0.811 0.716 0.481 0.813 0.719 0.493
H2,3 0.995 0.994 0.978 0.996 0.995 0.979 0.995 0.994 0.978

H3,0 0.096 0.048 0.007 0.092 0.042 0.006 0.087 0.041 0.004
H3,1 0.129 0.072 0.016 0.119 0.061 0.017 0.110 0.062 0.014
H3,2 0.831 0.735 0.498 0.830 0.733 0.486 0.825 0.724 0.484
H3,3 0.999 0.998 0.988 0.999 0.998 0.988 0.999 0.998 0.984

Table 4.5: Empirical power of the PCvM test for the composite hypothesis H0 : m ∈
{〈·, β〉 : β ∈ H} and for three estimating methods of β. Noise has a centred exponential dis-
tribution with λ−1 = 0.10.

The behaviour of the test for different sample sizes is shown in Table 4.6. B–splines and FPLS
estimation methods have very similar rejection ratios, although for the B–splines are slightly
better. Further, when the sample sizes increases, the rejection rates also. Nevertheless, FPC
estimation continues showing a bad behaviour in alternatives H1,k for the different sample sizes.
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Coefficient estimation

Models n
B–splines estimation FPC estimation FPLS estimation

α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01

H1,0 50 0.140 0.059 0.008 0.116 0.051 0.008 0.123 0.064 0.011
100 0.119 0.059 0.012 0.102 0.051 0.008 0.104 0.061 0.017
200 0.111 0.061 0.009 0.092 0.051 0.006 0.107 0.056 0.010

H1,1 50 0.157 0.074 0.016 0.098 0.040 0.005 0.139 0.069 0.010
100 0.160 0.095 0.024 0.118 0.056 0.014 0.151 0.081 0.023
200 0.212 0.121 0.041 0.149 0.083 0.022 0.209 0.118 0.034

H1,2 50 0.607 0.477 0.177 0.351 0.255 0.081 0.551 0.418 0.161
100 0.845 0.750 0.512 0.418 0.352 0.211 0.809 0.716 0.467
200 0.982 0.969 0.890 0.537 0.500 0.436 0.978 0.960 0.871

H1,3 50 0.957 0.904 0.664 0.505 0.433 0.294 0.933 0.875 0.647
100 1.000 0.997 0.986 0.474 0.435 0.396 1.000 0.997 0.972
200 1.000 1.000 1.000 0.549 0.503 0.459 1.000 1.000 0.999

Table 4.6: Empirical power of the PCvM test for the composite hypothesis H0 : m ∈
{〈·, β〉 : β ∈ H} and for different sample sizes n. Noise has a normal distribution with zero
mean and standard deviation 0.10.

Finally, the determination of the effect of the number of basis elements in the power performance,
more important in the case of the composite hypothesis than in the simple, is studied throughout
the number of FPC considered in the estimation of β. Then, the following table shows the
rejection ratios for different numbers p of FPC’s in the first block of alternatives. Recall that
when the number of FPC components is fixed at p, the components considered will be always
the p first FPC: PC1, . . . ,PCp. We can conclude that there is a moderate dependence of the
power on the number of basis elements, with increasing power for larger p’s.

Models p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

H1,0 0.044 0.053 0.049 0.056 0.060 0.062
H1,1 0.054 0.062 0.079 0.079 0.085 0.089
H1,2 0.192 0.410 0.685 0.743 0.755 0.757
H1,3 0.577 0.911 0.996 0.997 0.997 0.997

Table 4.7: Empirical power of the PCvM test for the composite hypothesis H0 : m ∈
{〈·, β〉 : β ∈ H}, for different numbers p of FPC. The significance level is α = 0.05 and noise
has a normal distribution with zero mean and standard deviation 0.10.
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Chapter 5

Data application and graphical tool

In this chapter we apply our proposed testing procedure to two datasets, in order to check if the
FLM is enough well supported by the data. Further, a graphical tool to check the FLM model
by means of the empirical process is provided.

The Tecator dataset is a well known dataset in the literature of functional data analysis (see,
for example, Ferraty and Vieu (2006)). It contains data from 215 meat samples, consisting of
a 100 channel spectrum of absorbances measured by a spectrometer and the contents of water,
fat and protein. When trying to explain the content of fat in the meat samples throughout the
spectrometric curves, it is common to transform the original curves into the first derivatives or
the second derivatives, in order to properly capture the wavy effects in the absorbances of the
meat samples with high percentage of fat (see Figure 5.1).

We have applied our goodness–of–fit test with B = 5000 bootstrap replicates for the original
dataset and for the dataset of the first and second derivatives. The p–values obtained are 0.004,
0.000 and 0.000, respectively. Thus we have significative evidences against the null hypothesis
of FLM. The test was applied with the FPLS estimation method and with automatic selection
of the number of FPLS by PCV. As the case of no interaction is a particular case of a FLM,
we can conclude that in the Tecator dataset there exists a significative dependence between the
functional covariate and the scalar response, although this dependence is not a linear one.

The other dataset considered is the AEMET dataset, which is available in the R package fda.usc
(see Febrero-Bande and Oviedo de la Fuente (2012)). It is formed by the daily summaries of 73
Spanish weather stations during the period 1980–2009. Among others, the functional covariate
is the daily temperature in each weather station, and the scalar response is the daily wind speed
(both variables are averaged over 1980–2009). Left plot of Figure 5.1 represents the functional
observations of the daily temperature, where the lonely upper curves are the weather stations
from the Canary Islands, a Spanish region with a warmer weather. Before applying the tests,
four functional outliers corresponding to the 5% less depth curves according to the Fraiman and
Muniz (2001) depth were removed.

The resulting p–value from the goodness–of–fit test is 0.121, thus there is no significative evi-
dences to reject the null hypothesis of the FLM for the AEMET dataset. The test is applied
with the FPLS estimation method and with B = 5000 bootstrap replicates. The right plot of
Figure 5.1 shows the estimation of the functional parameter β, resulting from a basis of 2 FPLS.
Once we have determined that the FLM is a suitable model, we can check if the estimated coeffi-
cient β is significantly different from zero with the available tests for the simple hypothesis: the
functional F–test, the Delsol’s test (with the grid of bandwidths corresponding to the quantiles

27
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0.10, 0.15, 0.25, 0.50 and 0.75 of the L2 distances of the functional data) and our test for the
simple null hypothesis of no interaction. The p–values obtained are: 0.002, 0.000 (for all the
bandwidths) and 0.062, respectively. The first two tests reject the null, whereas for the PCvM,
it is accepted with a limiting p–value. At sight of this and the R2 of the FLM, 0.42, we can
conclude that the curves of the temperature and the average wind speed show a mild relation.

850 900 950 1000 1050

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Wavelength (mm)

A
bs

or
ba

nc
es

Day

Te
m

pe
ra

tu
re

 (
ºC

)

j F m A M J J A S O N D

5
10

15
20

25
30

0 100 200 300

0
5

10
15

20
25

30

day

ºC

FM.tr25%
Median

Day

β(
t)

j F m A M J J A S O N D

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2

Figure 5.1: From up to down and left to right: Tecator dataset with spectrometric curves
coloured according to their percentage of fat (red for larger content of fat and blue for lower);
AEMET temperatures for the 73 Spanish weather stations; outliers of the temperature curves
with respect to the Fraiman and Muniz (2001) depth; estimated functional coefficient by the
FPLS method for the AEMET dataset (functional covariate is the average daily temperature
and the scalar response is the average wind speed).

We conclude this chapter showing a graphical tool to visualize the goodness–of–fit of the FLM
to a dataset that can be useful to practitioners. The key idea is to compare graphically the
process (3.4) obtained with the residuals of the fitted model with the processes obtained with
the bootstrapped residuals under the null hypothesis. The path of the RMPP depends on
the random projections γ and therefore it is difficult to compare two trajectories of the process.
However, integrating with respect to γ results a process that does not depend on the projections.
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Further, this integration is easily approximated by Monte Carlo:

Rn(u) =

∫
SH
Rn(u, γ)ω(dγ) ≈ 1

G

G∑
g=1

Rn(u, γg),

being γg functions in SH and G the number of Monte Carlo replicates. For γg, a possibility is to
consider stationary Gaussian processes with unit norm. Figure 5.2 shows the comparison of the
observed process Rn and B = 100 bootstrapped processes under the null, for the two studied
datasets. Consistently with the obtained p–values, the observed processes for the Tecator dataset
seem to be significantly different, whereas for the AEMET dataset the observed process is just
an ordinary trajectory of the bootstrapped ones.
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Figure 5.2: From up to down and left to right: Rn process observed (solid line) and B = 100
generated process under the null hypothesis H0 : m ∈ {〈·, β〉 : β ∈ H} (dashed lines), for the
Tecator dataset, the Tecator dataset of considering the first and second derivatives of the curves
and the AEMET dataset. The number of Monte Carlo replicates for the projections is G = 200.
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Chapter 6

Extensions

So far we have focused on the testing the goodness–of–fit of the FLM, but, as we have pointed
out in several times in this work, the procedure we present here can be extended to other regres-
sion models. This chapter is devoted to present and comment ideas for some possible extensions
of the Projected Cramér–von Mises test statistic to different settings.

The first and more obvious expansion of our testing propose is the goodness–of–fit of any para-
metric functional regression model with scalar response:

Y = mθ(X ) + ε, (6.1)

where mθ is the parametric regression function of the random functional variable X (in H) over
the scalar random variable Y . mθ depends on the parameter θ ∈ Θ (that can be scalar, func-
tional, . . . ) and ε is the random error that satisfies E [ε|X ] = 0.

A general way to test if the model (6.1) holds is to check if E [ε|X ] = 0 by fitting the parametric
regression mθ̂, computing the fitted residuals ε̂i, i = 1, . . . , n and examining E [ε̂|X ]. For ex-
ample, this idea is used in Patilea et al. (2012) considering an adaptation of the test of Zheng
(1996). The following result, based on Lemma 1 and with analogous proof to the one of Lemma
2, gives the characterization of the statement E [ε|X ] = 0 by means of the projected integrated
regression.

Lemma 3. Let ε be a random variable and X a functional random variable in the functional
space H. The following statements are equivalent:

I. E [ε|X = x] = 0, for almost every (a.e.) x ∈ H.

II. E
[
ε1{〈Xi,γ〉≤u}

]
= 0, for a.e. u ∈ R and ∀γ ∈ SH.

III. E
[
ε1{〈Xi,γ〉≤u}

]
= 0, for a.e. u ∈ R and ∀γ ∈ SpH, ∀p ≥ 1.

Then, the RMPP in this general framework is

Rn(u, γ) = n−
1
2

n∑
i=1

ε̂i1{〈Xi,γ〉≤u},

and we will work with the RMPP that arises from considering the functions {Xi}ni=1 and the
projections γ expressed in a p–truncate basis of H (for example FPC, FPLS or a B–splines basis):

Rn,p

(
u, γ(p)

)
= n−

1
2

n∑
i=1

ε̂i1{〈X (p)
i ,γ(p)

〉
≤u

}.

31
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The closed expression (3.10) holds for the PCvM statistic of the marked empirical process and
the wild bootstrap can be applied to approximate the distribution of the statistic under the
null hypothesis. The differences with respect to the particular case of the FLM appear in the
estimation of the parameter θ. Obviously, nor the expression ε̂i = Yi − xi,pΨbp nor the specific
bootstrap resampling of the FLM can be used with a generic parametric model.

Some interesting models that could be checked with this approach are the functional linear model
with several functional covariates,

Y = 〈X1, β1〉+ · · ·+ 〈Xr, βr〉+ ε

and the functional quadratic model:

Y = 〈X (t), β(t)〉+ 〈X (t), 〈X (s), h(s, t)〉〉+ ε

=

∫ 1

0
X (t)β(t) dt+

∫ 1

0

∫ 1

0
X (t)X (s)h(s, t) ds dt+ ε.

In both of them, Y and X are scalar and functional centred variables, respectively.

The second extension is related with the testing of regression models with functional covariate
and functional response:

Y(t) = mθ(X (s))(t) + ε(t), s, t ∈ [0, 1], (6.2)

where Y and X are random functional variables in H and ε now plays the role of a functional
error, also in H. Examples of this kind of models include the prediction of the daily temperature
curve from the one of the previous day or the prediction of the price evolution of a financial
asset from the evolution of other asset.

Our idea to check the model (6.2) is to consider two kinds of projections: for the regressor and
for the response functions, denoted by γX and γY , respectively. Then the following marked
empirical process can be considered:

Rn(u, γX , γY) = n−
1
2

n∑
i=1

〈ε̂i, γY〉1{〈Xi,γX 〉≤u}.

The marks of the process are given by the projected residuals {〈ε̂i, γY〉}ni=1 and the jumps by
the projected functional regressor in the direction γX . The PCvM statistic of this process is:

PCvMn =

∫
SH×SH×R

Rn(u, γX , γY)2 Fn,γX (du)ωX (dγX )ωY(dγY),

with ωX and ωY being suitable measures in the functional sphere SH.

Following analogous ideas to those of the Chapter 3, we can consider the pX –basis
{

ΨXk
}pX
k=1

and the pY–basis
{

ΨYl
}pY
l=1

for representing {Xi}ni=1 and {Yi}ni=1, respectively. Then we have the
following expression for the RMPP:

Rn,pX ,pY

(
u, γ

(pX )
X , γ

(pY )
Y

)
= n−

1
2

n∑
i=1

〈
ε̂

(pY )
i , γ

(pY )
Y

〉
1{〈

X (pX )
i ,γ

(pX )

X

〉
≤u

},
where the estimated functional residuals ε̂i are expressed in the basis of the functional response.
The PCvM statistic for this empirical process has again the advantage of having a closed ex-
pression if we consider the uniform measures on the hyperspheres SpYH and SpXH . Applying the
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relation (2.1) for the two functional integrals and with calculus analogous to the Section 3.2, we
have:

PCvMn,pX ,pY =

∫
S
pY
H ×S

pX
H ×R

Rn,pX ,pY

(
u, γ

(pX )
X , γ

(pY )
Y

)2
F
n,γ

(pX )

X
(du)ωX

(
dγ

(pX )
X

)
ωY
(
dγ

(pY )
Y

)
=

∫
SpY×SpX×R
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where the subscripts X and Y stands for the terms related to that covariates and ε̂i,pY is the

vector of coefficients of ε̂
(pY )
i in the basis

{
ΨYl
}pY
l=1

. The integral of the last term can be computed
using some integration techniques on the pY–sphere, yielding∫

SpY
ε̂Ti,pYgY,pY ε̂

T
j,pYgY,pY dgY,pY =
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Joining these terms results the closed and easily computable expression of the statistic:

PCvMn,pX ,pY = n−2
n∑
i=1

n∑
j=1

n∑
r=1

Aijr |RY |−1 πpY/2−1

Γ
(pY

2 + 1
)
pY
ε̂Ti,pY ε̂j,pY

= |RY |−1 πpY/2−1

Γ
(pY

2 + 1
)
pY
n−2

n∑
i=1

n∑
j=1

(A•)ij ε̂
T
i,pY ε̂j,pY
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Γ
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)
pY
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pY∑
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Ê(l),T
pY A•Ê

(l)
pY ,

where ÊpY is the n× pY matrix whose i–th row is the vector of coefficients of ε̂
(pY )
i in the basis{

ΨYl
}pY
l=1

, ε̂i,pY , and B(l) stands for the l–th column of the matrix B.

The simplest and most known parametric model of the form (6.2) is the functional linear model
with functional response,

Y(t) = 〈X (s), β(s, t)〉+ ε(t) =

∫ 1

0
X (s)β(s, t) ds+ ε(t), s, t ∈ [0, 1], (6.3)

where X and Y are centred functional variables in H. The usual estimator of the bivariate
function β is given by the following bilinear (see Ramsay and Silverman (2005)) combination

β̂(pX ,pY )(s, t) =

pX∑
k=1

pY∑
l=1

bklΨ
X
k (s)ΨYl (t). (6.4)

For this model, an explicit expression for ÊpY can be derived. By simple algebra, ε̂i,pY =
yi,pY−BTΨXxi,pX , where B is the pX×pY matrix with the estimated coefficients of β that arises
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from expressing (6.3) as a linear model with multivariate response. The bootstrap resampling
for the case of functional response is not so clear and will need to be investigated carefully. Two
naive approaches could be to apply a wild bootstrap in the projected residuals or directly in the
functional residuals:

ε∗i (t) = ε̂i(t)V
∗
i , t ∈ [0, 1], i = 1, . . . , n.

Once it is possible to test the FLM with functional response, a possible step could be the checking
of an autoregressive Hilbertian process AR(p)H:

Xr(t) = 〈Xr−1(s), β1(s, t)〉+ · · ·+ 〈Xr−p(s), βp(s, t)〉+ ε(t), s, t ∈ [0, 1].

This model is potentially interesting for the prediction of the daily curves of temperature or
the daily prices of financial assets. However, the bootstrap resampling for this kind of test also
requires further investigation in order to reproduce the dependence structure properly.
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Conclusions

We have presented a goodness–of–fit test for the null hypothesis of the functional linear model.
The test is constructed adapting the propose of Escanciano (2006) to the functional scheme
with a basis representation. Different estimation methods for the functional parameter were
considered, showing in general a similar behaviour in the performance of the test. The sim-
ulation study shows that the test behaves well in practise: respects the significance level and
has good power. The test was applied to two real datasets to determine if the FLM was plausi-
ble, rejecting the null hypothesis for the first and finding no evidences for rejecting in the second.

Although in this work we have focused on the functional linear model, the proposed test can
be extended to checking for any other regression model with functional covariate and scalar
response. As shown in Chapter 6, the practical implementation and the wild bootstrap calibra-
tion remain the same. Therefore, obvious extensions could be the testing of FLM with several
functional covariates or the testing of the quadratic functional model. Further, if a consistent
bootstrap resampling is considered, the test could be extended to the case of functional response.

Finally, let us remark that the code for the implementation of the goodness–of–fit test in the
simple and composite cases is available throughout the function flm.test of the R library
fda.usc. This function also shows the graphical tool introduced in Chapter 5. To speed up
the computation of the test statistic, the critical parts of the test implementation have been
programmed in FORTRAN.
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Appendix A

Contributed code to fda.usc

This appendix contains the reference manual of the contributed functions to the 0.9.8.1 ver-
sion of the R package fda.usc (see Febrero-Bande and Oviedo de la Fuente (2012)). The
most important function is flm.test, which implements the proposed testing procedure for the
FLM for different estimating procedures and options. The function is based on the functions
PCvM.statistic and Adot, which compute the test statistic and represent the computationally
hard part of the procedure. In order to speed up computations, several optimization techniques
have to be applied, being the most obvious the use of the compiled programming language FOR-
TRAN. Therefore the functions PCvM.statistic and Adot are nothing but R wrappers of the
FORTRAN functions pcvm_statistic and adot.

Further, as the competitive procedures described in Chapter 4 had not been implemented in any
R package, they were added to fda.usc throughout the functions flm.Ftest and dfv.test.
These functions, as well as flm.test, make use of rber.gold to simulate the Bernoulli random
variable of the golden section bootstrap.

The R and FORTRAN code for this functions is available at CRAN: http://cran.r-project.
org/web/packages/fda.usc/index.html
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dfv.test Delsol, Ferraty and Vieu test for no functional-scalar interaction

Description

The function dfv.test tests the null hypothesis of no interaction between a functional
covariate and a scalar response in a general framework. The null hypothesis is

H0 : m(X) = 0,

where m(·) denotes the regression function of the functional variate X over the centred
scalar response Y (E[Y ] = 0). The way of testing the null hypothesis is via the smoothed
integrated square error of the response (see Details).

Usage

dfv.statistic (X.fdata, Y, h=quantile(x=metric.lp(X.fdata),

probs=c(0.05,0.10,0.15,0.25,0.50)),

K=function(x)2*dnorm(abs(x)),

weights=rep(1,dim(X.fdata$data)[1]),d=metric.lp,

dist=NULL)

dfv.test (X.fdata, Y, B=5000, h=quantile(x=metric.lp(X.fdata),

probs=c(0.05,0.10,0.15,0.25,0.50)),

K=function(x)2*dnorm(abs(x)),

weights=rep(1,dim(X.fdata$data)[1]),d=metric.lp,

show.prog=TRUE)

Arguments

X.fdata Functional covariate. The object must be in the class fdata.

Y Scalar response. Must be a vector with the same number of elements as
functions are in X.fdata.

h Bandwidth parameter for the kernel smoothing. This is a crucial parameter
that affects the power performance of the test. One possibility to choose
it is considering the Cross-validatory bandwidth of the nonparametric func-
tional regression, given by the function fregre.np (see Examples). Other
possibility is to consider a grid of bandwidths. This is the default option,
considering the grid given by the quantiles 0.05, 0.10, 0.15, 0.25 and 0.50 of
the functional L2 distances of the data.

B Number of bootstrap replicates to calibrate the distribution of the test
statistic. B=5000 replicates are the recommended for carry out the test,
although for exploratory analysis (not inferential), an acceptable less time-
consuming option is B=500.

K Kernel function. If no specified it is taken to be the rescaled right part of
the normal density.

weights A vector of weights for the sample data. The default is the uniform weights
rep(1,dim(X.fdata$data)[1]).
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d Semimetric to use in the kernel smoothers. By default is the L2 distance
given by metric.lp.

dist Matrix of distances of the functional data, used to save time in the bootstrap
calibration. If not given, the matrix is automatically computed using the
semimetric d.

show.prog Either to show or not information about computing progress.

Details

The Delsol, Ferraty and Vieu statistic is defined as

Tn =

∫ ( n∑
i=1

(Yi −m(Xi))K

(
d(X,Xi)

h

))2

ω(X)dPX(X)

and in the case of no interaction with centred scalar response (when H0 : m(X) = 0 holds),
its sample version is computed from

Tn =
1

n

n∑
j=1

( n∑
i=1

YiK

(
d(Xj , Xi)

h

))2

ω(Xj).

The sample version implemented here does not consider a splitting of the sample, as the
authors comment in their paper. The statistic is computed by the function dfv.statistic

and, before applying the test, the response Y is centred. The distribution of the test statistic
is approximated by a wild bootstrap on the residuals, using the golden section bootstrap.

Please note that if a grid of bandwidths is passed, a harmless warning message will prompt
at the end of the test (it comes from returning several p-values in the htest class).

For further details of the test and its implementation see Delsol et al. (2011) and Garcia-
Portugues et al. (2012), respectively.

Value

The value of dfv.statistic is a vector of length length(h) with the values of the statistic
for each bandwidth. The value of dfv.test is an object with class "htest" whose underlying
structure is a list containing the following components:

statistic The value of the Delsol, Ferraty and Vieu test statistic.

boot.statistics

A vector of length B with the values of the bootstrap test statistics.

p.value The p-value of the test.

method The character string “Delsol, Ferraty and Vieu test for no functional-scalar
interaction”.

B The number of bootstrap replicates used.

h Bandwidth parameters for the test.

K Kernel function used.

weights The weights considered.

d Matrix of distances of the functional data.

data.name The character string “Y=0+e”
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Note

No NA’s are allowed neither in the functional covariate nor in the scalar response.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to
<eduardo.garcia@usc.es>

References

Delsol, L., Ferraty, F. and Vieu, P. (2011). Structural test in regression on functional
variables. Journal of Multivariate Analysis, 102, 422-447. http://dx.doi.org/10.1016/j.
jmva.2010.10.003

Delsol, L., Ferraty, F. and Vieu, P. No effect tests in regression on functional variable and
some applications to spectrometric studies.

Garcia-Portugues, E., Gonzalez-Manteiga, W. and Febrero-Bande, M. (2012). A goodness–
of–fit test for the functional linear model with scalar response. http://arxiv.org/abs/

1205.6167

See Also

rber.gold, flm.test, flm.Ftest, fregre.np

Examples

## Simulated example ##

X=rproc2fdata(n=50,t=seq(0,1,l=101),sigma="OU")

beta0=fdata(mdata=rep(0,length=101)+rnorm(101,sd=0.05),

argvals=seq(0,1,l=101),rangeval=c(0,1))

beta1=fdata(mdata=cos(2*pi*seq(0,1,l=101))-(seq(0,1,l=101)-0.5)^2+

rnorm(101,sd=0.05),argvals=seq(0,1,l=101),rangeval=c(0,1))

# Null hypothesis holds

Y0=drop(inprod.fdata(X,beta0)+rnorm(50,sd=0.1))

# Null hypothesis does not hold

Y1=drop(inprod.fdata(X,beta1)+rnorm(50,sd=0.1))

# We use the CV bandwidth given by fregre.np

# Do not reject H0

dfv.test(X,Y0,h=fregre.np(X,Y0)$h.opt,B=100)

# dfv.test(X,Y0,B=5000)

# Reject H0

dfv.test(X,Y1,B=100)

# dfv.test(X,Y1,B=5000)

http://dx.doi.org/10.1016/j.jmva.2010.10.003
http://dx.doi.org/10.1016/j.jmva.2010.10.003
http://arxiv.org/abs/1205.6167
http://arxiv.org/abs/1205.6167
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flm.Ftest F-test for the Functional Linear Model with scalar response

Description

The function flm.Ftest tests the null hypothesis of no interaction between a functional
covariate and a scalar response inside the Functional Linear Model (FLM): Y =

〈
X,β

〉
+ ε.

The null hypothesis is H0 : β = 0 and the alternative is H1 : β 6= 0. The way of testing the
null hypothesis is via a functional extension of the classical F-test (see Details).

Usage

Ftest.statistic (X.fdata, Y)

flm.Ftest (X.fdata, Y, B=5000, show.prog=TRUE)

Arguments

X.fdata Functional covariate for the FLM. The object must be in the class fdata.

Y Scalar response for the FLM. Must be a vector with the same number of
elements as functions are in X.fdata.

B Number of bootstrap replicates to calibrate the distribution of the test
statistic. B=5000 replicates are the recommended for carry out the test,
although for exploratory analysis (not inferential), an acceptable less time-
consuming option is B=500.

show.prog Either to show or not information about computing progress.

Details

The Functional Linear Model with scalar response (FLM), is defined as Y =
〈
X,β

〉
+ ε, for

a functional process X such that E[X(t)] = 0, E[X(t)ε] = 0 for all t and for a scalar variable
Y such that E[Y ] = 0. The functional F-test is defined as

Tn =

∥∥∥∥ 1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

∥∥∥∥,
where X̄ is the functional mean of X, Ȳ is the ordinary mean of Y and ‖·‖ is the L2 functional
norm. The statistic is computed with the function Ftest.statistic. The distribution of
the test statistic is approximated by a wild bootstrap on the residuals, using the golden
section bootstrap.

For further details of the test and its implementation see Gonzalez-Manteiga et al. (2012)
and Garcia-Portugues et al. (2012), respectively.

Value

The value for Ftest.statistic is simply the F-test statistic. The value for flm.Ftest is
an object with class "htest" whose underlying structure is a list containing the following
components:

statistic The value of the F-test statistic.
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boot.statistics

A vector of length B with the values of the bootstrap F-test statistics.

p.value The p-value of the test.

method The character string “Functional Linear Model F-test”.

B The number of bootstrap replicates used.

data.name The character string “Y=<X,0>+e”

Note

No NA’s are allowed neither in the functional covariate nor in the scalar response.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to
<eduardo.garcia@usc.es>

References

Garcia-Portugues, E., Gonzalez-Manteiga, W. and Febrero-Bande, M. (2012). A goodness–
of–fit test for the functional linear model with scalar response. http://arxiv.org/abs/

1205.6167

Gonzalez-Manteiga, W., Gonzalez-Rodriguez, G., Martinez-Calvo, A. and Garcia-Portugues,
E. Bootstrap independence test for functional linear models.

See Also

rber.gold, flm.test, dfv.test

Examples

## Simulated example ##

X=rproc2fdata(n=50,t=seq(0,1,l=101),sigma="OU")

beta0=fdata(mdata=rep(0,length=101)+rnorm(101,sd=0.05),

argvals=seq(0,1,l=101),rangeval=c(0,1))

beta1=fdata(mdata=cos(2*pi*seq(0,1,l=101))-(seq(0,1,l=101)-0.5)^2+

rnorm(101,sd=0.05),argvals=seq(0,1,l=101),rangeval=c(0,1))

# Null hypothesis holds

Y0=drop(inprod.fdata(X,beta0)+rnorm(50,sd=0.1))

# Null hypothesis does not hold

Y1=drop(inprod.fdata(X,beta1)+rnorm(50,sd=0.1))

# Do not reject H0

flm.Ftest(X,Y0,B=100)

# flm.Ftest(X,Y0,B=5000)

# Reject H0

flm.Ftest(X,Y1,B=100)

# flm.Ftest(X,Y1,B=5000)

http://arxiv.org/abs/1205.6167
http://arxiv.org/abs/1205.6167
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flm.test Goodness-of-fit test for the Functional Linear Model with scalar re-
sponse

Description

The function flm.test tests the composite null hypothesis of a Functional Linear Model
with scalar response (FLM),

H0 : Y =
〈
X,β

〉
+ ε,

versus a general alternative. If β = β0 is provided, then the simple hypothesis H0 : Y =〈
X,β0

〉
+ ε is tested. The way of testing the null hypothesis is via a Projected Cramer-von

Mises test (see Details).

Usage

flm.test (X.fdata, Y, beta0.fdata = NULL, B = 5000, est.method = "pls",

p = NULL, type.basis = "bspline", show.prog = TRUE,

plot.it = TRUE, B.plot = 100, G = 200, ...)

Arguments

X.fdata Functional covariate for the FLM. The object must be in the class fdata.

Y Scalar response for the FLM. Must be a vector with the same number of
elements as functions are in X.fdata.

beta0.fdata Functional parameter for the simple null hypothesis, in the fdata class.
Recall that the argvals and rangeval arguments of beta0.fdata must be
the same of X.fdata. A possibility to do this is to consider, for example for
β0 = 0 (the simple null hypothesis of no interaction),
beta0.fdata=fdata(mdata=rep(0,length(X.fdata$argvals)),

argvals=X.fdata$argvals,rangeval=X.fdata$rangeval).
If beta0.fdata=NULL (default), the function will test for the composite null
hypothesis.

B Number of bootstrap replicates to calibrate the distribution of the test
statistic. B=5000 replicates are the recommended for carry out the test,
although for exploratory analysis (not inferential), an acceptable less time-
consuming option is B=500.

est.method Estimation method for the unknown parameter β, only used in the composite
case. Mainly, there are two options: specify the number of basis elements
for the estimated β by p or optimally select p by a data-driven criteria
(see Details section for discussion). Then, it must be one of the following
methods:

• "pc" If p, the number of basis elements, is given, then β is estimated
by fregre.pc. Otherwise, an optimum p is chosen using fregre.pc.cv

and the "SIC" (BIC) criteria.

• "pls" If p is given, β is estimated by fregre.pls. Otherwise, an op-
timum p is chosen using fregre.pls.cv and the "CV" criteria. This is
the default argument as it has been checked empirically that provides
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a good balance between the performance of the test and the estimation
of β.

• "basis" If p is given, β is estimated by fregre.basis. Otherwise, an
optimum p is chosen using fregre.basis.cv and the "GCV.S" crite-
ria. In these functions, the same basis for the arguments basis.x and
basis.b is considered. The type of basis used will be the given by the
argument type.basis and must be one of the class of create.basis.
Further arguments passed to create.basis (not rangeval that is taken
as the rangeval of X.fdata), can be passed throughout ... .

p Number of elements of the basis considered. If it is not given, an optimal
p will be chosen using a specific criteria (see est.method and type.basis

arguments).

type.basis Type of basis used to represent the functional process. Depending on the
hypothesis it will have a different interpretation:

• Simple hypothesis. One of these options:

– "bspline" If p is given, the functional process is expressed in a basis
of p B-splines. If not, an optimal p will be chosen by min.basis,
using the "GCV.S" criteria.

– "fourier" If p is given, the functional process is expressed in a
basis of p fourier functions. If not, an optimal p will be chosen by
min.basis, using the "GCV.S" criteria.

– "pc" p must be given. Expresses the functional process in a basis
of p PC.

– "pls" p must be given. Expresses the functional process in a basis
of p PLS.

Although other of the basis supported by create.basis are possible
too, "bspline" and "fourier" are recommended. Other basis may
cause incompatibilities.

• Composite hypothesis. This argument is only used when
est.method="basis" and, in this case, claims for the type of basis used
in the basis estimation method of the functional parameter. Again, basis
"bspline" and "fourier" are recommended, as other basis may cause
incompatibilities.

show.prog Either to show or not information about computing progress.

plot.it Either to show or not a graph of the observed trajectory, and the bootstrap
trajectories under the null composite hypothesis, of the process Rn(·) (see
Details). Note that if plot.it=TRUE, the function takes more time to run.

B.plot Number of bootstrap trajectories to show in the resulting plot of the test.
As the trajectories shown are the first B.plot of B, B.plot must be lower
or equal to B.

G Number of projections used to compute the trajectories of the process Rn(·)
by Monte Carlo.

... Further arguments passed to create.basis.

Details

The Functional Linear Model with scalar response (FLM), is defined as Y =
〈
X,β

〉
+ ε,

for a functional process X such that E[X(t)] = 0, E[X(t)ε] = 0 for all t and for a scalar
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variable Y such that E[Y ] = 0. Then, the test assumes that Y and X.fdata are centred
and will automatically center them. So, bear in mind that when you apply the test for Y

and X.fdata, actually, you are applying it to Y-mean(Y) and fdata.cen(X.fdata)$Xcen.

The test statistic corresponds to the Cramer-von Mises norm of the Residual Marked em-
pirical Process based on Projections Rn(u, γ) defined in Garcia-Portugues et al. (2012).
The expression of this process in a p-truncated basis of the space L2[0, T ] leads to the p-
multivariate process Rn,p

(
u, γ(p)

)
, whose Cramer-von Mises norm is easily computed.

The choice of an appropriate p to represent the functional process X, in case that is not
provided, is done via the estimation of β for the composite hypothesis. For the simple
hypothesis, as no estimation of β is done, the choice of p depends only on the functional
process X. As the result of the test may change for different p’s, we recommend to use
an automatic criterion to select p instead of provide a fixed one. The distribution of the
test statistic is approximated by a wild bootstrap on the residuals, using the golden section
bootstrap.

Finally, the graph shown if plot.it=TRUE represents the observed trajectory, and the boot-
strap trajectories under the null, of the process RMPP integrated on the projections:

Rn(u) ≈ 1

G

G∑
g=1

Rn(u, γg),

where γg are simulated as Gaussians processes. This gives a graphical idea of how distant is
the observed trajectory from the null hypothesis.

For further details see Garcia-Portugues et al. (2012).

Value

An object with class "htest" whose underlying structure is a list containing the following
components:

statistic The value of the test statistic.
boot.statistics

A vector of length B with the values of the bootstrap test statistics.

p.value The p-value of the test.

method The method used.

B The number of bootstrap replicates used.

type.basis The type of basis used.

beta.est The estimated functional parameter β in the composite hypothesis. For the
simple hypothesis, the given beta0.fdata.

p The number of basis elements passed or automatically chosen.

ord The optimal order for PC and PLS given by fregre.pc.cv and
fregre.pls.cv. For other methods is setted to 1:p.

data.name The character string “Y=<X,b>+e”

Note

No NA’s are allowed neither in the functional covariate nor in the scalar response.
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Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to
<eduardo.garcia@usc.es>

References

Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections.
Econometric Theory, 22, 1030-1051. http://dx.doi.org/10.1017/S0266466606060506

Garcia-Portugues, E., Gonzalez-Manteiga, W. and Febrero-Bande, M. (2012). A goodness–
of–fit test for the functional linear model with scalar response. http://arxiv.org/abs/

1205.6167

See Also

Adot, PCvM.statistic, rber.gold, flm.Ftest, dfv.test, fregre.pc, fregre.pls,
fregre.basis, fregre.pc.cv, fregre.pls.cv, fregre.basis.cv, min.basis,
create.basis

Examples

## Simulated example ##

X=rproc2fdata(n=100,t=seq(0,1,l=101),sigma="OU")

beta0=fdata(mdata=cos(2*pi*seq(0,1,l=101))-(seq(0,1,l=101)-0.5)^2+

rnorm(101,sd=0.05),argvals=seq(0,1,l=101),rangeval=c(0,1))

Y=inprod.fdata(X,beta0)+rnorm(100,sd=0.1)

dev.new(width=21,height=7)

par(mfrow=c(1,3))

plot(X,main="X")

plot(beta0,main="beta0")

plot(density(Y),main=``Density of Y",xlab="Y",ylab="Density")

rug(Y)

# Composite hypothesis: do not reject FLM

pcvm.sim=flm.test(X,Y,B=50,B.plot=50,G=100,plot.it=TRUE)

pcvm.sim

# flm.test(X,Y,B=5000)

# Estimated beta

dev.new()

plot(pcvm.sim$beta.est)

# Simple hypothesis: do not reject beta=beta0

flm.test(X,Y,beta0.fdata=beta0,B=50,B.plot=50,G=100)

# flm.test(X,Y,beta0.fdata=beta0,B=5000)

## AEMET dataset ##

# data(aemet)

## Remove the 5% of the curves with less depth (i.e. 4 curves)

http://dx.doi.org/10.1017/S0266466606060506
http://arxiv.org/abs/1205.6167
http://arxiv.org/abs/1205.6167
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# dev.new()

# res.FM=depth.FM(aemet$temp,draw=TRUE)

# qu=quantile(res.FM$dep,prob=0.05)

# l=which(res.FM$dep<=qu)

# lines(aemet$temp[l],col=3)

# aemet$df$name[l]

## Data without outliers

# wind.speed=apply(aemet$wind.speed$data,1,mean)[-l]

# temp=aemet$temp[-l]

## Exploratory analysis: accept the FLM

# pcvm.aemet=flm.test(temp,wind.speed,est.method="pls",B=100,B.plot=50,G=100)

# pcvm.aemet

## Estimated beta

# dev.new()

# plot(pcvm.aemet$beta.est,lwd=2,col=2)

## B=5000 for more precision on calibration of the test: also accept the FLM

# flm.test(temp,wind.speed,est.method="pls",B=5000)

## Simple hypothesis: rejection of beta0=0? Limiting p-value...

# dat=rep(0,length(temp$argvals))

# flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals,

# rangeval=temp$rangeval),B=100)

# flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals,

# rangeval=temp$rangeval),B=5000)

## Tecator dataset ##

# data(tecator)

# names(tecator)

# absorp=tecator$absorp.fdata

# ind=1:129 # or ind=1:215

# x=absorp[ind,]

# y=tecator$y$Fat[ind]

# tt=absorp[["argvals"]]

## Exploratory analysis for composite hypothesis with automatic choose of p

# pcvm.tecat=flm.test(x,y,B=100,B.plot=50,G=100)

# pcvm.tecat

## B=5000 for more precision on calibration of the test: also reject the FLM

# flm.test(x,y,B=5000)

## Plot of the estimated functional parameters

# plot(pcvm.tecat$beta.est,lwd=2,col=2)

# for(i in 1:100) lines(pcvm.tecat$boot.beta.est[[i]])

# lines(pcvm.tecat$beta.est,lwd=2,col=2)

# legend("topright",legend=c("Estimated","Bootstrap"),col=1:2,lwd=2)

## Distribution of the PCvM statistic

# plot(density(pcvm.tecat$boot.statistics),lwd=2,xlim=c(0,10),

# main="PCvM distribution", xlab="PCvM*",ylab="Density")

# rug(pcvm.tecat$boot.statistics)
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# abline(v=pcvm.tecat$statistic,col=2,lwd=2)

# legend("top",legend=c("PCvM observed"),lwd=2,col=2)

## Simple hypothesis: fixed p

# dat=rep(0,length(x$argvals))

# flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,

# rangeval=x$rangeval),B=100,p=11)

## Simple hypothesis, automatic choose of p

# flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,

# rangeval=x$rangeval),B=100)

# flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,

# rangeval=x$rangeval),B=5000)

PCvM.statistic PCvM statistic for the Functional Linear Model with scalar response

Description

Projected Cramer-von Mises statistic (PCvM) for the Functional Linear Model with scalar
response (FLM): Y =

〈
X,β

〉
+ ε.

Usage

PCvM.statistic (X, residuals, p, Adot.vec)

Adot (X, inpr)

Arguments

X Functional covariate for the FLM. The object must be either in the class
fdata or in the class fd. It is used to compute the matrix of inner products.

residuals Residuals of the estimated FLM.

p Number of elements of the functional basis where the functional covariate
is represented.

Adot.vec Output from the Adot function (see Details). Computed if not given.

inpr Matrix of inner products of X. Computed if not given.

Details

In order to optimize the computation of the statistic, the critical parts of these two functions
are programmed in FORTRAN. The hardest part corresponds to the function Adot, which
involves the computation of a symmetric matrix of dimension n×n where each entry is a sum
of n elements. As this matrix is symmetric, the order of the method can be reduced from
O(n3) to O

(
n3−n2

2

)
. The memory requirement can also be reduced to O

(
n2−n+2

2

)
. The value

of Adot is a vector of length n2−n+2
2 where the first element is the common diagonal element

and the rest are the lower triangle entries of the matrix, sorted by rows (see Examples).
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Value

For PCvM.statistic, the value of the statistic. For Adot, a suitable output to be used in
the argument Adot.vec.

Note

No NA’s are allowed in the functional covariate.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to
<eduardo.garcia@usc.es>

References

Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections.
Econometric Theory, 22, 1030-1051. http://dx.doi.org/10.1017/S0266466606060506

Garcia-Portugues, E., Gonzalez-Manteiga, W. and Febrero-Bande, M. (2012). A goodness–
of–fit test for the functional linear model with scalar response. http://arxiv.org/abs/

1205.6167

See Also

flm.test

Examples

# Functional process

X=rproc2fdata(n=10,t=seq(0,1,l=101))

# Adot

Adot.vec=Adot(X)

# Obtain the entire matrix Adot

Ad=diag(rep(Adot.vec[1],dim(X$data)[1]))

Ad[upper.tri(Ad,diag=FALSE)]=Adot.vec[-1]

Ad=t(Ad)

Ad=Ad+t(Ad)-diag(diag(Ad))

Ad

# Statistic

PCvM.statistic(X,residuals=rnorm(10),p=5)

rber.gold Gold section bootstrap sampling

Description

Sampling from a binomial variable with values
{

1−
√

5
2 , 1+

√
5

2

}
and probabilities

{
5+
√

5
10 , 5−

√
5

10

}
,

respectively.

http://dx.doi.org/10.1017/S0266466606060506
http://arxiv.org/abs/1205.6167
http://arxiv.org/abs/1205.6167
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Usage

rber.gold (n)

Arguments

n Number of observations.

Details

For the construction of wild bootstrap residuals, sampling from a random variable V such
that E[V 2] = 0 and E[V ] = 0 is needed. A simple and suitable V is obtained with a binomial
variable of the form:

P

{
V =

1−
√

5

2

}
=

5 +
√

5

10
andP

{
V =

1 +
√

5

2

}
=

5−
√

5

10
,

which leads to the golden section bootstrap. If e denotes a vector of n residuals, the wild
bootstrap residuals would be computed as e*rber.gold(n).

Value

A sample of length n of the random variable V .

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to
<eduardo.garcia@usc.es>

See Also

rbinom, flm.test, flm.Ftest, dfv.test

Examples

# Sampling

samp=rber.gold(100)

mean(samp)

sd(samp)

samp

# Construction of wild bootstrap residuals

e=rnorm(200)

e.boot=e*rber.gold(200)

summary(e)

summary(e.boot)
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