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Resumen

Resumen en espanol

Los problemas de rutas de vehiculos son un campo ampliamente estudiado en el ambito de la
optimizacién matematica, los cuales cuentan con diversas formulaciones segiin las necesidades de los
clientes. Ademads, son muchos los métodos de resolucién existentes, puesto que no resulta sencillo
resolver el problema de forma directa.

En este Trabajo Fin de Master se estudiara el caso particular de los problemas de rutas de vehiculos
eléctricos que plantea la startup espafiola Trucksters. En este contexto, ademés de las restricciones
usuales de capacidad, tiempo, distancia, etc., se anaden nuevas restricciones relativas a la carga de
la bateria, lo que implica una revisiéon de los métodos usuales de resoluciéon. Se abordaran para ello
métodos exactos y diferentes heuristicas incorporando estas nuevas restricciones.

Por ultimo, se hard uso del lenguaje Python para obtener la solucién del problema formulado,
implementando un modelo exacto con el solver SCIP y desarrollando las heuristicas del vecino mas
proximo y 2-opt. Estas soluciones se calcularan para diferentes instancias, permitiendo asi comparar
el rendimiento y la calidad de los distintos métodos de resolucién.

English abstract

Vehicle routing problems constitute a widely studied field within mathematical optimization and
include a variety of formulations depending on client requirements. Moreover, there exists a broad
range of solution methods, as solving these problems directly is often challenging.

This document focuses on the specific case of electric vehicle routing problems proposed by the Spa-
nish startup Trucksters. In this context, in addition to the usual constraints related to capacity, time,
distance, etc., new battery-charging constraints are introduced, requiring an adaptation of traditional
solution methods. Both exact methods and different heuristics will be explored while incorporating
these additional restrictions.

Finally, the Python programming language will be used to obtain solutions to the formulated
problem, implementing an exact model with the SCIP solver and developing the nearest-neighbour
and 2-opt heuristics. These solutions will be computed for multiple instances, thereby enabling a
comparison of the performance and solution quality of the various solution methods.
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Capitulo 1

Introduccion

Trucksters es una startup espanola de logistica y tecnologia que trabaja en el sector del transporte
de mercancias por carretera.

El transporte constituye uno de los pilares de la actividad econémica y, al mismo tiempo, una de las
principales fuentes de emisiones contaminantes. En Espaia, el sector del transporte representa mas del
30% de las emisiones de gases contaminantes y, en concreto, el transporte por carretera conforma el
28.4% del total [19]. Por ello, surge la necesidad de avanzar hacia modelos de movilidad més eficientes
y sostenibles.

En este contexto, el uso de vehiculos que empleen baterias eléctricas en el transporte constituye
una alternativa clave. Numerosos estudios han demostrado la eficacia de los camiones eléctricos pa-
ra reducir las emisiones de COy y otros gases de efecto invernadero [3, 23]. Asimismo, los vehiculos
eléctricos contribuyen a disminuir la contaminacién acustica, ya que el ruido del trafico representa
cerca del 70 % de las emisiones sonoras en las grandes ciudades [8]. Més alld del avance tecnoldgico,
es importante destacar que en el sector del transporte por carretera la optimizacién juega un papel
fundamental. Una planificacién eficiente de rutas permite reducir distancias recorridas, tiempos opera-
tivos y, en consecuencia, emisiones. Esto es especialmente relevante en el caso de vehiculos eléctricos,
cuyos requerimientos (autonomia limitada, necesidad de recarga y disponibilidad de puntos de carga)
anaden complejidad al proceso de planificacién.

Trucksters basa su modelo operativo en un innovador sistema de relevos que permite recorrer
mayores distancias en menos tiempo. En lugar de que un tnico conductor complete un trayecto largo,
se establecen puntos de intercambio de remolques, que permiten mantener la mercancia en movimiento
sin necesidad de paradas prolongadas. Gracias a este sistema, la compafiia consigue mejorar la calidad
de vida de los conductores, permitiendo que permanezcan a una menor distancia de sus hogares, y
logra disminuir los kilémetros en vacio recorridos por sus camiones, reduciendo a su vez las emisiones
de gases responsables del efecto invernadero.

Trucksters busca reducir su huella de carbono y avanzar hacia un transporte més sostenible, por lo
que ha incorporado un camién eléctrico a su flota. Inicialmente, este vehiculo se empleard en operaciones
para tareas de carga y descarga en Catalufia. La implementacién de la tractora eléctrica ha supuesto
que el equipo operativo asuma manualmente la planificacion de sus rutas, teniendo en cuenta las
particularidades propias de los vehiculos eléctricos, como la autonomia y los tiempos de recarga. Esta
gestién adicional representa una carga significativa para el equipo, por lo que la empresa estd enfocada
en desarrollar soluciones que permitan automatizar la planificacién diaria de su camién eléctrico,
optimizando tanto la eficiencia operativa como la sostenibilidad del transporte. El problema que plantea
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Trucksters consiste, por tanto, en desarrollar un algoritmo que permita integrar este camion eléctrico
en sus operaciones diarias, reduciendo los tiempos de planificaciéon, que actualmente ascienden a 30
minutos. La planificacién actual tiene como objetivo minimizar los costes operativos; por ello, los
modelos analizados deberan optimizar tanto los costes de recarga eléctrica como el consumo de bateria.
Ademads, se analizard y determinard qué algoritmo de optimizacién resulta méds adecuado para la
casuistica concreta de la empresa, evaluando su rendimiento tanto sobre los datos actuales, como su
capacidad de escalado ante futuros proyectos de mayor complejidad.

A lo largo de este Trabajo Fin de Master se abordard la automatizacién de la planificacién compa-
rando distintos métodos de resolucion. Para ello, se seleccionaran tres técnicas: un método exacto, la
heuristica del vecino méas préximo y la heuristica 2-opt, que seran aplicados al caso real de Trucksters y
evaluados mediante criterios de rendimiento y calidad de solucién. Este objetivo guia todo el desarrollo
del trabajo, desde la definicién de un caso real hasta el andlisis comparativo final.

El caso de estudio describe la situacion real de los problemas de rutas determinado por un trans-
portista, que debe hacer las entregas que son demandadas cada dia en la provincia de Barcelona. Para
ello, el camién eléctrico debe salir de la base operativa, recorrer los puntos de recogida de mercancia,
visitar un almacén donde se efectuara la descarga y volver de nuevo a la base operativa. Ademas,
debemos tener en cuenta que se dispone de un vehiculo eléctrico, por lo que a lo largo de la ruta es
necesario parar en un punto de carga. Se puede ver una representacion del problema planteado en la
Figura 1.1.

Figura 1.1: Representacion del problema real. El nodo amarillo (0) se corresponde con la base operativa,
los azules (1-3) son los puntos de carga, el nodo morado (4) el punto de descarga y los verdes (5-9) los
cargadores. La solucién éptima se corresponderia con la ruta (0, 1, 2, 3, 7, 4, 0).

Ademaés de abordar la casuistica descrita, el trabajo incluye un anélisis de escalabilidad de los



algoritmos, evaluando su desempeno en conjuntos de datos mas grandes que simulan un mayor niimero
de nodos de recogida y descarga, asi como escenarios con distancias maximas de ruta variables, acordes
a las capacidades de distintos vehiculos eléctricos. Esta evaluaciéon permite determinar la robustez y
eficiencia de los métodos seleccionados frente a situaciones mas complejas y potenciales ampliaciones
de la operativa de Trucksters.

Para resolver las cuestiones planteadas, el Trabajo Fin de Master se dividird en dos partes: una
metodologia y una parte practica. La metodoldgica estard compuesta por una revision teérica y concep-
tual que servird de base para la aplicacion practica posterior. La segunda parte recogera el desarrollo
de los casos de estudio y el analisis de los resultados obtenidos.

En el Capitulo 2 se presentaran los conceptos necesarios para abordar los problemas de rutas: los
problemas de optimizacién (Seccién 2.1) y la optimizacién en redes (Seccién 2.2). En el Capitulo 3
se hard una revision de los problemas del viajante de comercio, los problemas de rutas de vehiculos
y el caso concreto de los problemas de rutas de vehiculos eléctricos, en las secciones 3.1, 3.2 y 3.3,
respectivamente. Asimismo, en la Seccién 3.4, se estudiardn los tipos de métodos de resolucién de los
problemas planteados, abordando los métodos exactos y las heuristicas y metaheuristicas mas comunes.

En el Capitulo 4 se estudiard el problema concreto propuesto por Trucksters (Seccién 4.1) y se
planteara una formulacién a partir del caso general, incorporando las nuevas restricciones relativas a la
bateria del vehiculo. Se continuara en la Seccion 4.2 con la seleccién de los métodos de resoluciéon y una
explicacién de su desarrollo en los programas empleados. Ademas, se incluird el pseudocédigo empleado
para mayor comprension y se fijaran los criterios de comparacion. En la Seccién 4.3 se implementaran los
algoritmos previamente escogidos y se procedera con un estudio comparativo observando las diferencias
de la calidad de las soluciones y rendimiento de cada uno. En el Capitulo 5 se extendera el estudio
comparativo a situaciones méas complejas, generando instancias con un mayor ntimero de nodos y
anadiendo una limitacién de distancia. En la Seccién 5.1 se proporcionara una nueva formulacién que
se adapte a los nuevos datos empleados y en la Seccién 5.2 se explicara la implementacién de los
algoritmos para estas nuevas instancias. Finalmente, en la Seccién 5.3 se realizard un nuevo estudio
comparativo de los métodos, con el apoyo de graficos que permitan visualizar los resultados obtenidos.

Por 1ltimo, en el Capitulo 6, se recogeran las conclusiones obtenidas a lo largo del trabajo y se
veran las posibles lineas de trabajo futuro.
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Capitulo 2

Estado del arte

El problema que se plantea en este Trabajo Fin de Master es el de encontrar la mejor solucién para
una situacién concreta con unas limitaciones iniciales. Este tipo de problema se enmarca dentro de la
programacién matematica, y mas concretamente, dentro de los problemas de optimizacién.

En la Seccién 2.1 se presentan los conceptos méas basicos de los problemas de optimizacién, nece-
sarios para describir el modelo que se abordard. Ademads, en la Seccién 2.2 se hace una revisién de
los problemas de optimizacién en redes, que sientan las bases de los problemas de rutas de vehiculos,
y se estudian los casos concretos del problema de flujo en redes a coste minimo, y del problema de
transporte.

2.1. Problemas de optimizacion

Los problemas de optimizacién constituyen una de las areas fundamentales de la programacién
matematica. Estan presentes en sectores como la ingenieria, la economia o la logistica, ya que permiten
encontrar soluciones a casuisticas muy variadas. En esta seccién se tomard como referencia principal
[1], que ofrece un recorrido por los fundamentos de la programacién matemaética.

Un problema de programacién matemaética se puede escribir del siguiente modo:

minimizar  f(z) (2.1)
sujeto a  gi(x) <0 i=1,....,m
hj(z) =0 j=1,...,1
r € X,
donde f, g;, h; son funciones reales definidas en R", X es un conjunto de R" y x = (z1,...,2,) es un
vector de n componentes. La funcién f(x) se llama funcién objetivo, y las funciones g;, h; conforman
la region factible. El problema consiste en encontrar los valores de las variables x1,...,x, que

satisfagan las restricciones dadas en la region factible. A estos valores de z se les denomina soluciones
factibles. El objetivo es determinar de entre todas las soluciones factibles aquellas que minimicen la
funcién objetivo. En este sentido, si los puntos z1, ..., x, encontrados satisfacen

flx) < fly), YyeX

se dice que = es un 6ptimo global del problema (2.1). Por el contrario, si la desigualdad se cumple
unicamente en un entorno de z, se dice que = es un éptimo local del problema (2.1).
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Un ejemplo sencillo de un problema de optimizacién es el siguiente:

minimizar  f(z) = sin(z1) + x2 (2.2)

sujetoa  a? + a2 <5

1‘220.

En este caso, la regién factible corresponde al interior de la circunferencia de radio v/5 centrada en
el eje de coordenadas, inicamente en el primer cuadrante. Se aprecia que el punto donde la funcién
objetivo alcanza su minimo es en el (21, z2) = (0,0), el cual constituye el 6ptimo global del problema
(2.2). En la Figura 2.1 se muestra una representacién de la regién factible, junto con el punto éptimo
(color azul oscuro) y las curvas de nivel de la funcién, que son algunas de las posibles soluciones del
problema.

2.01

1.54

X2

1.04

0.5

0.0

0.0 0.5 1.0 15 2.0
X1

Figura 2.1: Representacion de la regién de soluciones factibles para el problema (2.2).

Segun la naturaleza de las funciones que determinan la region factible de los problemas de optimi-
zacion, estos se pueden clasificar en diferentes grupos.

2.1.1. Programaciéon convexa

En esta seccién se presentan los problemas de programacién convexa, que, por las propiedades que
cumplen, son interesantes desde el punto de vista metodolégico. Para ello, se introducen en primer
lugar las siguientes definiciones:

Definicién 2.1. Un conjunto S C R se dice convexo si cualquier combinacién convexa de puntos
de S también pertenece a S. Es decir, si dados z,y € S, entonces Az + (1 — Ay € S VA€ [0,1].

Definicién 2.2. Dado un conjunto no vacio y convexo S C R™, y una funcién f : S — R, la funcién
f es convexa en S si, para todo z € S e y € Sy para todo A € (0,1), se tiene

FOz+ (1= Ny) <Af(x)+ 1 =N f(y).
Definicién 2.3. Una funcién f: S C R™ — R se dice afin si existe a € R" y b € R tales que

f(x)=a"z+b, Vres.
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Los problemas de programacion convexa son aquellos en los que tanto la funcién objetivo f como
la regién factible son convexas En concreto, las funciones g; tienen que ser convexas y las funciones h;
afines.

Este tipo de problemas son muy interesantes por sus propiedades, que hacen su resolucién mas
sencilla. A continuacién se presentan algunos resultados destacados sobre su resolucion:

Teorema 2.4. Sea S C R"™ un conjunto no vacio y convexo y sea f : S — R una funcion convexa en
S. Si el vector © es un dptimo local del problema (2.1), entonces

(i) El vector x es un dptimo global.

(ii) Si z es un dptimo local estricto o f es estrictamente conveza, entonces x es el dnico dptimo
global.

Lema 2.5. Dado un problema de programacion convexa, toda combinacion convexa de dos puntos x
ey que sean dptimos locales (globales) también serd un dptimo local (global).

Se presenta a continuacién un ejempo de un problema de programacién convexa. El problema (2.3)
es un ejemplo de esta formulacién, cuya representacion se puede ver en la Figura 2.2.

minimizar  f(z) = x? + 23 (2.3)
sujetoa 0< 21 <4
0 < Zo < 4.

En este caso, la region factible son los 1 y x2 no negativos y no mayores que 4, lo que forma
un cuadrado, y que se corresponde con un conjunto convexo. La funcién objetivo son circunferencias
concéntricas de centro (0,0). Por la definicién vista, se puede observar que se trata de una funcién
convexa.

Cada radio de las circunferencias posibles forma una curva de nivel. El 6ptimo global vuelve a ser
el punto (0, 0), representado en azul oscuro (Figura 2.2).

| 2

4.0 9|
\-’@aa
4 2
s \ 5
2.51
o, \
2 2.04 Sop
154
109 —_
054 \
\
1.0 0 35 4.0

>
%
2.5 3.0

15 2
X1

100
0.0 0.5

Figura 2.2: Representacién del problema (2.3).

Dentro de la programacién convexa, la programacion lineal constituye un caso particular de
especial interés. En un problema de programacion lineal, tanto la funcién objetivo como las funciones
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que definen las restricciones son afines, por lo que son convexas, y la region factible resulta ser también
convexa. En consecuencia, todos los resultados anteriores para problemas convexos son aplicables
también a los problemas de programacion lineal.

2.1.2. Programacion entera

Hasta ahora, se han considerado problemas en los que las variables x tomaban valores reales. Sin
embargo, en ocasiones se justifica que las variables tomen valores en Z™. Los problemas de programa-
cion entera son aquellos en los que las variables © deben tomar valores enteros. Ahora, el problema
que se quiere resolver, de forma general, es el siguiente:

minimizar  f(z) (2.4)
sujeto a  gi(x) <0 i=1,...,m

hy(z) =0 =11

ASY/AS

Estos problemas ya no cuentan con las buenas propiedades que caracterizaban a los problemas
de optimizacién convexa, ya que su regién factible no es un conjunto convexo. Es por ello que para
resolverlos se necesitan métodos mas sofisticados que en el caso anterior.

Ademés, cuando las variables de decisiéon pueden tomar unicamente dos valores, z; € {0,1}, el
problema de optimizacién asociado se dice un problema de programacién entera binaria.

Por ejemplo, se quiere minimizar el coste de manufactura de tres productos, seleccionando cudles
producir. El primero, z1, tiene un precio de 2 unidades; el segundo, x5, de 3 unidades; y el tercero, x3,
de 5. Se debe tener en cuenta que como minimo es necesario producir dos de ellos. Este problema se
puede formular de la siguiente manera:

minimizar 2z; + 3z2 + 523 (2.5)
sujetoa x1+x2+x3>2

x1,T2,23 € {0,1}.

En este caso, las variables tomaran el valor 1 si se producen y el valor 0 en caso contrario. Se ve
facilmente cémo la solucién éptima es (x1, z2,23) = (1,1,0), que se corresponde con los productos que
menos gastos requieren.

Si el problema engloba variables enteras y continuas, este serd un problema de programacién
entera mixta (MIP)'. Se verd mas adelante que esta es la formulacién que basard la metodologfa a
emplear para la resoluciéon del problema propuesto.

Retomando el ejemplo anterior, se quiere minimizar el coste de los dos productos seleccionados. En
este caso se requiere determinar la cantidad producida de cada uno. El producto x; se mide en metros,
pero solo permite ser cortado por unidades (es decir, un metro, dos metros,...) y tiene un coste 5
unidades monetarias cada uno. Por su parte, el producto x5 también se mide en metros, pero en este
caso se permite la produccién por fracciones (es decir, medio metro, tres cuartos,...), con un coste de
4 unidades cada metro. Nétese que x; solo pueda tomar valores enteros, mientras que xo toma valores

IDel inglés Mized-Integer Programming.
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continuos. La empresa quiere producir, como minimo, 10 productos.

minimizar 5z + 4xo (2.6)
sujeto a 1 + 29 > 10
T, €EZL
zo € RT.

El problema planteado se recoge en la formulacién (2.6). Dado que tenemos variables enteras, 1,
y variables continuas, xo, cumple las hipétesis de un problema de programacion mixta. La solucion
6ptima es el punto (z1,x2) = (0, 10).

Los modelos de programacion entera y de programacion entera mixta resultan especialmente utiles
en problemas reales donde ciertas decisiones solo pueden tomarse en valores discretos, como seleccionar
qué instalaciones abrir, qué rutas activar o qué vehiculos utilizar. En particular, muchos problemas
de optimizacién en redes, como los modelos de flujo en redes o transporte, pueden formularse como
problemas de programacién lineal o entera, en los que las variables de decision representan flujos
o conexién entre nodos. Esta relacion entre programacion entera y optimizaciéon en redes motiva el
estudio de la optimizacién en redes que se presenta en la siguiente seccion.

2.2. Optimizacion en redes

Este apartado presenta los problemas de optimizacién en redes, los cuales constituyen un
caso particular de los problemas de programacién lineal (aquellos en los que las funciones f,g; vy h;
son funciones lineales). Esta clase de problemas aparecen en infinidad de campos, como el diseno
de carreteras entre localidades, el calculo de la ruta maés corta entre varios puntos o problemas de
asignacion de tareas. La principal referencia que se sigue son los apuntes de la asignatura Programacion
lineal y entera [12], asi como el Trabajo Fin de Méster [17], que desarrolla una situacién real como un
problema de optimizacién en redes.

Asimismo, como se mostrara en el Capitulo 3, los problemas clasicos de optimizacién combinatoria,
como el problema del viajante de comercio, el problema de rutas de vehiculos o el problema de rutas
de vehiculos eléctricos, pueden formularse como problemas de redes, al modelarse mediante nodos,
arcos y flujos. De este modo, el analisis de los problemas de optimizacién en redes servird como base
conceptual y metodoldgica para abordar la casuistica desarrollada en el Capitulo 4.

2.2.1. Conceptos basicos

La definiciéon de esta clase de problemas se basa en el concepto de grafo. Un grafo G es un
par (V, E) consistente en un conjunto V' de elementos llamados nodos o vértices y un conjunto E
cuyos elementos representan arcos o aristas. Los grafos permiten representar relaciones entre distintos
elementos y constituyen la estructura fundamental sobre la que se construyen los modelos de redes.

Segin cémo sean los elementos de E, se puede distinguir dos tipos principales de grafos:
= Grafos dirigidos: son aquellos en los que V C E x E, es decir, los arcos son pares ordenados. El

arco (4,7) con i,j € V, empieza en el nodo i y termina en el nodo j. Se representan con flechas
para indicar el sentido.

= Grafos no dirigidos: en ellos G estd compuesto por subconjuntos de E de dos elementos. En este
caso, los arcos no tienen direccién, de modo que el arco (i, j) es equivalente al arco (7j,1).
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En la Figura 2.3 se puede ver un ejemplo de un grafo dirigido (izquierda) y de otro no dirigido
(derecha). Nétese que ambos grafos contienen el mismo niimero de nodos y el mismo niimero de arcos,
la diferencia fundamental radica en la orientacién de los arcos. Asi, en el primer grafo se permite ir de
1a2yde?2a 3, pero no el recorrido inverso. Sin embargo, en el grafo de la derecha, dado que no es
dirigido, ambos caminos estarian permitidos.

4 5

-
4/
S

S

2

1
5

3
2
Figura 2.3: Representacién de un grafo dirigido (izquierda) y un grafo no dirigido (derecha).

A continuacién, se presentan otros conceptos necesarios. En un grafo no dirigido G, se denomina
cadena a la secuencia de aristas distintas (a1, as, .. . a,), tales que a; = (v;—1,v;), paral € {1,2,...,r},
siendo (vg,v1,...,v,) vértices del grafo. Si la cadena empieza y termina en el mismo nodo (vy = v,.),
se trata de una cadena cerrada. Cuando todos los vértices de la cadena son distintos, se define como
un camino. Se hablara de circuito o ciclo cuando se corresponda con una cadena cerrada en la que
los tinicos nodos coincidentes son el inicial y el final. Definiremos un circuito hamiltoniano como un
circuito que contiene a todos los vértices de la red exactamente una vez.

Se verd a continuacion, con ayuda del grafo no dirigido de la Figura 2.3, un ejemplo de estos
conceptos. Si se toma la sucesién de nodos (1,2, 3,5, 1), esta serd una cadena cerrada, pues se empieza
y se termina en el mismo nodo, y serd ademas un circuito, ya que no se repite ningiin nodo, excluyendo
el inicial y el final. Si tomamos la cadena (1,2,3,4), esta se corresponderd con un camino, pero no con
un circuito o cadena cerrada. Podemos formar un circuito hamiltoniano recorriendo todos los nodos
en el orden (2, 3, 4, 1, 5, 3).

Un grafo, entendido como una estructura formada por nodos y aristas, no es suficiente para plantear
un problema de optimizaciéon. Para ello, se introduce el concepto de red, que consiste en un grafo con
uno o mas nuimeros asociados con cada arco o nodo. Estos valores pueden representar costes, distancias,
fiabilidades u otros pardametros de interés.

Llamaremos flujo al envio de elementos u objetos de un lugar a otro dentro de una red. Estos
objetos seran las unidades de flujo, que pueden ser personas, bienes, agua,... Denotaremos por fj al
flujo correspondiente al arco k. Estos modelos se llaman modelos de redes con flujo.

A cada arco k le asignaremos tres pardmetros: la cota inferior (I), que es la cantidad minima
de flujo que debe pasar por el arco k, la capacidad (ug), que es la cantidad maxima de flujo que el
arco k puede transportar, y el coste o beneficio (ci), que si es positivo denota el coste por unidad
de flujo que pasa por el arco k y si es negativo representa los beneficios.
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2.2.2. El problema de flujo en redes a coste minimo

Introducida la notacién necesaria, en este punto se presentan los problemas de flujo en redes
a coste minimo (PFCM). Dada una red con capacidades, estos problemas consisten en determinar
el flujo que ha de pasar por cada arco de tal manera que el coste asociado sea minimo y se cumplan
las restricciones de conservacion de flujo y las impuestas por las capacidades.

Formalmente, las restricciones de conservacion de flujo establecen que, en cada nodo, el flujo que
entra debe ser igual al flujo que sale (excepto en los nodos origen y destino del sistema). Ademads, cada
arco debe satisfacer las limitaciones impuestas por sus cotas inferior y superior, es decir:

I < fro < ug.

El objetivo es, por tanto, encontrar la asignaciéon éptima de flujos fi que minimice el coste total de la
red cumpliendo dichas condiciones.

El PFCM se puede formular como un problema de optimizaciéon matematica del siguiente modo:

minimizar Z ¢ij fij (2.7)
i,jEV
sujeto a Z fij — Z fin=0 (2.8)
ijev J.hEV
fij < wg i,j€V (2.9)
fij > lij i,7€V. (2.10)

Notese que se ha modificado la notaciéon para mayor simplicidad. En lugar de etiquetar cada flujo,
coste y cota por el indice del arco correpondiente k, se ha denotado en funcién de los nodos que se
conectan, de forma que k = (4, 7).

La funcién objetivo (2.7) representa el coste total asociado al flujo que circula por la red y busca
minimizar el coste de transportar unidades de flujo desde el nodo 4 hasta el nodo j. La restriccién (2.8)
hace referencia a la conservacién de flujo. Las ecuaciones (2.9) y (2.10) son las restricciones relativas
a las limitaciones de la red, estableciendo el limite superior e inferior de flujo en cada arco.

Podriamos ejemplificar un problema de este tipo con una red, donde los nodos son ciudades y los
arcos representan carreteras entre ellas. Se quiere abastecer de un determinado producto a las ciudades,
enviandolo desde una ciudad origen hasta una ciudad destino. Cada arco tiene un coste asociado c;;
por unidad de flujo que circula por él, asi como una capacidad maxima u;; y minima l;;. El objetivo
es determinar la cantidad de producto que debe enviarse por cada carretera para minimizar el coste
total, asegurando que se respeten las capacidades y la conservacién de flujo en cada ciudad.

2.2.3. El problema de transporte

El problema de transporte es un caso particular del problema de flujo en redes a coste minimo,
en el cual se tienen que minimizar los costes asociados a los flujos de la red. Sin embargo, ahora se
trata de un grafo bipartito, donde los nodos se dividen en dos conjuntos diferenciados: Ny y Na.

Los nodos ¢ de Ny se denominan nodos de suministro y tienen una capacidad asociada s; > 0.
Necesariamente todos los arcos del problema partirdn de un nodo de este conjunto. Por otro lado, los
nodos j de N3 se definen como nodos de demanda y tienen asociada una demanda d; > 0. Los arcos de
la red incidirdn en los nodos de este conjunto. Cada arco k = (i, j) representa un canal de distribucién
con un coste asociado cy,.
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El problema de transporte consiste en usar los nodos de suministro para satisfacer todas las de-
mandas a coste minimo. Para que el problerr'la .teng.a solucpn es necesario que Doien; Si = 2 jen, 4
Se puede formular como un problema de optimizacién del siguiente modo:

minimizar Z cij fij (2.11)
i,jEV

sujeto a Z fij S Si 1€ N1 (212)
1,JEV

> fii=d; jE N, (2.13)
i,jEV

fij 20 (2.14)

La funcién objetivo (2.11) representa el coste total asociado al flujo que circula por la red, que es lo
que se quiere minimizar. La restriccién (2.12) es necesaria para asegurar que se respeta la capacidad
de los origenes. Por otro lado, la restriccién (2.13), indica que a cada elemento de Ny han de llegar
exactamente d; unidades, para satisfacer la demanda de los destinos.

En este problema, es muy comtn considerar los nodos de N7 como almacenes o fabricas y los nodos
de N5 como clientes o tiendas.

Se puede observar una representacién de un ejemplo del problema de transporte en la Figura 2.4,
donde los nodos de suministro 1,2 y 3 son los nodos representados en la parte izquierda y los nodos
de demanda 4,5 y 6 los situados en la parte derecha. Cada uno de ellos esta asociado a una capacidad
(si) o demanda (d;) respectivamente. Ademads, los arcos tienen un coste por unidad de flujo asociado
(cij) y un flujo (fi;) que circula por ellos y que es lo que queremos determinar para minimizar el coste
total.

Figura 2.4: Representacion del problema de transporte.

En el problema formulado anteriormente, se ha considerado un caso que puede no ser equilibrado, es
decir, que la suma de las capacidades de los nodos de suministro no sea igual a la suma de las demandas
de los nodos de demanda. La condicién necesaria y suficiente para que un problema de transporte tenga
una solucién factible es que el problema esté equilibrado. Si no es asi, se puede transformar en uno
equilibrado anadiendo un nodo ficticio de suministro o de demanda, segtin sea necesario.



Capitulo 3

Problemas de rutas

En el capitulo anterior se han introducido los fundamentos tedricos de la optimizacién, desde los
modelos convexos y enteros hasta los problemas clasicos de optimizacién en redes. Estos contenidos
proporcionan el marco teérico necesario para abordar uno de los campos mas relevantes de la optimi-
zacién combinatoria: los problemas de rutas.

En este capitulo se presentan los principales problemas de optimizacion asociados a la planificacién
y disefio de rutas. Se parte del problema mas general, el problema del viajante de comercio (Seccién
3.1). A continuacién, se introducen los problemas de rutas de vehiculos (Seccién 3.2), los cuales son una
extension del problema anterior, incorporando multiples vehiculos y restricciones operativas propias.
Posteriormente, se aborda el caso particular de los problemas de rutas de vehiculos eléctricos (Seccién
3.3), que constituye el objeto de estudio de este Trabajo Fin de Méster. Ademds de presentar estas
formulaciones, se describen las principales metodologias empleadas para su resolucién (Seccién 3.4).
Dado que estos problemas suelen ser dificiles de resolver, se introducen tanto métodos exactos, dise-
nados para encontrar soluciones 6ptimas, como métodos heuristicos, que ofrecen soluciones de buena
calidad con un coste computacional reducido.

3.1. El problema del viajante de comercio

En esta seccién se hard una revision del problema del viajante de comercio (TSP)!, que
constituye uno de los problemas més estudiados en optimizacién combinatoria y que, ademas, sirve
de base para el desarrollo del problema de rutas de vehiculos. Se usara [18] como referencia principal
para esta seccion.

Este problema fue estudiado por primera vez en el siglo XVIII por los mateméticos Hamilton y
Kirkman, pero no fue hasta el siglo XX cuando se empezd a analizar en profundidad. Es un problema
NP-duro, lo que implica que no se conocen algoritmos que lo resuelvan en tiempo polinomial ni para
verificar la optimalidad de una solucién dada. En el caso de una casuistica con n ciudades, el niimero
posible de rutas es (ngl)! , 1o que hace inviable la buisqueda exhaustiva de la solucién 6ptima para valo-
res grandes de n. Es por ello que se han desarrollado numerosos métodos heuristicos y metaheuristicos

para encontrar soluciones aproximadas en tiempos razonables.

En el problema del viajante de comercio se busca encontrar la ruta mas corta que permite a un
viajante visitar un conjunto de ciudades exactamente una vez y regresar a la ciudad de origen. Este

IDel inglés Traveling Salesman Problem.

13
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problema se puede modelar mediante un grafo G dirigido con n nodos, donde cada nodo representa
una ciudad y cada arco (i, j) tiene un coste asociado c¢;;, que representa la distancia o el coste de viajar
de la ciudad ¢ a la ciudad j.

Si se plantea como un problema de flujo en redes, se tratard de un problema de transporte donde
cada nodo tiene una demanda y una capacidad igual a 1. En este modelo se asignan flujos a los arcos,
que denotaremos por x;; € {0,1}, indicando si el viajante se desplaza de la ciudad i a la ciudad j o
no. El objetivo es encontrar un circuito hamiltoniano, que se define como un circuito que contiene a
todos los vértices de la red exactamente una vez.

La formulacién matemaética del TSP es la siguiente:

minimizar Z Cij%ij (3.1)
i,jEV
sujeto a Z x5 =1 YieV (3.2)
JEV
> wy=1 VieV (3.3)
i€V
Yoo =1 VS cV (3.4)
i€5,7EV\S
i € {0,1} Vi,j eV (3.5)

La funcién objetivo (3.1) busca minimizar el coste total del recorrido, que es la suma de los costes
asociados a cada arco que forme parte de la ruta. Las restricciones (3.2) y (3.3) aseguran que a cada
ciudad se llega y se sale exactamente una vez, cumpliendo las condiciones del problema por conservacién
de flujo. La restriccion (3.4) es necesaria para evitar la formacién de subciclos en la solucién, asegurando
que la ruta visitard todas las ciudades en un tnico recorrido. Para cada subconjunto de nodos S, es
necesario que el vehiculo tenga, al menos, una arista de salida. Finalmente, la restricciéon (3.5) define
las variables de decisién como binarias, indicando si un arco forma parte de la ruta o no.

Un ejemplo de problema TSP se puede observar en la Figura 3.1, donde se representa una red con
5 ciudades, nodos de color azul (1-5), junto con la ciudad de origen (0), que aparece representada de
color naranja. La ruta que minimiza el camino que tiene que realizar el viajante se representa con los
arcos dirigidos de color negro.
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Figura 3.1: Representacién del TSP.

Los problemas TSP tienen multiples aplicaciones practicas, como la planificacién de rutas, la lo-
gistica de distribucién y la optimizacién de itinerarios de viaje. En concreto, el TSP sirve como base
para el desarrollo del problema de rutas de vehiculos, que se vera a continuacién.

3.2. El problema de rutas de vehiculos

Los problemas de rutas de vehiculos (VRP)! son una adaptacién del problema teérico anterior a
la industria del transporte y la logistica. Fue planteado por primera vez en 1959 por Dantzig y Ramser
[7] v desde entonces ha sido objeto de numerosos estudios e investigaciones debido a su relevancia
préactica y su complejidad computacional. Su objetivo principal consiste en determinar las rutas 6ptimas
que deben seguir un conjunto de vehiculos, partiendo de un almacén o base operativa y satisfaciendo
las demandas de un conjunto de clientes, minimizando los costes asociados al transporte.

El VRP tiene diversas aplicaciones en diferentes sectores, como la logistica y distribucién, servicios
de mensajeria y paqueteria, transporte publico o sanitario, entre otros. En un mundo cada vez mas
globalizado, estas aplicaciones son fundamentales para garantizar la eficiencia y sostenibilidad de las
operaciones. Ademds, hace del VRP un problema de gran impacto econémico y social. Como el TSP,
se trata de un problema NP-duro. Por todo ello, se vuelve crucial el estudio y desarrollo de métodos
eficientes para su resolucion.

Se han desarrollado multiples variantes del VRP para adaptarse a diferentes contextos y restric-
ciones. Entre las mds conocidas estdn el problema VRP con capacidades (CVRP)?, el VRP con flota
heterogénea (FSMVRP)? o el VRP con ventanas de tiempo (VRPTW)?. Estas variantes aparecen
recogidas en [22]. Dado que se trata de un ambito de investigacién en continua evolucién, siguen desa-
rrollandose nuevos modelos para dar respuesta a las necesidades logisticas actuales. Entre ellos destaca
el problema de rutas de vehiculos con colaboracién en clientes compartidos (SSC-VRP)?, descrito en
[9].

Ademas, para abordar la resolucién de estos problemas y todas sus variantes, existen diferentes

IDel inglés Vehicle Routing Problem.

2Del inglés Capacitated Vehicle Routing Problem.

3Del inglés Fleet Size and Mix Vehicle Routing Problem.

4Del inglés Vehicle Routing Problem with Time Windows.

5Del inglés Shared Customer Collaboration Vehicle Routing Problem.
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enfoques y técnicas de resolucion. En la Seccién 3.4 se abordaran métodos heuristicos, como el algoritmo
del vecino més préximo o el algoritmo 2-opt, utiles para encontrar soluciones aproximadas en tiempos
razonables.

Se presentard a continuaciéon una formulacién matematica del CVRP, que es una de las variantes
mas estudiadas y servird de apoyo para poder presentar el problema de rutas de vehiculos eléctricos
en la siguiente seccién. La notacién empleada, obtenida de [22], seré:

= V={0,1,...,n} es el conjunto de nodos, donde el nodo 0 representa el almacén y los nodos
1,...,n representan los clientes.

= S se corresponde con un conjunto de clientes arbitrario tal que S C V\{0}.

= K = {1,...,m}, con m € Nym > 1 es el conjunto de vehiculos disponibles, cada uno con
capacidad C.

= §; hace referencia a la demanda del cliente i € V\{0}.

= 7(S) indica la cantidad minima de vehiculos necesarios para satisfacer la demanda del conjunto

S.

La formulacién mateméatica del CVRP es la siguiente:

minimizar Z CijTij (3.6)
ijeV
sujeto a Z Toj =m (3.7)
JjeEV
Z Tio =M (38)
eV
S =1 Vi € V\{0} (3.9)
jev
Y a=1 vj e V\{0} (3.10)
eV
> @ =r(S) VS c V\{0} (3.11)
i€S,7eV\S
Tij € {0, ].} Vi, jeVv (312)

Vemos que, como en el TSP, la funcién objetivo (3.6) busca minimizar el coste total del recorrido, que
es la suma de los costes asociados a cada arco que conforma la ruta. La restriccién (3.7) impone que
los m vehiculos empleados deben salir del almacén, mientras que la restriccién (3.8) asegura que los m
vehiculos vuelven al mismo punto al finalizar la ruta. Las restricciones (3.9) y (3.10) garantizan que
cada cliente es visitado exactamente una vez. La restriccién (3.11) acttia como eliminacién de subtours
y asegura que la demanda total de los clientes no sea superior a C', como veremos a continuacién. Por
ultimo, la restriccién (3.12) indica que las variables x;; son binarias y tomaran el valor 1 si el arco
(i,4) forma parte de la ruta y 0 en caso contrario.

Para determinar el nimero minimo de vehiculos necesarios 7(.S) es necesario resolver el siguiente
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problema;:

minimizar Z Yk (3.13)

keK
sujeto a Zéizik < yC Vk e K (3.14)

i€S
S a=1 Vies (3.15)

keK
yr € {0,1} Vk € K, (3.16)
zi € {0,1} Vie S ke K, (3.17)

donde K es el conjunto de vehiculos disponibles, z;; es la variable binaria que indica si el cliente i es
atendido por el vehiculo k e yi se corresponde con la variable binaria que indica si el vehiculo k es
utilizado.

El valor de r(S) sera la suma de las variables y; que cumplan las restricciones planteadas, es decir,
el valor de la funcién objetivo (3.13). La primera, ecuacioén (3.14), asegura que la demanda total de los
clientes que son atendidos por el vehiculo k no supere la capacidad del mismo. La restriccién (3.15)
garantiza que cada cliente es atendido por un tnico vehiculo. Finalmente, las restricciones (3.16) y
(3.17) define el dominio de las variables binarias yx y zik.

La formulacién 3.6 recoge un modelo general para el CVRP que se puede adaptar facilmente a la
casuistica del problema. Por ejemplo, el conjunto K es un conjunto no acotado en el que suponemos
que no existe una limitacion de los vehiculos de los que podemos hacer uso, sin embargo, esto se puede
adaptar a un problema donde dispongamos de un niimero ilimitado de ellos.

. . . . Dl . .

Noétese ademés que la cota inferior para r(S) es [ Yoh 1, por lo que podrfamos sustituir este valor

en la restriccién (3.11) para acotar la regién fatible y reducir los tiempos de computacion.

Se puede ver un ejemplo del problema presentado en la Figura 3.2. Esta es una modificacién del
ejemplo propuesto en la Figura 3.1, donde de nuevo, el nodo origen (0) aparece representado de color
naranja y los 5 nodos relativos a los clientes (1-5) de color azul. En este caso, se hace uso de dos
vehiculos para poder satisfacer las demandas de los clientes cumpliendo la restriccién de capacidad.

3 « 0,3 0

_}/
/xifn
C50

4 —aAa5——» 5

Figura 3.2: Representacion CVRP.
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3.3. El problema de rutas de vehiculos eléctricos

Los problemas de rutas de vehiculos eléctricos (EVRP)' son una extensién de los problemas
VRP, en los que se incorporan las particularidades operativas de los vehiculos eléctricos. En este con-
texto, los medios de transporte empleados, generalmente camiones o furgonetas de reparto, presentan
limitaciones en la distancia que pueden recorrer debido a la capacidad finita de sus baterias. Por ello,
es necesario considerar la planificaciéon de las paradas de recarga a lo largo de las rutas.

La necesidad de recargar las baterias introduce restricciones adicionales en comparacién con los
VRP, donde se deben tener en cuenta situaciones temporales y econdmicas a mayores. Por un lado, los
vehiculos requieren un tiempo especifico para realizar la recarga, lo que aumenta el tiempo necesario
para completar la ruta. Por otro lado, el proceso de carga conlleva un coste asociado al consumo
energético, que debe tenerse en cuenta en la funcién objetivo.

Actualmente, numerosas empresas estan incorporando estos novedosos medios de transporte, por lo
que el dilema de obtener soluciones 6éptimas que minimicen los costes de este problema se vuelve cada
vez mas latente. Gracias a este aumento de vehiculos eléctricos, cada vez se cuenta con mas puntos
de recarga, lo que hace que no haya que desviarse en exceso de las rutas fijadas y se logren mejores
soluciones.

El objetivo principal de los EVRP se basa en encontrar las rutas 6ptimas para un conjunto de
vehiculos que parten de un almacén o base operativa, recorren los nodos relativos a los clientes que
tienen unas demandas asociadas y vuelven al punto inicial de la ruta. En este trayecto se debe tener
en cuenta que el camion tiene un tiempo de autonomia limitado, por lo que antes de que se agote la
bateria el vehiculo debera parar en una estaciéon o punto de carga. Esto anade decisiones adicionales
respecto del VRP sobre dénde se debe de recargar la bateria, cudndo se debe parar y cudnta energia
se debe de recargar en cada parada.

En este trabajo se presenta una formulaciéon matemética del EVRP con ventanas temporales y flota
homogénea, en la que cada cliente debe ser atendido dentro de un intervalo de tiempo predefinido. En
primer lugar, se introducirdn los conjuntos, pardmetros y variables empleados, que se obtuvieron de
[16]:

= N={1,...,n} es el conjunto de clientes que se deben visitar.

= F={n+1,...,n+ p} se corresponde con las estaciones de carga disponibles.

s V={0JUNUF ={0,1,...,n,n+1,...,n + p} representa la totalidad de los nodos, donde el
nodo 0 es el punto de inicio y fin de la ruta.

= K ={1,...,m}, con m € Nym > 1, es el conjunto de vehiculos disponibles, cada uno con
capacidad C.

= [a;, b;] es el intervalo temporal en el que debe ser visitado el nodo i.

= 3; es el tiempo que un vehiculo tarda en completar la operacién una vez se encuentra en el nodo
i.

= J; se corresponde con la demanda del nodo i.
= w; es el precio de cargar el camién en el punto de carga 1.

= d;; representa el tiempo que se tarda en ir del nodo 4 al nodo j.

IDel inglés FElectric Vehicle Routing Problem.
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= c;; hace referencia al coste de ir del nodo ¢ al nodo j.
= 7 indica el tiempo de carga que se requiere por unidad de energia.
= g es la energia consumida por unidad de distancia.

= () se corresponde con la capacidad energética de los vehiculos. Suponemos que es igual para
todos.

= tf es una variable de decisiéon continua que define el tiempo de llegada del vehiculo & al punto .
= yf es una variable de decisién continua que indica el nivel de energia del vehiculo k en el nodo 1.

. xfj € {0,1} es una variable de decisién binaria que vale 1 si el arco (i,7) esta en la ruta del

vehiculo k£ y 0 en otro caso.

» z; € {0,1} es una variable de decisién binaria que vale 1 si la estacién i es usada y 0 en otro caso.

El problema de optimizacién que se ha de resolver es el siguiente:

minimizar Z Z cijxfj +sz‘2’i (3.18)

keK i,jEV i€EF
sujeto a Z Z xfj— =1, Vie N (3.19)

keEK jeV

o> ak<, Vie F (3.20)

kEK jEV

> oab; =1, Vk e K (3.21)

jeVv

> oak = > ak =0, VieV\{0}, ke K (3.22)

eV heVv

> k=1, Vk e K (3.23)

i€V

>y ak<c, Vk e K (3.24)

iEN  jeV

th+ (si+dij)al; —th < (1—af)L, Vi,j € Nke€ K,L>>0 (3.25)

th+dal +7(Q—yf) —tF < (L+7Q)(1—2f)), VieF,jeNkeK,L>>0 (3.26)

(qdij)x;ej - Q1 - 'I:f]) < yzk - y?a Vi,j e Nk e K (3.27)

yi =) < (adig)ai; + Q1 — afy), Vi,j € Nke K (3.28)

dooak=1, Vk e K (3.29)

i€EN,JEF

ay; <z, VicF,je Nke K (3.30)

af; < zj, VieN,jeFkeK (3.31)

a; <tF < b, Vie N,ke K (3.32)

xl, 2 € {0,1}, Vi,jeVke K (3.33)

yF eR, VieVke K (3.34)

th e RY, VieV ke K. (3.35)

Se formulé un problema de minimizacién, donde la funcién objetivo (3.18) pretende minimizar el coste
total, que consiste en la suma de los costes asociado a la distancia recorrida por el vehiculo y los costes
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asociados a la recarga de la baterfa. Se puede ver la explicacién de las restricciones en [16], que se
incluirdn a continuacién. La restriccién (3.19) asegura que todos los clientes son visitados por algin
vehiculo. En la restriccién (3.20) se obliga a que cada estacién de carga sea visitada como maximo
una vez. Las restricciones (3.21) y (3.23) garantizan que los camiones inician y finalizan el recorrido
en el almacén. La restriccion (3.22) establece la conservacién de flujo por vehiculo en cada nodo (si un
vehiculo llega a un nodo debe existir la correspondiente salida). La ecuacién (3.24) impone la restriccién
de capacidad del vehiculo, evitando que la suma de las demandas atendidas supere C'. Las restricciones
(3.25) y (3.26) establecen una secuencia temporal para las visitas a los nodos y las cargas de las baterias,
usando una constante suficientemente grande, L, para desactivar las desigualdades cuando el arco no
es seleccionado. Las restricciones (3.27) y (3.28) relacionan el consumo de energfa por distancia con
el nivel de carga de la baterfa antes y después de cada desplazamiento. La restriccion (3.29) obliga
a que cada vehiculo incluya en su recorrido una parada en una estaciéon de carga, mientras que las
restricciones (3.30) y (3.31) aseguran que si no se usa una estaciéon, no puede haber arcos incidentes.
Finalmente, la restriccién (3.32) asegura que las llegadas a clientes respeten sus ventanas temporales,
y las restricciones (3.33), (3.34) y (3.35) definen el dominio de las variables empleadas.

Se incluye un ejemplo de un problema EVRP con vehiculos eléctricos en la Figura 3.3. Esto repre-
senta la solucién del problema que se planteard en la Seccién 4, que encaja con el problema general
descrito con un solo camién. Se observan los elementos que ya se introdujeron en los ejemplos an-
teriores. Sin embargo, ahora se cuenta con nodos para las estaciones de carga eléctrica (12-16) (de
color verde) donde los camiones podrian parar a recargar las baterfas, y un nodo correspondiente a la
descarga (11) (de color morado), que es el tltimo visitado antes de volver a la base operativa.

1
2

5

16 . 13 *

L —N e 14

8 12
15
11

Figura 3.3: Representacién EVRP.
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3.4. Meétodos de resolucion

A la hora de abordar un problema de optimizacién, un aspecto fundamental es la seleccién de los
métodos de resolucién, ya que cada uno de ellos tiene diferentes propiedades en relacién con la calidad
de las soluciones obtenidas, que pueden ser el 6ptimo o aproximaciones de este, y los diferentes tiempos
de ejecucién obtenidos.

En el caso de los problemas de vehiculos eléctricos definidos en la Seccién 3.3, se trata de problemas
NP-duros, por lo que esta eleccion se vuelve atin més importante. Existen dos grandes métodos para
encontrar la solucion a los problemas planteados: los métodos exactos y las heuristicas.

Los métodos exactos permiten encontrar una solucién con la garantia de que esta es la éptima. Sin
embargo, su principal inconveniente es un coste computacional muy elevado, que suele incrementarse
con la dificultad del problema. Por otro lado, las heuristicas son procedimientos especificos diseniados
para cada tipo de problema con el objetivo de encontrar soluciones buenas, pese a que no aseguran
que sean 6ptimas. Estas técnicas se basan en la estructura del problema y, en general, son mas veloces
que los métodos exactos.

Ademas de los métodos presentados en esta seccién, es posible encontrar un andlisis mas detallado
de otras técnicas en [22], asi como una descripcién més profunda de cada algoritmo en las referencias
especificas correspondientes.

3.4.1. Meétodos exactos

Los métodos exactos se basan en formulaciones mateméaticas rigurosas y en algoritmos capaces de
explorar de forma exhaustiva el espacio de soluciones, lo que asegura encontrar una soluciéon éptima.
No obstante, su aplicabilidad puede verse limitada en problemas excesivamente complejos o de gran
tamafo, ya que para resolverlos se emplearian tiempos excesivos. Por este motivo, los métodos exactos
se emplean principalmente en problemas de pequefio tamafio o como herramienta para comparar la
eficiencia de otros métodos.

La técnica mas empleada para resolver problemas MIP, como el que abordaremos méas adelante, es
el método de Branch and Bound' (B&B) [4]. De manera general, este algoritmo divide el espacio en
regiones, proceso que se llama ramificacion, y en cada region busca una solucién factible que compara
con la mejor solucién obtenida hasta el momento, que constituye la acotacion.

En la fase de ramificaciéon, el problema original se divide en subproblemas més pequenios al impo-
ner restricciones adicionales sobre ciertas variables. De esta manera, se genera un arbol cuyos nodos
representan versiones restringidas del problema inicial. Cada subproblema se resuelve relajando las res-
tricciones de integralidad, lo que produce un limite inferior (o superior, segtn el tipo de optimizacién)
para el valor éptimo del subproblema.

La fase de acotacién consiste en comparar el valor de la relajacion de cada nodo con la mejor
solucién entera conocida hasta ese momento. Si el valor de la relajacién indica que el subproblema
no puede conducir a una solucién mejor, dicho nodo se descarta. Este proceso, conocido como poda,
reduce de forma significativa el nimero de subproblemas que deben explorarse.

Al inicio del proceso se definen los conjuntos de soluciones factibles y de subespacios aun no
explorados y se actualizan en cada punto del algoritmo. Se parte de una solucién inicial igual a oo, y
un subespacio que es el conjunto total.

1En castellano ramificar y acotar.
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Existen ademds otros métodos exactos como el Branch and Cut' (B&C) [5], que es una extensiéon
del método Branch and Bound. En este caso, ademéas del proceso de ramificacién, se incorporan de
forma iterativa cortes que eliminan las soluciones no enteras que aparecen al resolver la relajacién
lineal del problema, sin descartar ninguna solucién entera factible.. Estos cortes permiten ir reduciendo
progresivamente el tamano del arbol de biisqueda y mejorando los tiempos de cémputo del algoritmo.

Otra técnica de resolucién exacta ampliamente conocida es el algoritmo de Benders [2], que se
basa en la descomposicién del problema original en un problema maestro y uno o varios subproblemas.
Este método resulta especialmente adecuado para problemas que presentan variables complicantes,
que son problemas en los que parte importante de la complejidad de su resoluciéon se debe a un
subconjunto, tipicamente pequenio, del conjunto de variables. El algoritmo resuelve de forma iterativa
el problema maestro, que contiene las variables complicantes, incorporando informacién procedente de
los subproblemas hasta converger a una solucién 6ptima del problema original.

3.4.2. Heuristicas

Las técnicas heuristicas nacen de la necesidad de reducir los altos tiempos computacionales de los
métodos exactos para la resolucién de los problemas de optimizacién. Estas técnicas se disenan para
obtener soluciones de buena calidad y son especialmente ttiles en problemas de gran dimensién o
excesivamente complicados, donde el célculo de la solucién éptima resulta imposible.

Distinguiremos dos tipos de heuristicas: las constructivas y las de mejora.
= Heuristicas constructivas

Las heuristicas constructivas generan una soluciéon paso a paso, construyéndola desde cero mediante la
incorporacién progresiva de elementos o decisiones del problema. Su objetivo es obtener rapidamente
una solucién inicial factible, que posteriormente puede ser utilizada como punto de partida para otros
métodos de mejora.

Existen una infinidad de heuristicas constructivas. Una ampliamente conocida y empleada para
resolver los VRP es el algoritmo del vecino més préximo [14], que se basa en construir una
solucion inicial seleccionando a cada paso el nodo més cercano al 1ltimo nodo visitado. Este proceso
se repite hasta que todos los nodos han sido visitados, construyendo una solucién localmente 6ptima
en cada iteracién.

Para implementar este algoritmo se sigue el siguiente procedimiento:

1. Se elige un nodo inicial, normalmente el depésito o base operativa.

2. A partir del punto selecionado, se busca entre los nodos no visitados aquel més cercano.

3. Se anade el nodo nuevo a la ruta y se marca como visitado.

4. Se actualiza la posicién del vehiculo.

5. Se repiten los pasos previos hasta que ya no quedan nodos sin visitar y se finaliza la ruta.

Se puede ver un ejemplo de construccién de la ruta en la Figura 3.4, donde se observa cémo en

la figura de la izaquierda, que se corresponderia con la primera iteracion del algoritmo, se unieron
los nodos 0 y 1, por ser este uno de los més cercano, junto con 5. A continuacién, en la figura de la

IEn castellano ramificar y cortar.
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derecha, se anadi6 el nodo 2, que era el mas cercano al nodo 1. El algoritmo continuaria hasta haber
recorrido todos los nodos o hasta satisfacer algin criterio de parada.

2 44— a2 1

\ \

.
P

)

<

Figura 3.4: Representacién de las dos primeras iteraciones del algoritmo del vecino mas préoximo.

= Heuristicas de mejora

Las heuristicas de mejora parten de una solucién inicial factible, como podria ser la obtenida
por el algoritmo del vecino mas proximo, y buscan mejorarla mediante la aplicacién de pequenas
modificaciones. Su objetivo principal es evitar los éptimos locales a favor de una solucién 6ptima
globalmente.

Entre las heuristicas de mejora mds conocidas se encuentra el algoritmo 2-opt [6], muy empleado
para la resolucion de los problemas TSP y VRP. Partiendo de una solucién inical, este método consiste
en seleccionar dos nodos de la ruta que formen un segmento e invertir el sentido de los arcos que
conforman dicho segmento. El objetivo de este procedimiento es reducir el coste de la funcién objetivo
de forma que se eliminen rutas ineficientes. Si este cambio mejora la solucién, entonces se acepta y se
incorpora a la nueva ruta. Este proceso se repite iterativamente hasta que no se pueden encontrar més
mejoras.

A continuacién se recogen los pasos a seguir de forma detallada:

1. Se toma una solucién inicial, por ejemplo la dada por el algoritmo del vecino méas préximo.
2. Se seleccionan dos nodos 7 y j de la ruta.

3. Se eliminan todos los arcos que unen estos dos puntos, que pueden ser uno o varios si hay nodos
intermedios.

Se vuelven a conectar los nodos i y j de forma que se invierte su orden y todos los intermedios.
Se verifica si esta ruta es factible y se calcula su funcién objetivo.

Si la solucién es mejor que la anterior, se acepta el cambio.

NS o e

Se repite el proceso hasta haber comprobado todos los intercambios posibles.

Se presenta un ejemplo grafico en la Figura 3.5, donde se observa como se hace un intercambio con
el algoritmo 2-opt para intentar reducir el coste total de la solucién. En €l se seleccionan los nodos 2
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y 3y se intercambia el arco (2,3) por el arco (3,2). Es decir, partimos de la ruta (0,1,2,3,4,5,0) y
obtenemos la ruta (0,1, 3,2,4,5,0). Se puede ver facilmente que esta solucién no mejora el coste de la
ruta, por lo tanto no se aceptaria este intercambio y se seguiria con la siguiente iteracion.
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Figura 3.5: Representacion de un intercambio 2-opt.



Capitulo 4

Implementacion y evaluacion de
resultados

Una vez establecidas las bases tedricas de los problemas de rutas de vehiculos y analizada en detalle
la variante con vehiculos eléctricos, se esté en disposicién de abordar un caso real que permita poner en
préactica los conceptos estudiados. En este capitulo se formula la casuistica propuesta por Trucksters,
Seccion 4.1 y se hace una seleccion de los métodos empleados para su resoluciéon, Seccion 4.2. Asimismo,
se incluye el pseudocodigo utilizado en el desarrollo de los programas implementados. Finalmente, en la
Seccion 4.3 se muestran y evalian los resultados obtenidos, comparando el comportamiento del modelo
exacto con los distintos algoritmos aplicados.

4.1. Formulacion del caso de estudio

Para ilustrar los conceptos tedricos introducidos en los capitulos anteriores, la empresa Trucksters
plantea un problema de rutas con vehiculos eléctricos que se ajusta a las caracteristicas del EVRP
descrito en la Seccién 3.3. El objetivo de esta seccién es detallar la casuistica de la empresa, desde la
definicién del problema de negocio hasta la formulacién del mismo.

En este caso, se cuenta con un tnico camién que debe partir de su base operativa y regresar a ella
en un tiempo maximo establecido. El cliente ha proporcionado un conjunto de puntos de recogida en
los que el vehiculo debe detenerse para cargar la mercancia, asi como una ubicacion final donde debe
realizarse la descarga tras completar todas las recogidas. Como se trabaja con un vehiculo eléctrico, el
camién tiene una autonomia limitada, por lo que resulta necesario incluir una parada en una estacién
de carga a lo largo de la ruta. Existen dos empresas eléctricas cuyos cargadores tienen diferentes precios
asociados. Por consiguiente, se requiere decidir el orden en el que el vehiculo visitara los puntos de
recogida y, ademas, determinar en qué estaciéon de carga y en qué punto de la ruta se debe hacer la
parada.

Bajo este contexto, el problema abordado en este Trabajo Din de Méster puede interpretarse como
una instancia concreta del EVRP sin ventanas temporales, con flota homogénea de un tnico vehiculo,
multiples puntos de recogida, un tinico punto de descarga final y estaciones de carga heterogéneas en
coste y ubicacion.

A continuacion, se introducen los conjuntos, pardmetros y variables necesarios para llevar a cabo
la formulacién del problema:

25
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= N=NCUNP ={1,...,n} es el conjunto de nodos asociados al cliente.
- N ={1,...,n — 1} hace referencia a los nodos de recogida.

- NP = {n} hace referencia al nodo de descarga.

= F={n+1,...,n+ p} se corresponde con las estaciones de carga disponibles.

= V={0}U{0*}UNUF ={0,0%,1,...,n—1,n,n+1,...,n+p} representa el conjunto de nodos,
donde el nodo 0 es la base operativa y 0*! representa una base operativa ficticia.

» ¢;; hace referencia al coste de ir del nodo 7 al nodo j. Este coste se calculara como el producto
de los kilémetros recorridos y el precio del kilémetro.

= w; es el precio de cargar el camioén en el punto de carga 1.

= d;; representa el tiempo que se tarda en ir del nodo 4 al nodo j.

= t; es una variable de decision continua que define el tiempo de llegada del vehiculo al punto 7.

» z;; € {0,1} es una variable de decisién binaria que vale 1 si el arco (4, j) estd en la ruta y 0 en
otro caso.

= 2; € {0,1} es una variable de decisién binaria que vale 1 si la estacién ¢ es usada y 0 en otro caso.

Desde la perspectiva de negocio, el objetivo general conlleva tanto la reducciéon de costes fijos,
tales como el alquiler del camién, el salario del conductor o los seguros, asi como de costes variables,
asociados directamente a la ruta y a las operaciones de recarga. Dado que los costes fijos no dependen de
la planificacién concreta, el objetivo del problema consiste en minimizar los costes variables, definidos
como la suma del coste derivado de los kilémetros recorridos y el coste asociado a la recarga del vehiculo
eléctrico.

La formulacién del EVRP adaptada a las necesidades de Trucksters es:

IEste nodo es necesario para la programacién del problema, ya que evitamos la formacién de ciclos en la solucién.
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minimizar Z Cijxij + Zwlzz (4.1)

i,jEV i€F
sujeto a Z xi =1, Vie VA\{FU{0"}} (4.2)
jev
> @i = ) wn =0, Vi e VA {0y u {0}y (43)
eV heV
Z Toj = 1 (44)
JeVA{{oru{o-}}
i€V\{{0}u{0*}}
ti>ti— (1= am)L Vie N°je NP L>>0 (4.7
heV
t; + dijfij — tj < (1 - l’ij)L, V’L,j c ‘/, L>0 (48)

> =1 (4.9)

i€ENU{0},jeF

Tij < Zi, Vie F,je N (4.10)
zij < 74, Vie N,jeF (4.11)
x5, 2; € {0,1}, Vi,j eV (4.12)
t; € RT, VieV. (4.13)

Se ha planteado un problema de minimizacién, donde la funcién objetivo, (4.1), recoge las variables
asociadas a los costes. Como se dijo anteriormente, el propodsito del problema es minimizar los costes
que conlleva la distancia de la ruta y los costes asociados a la bateria eléctrica. Notese que ambos
sumandos de esta funcién se miden en euros, pudiendo contabilizar su valor de manera sencilla.

Se verd a continuacién qué representan las restricciones planteadas. La primera, (4.2), nos asegura
que el camién saldra de todos los puntos de recogida, el punto de descarga y la base operativa,
exactamente una vez. En la restriccién (4.3) se impone que si existe un arco de llegada a un nodo,
también tiene que haber un arco de salida, con excepcion del punto de partida y de llegada, que es
la base operativa ficticia. La restriccién (4.4) obliga al vehiculo a partir de la base operativa y la
(4.5) obliga a volver a la base operativa ficticia, que en el problema real serfan el mismo punto. La
siguiente restriccion, la ec. (4.6), evita que el vehiculo, una vez llegue a la base operativa ficticia, siga
con la ruta. Por otro lado, la restriccién (4.7) impone que el nodo de descarga solo se visite una vez
que el camién haya pasado por todos los puntos de recogida. La restriccion (4.8) hace referencia a
la ordenacién temporal de las visitas a los distintos puntos de recogida. La necesidad de parar en un
punto de carga aparece recogida en la restricciéon (4.9). Las restricciones (4.10) y ec. (4.11) nos dicen
que si un cargador no es usado, no existird un arco que vaya hasta él. Por ltimo, la restriccién (4.12)
nos indica que dichas variables son binarias.

Se puede ver cémo esta formulacién es una adaptacién del modelo general de la Seccién 3.3 a este
caso concreto. Se ha eliminado la restriccién relativa a la capacidad del vehiculo (restriccién (3.24)
del modelo general), ya que se asume que el camién tiene capacidad suficiente para atender a todas
las demandas. De forma similar, al tratarse de instancias pequenas, se ha prescindido de las variables
relativas a la energia consumida (q) y la capacidad energética (Q), asi como de sus restricciones
asociadas (restricciones (3.26), (3.27) y (3.28)). La ruta se realiza con un solo camién, por lo que se
han eliminado los indices correspondientes a los vehiculos en las variables y restricciones, asi como las
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referencias a las ventanas temporales (restricciéon (3.32)), ya que no es relevante para la resolucion.
Por dltimo, se han anadido nuevas restricciones, que son las ecuaciones (4.6) y (4.7), que no estaban
presentes en el modelo general y el nodo ficticio 0*.

4.2. Técnicas seleccionadas

Una vez planteado el problema que se va a abordar y explicitado su formulacién, es necesario
seleccionar qué métodos se emplearan para su resoluciéon. Esta seleccién viene motivada tanto por el
objetivo de negocio de Trucksters, que consiste en automatizar el proceso manual de planificacién del
camién eléctrico, reduciendo los tiempos de planificacién actuales y proporcionando rutas factibles a
un coste operativo competitivo, como por el objetivo técnico de este Trabajo Fin de Master, que es
analizar y determinar qué algoritmo de optimizacion resulta més adecuado para la casuistica concreta
de la empresa.

Con el fin de dar respuesta a ambos objetivos, y apoyandose en las técnicas descritas en la Secciéon
3.4, se seleccionan tres métodos de resolucién con caracteristicas complementarias. En primer lugar, se
considera un método exacto, implementado mediante el solver SCIP, que permite obtener soluciones
Optimas o de referencia para el problema planteado. En segundo lugar, se emplea una heuristica cons-
tructiva, concretamente el algoritmo del vecino méas préximo, caracterizada por su simplicidad y bajo
tiempo de ejecucién. Por dltimo, se aplica una heuristica de mejora, el algoritmo 2-opt, cuyo objetivo
es refinar soluciones iniciales y mejorar su calidad sin incurrir en elevados costes computacionales.

El objetivo de esta seccién es comparar estos tres métodos para seleccionar el mas adecuado para
el caso particular que plantea Trucksters. Esta comparacion se realizard atendiendo a dos criterios
fundamentales: la calidad de la solucién, en términos de costes de solucion, y el tiempo de ejecucion,
directamente relacionado con la viabilidad de sustituir el proceso manual actual por un procedimiento
automatico.

4.2.1. Meétodo exacto

En primer lugar, se va a resolver el problema utilizando la formulacién mateméatica planteada. Este
enfoque permite obtener soluciones éptimas, lo que lo convierte en una referencia de calidad frente
a los resultados obtenidos mediante métodos aproximados. Aunque su coste computacional puede ser
elevado para instancias de gran tamaio, resulta adecuado para el problema abordado, proporcionando
asi una referencia de optimalidad.

Existen diversos solvers comerciales y de cédigo abierto capaces de resolver variantes del EVRP
mediante métodos exactos, entre los que destacan Gurobi, CPLEX y SCIP. En este trabajo se emplea
el solver SCIP, un optimizador de cédigo abierto ampliamente utilizado en programacién lineal entera
mixta.

La implementacién del modelo se realiza utilizando la libreria OR-Tools [24], desarrollada por Goo-
gle, que proporciona un entorno de modelado de alto nivel y permite la integracién de distintos solvers
externos. En concreto, OR-Tools se utiliza como herramienta de formulacién del modelo, mientras que
la resolucién se delega en el solver SCIP.

El modelo se codifica siguiendo las variables de decisién, pardmetros, restricciones y funcién objetivo
definidas en la Seccién 4.1. Adicionalmente, el modelo incorpora dos hiperpardmetros: un valor grande
L y un tiempo méaximo de ejecucién. En este trabajo se fija L = 10°, considerado suficientemente grande
para garantizar la validez de las restricciones de tipo big-M (en el problmema, las restricciones 4.7 y
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4.8). No obstante, este valor podria ajustarse de forma més precisa a partir de los limites superiores
de las variables del modelo, lo que se plantea como una linea futura de trabajo.

En cuanto al tiempo méximo de ejecucién, este se adapta al tamano de las instancias consideradas
y su impacto en la calidad de las soluciones se analiza en la Seccién 4.3. Esta parametrizacion permite
equilibrar la obtencién de soluciones de alta calidad con la viabilidad computacional del enfoque exacto.
En este caso se tomara como tiempo méximo un valor de 5 minutos.

4.2.2. Algoritmo del vecino mas préximo

Se ha seleccionado como heuristica constructiva el algoritmo del vecino mas préximo, por ser un
algoritmo sencillo de implementar y que da lugar a soluciones localmente 6ptimas en cada iteracién.
Ademas, su coste computacional es bajo en comparacion con otras heuristicas, lo que lo convierte en
un método interesante para comparar tanto las soluciones obtenidas como los tiempos de ejecucion.

Este método se define originalmente para el TSP y cuenta con multiples adaptaciones estdndar para
el VRP. En la literatura existen también extensiones de esta heuristica orientadas a resolver variantes
del EVRP.

En este Trabajo Fin de Master se propone una adaptacion especifica de la heuristica del vecino
mas proximo para resolver el problema real planteado. El objetivo principal de esta heuristica es la
obtencién de soluciones factibles en tiempos de ejecucion reducidos, por lo que, durante su adaptacién,
se prioriza explicitamente la eficiencia computacional frente a la calidad 6ptima de la solucion.

Una de las particularidades del caso de uso considerado radica en la existencia de una estructura de
precedencia en las visitas, ya que es obligatorio visitar previamente todos los puntos de carga antes de
acceder al punto de descarga. Ademas, el problema presenta un tnico punto de descarga y un conjunto
significativamente mayor de puntos de carga.

Dado que el mayor margen de optimizacién se encuentra en el orden de visita de los puntos de
carga, la heuristica propuesta se estructura en dos fases. En una primera fase se construye una ruta
que parte de la base operativa y conecta todos los nodos de carga siguiendo un criterio optimalidad
local. En una segunda fase, una vez completada la secuencia de cargas, se afiade el punto de descarga.

Adicionalmente, en este caso de uso es suficiente con visitar un tinico punto de recarga en cualquier
punto de la ruta. Por este motivo, la heuristica finaliza insertando un tnico cargador en la posicién
que minimiza el incremento de distancia total de la ruta construida.

Cabe destacar que el algoritmo propuesto no garantiza, en términos generales, la obtencién de
una solucién factible, ya que, una vez finalizado el proceso de enrutamiento, la ruta resultante podria
exceder el limite maximo de distancia permitido.

Para evitar esta situacién, seria necesario incorporar un test de factibilidad durante la construccién
de la ruta, evaluando las restricciones en cada insercién de nodo, lo que conllevaria un incremento de
los tiempos de ejecuciéon. No obstante, tras la validacién experimental del algoritmo sobre el conjunto
de datos utilizado, se ha observado que las soluciones generadas cumplen las restricciones del problema.

En el contexto del estudio comparativo realizado, este algoritmo se plantea explicitamente como una
solucién de referencia orientada a la rapidez de ejecucién, asumiendo que la calidad de las soluciones
obtenidas puede ser inferior a la de métodos méas complejos. Por este motivo, y con el objetivo de no
incrementar la complejidad del algoritmo ni penalizar los tiempos de ejecucién, no se ha incorporado
dicho mecanismo de comprobacién.

Para implementar el algoritmo, se definen previamente las listas de puntos de recogida no visitados
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(loadings), puntos de descarga no visitados (unloadings) y cargadores (chargers). A mayores, a la base
operativa la llamaremos parking y denotaremos como current_loc la posicién del vehiculo en cada
momento. Se puede ver el pseudocodigo empleado para la resolucién en el Algoritmo 1.

Algoritmo 1 Algoritmo del vecino méas préoximo para el EVRP

1: Inicializar solucién vacia

2: Marcar todos los loadings y unloadings como no visitados
3: while existan nodos por visitar do

4 Iniciar nueva ruta desde parking

5 current_loc < parking

> Loadings

6: while existan loadings no visitados do
7: Elegir el loading més cercano a current_loc
8: Anadirlo a la ruta
9: Marcarlo como visitado
10: current_loc ¢ loading elegido
11: end while

> Unloadings
12: while existan unloadings no visitados do
13: Elegir el unloading més cercano a current_loc
14: Anadirlo a la ruta
15: Marcarlo como visitado
16: current_loc < unloading elegido
17: end while

> Insertar charger
18: if hay chargers disponibles then

19: Elegir el méas cercano al ultimo nodo

20: Buscar posicién que minimice aumento de distancia
21: Insertar charger

22: end if

23: Terminar ruta en base operativa

24: Anadir ruta a la solucién

25: end while
26: Verificar restricciones
27: return solucién

4.2.3. Algoritmo 2-opt

Como heuristica de mejora se ha seleccionado el algoritmo 2-opt, partiendo de la solucién inicial
obtenida con el algoritmo del vecino més proximo. Este algoritmo resulta apropiado ya que da lugar
a mejoras en todas las soluciones, gracias al intercambio de aristas que reducen los costes de la ruta.
Veremos que tiene un coste computacional mayor que el algoritmo de construccién, pero da mejores
resultados también. Esta heuristica combina tiempos bajos de ejecucién y soluciones competitivas.

El funcionamiento del algoritmo se basa en analizar, dentro de cada ruta, todos los posibles pares
de posiciones (4, j) y evaluar si invertir el subtrayecto comprendido entre ellas mejora la distancia total.
Este procedimiento se repite de manera iterativa hasta que no es posible encontrar ninguna solucién
que mejore la inicial.

Previamente a realizar la inversion del segmento, se comprueba si se respetan las restricciones, es
decir:
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= Los loadings deben aparecer antes que los unloadings en la ruta.
= En cada ruta solo puede haber un charger.
= El camién debe salir y retornar al parking.

= La distancia total recorrida es inferior a la distancia maxima fijada.

Durante la ejecucion, el algoritmo examina el segmento de la ruta entre los nodos i y j. Antes de
realizar la inversién, se comprueba que dicha operaciéon no viola ninguna de las restricciones anteriores.
Si el segmento es valido, se invierte y se calcula la nueva distancia total de la ruta. Si la inversién
representa una mejora, pasa a considerarse la mejor ruta encontrada hasta ese momento y se reinicia
el proceso de busqueda para seguir explorando posibles mejoras.

Este procedimiento continia hasta que se recorre la ruta completa sin encontrar ninguna inversién
que reduzca la distancia. Tras la comprobacion de que el nuevo recorrido cumple todas las restricciones
impuestas, se anade a la nueva soluciéon optimizada. El proceso se repite de manera independiente para
cada nueva ruta de la solucién inicial, hasta que ya no se consiguen mejoras y por tanto no hay nuevas
rutas.

El pseudocédigo del algoritmo se muestra en el Algoritmo 2.

Algoritmo 2 Algoritmo 2-opt para el EVRP

1: Inicializar nueva solucién vacia

2: for each ruta en la solucién inicial do

3 Copiar la ruta como best_route

4 mejorar < True

5: while mejorar do

6 mejorar < False

7 for i < 1 until peniltimo nodo antes del final do
8 for j < i + 1 until peniltimo nodo do

9

Seleccionar segmento entre ¢ y j > Respetar restricciones
10: if mezcla loadings y unloadings then
11: continue
12: end if
13: if mas de un charger then
14: continue
15: end if
16: Invertir segmento para obtener new_route
17: Calcular distancia de new_route
18: if new_route mejora then
19: best_route <— new_route
20: mejorar < True
21: break > Reiniciar bisqueda
22: end if
23: end for
24: end for
25: end while
26: Agregar best_route a nueva solucién
27: end for

28: Verificar factibilidad
29: return solucién optimizada
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4.2.4. Lenguaje de programaciéon y herramientas

La implementacién de los modelos y algoritmos propuestos se ha realizado en Python 3.11, elegido
por su claridad, facilidad de prototipado y amplia disponibilidad de librerias especializadas. Ademas, se
trata del software de referencia en Trucksters. Se ha seguido una arquitectura orientada a objetos para
representar los elementos del problema de optimizacién, como nodos de clientes, cargas y descargas,
asi como los algoritmos empleados, lo que facilita la extensiéon y mantenimiento del cédigo.

Se han utilizado diversas librerfas segtin su funcién: OR-Tools [13] para la interaccién con el solver
SCIP; NumPy [21] para el cdlculo y la implementacién de heuristicas; pandas [15] para la generacién
del reporte comparativo; y Folium [10] para la visualizacién interactiva de rutas. Python permite
asi integrar de manera eficiente la resolucion del modelo exacto, la implementaciéon de heuristicas, el
analisis de datos y la generacién de visualizaciones o reportes, garantizando resultados reproducibles
y un desarrollo flexible del proyecto. El cédigo completo, de elaboracién propia, se puede encontrar en
[20], un repositorio de Github creado con la finalidad de poder reproducir los resultados presentados
en este Trabajo Fin de Méster.

4.2.5. Criterios de comparacion

Para determinar cudl de los algoritmos seleccionados resulta mas adecuado para el caso de Trucks-
ters, se establecen criterios de comparacién que reflejan tanto el desempeno operativo como la viabilidad
técnica de su implementacion.

En primer lugar, se evaluara la calidad de la solucién, medida a través de la funcién objetivo del
problema, que combina la distancia recorrida, los costes de recarga y cualquier otro coste operativo
relevante. Minimizar esta funcién objetivo permitird identificar la soluciéon que resulta més eficiente
desde el punto de vista de la planificacién de rutas y de los costes asociados.

En segundo lugar, se consideraran los tiempos de computacién, que deben ser inferiores a 5 minutos
por planificacién. Superar este umbral incrementaria de manera significativa la complejidad de la
infraestructura técnica necesaria para ejecutar el algoritmo de manera diaria, reduciendo su viabilidad
operativa.

Por tdltimo, se evaluaré la escalabilidad de los algoritmos, analizando su rendimiento frente a conjun-
tos de datos aumentados que incluyen un mayor nimero de nodos. Este criterio permitird determinar
la capacidad de los métodos para mantener su eficiencia y calidad de solucién en situaciones mas
complejas, anticipando cémo se comportarian en posibles ampliaciones de la flota o incrementos en los
puntos de recogida.

La combinacién de estos criterios garantiza que el algoritmo seleccionado no solo proporcione so-
luciones de calidad, sino que también sea robusto, practico y sostenible, cumpliendo con los objetivos
de negocio y técnicos definidos en este trabajo.

4.2.6. Datos empleados

Para poder implementar los codigos y comparar los distintos métodos, Trucksters ha facilitado un
dataset extraido del proyecto que mantiene con su cliente. Estos datos constan de una serie de puntos,
que intervienen en la planificacién diaria del camién eléctrico y que seran los nodos del problema, cada
uno de ellos con su nombre, direcciéon, coordenadas y tipologia operativa. En total disponemos de 17
nodos:
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= 1 nodo correspondiente a la base operativa.

= 1 nodo de descarga.

= 5 nodos que representan estaciones de recarga.

= 10 nodos que acttian como posibles puntos de recogida.
Se puede ver cémo se distribuyen los 17 nodos en la Figura 4.1. Aparece representado en naranja el
relativo a la base operativa (0), en morado el nodo de descarga (11), en verde las estaciones de recarga
(11-16) y en azul los puntos de recogida (1-10). Se podria pensar que la eleccién del cargador es trivial,

dado que el nodo 15 se sitia muy cerca del nodo de descarga. Sin embargo, se corresponde con la
empresa cuyos cargadores son mas costosos, por lo que esta decisiéon no es inmediata.

1
2 3
a4
5
13
- 0 14
6
7
8 12
10
15
9 11

Figura 4.1: Representaciéon del problema propuesto por Trucksters.

En la operativa diaria, el equipo de planificacion de Trucksters recibe el dia previo a la entrega los
puntos de carga que debe visitar. Normalmente, el cliente facilita entre 3 y 6 de los 10 posibles puntos
de recogida, aunque en algunas ocasiones podria requerirse la visita a todos los puntos de carga. Para
evaluar los algoritmos frente a distintos escenarios, se generaron aleatoriamente instancias de prueba
con tamanos comprendidos entre 3 y 9 puntos de reocogida, es decir, instancias con 3,4, 5,6,7,8y 9
nodos relativos a las recogidas. Para cada tamano se crearon 10 configuraciones distintas seleccionando
los puntos de carga de manera aleatoria, dando lugar a un total de 70 instancias representativas de
posibles planificaciones. Asi, se puede analizar como se comportan los algoritmos bajo la variabilidad
tipica del proyecto real.

Para el célculo de las distancias entre nodos se utilizo la distancia geodésica, adecuada para trabajar
con coordenadas y estimar con precisién la distancia recorrida por el vehiculo. Estas distancias se
obtuvieron mediante la libreria geopy [11], concretamente empleando la funcién geodesic.

Para los puntos de recarga de la bateria se consideraron cargadores pertenecientes a dos empresas
distintas: Ionity y Atlante. Ambas disponen de una tarifa fija por recarga completa y, dado que el
camién siempre repone bateria hasta alcanzar el 100 % de su capacidad, se incorporé al modelo un
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coste de carga constante para los puntos de carga de cada empresa. En concreto, los cargadores de
Ionity tienen un precio de 0.61 € por kWh, mientras que los de Atlante presentan una tarifa de 0.64 €
por kWh. Se asumié una capacidad total de bateria de 300 kWh, por lo que los costes asociados a una
recarga completa son de 183 € y 192 €, respectivamente.

También fue necesario estimar el tiempo de desplazamiento del camién entre los distintos puntos,
con el objetivo de construir una secuencia temporal a lo largo de la ruta. Para ello, se utilizaron las
distancias geodésicas previamente calculadas y se asumié que el vehiculo circula a una velocidad media
de 70 km/h.

Asimismo, para poder expresar la solucién en una tnica unidad de medida, se asumié un coste
por kilémetro de 0.623 €, valor que permite traducir la distancia recorrida directamente en un coste
econdmico. Asi, la funcién objetivo recogera el coste de traslado del camion y el coste de la carga de
la bateria, todo ello medido en €.

4.3. Comparativa

En esta seccién se presenta una comparativa entre los distintos métodos implementados, evaluando
tanto sus tiempos de ejecucién como la calidad de las soluciones obtenidas. El objetivo es analizar el
comportamiento de los algoritmos frente a escenarios de distinta complejidad y establecer conclusiones
sobre su rendimiento relativo en condiciones controladas. Para ello, se han empleado las 70 instancias
de prueba descritas en el apartado anterior.

Es importante destacar que el equipo utilizado para la evaluacién es un MacBook Air (13-inch,
2017) equipado con un procesador Intel Core i5 de doble niicleo a 1.8 GHz (4 hilos légicos), 8 GB
de memoria RAM DDR3 a 1600 MHz y arquitectura x64. Los mismos programas ejecutados en un
ordenador diferente podria cambiar los tiempos obtenidos.

En la Tabla 4.1 aparecen recogidos, para cada tamafio de |N|, el valor medio de la funcién objetivo
y del tiempo medio que el programa tardé en generar cada solucién, todo esto para cada uno de los
tres métodos. Esta tabla recoge un resumen de los datos, ademas, se pueden ver la totalidad de los
resultados en el Apéndice A. En un primer momento se observa cémo, a medida que aumentamos el
tamafio del conjunto de nodos explorados, el valor de la funcién objetivo también aumenta. Esto tiene
sentido pues a mayor niimero de puntos que visitar, mayor es también el coste total de la operacion.
Sin embargo, esto no ocurre siempre, ya que al escoger los nodos de recogida de manera aleatoria,
pueden ser seleccionados nodos més alejados y por tanto aumentar la distancia entre ellos.

A mayores de la tabla resumen, se incluyen boxplots relativos al tiempo de ejecucién, coste de
las soluciones y diferencias porcentuales de las soluciones respecto al método exacto, que permiten
visualizar el comportamiento para cada tamano de instancia. Estos graficos los podemos encontrar en
las Figuras 4.3, 4.4 y 4.5.
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Modelo exacto Vecino mas préximo 2-opt

|IN| | Coste (€) Tiempo (s) | Coste (€) Tiempo (s) | Coste (€) Tiempo (s)

3 246.182  2.9693-102 | 262.030 84-107° 255.026 1.87-10~4

4 251.099  3.0087-10% | 268.585 9.8.107° 259.914  2.82-10~*

) 256.379  3.0087-10% | 272.948 1.05- 1074 265.305 4.58 107

6 266.427  3.0143 - 102 283.021 1.91-1074 275.313 5.49 - 10~*

7 268.065  3.0946 - 102 287.399 1.74-107% 276.814  1.054-1073

8 274.940  3.0149-10% | 299.886 3.19-1074 283.514  1.269-1073

9 280.855  3.0204-10% | 306.094 1.44-107% 288.430  1.453-1073

Tabla 4.1: Comparacién de los tres métodos. Se recogen los valores medios de las funciones objetivo y
los tiempos medios por cada tamafo de instancia a lo largo de las 10 ejecuciones.

El modelo exacto se ejecutoé fijando un tiempo méximo de cinco minutos, considerado razonable
para instancias pequenas. Cabe destacar que, para garantizar la obtencién de la solucién 6ptima, el
modelo deberia ejecutarse sin limite de tiempo. Se puede observar como este método emplea el tiempo
méximo establecido (Figura 4.3a).

En este experimento, el modelo exacto logra las mejores soluciones en la totalidad de los casos.
Para los tamafios de problema mas pequenos, la heuristica 2-opt presenta desviaciones en torno al
3.5 % respecto al solver, mientras que la del vecino més préximo se sitiia aproximadamente en el 7 %.
Al incrementar el nimero de nodos, el comportamiento de ambas heuristicas varia: el vecino mas
préximo incrementa progresivamente su diferencia hasta valores cercanos al 10 %, mientras que 2-opt
tiende a reducirla, alcanzando en algunos casos desviaciones proximas al 1%. Se pueden observar estas
variaciones en la Figura 4.5.

El algoritmo del vecino méas préximo es una heuristica que busca conseguir soluciones de forma
veloz, de modo que reduce significativamente el tiempo de computo frente a otros métodos, aunque
no garantiza una buena calidad de la solucién obtenida. Se puede observar en la Tabla 4.1 y en
la Figura 4.3b cémo el algoritmo del vecino méas préximo tarda en encontrar una solucién tiempos
extremadamente bajos, de entre 0.000084 y 0.000319 segundos de media. Sin embargo, analizando la
calidad de las soluciones, estas presentan diferencias notables respecto a las obtenidas con el método
exacto. En la Figura 4.5a se aprecia que la solucién obtenida es de entre un 4 % y un 10 % superior a
la obtenida con el solver SCIP, siendo esta diferencia mayor para las instancias grandes.

Por ltimo, el algoritmo 2-opt mejora las soluciones obtenidas por la heuristica del vecino méas pré-
ximo, ya que toma sus costes como solucién inicial, aunque sin llegar a alcanzar las soluciones 6ptimas.
Aun asi, se puede observar que, en las instancias de 9 nodos, existen casos donde esta técnica se queda
muy cerca del 6ptimo calculado, como se comentaba anteriormente. Esto se puede ver graficamente en
la Figura 4.5b, donde se observan diferencias porcentuales muy pequenas en las mayores instancias.
En terminos de tiempo de ejecucién sorprende que 2-opt presenta tiempos muy pequefios, superiores
solo por milisegundos a los obtenidos por la heuristica del vecino méas préximo.
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En la Figura 4.2 se muestra un ejemplo de las soluciones obtenidas mediante los tres métodos
analizados, utilizando como referencia una instancia que contiene 9 puntos de recogida. La Figura 4.2a
representa el conjunto completo de nodos considerados en el problema. En amarillo aparece plasmada
la base operativa (0), en azul los nodos relativos a los puntos de recogida (1-9), en verde las estaciones
de carga (12-16) y en morado el nodo de descarga (11). En la Figura 4.2b se presenta la solucién
optima obtenida por SCIP, cuya estructura es coherente y se corresponde con la solucién 6ptima de
la ruta. Dicha solucién tiene un coste de 294.04 € y se incluye la visita a un cargador de Ionity, con
un precio de carga de 183 €. La Figura 4.2c recoge la solucién generada por el algoritmo del vecino
maés proximo, se observa como el recorrido marcado obliga al camioén a recorrer una mayor distancia,
haciendo rutas entre nodos absurdas. Esta solucién tiene un coste de 312 € y se visita un cargador de
la empresa Atlante, con coste 192 €. Finalmente, la Figura 4.2d muestra la solucién mejorada mediante
el algoritmo 2-opt, que difiere de la solucién éptima solo en el punto de carga, que sigue siendo de
Tonity, y obteniendo asi una ruta mas razonable que la proporcionada por el vecino méas préximo, con
un coste de 292.73 €.
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Figura 4.2: Representacion de las soluciones de cada método para una instancia de 9 puntos de recogida.

En conclusién, considerando los criterios establecidos para la seleccién del algoritmo mas adecua-
do, la heuristica 2-opt representa la mejor alternativa para la operativa de Trucksters. En términos de
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calidad de la solucién, 2-opt mejora significativamente la solucién inicial generada por el vecino mas
préximo, alcanzando resultados cercanos al 6ptimo. Respecto a los tiempos de ejecucion, este algoritmo
mantiene valores muy bajos, practicamente despreciables, lo que garantiza que la planificaciéon auto-
maética no exceda los 5 minutos, cumpliendo con el limite operativo fijado por la empresa y asegurando
la viabilidad diaria del proceso. Por lo tanto, el algoritmo 2-opt ofrece un equilibrio 6ptimo que satis-
face tanto el objetivo de negocio de automatizacion eficiente como el objetivo técnico de determinar el
método méas adecuado para la casuistica concreta de Trucksters.
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Figura 4.3: Boxplots de los tiempos de ejecucién para cada método.
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Capitulo 5

Estudio con datasets aumentados

En el Capitulo 4 se ha presentado una comparativa entre los distintos métodos implementados,
utilizando como base de datos la proporcionada por Trucksters, que se corresponde con una casuistica
real. Sin embargo, el conjunto de datos es limitado, con solo 10 puntos de recogida disponibles, lo que
supone una restriccién para evaluar el comportamiento de los algoritmos en problemas de gran escala.

En este capitulo se presenta una generalizacién del problema real, considerando un escenario con
miultiples vehiculos eléctricos y un mayor niimero de nodos de recogida y descarga. Esta extensiéon
surge de la planificacion estratégica de Trucksters, que estd evaluando la adquisicion de un segundo
vehiculo eléctrico para poder atender la posibilidad de que el cliente amplie los puntos de recogida en
futuras operaciones. De este modo, el trabajo no solo aborda la casuistica real actual, sino que también
proporciona informacion relevante para la planificacion y escalabilidad futura de la operativa eléctrica
de la empresa.

Ademads, dado que la distancia maxima que puede recorrer un vehiculo depende de su tipo y
autonomia, el estudio también contempla evaluar el rendimiento de los algoritmos frente a rutas de
distintas longitudes, garantizando que los modelos sean robustos y aplicables a escenarios con vehiculos
de diferentes capacidades.

Se generaran instancias mas grandes a partir de datos reales mantienendo las principales carac-
teristicas del caso real planteado anteriormente. Asi, se garatiza el andlisis de escenarios plausibles y
utiles para la planificacion de rutas.

Se presenta en la Secciéon 5.1 una nueva formulaciéon del problema, que se adapta a las nuevas
caracteristicas del mismo. Ademas, en la Seccién 5.2 se describen las técnicas empleadas para ajustar
los métodos de resolucién empleados con anterioridad y se presentan los resultados obtenidos con esta
nueva casuistica en la Seccién 5.3.

5.1. Formulacion del nuevo caso

En la Seccién 4.1 se present6é una formulacién matemaética para el problema de rutas de vehiculos
eléctricos planteado por la empresa. Dicha formulacién estaba disefiada para un solo camion, que debia
partir de la base operativa y volver a ella, visitando una serie de puntos de recogida y un punto de
descarga. Ademads, se imponia la restriccion de que el vehiculo tenia que hacer una parada en una
estacion de carga.
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Para el nuevo caso, donde el camién tiene que recorrer un mayor nimero de nodos, es necesario
incluir un limite en la distancia recorrida, ya que la autonomia del vehiculo es finita. Los camiones
eléctricos pueden recorrer un maximo de 400 km al dia, por lo que se precisa anadir esta restricciéon al
modelo. Anteriormente, el nimero de nodos era lo suficientemente pequeno para que no existiese un
problema debido a la distancia recorrida y no fuese necesaria esta restriccion.

Asimismo, la inclusién del limite de distancia recorrida permite que haya nodos en la ruta que no
sean visitados por el vehiculo. Para solventar este problema, se incorpora al modelo la posibilidad de
emplear mas camiones eléctricos, de manera que, si un camién no puede visitar todos los nodos debido
a la restriccién de distancia, otro camién puede encargarse de los nodos restantes.

Para formular el problema, se van a utilizar algunos conjuntos, parametros y variables ya empleados
anteriormente y se van a incluir nuevas definiciones:

» N=NCUNP ={1,...,n} es el conjunto de puntos a visitar del cliente.
- N ={1,...,n — 1} hace referencia a los puntos de recogida.

- NP = {n} hace referencia al punto de descarga.
= F={n+1,...,n+ p} se corresponde con las estaciones de carga disponibles.

V={0tU{0*}UNUF ={0,0%,1,...,n—1,n,n+1,...,n+p} representa el conjunto de nodos,
donde el nodo 0 es la base operativa y 0*! representa una base operativa ficticia.

= K ={1,...,m}, con m € N;m > 1 es el conjunto de camiones eléctricos disponibles.

» ¢;; hace referencia al coste de ir del nodo 7 al nodo j. Este coste se calculard como el producto
de los kilémetros recorridos y el precio del kilémetro.

= w; es el precio de cargar un camién en el punto de carga i.

= d;; representa el tiempo que se tarda en ir del nodo 4 al nodo j.

= djyrax se corresponde con la distancia maxima que puede recorrer un camion.

= tf es una variable de decisién continua que define el tiempo de llegada del vehiculo al punto 1.

fj € {0,1} es una variable de decisién binaria que vale 1 si el arco (i,j) estd en la ruta del

vehiculo k£ y 0 en otro caso.

= T

= zF € {0,1} es una variable de decisién binaria que vale 1 si la estacién de carga i es usada por
el vehiculo k y 0 en otro caso. Como cada camién solamente usa una estacion de carga, indica a
mayores si el camién k es usado (2 = 1) o no (2F = 0).

Como novedad, se ha integrado dj;4x como pardmetro del problema y se han incluido superindices k
a las variables tf, xfj y zf para indicar el camién al que se refieren.

El uso de multiples vehiculos implica que la funcién objetivo y las restricciones deben adaptarse
para incluir las nuevas variables. Integrar més de un camién en la ruta conlleva un aumento en el coste
total: cada camion tiene un gasto fijo de 150 € por dia de uso, por lo que el modelo buscara hacer rutas
con el menor nimero de camiones posible. Asi, el modelo se puede formular de la siguiente manera:

IEste nodo es necesario para la programacién del problema, ya que evitamos la formacién de ciclos en la solucién.
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minimizar Z CijxquL Z wizF + Z 15027 (5.1)

i,jeV,keK icF ke K icF ke K
sujeto a Z xfj =1, Vie V\{FU{0"}}, ke K (5.2)
jeVv
D oak = > ak =0, Vie V\{{o}u{0*}}, ke K  (5.3)
eV heV
> af =1, Vk e K (5.4)
jevA\{{oju{o}}
> k. =1, Vk e K (5.5)
ieV\{{0}u{0*}}
20-; = 0, VieV (5.6)
th>th— (1= af)L Vie N9 je NP ke K,L>>0 (5.7)
heV
th+dijal, —th < (1-28)L, Vi,j € V,ke K,L>>0 (5.8)
>oooak=1, Vk e K (5.9)
iENU{0},5€F
> dijal; < dax, Vk e K (5.10)
i,jEV
x5 < 2F VieF,jeNkeK (5.11)
zij < 25, VieN,jeF ke K (5.12)
xij, 28 € {0,1}, Vi,jeVke K (5.13)
th ¢ RY, VieVike K (5.14)

La funcién objetivo (5.1) minimiza el coste variable de la operacién, que incluye el coste derivado
de los kilometros recorridos, el coste asociado a la carga de la bateria y el coste fijo por el uso de cada
camién. De nuevo, al tratarse de costes, esta funciéon se mide en euros.

Como se puede observar, la formulacién es muy similar a la presentada en la Seccién 4.1, con
algunas diferencias clave para adaptarse al nuevo escenario. A las variables que hacen referencia a los
camiones, se les anadié el superindice k, que permite distinguir entre los distintos vehiculos. Asimismo,
se afladié una nueva restriccién (5.10) que limita la distancia maxima que puede recorrer cada camion,
asegurando que no se exceda la autonomia diaria del vehiculo.

Cabe destacar que, si la ruta 6ptima no supera los 400 km, el modelo empleara un solo camién,
y por tanto, la solucién serd equivalente a la del modelo original. Es decir, se ha desarrollado una
formulacién mas general, adaptandose a una nueva casuistica.

5.2. Métodos y técnicas seleccionadas

El objetivo de este apartado es analizar la escalabilidad de las técnicas empleadas anteriormente
para instancias mayores. Por lo tanto, se hara uso de los mismos métodos: el modelo exacto mediante
SCIP, el algoritmo del vecino méas préximo como heuristica constructiva y el algoritmo 2-opt como
heuristica de mejora.
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Para implementar el modelo exacto, se ha empleado nuevamente la libreria OR-Tools de Google.
Se ajustaron los pardmetros del modelo, manteniendo los valores de L = 10° y el tiempo méximo
de duracion del recorrido de 15h y a mayores se anadié el limite de distancia méxima dp;4x, que se
adaptard a las limitaciones del vehiculo empleado. Como se estd trabajando con instancias de gran
tamano, se fij6 un tiempo maximo de ejecucién de 20 minutos, que es un tiempo que la empresa
considera razonable. Con ese tiempo, el solver es posible que no devuelva la mejor solucién existente,
pero se garantiza que el método termine en un tiempo razonable.

Se emplearan los mismos criterios del capitulo anterior: la calidad de la solucién obtenida, los
tiempos de cémputo y la escalabilidad de los algoritmos.

Para adaptar la heuristica constructiva a los nuevos datos, se ha incluido en el cédigo una compro-
bacién de la distancia maxima. El proceso es muy similar al algoritmo con un solo vehiculo: se genera
una ruta con los nodos atun no visitados mas cercanos, comprobando en cada paso que no se excede
la distancia maxima fijada. Si se alcanza el limite establecido y el vehiculo no ha visitado todos los
nodos necesarios, se crea una nueva ruta con un nuevo camién desde el punto de partida. Esta légica
se repite hasta que se han visitado todos los nodos de carga y descarga.

En el Algoritmo 3 se muestra el pseudocddigo del vecino mas préximo adaptado a miltiples vehicu-
los.
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Algoritmo 3 Algoritmo del vecino més préximo para multiples vehiculos
1: Inicializar solucién vacia
2: Marcar todos los loadings y unloadings como no visitados
3: while existan nodos por visitar do
4: Iniciar nueva ruta desde el parking
5 current_loc < parking
6 distancia_ruta < 0
> Loadings
7 while existan loadings no visitados do
8: Elegir el loading méas cercano a current_loc
9: if Se supera la distancia de la ruta maxima then
10: break > Cerrar ruta: no cabe este loading respetando el limite
11: end if
12: Anadir loading a la ruta
13: Marcar loading como visitado
14: distancia_ruta < distancia_ruta + dist(current_loc, loading)
15: current_loc < loading elegido
16: end while
> Unloadings
17: while existan unloadings no visitados do
18: Seleccionar el unloading no visitado més cercano a current_loc
19: if Se supera la distancia de la ruta maxima then
20: break > Cerrar ruta: no cabe este unloading respetando el limite
21: end if
22: Anadir unloading a la ruta
23: Marcar unloading como visitado
24: distancia_ruta < distancia_ruta + dist(current_loc), unloading)
25: current_loc < unloading
26: end while

27: if hay chargers disponibles then

28: Elegir el charger més cercano al tltimo nodo

29: Buscar posicién que minice el aumento de distancia
30: Insertar charger

31: end if

32: Terminar ruta en parking

33: Anadir ruta completa a la solucién

34: end while
35: Verificar restricciones de factibilidad globales

> Insertar charger

El algoritmo 2-opt para los nuevos datos es muy similar al algoritmo original. Para implementarlo
con multiples vehiculos, se aplica el algoritmo para cada ruta, verificando en cada paso que se satisfacen
las restricciones de distancia impuestas. Es decir, se tratan las diferentes rutas de los camiones como
si fuesen soluciones iniciales independientes. Aunque, desde un punto de vista académico, seria posible
extender el algoritmo 2-opt incorporando intercambios entre rutas de vehiculos distintos, esta mejora

queda fuera del alcance del trabajo y se marca como linea de trabajo futura.

Se puede ver el pseudocddigo de la heuristica de mejora en el Algoritmo 4.
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Algoritmo 4 Algoritmo 2-opt para miltiples vehiculos

1: Inicializar nueva solucién vacia
2: for each ruta (vehiculo) en la solucién inicial do
3 Copiar la ruta como best_route
4 mejorar < True
5: while mejorar do
6 mejorar < False
7 for i « 1 until pentiltimo nodo antes del final do
8 for j < ¢+ 1 until pentltimo nodo do
9: Seleccionar segmento entre i y j > Respetar restricciones
10: if mezcla loadings y unloadings then
11: continue
12: end if
13: if mas de un charger then
14: continue
15: end if
16: Invertir el segmento para obtener new_route
17: Calcular distancia total de new_route
18: if existe un limite de km por vehiculo and se supera then
19: continue
20: end if
21: Calcular distancia total de best_route
22: if new_route mejora la distancia de best_route then
23: best_route < new_route
24: mejorar < True
25: break > Reiniciar bisqueda en la nueva ruta
26: end if
27: end for
28: if mejorar then
29: break > Volver a iterar
30: end if
31: end for
32: end while
33: Agregar best_route a la nueva solucién
34:
35: Verificar factibilidad global de todas las rutas
36: return solucién optimizada
5.2.1. Datos empleados

Para evaluar el rendimiento de los métodos seleccionados en situaciones de mayor escala, Trucksters

proporcion6é un conjunto de datos ampliado basado en la operativa real. Estos datos representan
posibles puntos de recogida dentro de la provincia de Barcelona, siguiendo patrones coherentes con los
histéricos de entregas de la empresa. La estructura de los datos es la siguiente:

= 1 nodo correspondiente a la base operativa.
= 1 nodo de descarga.

= 5 nodos que representa estaciones de recarga.
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= 129 nodos ampliados que actian como nodos de recogida.

En total, disponemos de 136 nodos, lo que permite generar instancias de mayor tamafio para
evaluar el comportamiento de los algoritmos. En concreto, se han generado 30 instancias diferentes,
seleccionando un tamano de |N|, correspondiente a los nodos de recogida, de 10, 15 y 20. Para cada
tamano, se han creado 10 instancias distintas seleccionando los nodos de forma aleatoria.

Para el célculo de las distancias, los costes y los tiempos se emplearon los mismos métodos usados
con anterioridad.

5.3. Comparativa

En esta seccién se realiza una comparativa de los tres métodos implementados con las técnicas de
la Seccién 5.2, utilizando la base de datos ampliada.

Se ha evaluado el comportamiento de los algoritmos con tres distancias maximas permitidas para
los vehiculos. La primera dy;4x = 400, se corresponde con la limitaciéon actual permitida para el
camion eléctrico disponible. La segunda y tercera, dysax = 200 y dpr4x = 150, son una extrapolacién
de las caracteristicas del vehiculo a posibles camiones eléctricos.

Para seguir la estructura de la Seccién 4.3, se han recogido en las Tablas 5.1, 5.2 y 5.3 los resultados
medios de las 10 instancias para cada |N| (el coste medio de la solucién obtenida y los tiempos de
ejecucién). A mayores, se ha incluido una columna en cada método que indica los camiones medios
que han sido necesarios para calcular la ruta (|K|) y el ntumero de instancias resueltas por cada uno
(S.). Se pueden ver las tablas con los resultados completos en el Apéndice B.

Se presentan ademas en las Figuras 5.1 y 5.2, 5.3, boxplots relativos al tiempo de cémputo, al coste
de la solucién y a la diferencia porcentual de la solucién de las heuristicas respecto al método exacto
por cada método y cada tamaiio de |N|.

Modelo exacto Vecino mas préximo 2-opt

N

Coste (€) Tiempo (s) |K| S. | Coste (€) Tiempo (s) |K| S. | Coste (€) Tiempo (s) |K]| S.

10 304.303 1.200 - 10° 1 10 | 331.975 9.2-107° 1 10 | 313.732  1.321-1073 1 10

15 349.398 1.200 - 10° 1 10| 378.621 1.2-1074 1 10 | 349.123  5.757-1073 1 10

20 403.713 1.200 - 10° 1 10 | 385.656 1.59-10~* 1 10 | 362.249 1.110-1073 1 10

Tabla 5.1: Comparacién de los tres métodos con nodos ficticios y dysax = 400. Se recogen los valores
medios de las funciones objetivo, los tiempos medios de ejecucién, el ntimero medio de camiones (|K|)
y el nimero de instancias resueltas (S.) para cada tamafio.
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Modelo exacto Vecino més préximo 2-opt

N

Coste (€) Tiempo (s) |K| S. | Coste (€) Tiempo (s) |K| S. | Coste (€) Tiempo (s) |K| S.

10 391.732 1.202-10° 1.4 10 508.8 2.050-107* 1.9 10 496.9 1.421-107% 1.9 10

15 652.574 1.202-10* 2.3 10 590.1 2901-107* 2 10 576.8 5.656-1073 2 10

20 569.585 1.204 - 103 2 2 634.1 1.203-107% 2.2 10 622.2 2.435-107% 2.2 10

Tabla 5.2: Comparacién de los tres métodos con nodos ficticios y dysax = 200. Se recogen los valores
medios de las funciones objetivo, los tiempos medios de ejecucion y el niimero medio de camiones (|K)
y el nimero de instancias resueltas (S.) para cada tamarfio.

Modelo exacto Vecino mas préximo 2-opt
|N| | Coste (€) Tiempo (s) |K| S. | Coste (€) Tiempo (s) |K| S. | Coste (€) Tiempo (s) |K| S.
10 494.47 1.200-10% 1.9 10 582.0 1-1073 2.2 10 573.2 1.921-1073% 22 10

15 831.034 1.200-10* 3.2 5 799.0 2.45-10~* 3 10 786.8 4.757-107% 3 10

20 - - - 0 873.7 459-107* 33 10 864.0 8.410-107% 3.3 10

Tabla 5.3: Comparacién de los tres métodos con nodos ficticios y dypsax = 150. Se recogen los valores
medios de las funciones objetivo, los tiempo de ejecucién y el nimero medio de camiones (|K|) y el
ndmero de instancias resueltas (S.) para cada tamaio.

En este nuevo experimento, se fij6 un tiempo maximo de 20 minutos de ejecuciéon para el método
exacto. Se puede ver en la Tablas 5.1, 5.2 y 5.3 como, de nuevo, el solver emplea el tiempo méaximo
establecido. Para la distancia de 400 km, se observa como el método exacto da lugar a soluciones buenas
para los conjuntos de |[N| = 10 y |[N| = 15, sin embargo, en el caso de |[N| = 20, ambas heuristicas
consiguen reducir el coste de la ruta calculada.

Para los casos de limite de distancia de 200 km y 150 km, el solver ya no es capaz de resolver de forma
eficaz el problema. Esto es debido a que la regién factible se hace mas pequena y el problema se vuelve
méas complejo, lo que provoca que 20 minutos no sean suficientes para su resolucién. Para solventar
esto, seria necesario ampliar el tiempo limite de ejecucién. Ademads, esto justifica la incorporacién de
la columna relativa a las soluciones encontradas. Como podemos ver en las Tablas 5.2 y 5.3, el método
exacto tiene dificultades a la hora de encontrar soluciones para los tamafios [N| = 15 y |N| = 20.

Para |[N| = 10, el método exacto presenta las mejores soluciones en media de las tres técnicas,
mientras que para |N| = 15, es mejorada por ambas heurfsticas. Destaca el rendimiento eficaz en
media que presenta el solver para |[N| = 20 con dyax = 200, debido a que se estd haciendo la media
para tan solo dos instancias con las que se obtuvo solucién con este método.

En el caso de la heuristica del vecino mas préximo, este sigue siendo el método que peores soluciones
proporciona de forma general. Este comportamiento se puede apreciar de manera muy clara en la
Figura 5.3, donde las diferencias respecto al método exacto para dp;ax = 400 son, por lo general,
mayores a 0. En los casos en los que se disminuye la distancia permitida, podemos ver algunos casos
donde la heuristica consigue mejorar al solver, aunque, de nuevo, se debe tener en cuenta que no se
comparan todas las posibles soluciones. En cuanto a tiempos de ejecucién, la heuristica constructiva
sigue presentando los tiempos méas pequenos, siendo el méas competitivo en este aspecto para todos los
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experimentos realizados.

Por ultimo, el algoritmo 2-opt parece proporcionar de nuevo un equilibrio entre tiempo y calidad
de soluciones. En las instancias de 10 nodos de recogida para dy;4x = 400, esta técnica no mejora de
media las soluciones del solver, sin embargo, a medida que aumentamos los nodos, se aprecia como
estas diferencias empiezan a ser menores, consiguiendo la heuristica reducir los costes de la ruta en
algunas ocasiones(Figura 5.3f). Para los otros dos tamaiios, el algoritmo vuelve a ser muy eficiente para
reducir la solucién. En ambos casos cumple su cometido de reducir el coste del algoritmo del vecino
mas préximo, con un aumento de tiempo despreciable.

En la Figura 5.2 se aprecia que, a medida que aumenta el tamano de las instancias, y por tanto la
longitud de la ruta, se incrementa a su vez el coste para ambas heuristicas. No obstante, esta diferencia
parece mayor entre las instancias con |[N| =10 y |[N| = 15, que con |N| = 15 y |[N| = 20. Esto puede
ser debido a que la disposicién de los puntos de recogida es méas préxima a medida que aumentamos su
nimero. Es por esto que no se plantea en este Trabajo Fin de Master realizar pruebas con un mayor
numero de nodos, que ademads, conllevaria unos tiempos de ejecuciéon muy elevados.

Cabe destacar que, a pesar de haber adaptado todos los métodos para incluir multiples vehiculos,
para el caso de dp;ax = 400, en la mayoria de los casos bastaria con usar la formulaciéon planteada en
la Seccién 4, dado que se emplea tinicamente un camién para llegar a la solucién en 29 de 30 instancias.
Para dy;ax = 200, el ntimero de vehiculos parece estar muy proximo a dos, aumentando ligeramente
su nimero segin se incrementa el nimero de puntos de recogida. En el caso de dyyax = 150, se
necesita un vehiculo mas para satisfacer la demanda de los clientes. La empresa Trucksters tendria que
hacerse con dos camiones eléctricos que pudiesen recorrer un maximo de 150 km para poder resolver
esta casuistica.

En conclusion, segtin los criterios establecidos de calidad de solucién, tiempo de computo y escala-
bilidad, el algoritmo 2-opt presenta un buen desempeno. La calidad de las soluciones para un tiempo
limite de 20 minutos es, por lo general, la mejor, reduciendo los costes respecto al método exacto
en varios casos, que no llega a alcanzar la solucién 6ptima. El tiempo empleado es de apenas unos
milisegundos, por lo que proporciona soluciones inmediatas. A mayores, esta técnica presenta un buen
funcionamiento para instancias de mayor tamafno y diferentes valores de dp;ax. El algoritmo 2-opt
satisface los requerimientos tanto técnicos, como de negocio, siendo el idéneo para incorporarse a la
operativa de la empresa.
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Figura 5.1: Boxplots de tiempos de ejecucion. En la primera columna, los resultados para dj; 4 x = 400;
en la segunda, para dy;4x = 200; y en la tercera, para dy;4x = 150.
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Figura 5.2: Boxplots de los costes asociados a la solucién. En la primera columna, los resultados para

dprax = 400; en la segunda, para dysax = 200; y en la tercera, para dy;ax = 150.
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Capitulo 6

Conclusiones y lineas de trabajo
futuro

A lo largo de este trabajo se ha desarrollado un modelo de optimizacion para resolver el problema de
rutas de vehiculos eléctricos planteado por la empresa Trucksters. El objetivo era planificar el itinerario
de un camioén eléctrico que partia de una base operativa, visitaba varios puntos de recogida, realizaba
la descarga en una localizacién fijada y regresaba de nuevo a la base. A mayores, el vehiculo debia
parar en una estacion de recarga antes de agotar la bateria del mismo.

La finalidad de este Trabajo Fin de Master es la comparacién de diferentes metodologias seleccio-
nadas. Para ello, en un primer momento se llevé a cabo una modelizaciéon del problema planteado en
la Seccién 4.1. La formulacion recogia las restricciones necesarias para que el camién realizase el reco-
rrido por los diferentes puntos, cumpliendo las necesidades de los vehiculos eléctricos. Posteriormente
se implementé la casuistica para resolverlo mediante los métodos seleccionados: un método exacto con
el solver SCIP, la heuristica del vecino mas préximo y el algoritmo 2-opt. Para ello se desarrollé un
c6digo de elaboracién propia en el lenguaje de programacién Python.

Por 1ltimo, se realizé un analisis comparativo de los resultados obtenidos con las tres técnicas y dos
conjuntos de datos diferentes, adaptando los métodos para ambos casos. Las soluciones mostraban que
el modelo exacto proporcionaba, para los casos con un tnico vehiculo, de forma general, los menores
costes para el problema, pero conllevando tiempos de ejecucién elevados. Sin embargo, con mas de un
vehiculo, el solver ya no era tan competente. El algoritmo del vecino més proximo ofrecia una soluciéon
constructiva rapida, con tiempos muy bajos, aunque con una calidad de solucién moderada para todos
los experimentos. La heuristica 2-opt proporcionaba un equilibrio éptimo entre calidad de solucién y
tiempo de ejecucién, teniendo el mejor rendimiento tanto para instancias pequenias como de mayor
tamano, y conviertiéndose en el algoritmo seleccionado para implementar en la empresa.

Se han alcanzado los objetivos y los resultados esperados por los algoritmos, atn asi, existen &mbitos
donde el trabajo podria seguir mejordandose. En primer lugar, las rutas que se han estudiado son
en un entorno limitado, dentro de la provincia de Barcelona. Una posible linea de trabajo futuro
seria el andlisis de rutas nacionales o internacionales, que impliquen mayores distancias y tiempos de
viaje. Asi, se podrian implementar nuevas restricciones y variables que se adapten a las exigencias
de estos escenarios. Por otro lado, en la formulacién empleada se eliminaron las ventanas temporales
y las restricciones relativas a la capacidad energética del vehiculo. Una posible mejora podria ser
la implementacion de estas restricciones al modelo, adaptandolo ain méas a las necesidades reales
de los clientes. En relacién con la modelizacién del problema, se comenté que la selecciéon de L se
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hizo de forma que se garantizase la validez de las restricciones de tipo big-M. En este contexto, esta
eleccién se podria realizar de forma maés precisa, siendo una posible drea en la que mejorar el modelo.
Ademas, las distancias utilizadas para evaluar las rutas se calculan mediante la distancia geodésica,
sin considerar el relieve del terreno, la estructura real de la red de carreteras ni posibles desvios. Una
mejora relevante para futuros trabajos seria incorporar distancias reales obtenidas de mapas o servicios
de geolocalizacién. Por dltimo, se ha implementado un algoritmo 2-opt para multiples vehiculos que
mejoraba tnicamente las rutas ya elegidas por la heuristica constructiva. Se podria mejorar de forma
que se permitiesen los intercambios entre rutas de diferentes vehiculos.

En conclusién, en este Trabajo Fin de Master se han revisado los conceptos necesarios para abor-
dar el problema de rutas de vehiculos eléctricos, se ha propuesto una formulacién que satisface las
necesidades de la empresa y se han disefiado dos algoritmos heuristicos, implementados con un cédigo
de elaboracion propia. Ademas, los resultados alcanzados pueden considerarse satisfactorios, ya que se
reducen los tiempos de planificacién marcados en un principio. En definitiva, se ha demostrado que la
automatizacién de la planificacién de rutas para vehiculos eléctricos es viable y beneficiosa.



Apéndice A

Resultados de los métodos

En la Seccién 4.3 se incluyé un resumen de los resultados obtenidos para el experimento. En este
apéndice se recogeran los datos al completo para una mejor comprension.

Se pueden ver en la Tabla A.1 estos resultados. Se omite el nimero de vehiculos empleados en cada
instancia por ser en todas 1.

Modelo exacto Vecino mas préximo 2-opt

[N| | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)
Instancia 1 3 268.74 3.0052 - 102 292.52 8.7400 - 10~° 277.71 1.3230 - 10~4
Instancia 2 3 231.35 3.0073 - 102 248.09 8.2000 - 107° 240.34 1.9490 - 10~*
Instancia 3 3 231.19 3.0089 - 102 240.46 7.3900 - 107° 240.18 1.3560 - 104
Instancia 4 3 212.75 2.6220 - 102 222.72 8.0300 - 107° 221.65 1.6490 - 104
Instancia 5 3 263.86 3.0057 - 102 284.82 8.6400 - 107° 272.26 2.1230- 104
Instancia 6 3 253.54 3.0090 - 102 264.82 9.1200-107° 262.44 1.3880 - 104
Instancia 7 3 258.94 3.0084 - 102 278.59 8.3500 - 107° 267.91 2.6040 - 10~%
Instancia 8 3 239.47 3.0093 - 102 251.00 8.7300 - 107° 247.87 1.8270 - 10~4
Instancia 9 3 259.40 3.0092 - 102 276.66 8.3900 - 107° 268.37 2.5500 - 10~ %
Instancia 10 3 242.58 3.0075 - 102 260.62 8.8700 - 107° 251.53 1.9780 - 104
Instancia 11 4 256.01 3.0089 - 102 274.94 8.8200 - 10~° 264.87 3.3240-10~*
Instancia 12 4 265.19 3.0081 - 102 284.84 8.3300 - 107° 274.16 3.0380 - 10*
Instancia 13 4 226.36 3.0090 - 102 234.42 9.3900 - 107° 234.23 1.9100 - 10~ 4
Instancia 14 4 269.85 3.0083 - 102 308.71 1.0100 - 10~4 278.48 2.8180 - 10*
Instancia 15 4 254.94 3.0093 - 102 274.44 1.2400 - 10~* 263.93 3.3950 - 107*
Instancia 16 4 242.58 3.0081 - 102 260.63 9.1900 - 10~° 251.54 3.3830-107*
Instancia 17 4 264.56 3.0092 - 102 285.69 9.5900 - 10~° 273.36 2.2490 - 1074
Instancia 18 4 253.01 3.0091 - 102 263.41 1.2000 - 10~4 261.98 3.3650 - 107
Instancia 19 4 237.63 3.0085 - 102 247.64 9.7800 - 10~° 246.43 2.2470 - 104
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Modelo exacto Vecino méas préximo 2-opt

IN| | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)
Instancia 20 4 240.86 3.0091 - 10? 251.13 8.5800 - 10~° 250.16 2.4940 - 107*
Instancia 21 5 265.83 3.0084 - 102 290.68 9.3100 - 10~° 274.82 4.7820-107*
Instancia 22 5 255.20 3.0091 - 10? 271.60 8.6900 - 10~° 264.19 4.5880 -107*
Instancia 23 5 256.46 3.0087 - 102 274.13 1.8190 - 104 265.04 6.2650 - 107*
Instancia 24 5 242.20 3.0087 - 102 258.35 9.7800 - 10~° 251.20 4.9910-107*
Instancia 25 5 253.11 3.0090 - 102 264.26 9.4000 - 10~° 262.08 5.0050 - 10~%
Instancia 26 5 269.76 3.0084 - 102 294.31 1.5920 - 104 278.73 4.3250-107*
Instancia 27 5 274.46 3.0083 - 102 283.55 8.6700 - 107° 283.26 4.1760 - 107*
Instancia 28 5 247.96 3.0094 - 102 265.98 9.4900 - 10~° 256.96 4.7410-107%
Instancia 29 5 253.10 3.0086 - 102 263.52 8.4800 - 107° 262.07 3.2360 - 107
Instancia 30 5 245.71 3.0087 - 102 263.10 7.3200 - 107° 254.70 3.7210 - 107*
Instancia 31 6 242.22 3.0082 - 102 258.48 7.3200- 1074 251.22 5.1440 - 1074
Instancia 32 6 255.07 3.0085 - 102 266.07 8.1800 - 10~° 264.64 6.4480 - 107*
Instancia 33 6 275.10 3.0091 - 10? 283.78 1.1080 - 104 283.50 4.5580 -107*
Instancia 34 6 275.05 3.0083 - 102 283.78 1.2740 - 104 283.45 4.3470 -107*
Instancia 35 6 241.83 3.0229 - 102 252.05 1.3080 - 104 250.80 5.3540 - 107*
Instancia 36 6 271.51 3.0131 - 102 282.67 3.0570 - 107* 280.14 5.6290 - 107*
Instancia 37 6 281.94 3.0085 - 102 310.12 9.7100 - 10~° 290.90 5.2790 - 10~%
Instancia 38 6 273.31 3.0087 - 102 297.14 1.0590 - 104 282.31 6.5490 - 107*
Instancia 39 6 281.04 3.0082 - 102 309.27 1.0260 - 104 290.00 5.9610 - 10~%
Instancia 40 6 267.20 3.0088 - 102 286.85 1.1570 - 10~* 276.17 5.6300 - 107*
Instancia 41 7 255.93 3.0097 - 102 265.63 1.3130 - 10~* 263.34 1.2044 - 1072
Instancia 42 7 258.53 3.0086 - 102 275.00 1.0530 - 104 267.53 8.7570 - 107*
Instancia 43 7 276.02 3.0076 - 102 284.70 8.8600 - 107° 284.42 5.6700 - 10~ %
Instancia 44 7 275.51 3.0091 - 102 284.66 5.9020 - 104 284.31 7.2950 - 1074
Instancia 45 7 257.10 3.0065 - 102 274.47 1.0180 - 104 266.09 2.2124 - 1073
Instancia 46 7 272.47 3.0080 - 102 300.93 1.3200 - 104 281.46 1.1582 - 1073
Instancia 47 7 282.65 3.0087 - 102 310.77 1.2160 - 104 291.64 1.4790 - 1073
Instancia 48 7 282.07 3.0080 - 102 310.25 1.5520 - 104 291.03 7.6330 - 107*
Instancia 49 7 272.12 3.0088 - 102 300.53 1.0070 - 104 281.08 8.1910-107*
Instancia 50 7 248.25 3.0196 - 102 267.05 2.1500 - 10™* 257.24 7.3110 - 107*
Instancia 51 8 277.35 3.0185 - 102 301.90 6.8930-107* 286.32 1.1091 - 1073
Instancia 52 8 282.73 3.0182 - 102 310.85 2.6150 - 10~% 291.72 1.0713 - 1073
Instancia 53 8 259.37 3.0179 - 102 276.85 1.0490 - 10~ 4 268.36 2.1588 - 1072
Instancia 54 8 259.60 3.0180 - 102 276.90 9.6900 - 10~° 268.52 2.4769 - 1073




Modelo exacto Vecino mas préximo 2-opt

[N| | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)
Instancia 55 8 272.31 3.0181 - 102 300.63 1.4136 - 1073 281.27 1.0472 - 1073
Instancia 56 8 282.68 3.0094 - 102 310.85 1.4110 - 10~4 291.67 8.7800 - 10™*
Instancia 57 8 277.40 3.0168 - 102 298.39 1.3490 - 104 282.41 9.9170 - 107*
Instancia 58 8 273.82 3.0084 - 102 302.14 1.1340 - 10~4 282.78 9.7460 - 107
Instancia 59 8 281.33 3.0069 - 102 309.45 1.3000 - 10~4 290.32 9.1380-107*
Instancia 60 8 282.81 3.0169 - 102 310.90 1.0720 - 10~4 291.77 1.0700 - 1073
Instancia 61 9 283.79 3.0178 - 102 311.88 1.0930 - 10~4 292.75 1.0357 - 1073
Instancia 62 9 283.81 3.0174 - 102 311.77 2.6190 - 10~% 292.76 1.1075 - 1073
Instancia 63 9 283.63 3.0182 - 102 311.83 1.3470 - 1074 292.59 1.2773-1073
Instancia 64 9 287.92 3.0183 - 102 311.77 1.5200 - 104 292.64 1.8108 - 103
Instancia 65 9 273.84 3.0197 - 10? 302.27 1.4780 - 10~ 4 282.80 2.0908 - 1073
Instancia 66 9 262.62 3.0419 - 102 276.92 1.4940 - 10~4 268.54 2.4307-1073
Instancia 67 9 282.86 3.0180 - 102 310.98 1.2490 - 10~4 291.85 1.2360 - 1073
Instancia 68 9 282.28 3.0198 - 102 310.48 1.2240 - 10~4 291.24 1.2708 - 1073
Instancia 69 9 280.37 3.0159 - 102 302.03 1.3620 - 104 286.45 1.1942 - 1073
Instancia 70 9 287.43 3.0173 - 102 311.01 9.6700 - 107° 292.68 1.0766 - 1073

Tabla A.1: Comparacién de los tres

métodos de las instancias reales de la Seccién 4.3.
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Apéndice B

Nuevo caso planteado

En la Seccién 5.3 se incluy6 un resumen de los resultados obtenidos para los experimentos. En este

apéndice se recogeran los datos al completo para una mejor comprension.

Se pueden ver en las Tablas B.1, B.2 y B.3 estos resultados.

Modelo exacto Vecino mas préximo 2-opt

IN| | Coste (€) Tiempo (s) |K| | Coste (€) Tiempo (s) |[K| | Coste (€) Tiempo (s) |K|
Instancia 1 10 340.53 1.2020 - 10 1 351.64 1.6260 - 104 1 344.30 2.5404 - 1073 1
Instancia 2 10 334.93 1.2022 - 10° 1 373.68 2.7280 - 107% 1 343.48 4.4978 - 1073 1
Instancia 3 10 294.64 1.2018 - 10° 1 317.24 1.6530 - 104 1 302.03 2.2629 - 1073 1
Instancia 4 10 315.47 1.2021 - 10 1 350.25 3.5990 - 10~* 1 324.95 2.2303 - 1073 1
Instancia 5 10 304.74 1.2029 - 103 1 342.37 2.4010 - 107* 1 314.69 3.2033 - 1073 1
Instancia 6 10 281.28 1.2022 - 103 1 322.16 7.2640 - 104 1 288.81 1.8245- 1073 1
Instancia 7 10 305.34 1.2017 - 103 1 324.32 1.9800 - 10~ 4 1 318.96 1.3801- 1073 1
Instancia 8 10 296.25 1.2017 - 103 1 320.90 6.9440 - 107* 1 305.45 4.0359 -1073 1
Instancia 9 10 265.83 1.2025 - 103 1 296.60 2.0690 - 10™* 1 274.43 1.3590 - 103 1
Instancia 10 | 10 310.33 1.2020 - 10 1 320.59 1.6640 - 104 1 320.22 1.4856 - 1073 1
Instancia 11 | 15 338.61 1.2031 - 10 1 385.30 2.4820-107* 1 337.47 6.6489 - 103 1
Instancia 12 | 15 372.51 1.2019 - 103 1 382.83 4.5790 - 10~ 4 1 380.87 3.6046 - 1073 1
Instancia 13 | 15 386.04 1.2024 - 103 1 395.90 1.9940 - 104 1 371.64 5.2416 - 1072 1
Instancia 14 | 15 373.78 1.2026 - 103 1 401.81 2.8890 - 107% 1 352.25 7.5320- 1073 1
Instancia 15 | 15 332.25 1.2028 - 10° 1 364.07 1.8880 - 10~ 1 338.52 7.7401 - 1073 1
Instancia 16 | 15 322.12 1.2025 - 103 1 323.78 2.6760 - 10~* 1 306.59 8.0076 - 1073 1
Instancia 17 | 15 338.77 1.2034 - 10° 1 409.61 8.0710 - 107* 1 355.02 1.0230 - 10~2 1
Instancia 18 | 15 315.25 1.2030 - 10 1 366.27 3.8230-107* 1 322.20 1.4934 - 1072 1
Instancia 19 | 15 344.80 1.2034 - 10 1 366.83 2.5990 - 107% 1 349.75 8.9265 - 1073 1
Instancia 20 | 15 385.36 1.2034 - 103 1 389.81 4.0610 - 107% 1 376.92 2.2560 - 1073 1
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Modelo exacto Vecino mas préximo 2-opt

|IN| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) | K| Coste (€) Tiempo (s) | K|
Instancia 21 | 20 346.97 1.2031 - 103 1 346.33 2.3030 - 1074 1 330.98 9.1254 - 1073 1
Instancia 22 | 20 404.46 1.2034 - 103 1 386.80 3.3260 - 1074 1 383.10 1.0857 - 102 1
Instancia 23 | 20 390.42 1.2033 - 103 1 397.81 3.8110 - 1074 1 360.34 5.3415 - 1072 1
Instancia 24 | 20 348.45 1.2047 - 10° 1 385.21 3.0350 - 107% 1 339.31 2.4952 - 1072 1
Instancia 25 | 20 401.43 1.2043 - 10° 1 391.86 3.8590 - 107% 1 363.66 2.1208 - 1072 1
Instancia 26 | 20 386.12 1.2033 - 10 1 434.27 3.8450 - 107* 1 399.08 2.0240 - 1072 1
Instancia 27 | 20 354.09 1.2047 - 103 1 375.71 3.7900 - 107* 1 355.26 4.0223-1072 1
Instancia 28 | 20 330.75 1.2042 - 103 1 347.66 2.8410-107% 1 328.63 1.6703 - 10~ 2 1
Instancia 29 | 20 695.25 1.2039 - 10 2 414.19 3.5960 - 10™* 1 392.23 1.8511 - 1072 1
Instancia 30 | 20 381.59 1.2048 - 10 1 376.72 2.6260 - 107* 1 369.90 2.1208 - 1072 1
Tabla B.1: Comparacion de los tres métodos para las instancias sintéticas de la Seccién 5.3 con dpyax =
400.

Modelo exacto Vecino mas préximo 2-opt

|IN| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) | K| Coste (€) Tiempo (s) | K|
Instancia 1 10 545.02 1.2034 - 103 2 583.92 1.5790 - 10~4 2 567.56 7.6400 - 107* 2
Instancia 2 10 573.73 1.2021 - 103 2 555.41 1.8690 - 10~ 2 555.09 1.7118 - 1073 2
Instancia 3 10 293.68 1.2033 - 10 1 510.94 1.9530 - 10~ 2 503.03 1.5974 - 1073 2
Instancia 4 10 525.83 1.2019 - 10° 2 535.58 2.0260 - 107% 2 528.11 8.6540 - 10~ % 2
Instancia 5 10 304.04 1.2023 - 10° 1 532.86 2.6270 - 107% 2 519.18 1.8551- 1073 2
Instancia 6 10 280.37 1.2034 - 10 1 511.72 2.1010 - 10~* 2 488.50 1.9912 - 1073 2
Instancia 7 10 305.34 1.2022 - 103 1 521.16 2.0690 - 10~* 2 513.38 1.1354 - 1073 2
Instancia 8 10 294.55 1.2022 - 103 1 524.29 2.0870 - 107% 2 512.02 3.1842 - 1073 2
Instancia 9 10 265.97 1.2026 - 103 1 296.60 2.1000 - 107* 1 274.43 1.8051- 1073 1
Instancia 10 | 10 528.79 1.2028 - 103 2 515.11 2.0930 - 107* 2 507.75 1.6757 - 1073 2
Instancia 11 | 15 788.59 1.2032 - 10 3 580.58 2.6640 - 107* 2 567.54 3.8923 - 1073 2
Instancia 12 | 15 846.00 1.2028 - 10 3 621.43 2.5970 -107* 2 606.39 1.9200 - 1073 2
Instancia 13 | 15 628.97 1.2030 - 10 2 607.81 2.1080 - 10™* 2 594.29 2.9392-1073 2
Instancia 14 | 15 578.53 1.2040 - 103 2 585.56 2.9470 - 1074 2 576.28 3.5244 - 1073 2
Instancia 15 | 15 568.39 1.2028 - 10 2 571.37 3.6610 - 10~ 2 564.12 7.8215-1072 2
Instancia 16 | 15 306.83 1.2023 - 10 1 523.18 5.4880 - 107 2 510.44 1.1411 - 1072 2
Instancia 17 | 15 611.27 1.2020 - 10 2 622.64 2.9130-107% 2 615.28 4.4073-1073 2
Instancia 18 | 15 562.13 1.2026 - 103 2 584.41 2.2620 - 107 2 561.80 4.8786 - 1072 2
Instancia 19 | 15 831.08 1.2027 - 103 3 586.86 2.0030 - 107* 2 583.95 2.7081 - 1073 2
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Modelo exacto Vecino mas préximo 2-opt

|IN| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) | K| Coste (€) Tiempo (s) | K|
Instancia 20 | 15 803.95 1.2029 - 10°% 3 616.78 2.3670 - 107% 2 587.61 1.6529 - 1073 2
Instancia 21 | 20 - - - 574.17 1.3362-1073 2 567.65 6.8537 - 1073 2
Instancia 22 | 20 - - - 579.29 9.5070 - 10~* 2 571.61 3.4052 - 1073 2
Instancia 23 | 20 - - - 831.78 1.8451-1073 3 809.85 1.6579 - 1072 3
Instancia 24 | 20 - - - 569.26 8.7410 - 107* 2 547.90 2.8056 - 102 2
Instancia 25 | 20 - - - 608.10 9.2470 - 10~* 2 595.57 6.9831 1073 2
Instancia 26 | 20 - - - 616.82 1.5039 - 1073 2 615.43 6.0953 - 1073 2
Instancia 27 | 20 - - - 586.39 1.1722-1073 2 572.13 5.5166 - 1073 2
Instancia 28 | 20 557.14 1.2044 - 10 2 546.55 4.8530-107* 2 545.60 4.9498 - 1073 2
Instancia 29 | 20 - - - 819.10 2.5423 -1073 3 799.21 1.5520 - 102 3
Instancia 30 | 20 582.03 1.2046 - 10° 2 609.08 3.9620 - 107* 2 597.49 4.6097 - 1073 2
Tabla B.2: Comparacion de los tres métodos para instancias sintéticas de la Seccion 5.3 fijando dpyax =
200.

Modelo exacto Vecino mas préximo 2-opt

[N| | Coste (€) Tiempo (s) |K| | Coste (€) Tiempo (s) |[K| | Coste (€) Tiempo (s) | K|
Instancia 1 10 0.00 1.2015 - 103 0 799.15 2.8240 - 107% 3 789.25 8.9170 - 10~ % 3
Instancia 2 10 568.97 1.2016 - 103 2 793.48 2.4200 - 107* 3 790.22 9.9100 - 10™* 3
Instancia 3 10 534.18 1.2018 - 10° 2 533.91 2.0270 - 107% 2 529.29 1.5342 - 1073 2
Instancia 4 10 536.53 1.2017 - 10° 2 549.41 1.6060 - 10~ 2 526.24 5.9280 - 10~ % 2
Instancia 5 10 517.96 1.2008 - 103 2 536.43 1.4350 - 104 2 529.57 1.3645 - 1073 2
Instancia 6 10 486.56 1.2019 - 103 2 515.26 2.0500 - 107% 2 512.08 6.9290 - 10~* 2
Instancia 7 10 513.29 1.2016 - 103 2 540.70 1.6790 - 10~4 2 525.05 2.7045 - 1073 2
Instancia 8 10 500.15 1.2020 - 10 2 540.25 2.1170 - 107* 2 533.30 1.0807 - 1073 2
Instancia 9 10 266.14 1.2026 - 103 1 487.33 1.8860 - 104 2 475.94 1.4591 - 1073 2
Instancia 10 | 10 526.44 1.2016 - 10% 2 523.60 2.2850-107% 2 521.26 1.2020 - 1073 2
Instancia 11 | 15 779.00 1.2018 - 10° 3 798.60 1.9350 - 10~ 3 787.28 3.8526 - 1073 3
Instancia 12 | 15 - - - 1079.57  3.0300-107* 4 1073.31 1.2560 - 1073 4
Instancia 13 | 15 1058.39 1.2018 - 103 4 820.62 2.0180-107* 3 811.90 1.3017 - 1073 3
Instancia 14 | 15 800.58 1.2018 - 103 3 793.33 2.8000 - 10~% 3 787.48 2.0904 - 1073 3
Instancia 15 | 15 - - - 786.12 2.0550 - 107* 3 777.42 1.5895 - 1073 3
Instancia 16 | 15 728.82 1.2027 - 10° 3 533.30 2.9030 - 107% 2 523.02 2.3044 - 1073 2
Instancia 17 | 15 - - - 824.32 1.0948 - 1073 3 799.59 3.8193 1073 3
Instancia 18 | 15 788.38 1.2032 - 10° 3 553.45 2.0750 - 10~* 2 536.05 3.0413 - 1073 2
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CAPITULO 6. CONCLUSIONES Y LINEAS DE TRABAJO FUTURO

Modelo exacto Vecino mas préximo 2-opt

|IN| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) | K| Coste (€) Tiempo (s) | K|
Instancia 19 | 15 - - - 773.93 1.6587 - 1073 3 763.39 1.6432 - 1073 3
Instancia 20 | 15 - - - 1027.20  9.8480-107% 4 1008.48 1.4918 - 1073 4
Instancia 21 | 20 - - - 562.96 3.6170 - 10~ 4 2 552.52 3.3831-1073 2
Instancia 22 | 20 - - - 1044.09  3.4820-107% 4 1033.19 1.5522 - 1073 4
Instancia 23 | 20 - - - 802.55 3.4670 - 107% 3 794.86 5.4869 - 1073 3
Instancia 24 | 20 - - - 765.41 2.4050 - 107* 3 761.92 9.1246 - 1073 3
Instancia 25 | 20 - - - 1029.59  3.5470-107% 4 1016.66  2.1591-1073 4
Instancia 26 | 20 - - - 1279.72  3.4880-107% 5 1276.66 1.2482 - 1073 5
Instancia 27 | 20 - - - 848.12 3.8080 - 107* 3 813.87 1.4862 - 1073 3
Instancia 28 | 20 - - - 557.24 3.5320 - 107* 2 554.85 6.1889 - 1073 2
Instancia 29 | 20 - - - 1062.05  3.5160 - 10~* 4 1050.61 2.6396 - 1073 4
Instancia 30 | 20 - - - 785.41 2.6530 - 107* 3 784.47 2.7698 - 1073 3

Tabla B.3: Comparacion de los tres métodos para instancias sintéticas de la Seccion 5.3 fijando dpyax =

150.
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