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Resumen

Resumen en español

Los problemas de rutas de vehículos son un campo ampliamente estudiado en el ámbito de la
optimización matemática, los cuales cuentan con diversas formulaciones según las necesidades de los
clientes. Además, son muchos los métodos de resolución existentes, puesto que no resulta sencillo
resolver el problema de forma directa.

En este Trabajo Fin de Máster se estudiará el caso particular de los problemas de rutas de vehículos
eléctricos que plantea la startup española Trucksters. En este contexto, además de las restricciones
usuales de capacidad, tiempo, distancia, etc., se añaden nuevas restricciones relativas a la carga de
la batería, lo que implica una revisión de los métodos usuales de resolución. Se abordarán para ello
métodos exactos y diferentes heurísticas incorporando estas nuevas restricciones.

Por último, se hará uso del lenguaje Python para obtener la solución del problema formulado,
implementando un modelo exacto con el solver SCIP y desarrollando las heurísticas del vecino más
próximo y 2-opt. Estas soluciones se calcularán para diferentes instancias, permitiendo así comparar
el rendimiento y la calidad de los distintos métodos de resolución.

English abstract

Vehicle routing problems constitute a widely studied field within mathematical optimization and
include a variety of formulations depending on client requirements. Moreover, there exists a broad
range of solution methods, as solving these problems directly is often challenging.

This document focuses on the specific case of electric vehicle routing problems proposed by the Spa-
nish startup Trucksters. In this context, in addition to the usual constraints related to capacity, time,
distance, etc., new battery-charging constraints are introduced, requiring an adaptation of traditional
solution methods. Both exact methods and different heuristics will be explored while incorporating
these additional restrictions.

Finally, the Python programming language will be used to obtain solutions to the formulated
problem, implementing an exact model with the SCIP solver and developing the nearest-neighbour
and 2-opt heuristics. These solutions will be computed for multiple instances, thereby enabling a
comparison of the performance and solution quality of the various solution methods.

ix
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Capítulo 1

Introducción

Trucksters es una startup española de logística y tecnología que trabaja en el sector del transporte
de mercancías por carretera.

El transporte constituye uno de los pilares de la actividad económica y, al mismo tiempo, una de las
principales fuentes de emisiones contaminantes. En España, el sector del transporte representa más del
30 % de las emisiones de gases contaminantes y, en concreto, el transporte por carretera conforma el
28.4 % del total [19]. Por ello, surge la necesidad de avanzar hacia modelos de movilidad más eficientes
y sostenibles.

En este contexto, el uso de vehículos que empleen baterías eléctricas en el transporte constituye
una alternativa clave. Numerosos estudios han demostrado la eficacia de los camiones eléctricos pa-
ra reducir las emisiones de CO2 y otros gases de efecto invernadero [3, 23]. Asimismo, los vehículos
eléctricos contribuyen a disminuir la contaminación acústica, ya que el ruido del tráfico representa
cerca del 70 % de las emisiones sonoras en las grandes ciudades [8]. Más allá del avance tecnológico,
es importante destacar que en el sector del transporte por carretera la optimización juega un papel
fundamental. Una planificación eficiente de rutas permite reducir distancias recorridas, tiempos opera-
tivos y, en consecuencia, emisiones. Esto es especialmente relevante en el caso de vehículos eléctricos,
cuyos requerimientos (autonomía limitada, necesidad de recarga y disponibilidad de puntos de carga)
añaden complejidad al proceso de planificación.

Trucksters basa su modelo operativo en un innovador sistema de relevos que permite recorrer
mayores distancias en menos tiempo. En lugar de que un único conductor complete un trayecto largo,
se establecen puntos de intercambio de remolques, que permiten mantener la mercancía en movimiento
sin necesidad de paradas prolongadas. Gracias a este sistema, la compañía consigue mejorar la calidad
de vida de los conductores, permitiendo que permanezcan a una menor distancia de sus hogares, y
logra disminuir los kilómetros en vacío recorridos por sus camiones, reduciendo a su vez las emisiones
de gases responsables del efecto invernadero.

Trucksters busca reducir su huella de carbono y avanzar hacia un transporte más sostenible, por lo
que ha incorporado un camión eléctrico a su flota. Inicialmente, este vehículo se empleará en operaciones
para tareas de carga y descarga en Cataluña. La implementación de la tractora eléctrica ha supuesto
que el equipo operativo asuma manualmente la planificación de sus rutas, teniendo en cuenta las
particularidades propias de los vehículos eléctricos, como la autonomía y los tiempos de recarga. Esta
gestión adicional representa una carga significativa para el equipo, por lo que la empresa está enfocada
en desarrollar soluciones que permitan automatizar la planificación diaria de su camión eléctrico,
optimizando tanto la eficiencia operativa como la sostenibilidad del transporte. El problema que plantea
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2 CAPÍTULO 1. INTRODUCCIÓN

Trucksters consiste, por tanto, en desarrollar un algoritmo que permita integrar este camión eléctrico
en sus operaciones diarias, reduciendo los tiempos de planificación, que actualmente ascienden a 30
minutos. La planificación actual tiene como objetivo minimizar los costes operativos; por ello, los
modelos analizados deberán optimizar tanto los costes de recarga eléctrica como el consumo de batería.
Además, se analizará y determinará qué algoritmo de optimización resulta más adecuado para la
casuística concreta de la empresa, evaluando su rendimiento tanto sobre los datos actuales, como su
capacidad de escalado ante futuros proyectos de mayor complejidad.

A lo largo de este Trabajo Fin de Máster se abordará la automatización de la planificación compa-
rando distintos métodos de resolución. Para ello, se seleccionarán tres técnicas: un método exacto, la
heurística del vecino más próximo y la heurística 2-opt, que serán aplicados al caso real de Trucksters y
evaluados mediante criterios de rendimiento y calidad de solución. Este objetivo guía todo el desarrollo
del trabajo, desde la definición de un caso real hasta el análisis comparativo final.

El caso de estudio describe la situación real de los problemas de rutas determinado por un trans-
portista, que debe hacer las entregas que son demandadas cada día en la provincia de Barcelona. Para
ello, el camión eléctrico debe salir de la base operativa, recorrer los puntos de recogida de mercancía,
visitar un almacén donde se efectuará la descarga y volver de nuevo a la base operativa. Además,
debemos tener en cuenta que se dispone de un vehículo eléctrico, por lo que a lo largo de la ruta es
necesario parar en un punto de carga. Se puede ver una representación del problema planteado en la
Figura 1.1.

Figura 1.1: Representación del problema real. El nodo amarillo (0) se corresponde con la base operativa,
los azules (1-3) son los puntos de carga, el nodo morado (4) el punto de descarga y los verdes (5-9) los
cargadores. La solución óptima se correspondería con la ruta (0, 1, 2, 3, 7, 4, 0).

Además de abordar la casuística descrita, el trabajo incluye un análisis de escalabilidad de los
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algoritmos, evaluando su desempeño en conjuntos de datos más grandes que simulan un mayor número
de nodos de recogida y descarga, así como escenarios con distancias máximas de ruta variables, acordes
a las capacidades de distintos vehículos eléctricos. Esta evaluación permite determinar la robustez y
eficiencia de los métodos seleccionados frente a situaciones más complejas y potenciales ampliaciones
de la operativa de Trucksters.

Para resolver las cuestiones planteadas, el Trabajo Fin de Máster se dividirá en dos partes: una
metodología y una parte práctica. La metodológica estará compuesta por una revisión teórica y concep-
tual que servirá de base para la aplicación práctica posterior. La segunda parte recogerá el desarrollo
de los casos de estudio y el análisis de los resultados obtenidos.

En el Capítulo 2 se presentarán los conceptos necesarios para abordar los problemas de rutas: los
problemas de optimización (Sección 2.1) y la optimización en redes (Sección 2.2). En el Capítulo 3
se hará una revisión de los problemas del viajante de comercio, los problemas de rutas de vehículos
y el caso concreto de los problemas de rutas de vehículos eléctricos, en las secciones 3.1, 3.2 y 3.3,
respectivamente. Asimismo, en la Sección 3.4, se estudiarán los tipos de métodos de resolución de los
problemas planteados, abordando los métodos exactos y las heurísticas y metaheurísticas más comunes.

En el Capítulo 4 se estudiará el problema concreto propuesto por Trucksters (Sección 4.1) y se
planteará una formulación a partir del caso general, incorporando las nuevas restricciones relativas a la
batería del vehículo. Se continuará en la Sección 4.2 con la selección de los métodos de resolución y una
explicación de su desarrollo en los programas empleados. Además, se incluirá el pseudocódigo empleado
para mayor comprensión y se fijarán los criterios de comparación. En la Sección 4.3 se implementarán los
algoritmos previamente escogidos y se procederá con un estudio comparativo observando las diferencias
de la calidad de las soluciones y rendimiento de cada uno. En el Capítulo 5 se extenderá el estudio
comparativo a situaciones más complejas, generando instancias con un mayor número de nodos y
añadiendo una límitación de distancia. En la Sección 5.1 se proporcionará una nueva formulación que
se adapte a los nuevos datos empleados y en la Sección 5.2 se explicará la implementación de los
algoritmos para estas nuevas instancias. Finalmente, en la Sección 5.3 se realizará un nuevo estudio
comparativo de los métodos, con el apoyo de gráficos que permitan visualizar los resultados obtenidos.

Por último, en el Capítulo 6, se recogerán las conclusiones obtenidas a lo largo del trabajo y se
verán las posibles líneas de trabajo futuro.
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Capítulo 2

Estado del arte

El problema que se plantea en este Trabajo Fin de Máster es el de encontrar la mejor solución para
una situación concreta con unas limitaciones iniciales. Este tipo de problema se enmarca dentro de la
programación matemática, y más concretamente, dentro de los problemas de optimización.

En la Sección 2.1 se presentan los conceptos más básicos de los problemas de optimización, nece-
sarios para describir el modelo que se abordará. Además, en la Sección 2.2 se hace una revisión de
los problemas de optimización en redes, que sientan las bases de los problemas de rutas de vehículos,
y se estudian los casos concretos del problema de flujo en redes a coste mínimo, y del problema de
transporte.

2.1. Problemas de optimización

Los problemas de optimización constituyen una de las áreas fundamentales de la programación
matemática. Están presentes en sectores como la ingeniería, la economía o la logística, ya que permiten
encontrar soluciones a casuísticas muy variadas. En esta sección se tomará como referencia principal
[1], que ofrece un recorrido por los fundamentos de la programación matemática.

Un problema de programación matemática se puede escribir del siguiente modo:

minimizar f(x) (2.1)
sujeto a gi(x) ≤ 0 i = 1, . . . , m

hj(x) = 0 j = 1, . . . , l

x ∈ X,

donde f, gi, hj son funciones reales definidas en Rn, X es un conjunto de Rn y x = (x1, . . . , xn) es un
vector de n componentes. La función f(x) se llama función objetivo, y las funciones gi, hj conforman
la región factible. El problema consiste en encontrar los valores de las variables x1, . . . , xn que
satisfagan las restricciones dadas en la región factible. A estos valores de x se les denomina soluciones
factibles. El objetivo es determinar de entre todas las soluciones factibles aquellas que minimicen la
función objetivo. En este sentido, si los puntos x1, . . . , xn encontrados satisfacen

f(x) ≤ f(y), ∀y ∈ X

se dice que x es un óptimo global del problema (2.1). Por el contrario, si la desigualdad se cumple
únicamente en un entorno de x, se dice que x es un óptimo local del problema (2.1).

5



6 CAPÍTULO 2. ESTADO DEL ARTE

Un ejemplo sencillo de un problema de optimización es el siguiente:

minimizar f(x) = sin(x1) + x2 (2.2)
sujeto a x2

1 + x2
2 ≤ 5

x1 ≥ 0
x2 ≥ 0.

En este caso, la región factible corresponde al interior de la circunferencia de radio
√

5 centrada en
el eje de coordenadas, únicamente en el primer cuadrante. Se aprecia que el punto donde la función
objetivo alcanza su mínimo es en el (x1, x2) = (0, 0), el cual constituye el óptimo global del problema
(2.2). En la Figura 2.1 se muestra una representación de la región factible, junto con el punto óptimo
(color azul oscuro) y las curvas de nivel de la función, que son algunas de las posibles soluciones del
problema.

0.0 0.5 1.0 1.5 2.0
x1

0.0

0.5

1.0

1.5

2.0

x 2

0.40
0.80

0.80

1.20

1.60

2.00

2.40

2.80
3.20

3.60

Figura 2.1: Representación de la región de soluciones factibles para el problema (2.2).

Según la naturaleza de las funciones que determinan la región factible de los problemas de optimi-
zación, estos se pueden clasificar en diferentes grupos.

2.1.1. Programación convexa

En esta sección se presentan los problemas de programación convexa, que, por las propiedades que
cumplen, son interesantes desde el punto de vista metodológico. Para ello, se introducen en primer
lugar las siguientes definiciones:

Definición 2.1. Un conjunto S ⊆ Rn se dice convexo si cualquier combinación convexa de puntos
de S también pertenece a S. Es decir, si dados x, y ∈ S, entonces λx + (1− λ)y ∈ S ∀λ ∈ [0, 1].

Definición 2.2. Dado un conjunto no vacío y convexo S ⊆ Rn, y una función f : S → R, la función
f es convexa en S si, para todo x ∈ S e y ∈ S y para todo λ ∈ (0, 1), se tiene

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definición 2.3. Una función f : S ⊂ Rn → R se dice afín si existe a ∈ Rn y b ∈ R tales que

f(x) = aT x + b, ∀x ∈ S.
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Los problemas de programación convexa son aquellos en los que tanto la función objetivo f como
la región factible son convexas En concreto, las funciones gi tienen que ser convexas y las funciones hj

afines.

Este tipo de problemas son muy interesantes por sus propiedades, que hacen su resolución más
sencilla. A continuación se presentan algunos resultados destacados sobre su resolución:

Teorema 2.4. Sea S ⊆ Rn un conjunto no vacío y convexo y sea f : S → R una función convexa en
S. Si el vector x es un óptimo local del problema (2.1), entonces

(i) El vector x es un óptimo global.

(ii) Si x es un óptimo local estricto o f es estrictamente convexa, entonces x es el único óptimo
global.

Lema 2.5. Dado un problema de programación convexa, toda combinación convexa de dos puntos x
e y que sean óptimos locales (globales) también será un óptimo local (global).

Se presenta a continuación un ejempo de un problema de programación convexa. El problema (2.3)
es un ejemplo de esta formulación, cuya representación se puede ver en la Figura 2.2.

minimizar f(x) = x2
1 + x2

2 (2.3)
sujeto a 0 ≤ x1 ≤ 4

0 ≤ x2 ≤ 4.

En este caso, la región factible son los x1 y x2 no negativos y no mayores que 4, lo que forma
un cuadrado, y que se corresponde con un conjunto convexo. La función objetivo son circunferencias
concéntricas de centro (0, 0). Por la definición vista, se puede observar que se trata de una función
convexa.

Cada radio de las circunferencias posibles forma una curva de nivel. El óptimo global vuelve a ser
el punto (0, 0), representado en azul oscuro (Figura 2.2).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x 2

1.00

5.00

9.00

13.00
17.00

21.00

25.00

29.00

33.00

37.00

Figura 2.2: Representación del problema (2.3).

Dentro de la programación convexa, la programación lineal constituye un caso particular de
especial interés. En un problema de programación lineal, tanto la función objetivo como las funciones
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que definen las restricciones son afines, por lo que son convexas, y la región factible resulta ser también
convexa. En consecuencia, todos los resultados anteriores para problemas convexos son aplicables
también a los problemas de programación lineal.

2.1.2. Programación entera

Hasta ahora, se han considerado problemas en los que las variables x tomaban valores reales. Sin
embargo, en ocasiones se justifica que las variables tomen valores en Zn. Los problemas de programa-
ción entera son aquellos en los que las variables x deben tomar valores enteros. Ahora, el problema
que se quiere resolver, de forma general, es el siguiente:

minimizar f(x) (2.4)
sujeto a gi(x) ≤ 0 i = 1, . . . , m

hj(x) = 0 j = 1, . . . , l

x ∈ Zn.

Estos problemas ya no cuentan con las buenas propiedades que caracterizaban a los problemas
de optimización convexa, ya que su región factible no es un conjunto convexo. Es por ello que para
resolverlos se necesitan métodos más sofisticados que en el caso anterior.

Además, cuando las variables de decisión pueden tomar únicamente dos valores, xi ∈ {0, 1}, el
problema de optimización asociado se dice un problema de programación entera binaria.

Por ejemplo, se quiere minimizar el coste de manufactura de tres productos, seleccionando cuáles
producir. El primero, x1, tiene un precio de 2 unidades; el segundo, x2, de 3 unidades; y el tercero, x3,
de 5. Se debe tener en cuenta que como mínimo es necesario producir dos de ellos. Este problema se
puede formular de la siguiente manera:

minimizar 2x1 + 3x2 + 5x3 (2.5)
sujeto a x1 + x2 + x3 ≥ 2

x1, x2, x3 ∈ {0, 1}.

En este caso, las variables tomarán el valor 1 si se producen y el valor 0 en caso contrario. Se ve
fácilmente cómo la solución óptima es (x1, x2, x3) = (1, 1, 0), que se corresponde con los productos que
menos gastos requieren.

Si el problema engloba variables enteras y continuas, este será un problema de programación
entera mixta (MIP)1. Se verá más adelante que esta es la formulación que basará la metodología a
emplear para la resolución del problema propuesto.

Retomando el ejemplo anterior, se quiere minimizar el coste de los dos productos seleccionados. En
este caso se requiere determinar la cantidad producida de cada uno. El producto x1 se mide en metros,
pero solo permite ser cortado por unidades (es decir, un metro, dos metros,. . . ) y tiene un coste 5
unidades monetarias cada uno. Por su parte, el producto x2 también se mide en metros, pero en este
caso se permite la producción por fracciones (es decir, medio metro, tres cuartos,...), con un coste de
4 unidades cada metro. Nótese que x1 solo pueda tomar valores enteros, mientras que x2 toma valores

1Del inglés Mixed-Integer Programming.
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continuos. La empresa quiere producir, como mínimo, 10 productos.

minimizar 5x1 + 4x2 (2.6)
sujeto a x1 + x2 ≥ 10

x1 ∈ Z
x2 ∈ R+.

El problema planteado se recoge en la formulación (2.6). Dado que tenemos variables enteras, x1,
y variables continuas, x2, cumple las hipótesis de un problema de programación mixta. La solución
óptima es el punto (x1, x2) = (0, 10).

Los modelos de programación entera y de programación entera mixta resultan especialmente útiles
en problemas reales donde ciertas decisiones solo pueden tomarse en valores discretos, como seleccionar
qué instalaciones abrir, qué rutas activar o qué vehículos utilizar. En particular, muchos problemas
de optimización en redes, como los modelos de flujo en redes o transporte, pueden formularse como
problemas de programación lineal o entera, en los que las variables de decisión representan flujos
o conexión entre nodos. Esta relación entre programación entera y optimización en redes motiva el
estudio de la optimización en redes que se presenta en la siguiente sección.

2.2. Optimización en redes

Este apartado presenta los problemas de optimización en redes, los cuales constituyen un
caso particular de los problemas de programación lineal (aquellos en los que las funciones f, gi y hj

son funciones lineales). Esta clase de problemas aparecen en infinidad de campos, como el diseño
de carreteras entre localidades, el cálculo de la ruta más corta entre varios puntos o problemas de
asignación de tareas. La principal referencia que se sigue son los apuntes de la asignatura Programación
lineal y entera [12], así como el Trabajo Fin de Máster [17], que desarrolla una situación real como un
problema de optimización en redes.

Asimismo, como se mostrará en el Capítulo 3, los problemas clásicos de optimización combinatoria,
como el problema del viajante de comercio, el problema de rutas de vehículos o el problema de rutas
de vehículos eléctricos, pueden formularse como problemas de redes, al modelarse mediante nodos,
arcos y flujos. De este modo, el análisis de los problemas de optimización en redes servirá como base
conceptual y metodológica para abordar la casuística desarrollada en el Capítulo 4.

2.2.1. Conceptos básicos

La definición de esta clase de problemas se basa en el concepto de grafo. Un grafo G es un
par (V, E) consistente en un conjunto V de elementos llamados nodos o vértices y un conjunto E
cuyos elementos representan arcos o aristas. Los grafos permiten representar relaciones entre distintos
elementos y constituyen la estructura fundamental sobre la que se construyen los modelos de redes.

Según cómo sean los elementos de E, se puede distinguir dos tipos principales de grafos:

Grafos dirigidos: son aquellos en los que V ⊂ E × E, es decir, los arcos son pares ordenados. El
arco (i, j) con i, j ∈ V , empieza en el nodo i y termina en el nodo j. Se representan con flechas
para indicar el sentido.

Grafos no dirigidos: en ellos G está compuesto por subconjuntos de E de dos elementos. En este
caso, los arcos no tienen dirección, de modo que el arco (i, j) es equivalente al arco (j, i).
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En la Figura 2.3 se puede ver un ejemplo de un grafo dirigido (izquierda) y de otro no dirigido
(derecha). Nótese que ambos grafos contienen el mismo número de nodos y el mismo número de arcos,
la diferencia fundamental radica en la orientación de los arcos. Así, en el primer grafo se permite ir de
1 a 2 y de 2 a 3, pero no el recorrido inverso. Sin embargo, en el grafo de la derecha, dado que no es
dirigido, ambos caminos estarían permitidos.

1

2

3

4

5

1

2

3

4

5

Figura 2.3: Representación de un grafo dirigido (izquierda) y un grafo no dirigido (derecha).

A continuación, se presentan otros conceptos necesarios. En un grafo no dirigido G, se denomina
cadena a la secuencia de aristas distintas (a1, a2, . . . ar), tales que al = (vl−1, vl), para l ∈ {1, 2, . . . , r},
siendo (v0, v1, . . . , vr) vértices del grafo. Si la cadena empieza y termina en el mismo nodo (v0 = vr),
se trata de una cadena cerrada. Cuando todos los vértices de la cadena son distintos, se define como
un camino. Se hablará de circuito o ciclo cuando se corresponda con una cadena cerrada en la que
los únicos nodos coincidentes son el inicial y el final. Definiremos un circuito hamiltoniano como un
circuito que contiene a todos los vértices de la red exactamente una vez.

Se verá a continuación, con ayuda del grafo no dirigido de la Figura 2.3, un ejemplo de estos
conceptos. Si se toma la sucesión de nodos (1, 2, 3, 5, 1), esta será una cadena cerrada, pues se empieza
y se termina en el mismo nodo, y será además un circuito, ya que no se repite ningún nodo, excluyendo
el inicial y el final. Si tomamos la cadena (1, 2, 3, 4), esta se corresponderá con un camino, pero no con
un circuito o cadena cerrada. Podemos formar un circuito hamiltoniano recorriendo todos los nodos
en el orden (2, 3, 4, 1, 5, 3).

Un grafo, entendido como una estructura formada por nodos y aristas, no es suficiente para plantear
un problema de optimización. Para ello, se introduce el concepto de red, que consiste en un grafo con
uno o más números asociados con cada arco o nodo. Estos valores pueden representar costes, distancias,
fiabilidades u otros parámetros de interés.

Llamaremos flujo al envío de elementos u objetos de un lugar a otro dentro de una red. Estos
objetos serán las unidades de flujo, que pueden ser personas, bienes, agua,... Denotaremos por fk al
flujo correspondiente al arco k. Estos modelos se llaman modelos de redes con flujo.

A cada arco k le asignaremos tres parámetros: la cota inferior (lk), que es la cantidad mínima
de flujo que debe pasar por el arco k, la capacidad (uk), que es la cantidad máxima de flujo que el
arco k puede transportar, y el coste o beneficio (ck), que si es positivo denota el coste por unidad
de flujo que pasa por el arco k y si es negativo representa los beneficios.
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2.2.2. El problema de flujo en redes a coste mínimo

Introducida la notación necesaria, en este punto se presentan los problemas de flujo en redes
a coste mínimo (PFCM). Dada una red con capacidades, estos problemas consisten en determinar
el flujo que ha de pasar por cada arco de tal manera que el coste asociado sea mínimo y se cumplan
las restricciones de conservación de flujo y las impuestas por las capacidades.

Formalmente, las restricciones de conservación de flujo establecen que, en cada nodo, el flujo que
entra debe ser igual al flujo que sale (excepto en los nodos origen y destino del sistema). Además, cada
arco debe satisfacer las limitaciones impuestas por sus cotas inferior y superior, es decir:

lk ≤ fk ≤ uk.

El objetivo es, por tanto, encontrar la asignación óptima de flujos fk que minimice el coste total de la
red cumpliendo dichas condiciones.

El PFCM se puede formular como un problema de optimización matemática del siguiente modo:

minimizar
∑

i,j∈V

cijfij (2.7)

sujeto a
∑

i,j∈V

fij −
∑

j,h∈V

fjh = 0 (2.8)

fij ≤ uij i, j ∈ V (2.9)
fij ≥ lij i, j ∈ V. (2.10)

Nótese que se ha modificado la notación para mayor simplicidad. En lugar de etiquetar cada flujo,
coste y cota por el índice del arco correpondiente k, se ha denotado en función de los nodos que se
conectan, de forma que k = (i, j).

La función objetivo (2.7) representa el coste total asociado al flujo que circula por la red y busca
minimizar el coste de transportar unidades de flujo desde el nodo i hasta el nodo j. La restricción (2.8)
hace referencia a la conservación de flujo. Las ecuaciones (2.9) y (2.10) son las restricciones relativas
a las limitaciones de la red, estableciendo el límite superior e inferior de flujo en cada arco.

Podríamos ejemplificar un problema de este tipo con una red, donde los nodos son ciudades y los
arcos representan carreteras entre ellas. Se quiere abastecer de un determinado producto a las ciudades,
enviándolo desde una ciudad origen hasta una ciudad destino. Cada arco tiene un coste asociado cij

por unidad de flujo que circula por él, así como una capacidad máxima uij y mínima lij . El objetivo
es determinar la cantidad de producto que debe enviarse por cada carretera para minimizar el coste
total, asegurando que se respeten las capacidades y la conservación de flujo en cada ciudad.

2.2.3. El problema de transporte

El problema de transporte es un caso particular del problema de flujo en redes a coste mínimo,
en el cual se tienen que minimizar los costes asociados a los flujos de la red. Sin embargo, ahora se
trata de un grafo bipartito, donde los nodos se dividen en dos conjuntos diferenciados: N1 y N2.

Los nodos i de N1 se denominan nodos de suministro y tienen una capacidad asociada si > 0.
Necesariamente todos los arcos del problema partirán de un nodo de este conjunto. Por otro lado, los
nodos j de N2 se definen como nodos de demanda y tienen asociada una demanda dj > 0. Los arcos de
la red incidirán en los nodos de este conjunto. Cada arco k = (i, j) representa un canal de distribución
con un coste asociado ck.
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El problema de transporte consiste en usar los nodos de suministro para satisfacer todas las de-
mandas a coste mínimo. Para que el problema tenga solución es necesario que

∑
i∈N1

si ≥
∑

j∈N2
dj .

Se puede formular como un problema de optimización del siguiente modo:

minimizar
∑

i,j∈V

cijfij (2.11)

sujeto a
∑

i,j∈V

fij ≤ si i ∈ N1 (2.12)

∑
i,j∈V

fij = dj j ∈ N2 (2.13)

fij ≥ 0 (2.14)

La función objetivo (2.11) representa el coste total asociado al flujo que circula por la red, que es lo
que se quiere minimizar. La restricción (2.12) es necesaria para asegurar que se respeta la capacidad
de los orígenes. Por otro lado, la restricción (2.13), indica que a cada elemento de N2 han de llegar
exactamente dj unidades, para satisfacer la demanda de los destinos.

En este problema, es muy común considerar los nodos de N1 como almacenes o fábricas y los nodos
de N2 como clientes o tiendas.

Se puede observar una representación de un ejemplo del problema de transporte en la Figura 2.4,
donde los nodos de suministro 1, 2 y 3 son los nodos representados en la parte izquierda y los nodos
de demanda 4, 5 y 6 los situados en la parte derecha. Cada uno de ellos está asociado a una capacidad
(si) o demanda (dj) respectivamente. Además, los arcos tienen un coste por unidad de flujo asociado
(cij) y un flujo (fij) que circula por ellos y que es lo que queremos determinar para minimizar el coste
total.

c1,4

c1,5

c1,6

c2,4

c2,5

c2,6

c3,4

c3,5

c3,6

1 4

5

6

2

3

s1

s2

s3

d4

d5

d6

Figura 2.4: Representación del problema de transporte.

En el problema formulado anteriormente, se ha considerado un caso que puede no ser equilibrado, es
decir, que la suma de las capacidades de los nodos de suministro no sea igual a la suma de las demandas
de los nodos de demanda. La condición necesaria y suficiente para que un problema de transporte tenga
una solución factible es que el problema esté equilibrado. Si no es así, se puede transformar en uno
equilibrado añadiendo un nodo ficticio de suministro o de demanda, según sea necesario.



Capítulo 3

Problemas de rutas

En el capítulo anterior se han introducido los fundamentos teóricos de la optimización, desde los
modelos convexos y enteros hasta los problemas clásicos de optimización en redes. Estos contenidos
proporcionan el marco teórico necesario para abordar uno de los campos más relevantes de la optimi-
zación combinatoria: los problemas de rutas.

En este capítulo se presentan los principales problemas de optimización asociados a la planificación
y diseño de rutas. Se parte del problema más general, el problema del viajante de comercio (Sección
3.1). A continuación, se introducen los problemas de rutas de vehículos (Sección 3.2), los cuales son una
extensión del problema anterior, incorporando múltiples vehículos y restricciones operativas propias.
Posteriormente, se aborda el caso particular de los problemas de rutas de vehículos eléctricos (Sección
3.3), que constituye el objeto de estudio de este Trabajo Fin de Máster. Además de presentar estas
formulaciones, se describen las principales metodologías empleadas para su resolución (Sección 3.4).
Dado que estos problemas suelen ser difíciles de resolver, se introducen tanto métodos exactos, dise-
ñados para encontrar soluciones óptimas, como métodos heurísticos, que ofrecen soluciones de buena
calidad con un coste computacional reducido.

3.1. El problema del viajante de comercio

En esta sección se hará una revisión del problema del viajante de comercio (TSP)1, que
constituye uno de los problemas más estudiados en optimización combinatoria y que, además, sirve
de base para el desarrollo del problema de rutas de vehículos. Se usará [18] como referencia principal
para esta sección.

Este problema fue estudiado por primera vez en el siglo XVIII por los matemáticos Hamilton y
Kirkman, pero no fue hasta el siglo XX cuando se empezó a analizar en profundidad. Es un problema
NP-duro, lo que implica que no se conocen algoritmos que lo resuelvan en tiempo polinomial ni para
verificar la optimalidad de una solución dada. En el caso de una casuística con n ciudades, el número
posible de rutas es (n−1)!

2 , lo que hace inviable la búsqueda exhaustiva de la solución óptima para valo-
res grandes de n. Es por ello que se han desarrollado numerosos métodos heurísticos y metaheurísticos
para encontrar soluciones aproximadas en tiempos razonables.

En el problema del viajante de comercio se busca encontrar la ruta más corta que permite a un
viajante visitar un conjunto de ciudades exactamente una vez y regresar a la ciudad de origen. Este

1Del inglés Traveling Salesman Problem.

13
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problema se puede modelar mediante un grafo G dirigido con n nodos, donde cada nodo representa
una ciudad y cada arco (i, j) tiene un coste asociado cij , que representa la distancia o el coste de viajar
de la ciudad i a la ciudad j.

Si se plantea como un problema de flujo en redes, se tratará de un problema de transporte donde
cada nodo tiene una demanda y una capacidad igual a 1. En este modelo se asignan flujos a los arcos,
que denotaremos por xij ∈ {0, 1}, indicando si el viajante se desplaza de la ciudad i a la ciudad j o
no. El objetivo es encontrar un circuito hamiltoniano, que se define como un circuito que contiene a
todos los vértices de la red exactamente una vez.

La formulación matemática del TSP es la siguiente:

minimizar
∑

i,j∈V

cijxij (3.1)

sujeto a
∑
j∈V

xij = 1 ∀i ∈ V (3.2)

∑
i∈V

xij = 1 ∀j ∈ V (3.3)∑
i∈S,j∈V \S

xij ≥ 1 ∀S ⊂ V (3.4)

xij ∈ {0, 1} ∀i, j ∈ V (3.5)

La función objetivo (3.1) busca minimizar el coste total del recorrido, que es la suma de los costes
asociados a cada arco que forme parte de la ruta. Las restricciones (3.2) y (3.3) aseguran que a cada
ciudad se llega y se sale exactamente una vez, cumpliendo las condiciones del problema por conservación
de flujo. La restricción (3.4) es necesaria para evitar la formación de subciclos en la solución, asegurando
que la ruta visitará todas las ciudades en un único recorrido. Para cada subconjunto de nodos S, es
necesario que el vehículo tenga, al menos, una arista de salida. Finalmente, la restricción (3.5) define
las variables de decisión como binarias, indicando si un arco forma parte de la ruta o no.

Un ejemplo de problema TSP se puede observar en la Figura 3.1, donde se representa una red con
5 ciudades, nodos de color azul (1-5), junto con la ciudad de origen (0), que aparece representada de
color naranja. La ruta que minimiza el camino que tiene que realizar el viajante se representa con los
arcos dirigidos de color negro.
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Figura 3.1: Representación del TSP.

Los problemas TSP tienen múltiples aplicaciones prácticas, como la planificación de rutas, la lo-
gística de distribución y la optimización de itinerarios de viaje. En concreto, el TSP sirve como base
para el desarrollo del problema de rutas de vehículos, que se verá a continuación.

3.2. El problema de rutas de vehículos

Los problemas de rutas de vehículos (VRP)1 son una adaptación del problema teórico anterior a
la industria del transporte y la logística. Fue planteado por primera vez en 1959 por Dantzig y Ramser
[7] y desde entonces ha sido objeto de numerosos estudios e investigaciones debido a su relevancia
práctica y su complejidad computacional. Su objetivo principal consiste en determinar las rutas óptimas
que deben seguir un conjunto de vehículos, partiendo de un almacén o base operativa y satisfaciendo
las demandas de un conjunto de clientes, minimizando los costes asociados al transporte.

El VRP tiene diversas aplicaciones en diferentes sectores, como la logística y distribución, servicios
de mensajería y paquetería, transporte público o sanitario, entre otros. En un mundo cada vez más
globalizado, estas aplicaciones son fundamentales para garantizar la eficiencia y sostenibilidad de las
operaciones. Además, hace del VRP un problema de gran impacto económico y social. Como el TSP,
se trata de un problema NP-duro. Por todo ello, se vuelve crucial el estudio y desarrollo de métodos
eficientes para su resolución.

Se han desarrollado múltiples variantes del VRP para adaptarse a diferentes contextos y restric-
ciones. Entre las más conocidas están el problema VRP con capacidades (CVRP)2, el VRP con flota
heterogénea (FSMVRP)3 o el VRP con ventanas de tiempo (VRPTW)4. Estas variantes aparecen
recogidas en [22]. Dado que se trata de un ámbito de investigación en continua evolución, siguen desa-
rrollándose nuevos modelos para dar respuesta a las necesidades logísticas actuales. Entre ellos destaca
el problema de rutas de vehículos con colaboración en clientes compartidos (SSC-VRP)5, descrito en
[9].

Además, para abordar la resolución de estos problemas y todas sus variantes, existen diferentes
1Del inglés Vehicle Routing Problem.
2Del inglés Capacitated Vehicle Routing Problem.
3Del inglés Fleet Size and Mix Vehicle Routing Problem.
4Del inglés Vehicle Routing Problem with Time Windows.
5Del inglés Shared Customer Collaboration Vehicle Routing Problem.
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enfoques y técnicas de resolución. En la Sección 3.4 se abordarán métodos heurísticos, como el algoritmo
del vecino más próximo o el algoritmo 2-opt, útiles para encontrar soluciones aproximadas en tiempos
razonables.

Se presentará a continuación una formulación matemática del CVRP, que es una de las variantes
más estudiadas y servirá de apoyo para poder presentar el problema de rutas de vehículos eléctricos
en la siguiente sección. La notación empleada, obtenida de [22], será:

V ={0, 1, . . . , n} es el conjunto de nodos, donde el nodo 0 representa el almacén y los nodos
1, . . . , n representan los clientes.

S se corresponde con un conjunto de clientes arbitrario tal que S ⊆ V \{0}.

K = {1, . . . , m}, con m ∈ N, m ≥ 1 es el conjunto de vehículos disponibles, cada uno con
capacidad C.

δi hace referencia a la demanda del cliente i ∈ V \{0}.

r(S) indica la cantidad mínima de vehículos necesarios para satisfacer la demanda del conjunto
S.

La formulación matemática del CVRP es la siguiente:

minimizar
∑

i,j∈V

cijxij (3.6)

sujeto a
∑
j∈V

x0j = m (3.7)

∑
i∈V

xi0 = m (3.8)∑
j∈V

xij = 1 ∀i ∈ V \{0} (3.9)

∑
i∈V

xij = 1 ∀j ∈ V \{0} (3.10)∑
i∈S,j∈V \S

xij ≥ r(S) ∀S ⊂ V \{0} (3.11)

xij ∈ {0, 1} ∀i, j ∈ V (3.12)

Vemos que, como en el TSP, la función objetivo (3.6) busca minimizar el coste total del recorrido, que
es la suma de los costes asociados a cada arco que conforma la ruta. La restricción (3.7) impone que
los m vehículos empleados deben salir del almacén, mientras que la restricción (3.8) asegura que los m
vehículos vuelven al mismo punto al finalizar la ruta. Las restricciones (3.9) y (3.10) garantizan que
cada cliente es visitado exactamente una vez. La restricción (3.11) actúa como eliminación de subtours
y asegura que la demanda total de los clientes no sea superior a C, como veremos a continuación. Por
último, la restricción (3.12) indica que las variables xij son binarias y tomarán el valor 1 si el arco
(i, j) forma parte de la ruta y 0 en caso contrario.

Para determinar el número mínimo de vehículos necesarios r(S) es necesario resolver el siguiente
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problema:

minimizar
∑
k∈K

yk (3.13)

sujeto a
∑
i∈S

δizik ≤ ykC ∀k ∈ K (3.14)∑
k∈K

zik = 1 ∀i ∈ S (3.15)

yk ∈ {0, 1} ∀k ∈ K, (3.16)
zik ∈ {0, 1} ∀i ∈ S, k ∈ K, (3.17)

donde K es el conjunto de vehículos disponibles, zik es la variable binaria que indica si el cliente i es
atendido por el vehículo k e yk se corresponde con la variable binaria que indica si el vehículo k es
utilizado.

El valor de r(S) será la suma de las variables yk que cumplan las restricciones planteadas, es decir,
el valor de la función objetivo (3.13). La primera, ecuación (3.14), asegura que la demanda total de los
clientes que son atendidos por el vehículo k no supere la capacidad del mismo. La restricción (3.15)
garantiza que cada cliente es atendido por un único vehículo. Finalmente, las restricciones (3.16) y
(3.17) define el dominio de las variables binarias yk y zik.

La formulación 3.6 recoge un modelo general para el CVRP que se puede adaptar fácilmente a la
casuística del problema. Por ejemplo, el conjunto K es un conjunto no acotado en el que suponemos
que no existe una limitación de los vehículos de los que podemos hacer uso, sin embargo, esto se puede
adaptar a un problema donde dispongamos de un número ilimitado de ellos.

Nótese además que la cota inferior para r(S) es ⌈
∑

i∈S
δi

C ⌉, por lo que podríamos sustituir este valor
en la restricción (3.11) para acotar la región fatible y reducir los tiempos de computación.

Se puede ver un ejemplo del problema presentado en la Figura 3.2. Esta es una modificación del
ejemplo propuesto en la Figura 3.1, donde de nuevo, el nodo origen (0) aparece representado de color
naranja y los 5 nodos relativos a los clientes (1-5) de color azul. En este caso, se hace uso de dos
vehículos para poder satisfacer las demandas de los clientes cumpliendo la restricción de capacidad.

Figura 3.2: Representación CVRP.
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3.3. El problema de rutas de vehículos eléctricos

Los problemas de rutas de vehículos eléctricos (EVRP)1 son una extensión de los problemas
VRP, en los que se incorporan las particularidades operativas de los vehículos eléctricos. En este con-
texto, los medios de transporte empleados, generalmente camiones o furgonetas de reparto, presentan
limitaciones en la distancia que pueden recorrer debido a la capacidad finita de sus baterías. Por ello,
es necesario considerar la planificación de las paradas de recarga a lo largo de las rutas.

La necesidad de recargar las baterías introduce restricciones adicionales en comparación con los
VRP, donde se deben tener en cuenta situaciones temporales y económicas a mayores. Por un lado, los
vehículos requieren un tiempo específico para realizar la recarga, lo que aumenta el tiempo necesario
para completar la ruta. Por otro lado, el proceso de carga conlleva un coste asociado al consumo
energético, que debe tenerse en cuenta en la función objetivo.

Actualmente, numerosas empresas están incorporando estos novedosos medios de transporte, por lo
que el dilema de obtener soluciones óptimas que minimicen los costes de este problema se vuelve cada
vez más latente. Gracias a este aumento de vehículos eléctricos, cada vez se cuenta con más puntos
de recarga, lo que hace que no haya que desviarse en exceso de las rutas fijadas y se logren mejores
soluciones.

El objetivo principal de los EVRP se basa en encontrar las rutas óptimas para un conjunto de
vehículos que parten de un almacén o base operativa, recorren los nodos relativos a los clientes que
tienen unas demandas asociadas y vuelven al punto inicial de la ruta. En este trayecto se debe tener
en cuenta que el camión tiene un tiempo de autonomía limitado, por lo que antes de que se agote la
batería el vehículo deberá parar en una estación o punto de carga. Esto añade decisiones adicionales
respecto del VRP sobre dónde se debe de recargar la batería, cuándo se debe parar y cuánta energía
se debe de recargar en cada parada.

En este trabajo se presenta una formulación matemática del EVRP con ventanas temporales y flota
homogénea, en la que cada cliente debe ser atendido dentro de un intervalo de tiempo predefinido. En
primer lugar, se introducirán los conjuntos, parámetros y variables empleados, que se obtuvieron de
[16]:

N = {1, . . . , n} es el conjunto de clientes que se deben visitar.

F = {n + 1, . . . , n + p} se corresponde con las estaciones de carga disponibles.

V = {0} ∪N ∪ F = {0, 1, . . . , n, n + 1, . . . , n + p} representa la totalidad de los nodos, donde el
nodo 0 es el punto de inicio y fin de la ruta.

K = {1, . . . , m}, con m ∈ N, m ≥ 1 , es el conjunto de vehículos disponibles, cada uno con
capacidad C.

[ai, bi] es el intervalo temporal en el que debe ser visitado el nodo i.

si es el tiempo que un vehículo tarda en completar la operación una vez se encuentra en el nodo
i.

δi se corresponde con la demanda del nodo i.

wi es el precio de cargar el camión en el punto de carga i.

dij representa el tiempo que se tarda en ir del nodo i al nodo j.
1Del inglés Electric Vehicle Routing Problem.
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cij hace referencia al coste de ir del nodo i al nodo j.

τ indica el tiempo de carga que se requiere por unidad de energía.

q es la energía consumida por unidad de distancia.

Q se corresponde con la capacidad energética de los vehículos. Suponemos que es igual para
todos.

tk
i es una variable de decisión continua que define el tiempo de llegada del vehículo k al punto i.

yk
i es una variable de decisión continua que indica el nivel de energía del vehículo k en el nodo i.

xk
ij ∈ {0, 1} es una variable de decisión binaria que vale 1 si el arco (i, j) está en la ruta del

vehículo k y 0 en otro caso.

zi ∈ {0, 1} es una variable de decisión binaria que vale 1 si la estación i es usada y 0 en otro caso.

El problema de optimización que se ha de resolver es el siguiente:

minimizar
∑
k∈K

∑
i,j∈V

cijxk
ij +

∑
i∈F

wizi (3.18)

sujeto a
∑
k∈K

∑
j∈V

xk
ij = 1, ∀i ∈ N (3.19)

∑
k∈K

∑
j∈V

xk
ij ≤ 1, ∀i ∈ F (3.20)

∑
j∈V

xk
0j = 1, ∀k ∈ K (3.21)

∑
i∈V

xk
ij −

∑
h∈V

xk
jh = 0, ∀j ∈ V \ {0}, k ∈ K (3.22)∑

i∈V

xk
i0 = 1, ∀k ∈ K (3.23)∑

i∈N

δi

∑
j∈V

xk
ij ≤ C, ∀k ∈ K (3.24)

tk
i + (si + dij)xk

ij − tk
j ≤ (1− xk

ij)L, ∀i, j ∈ N, k ∈ K, L ≫ 0 (3.25)
tk
i + dijxk

ij + τ(Q− yk
i )− tk

j ≤ (L + τQ)(1− xk
ij), ∀i ∈ F, j ∈ N, k ∈ K, L ≫ 0 (3.26)

(qdij)xk
ij −Q(1− xk

ij) ≤ yk
i − yk

j , ∀i, j ∈ N, k ∈ K (3.27)
yk

i − yk
j ≤ (qdij)xk

ij + Q(1− xk
ij), ∀i, j ∈ N, k ∈ K (3.28)∑

i∈N,j∈F

xk
ij = 1, ∀k ∈ K (3.29)

xk
ij ≤ zi, ∀i ∈ F, j ∈ N, k ∈ K (3.30)

xk
ij ≤ zj , ∀i ∈ N, j ∈ F, k ∈ K (3.31)

ai ≤ tk
i ≤ bi, ∀i ∈ N, k ∈ K (3.32)

xk
ij , zi ∈ {0, 1}, ∀i, j ∈ V, k ∈ K (3.33)

yk
i ∈ R, ∀i ∈ V, k ∈ K (3.34)

tk
i ∈ R+, ∀i ∈ V, k ∈ K. (3.35)

Se formuló un problema de minimización, donde la función objetivo (3.18) pretende minimizar el coste
total, que consiste en la suma de los costes asociado a la distancia recorrida por el vehículo y los costes
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asociados a la recarga de la batería. Se puede ver la explicación de las restricciones en [16], que se
incluirán a continuación. La restricción (3.19) asegura que todos los clientes son visitados por algún
vehículo. En la restricción (3.20) se obliga a que cada estación de carga sea visitada como máximo
una vez. Las restricciones (3.21) y (3.23) garantizan que los camiones inician y finalizan el recorrido
en el almacén. La restricción (3.22) establece la conservación de flujo por vehículo en cada nodo (si un
vehículo llega a un nodo debe existir la correspondiente salida). La ecuación (3.24) impone la restricción
de capacidad del vehículo, evitando que la suma de las demandas atendidas supere C. Las restricciones
(3.25) y (3.26) establecen una secuencia temporal para las visitas a los nodos y las cargas de las baterías,
usando una constante suficientemente grande, L, para desactivar las desigualdades cuando el arco no
es seleccionado. Las restricciones (3.27) y (3.28) relacionan el consumo de energía por distancia con
el nivel de carga de la batería antes y después de cada desplazamiento. La restricción (3.29) obliga
a que cada vehículo incluya en su recorrido una parada en una estación de carga, mientras que las
restricciones (3.30) y (3.31) aseguran que si no se usa una estación, no puede haber arcos incidentes.
Finalmente, la restricción (3.32) asegura que las llegadas a clientes respeten sus ventanas temporales,
y las restricciones (3.33), (3.34) y (3.35) definen el dominio de las variables empleadas.

Se incluye un ejemplo de un problema EVRP con vehículos eléctricos en la Figura 3.3. Esto repre-
senta la solución del problema que se planteará en la Sección 4, que encaja con el problema general
descrito con un solo camión. Se observan los elementos que ya se introdujeron en los ejemplos an-
teriores. Sin embargo, ahora se cuenta con nodos para las estaciones de carga eléctrica (12-16) (de
color verde) donde los camiones podrían parar a recargar las baterías, y un nodo correspondiente a la
descarga (11) (de color morado), que es el último visitado antes de volver a la base operativa.

Figura 3.3: Representación EVRP.
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3.4. Métodos de resolución

A la hora de abordar un problema de optimización, un aspecto fundamental es la selección de los
métodos de resolución, ya que cada uno de ellos tiene diferentes propiedades en relación con la calidad
de las soluciones obtenidas, que pueden ser el óptimo o aproximaciones de este, y los diferentes tiempos
de ejecución obtenidos.

En el caso de los problemas de vehículos eléctricos definidos en la Sección 3.3, se trata de problemas
NP-duros, por lo que esta elección se vuelve aún más importante. Existen dos grandes métodos para
encontrar la solución a los problemas planteados: los métodos exactos y las heurísticas.

Los métodos exactos permiten encontrar una solución con la garantía de que esta es la óptima. Sin
embargo, su principal inconveniente es un coste computacional muy elevado, que suele incrementarse
con la dificultad del problema. Por otro lado, las heurísticas son procedimientos específicos diseñados
para cada tipo de problema con el objetivo de encontrar soluciones buenas, pese a que no aseguran
que sean óptimas. Estas técnicas se basan en la estructura del problema y, en general, son más veloces
que los métodos exactos.

Además de los métodos presentados en esta sección, es posible encontrar un análisis más detallado
de otras técnicas en [22], así como una descripción más profunda de cada algoritmo en las referencias
específicas correspondientes.

3.4.1. Métodos exactos

Los métodos exactos se basan en formulaciones matemáticas rigurosas y en algoritmos capaces de
explorar de forma exhaustiva el espacio de soluciones, lo que asegura encontrar una solución óptima.
No obstante, su aplicabilidad puede verse limitada en problemas excesivamente complejos o de gran
tamaño, ya que para resolverlos se emplearían tiempos excesivos. Por este motivo, los métodos exactos
se emplean principalmente en problemas de pequeño tamaño o como herramienta para comparar la
eficiencia de otros métodos.

La técnica más empleada para resolver problemas MIP, como el que abordaremos más adelante, es
el método de Branch and Bound1 (B&B) [4]. De manera general, este algoritmo divide el espacio en
regiones, proceso que se llama ramificación, y en cada región busca una solución factible que compara
con la mejor solución obtenida hasta el momento, que constituye la acotación.

En la fase de ramificación, el problema original se divide en subproblemas más pequeños al impo-
ner restricciones adicionales sobre ciertas variables. De esta manera, se genera un árbol cuyos nodos
representan versiones restringidas del problema inicial. Cada subproblema se resuelve relajando las res-
tricciones de integralidad, lo que produce un límite inferior (o superior, según el tipo de optimización)
para el valor óptimo del subproblema.

La fase de acotación consiste en comparar el valor de la relajación de cada nodo con la mejor
solución entera conocida hasta ese momento. Si el valor de la relajación indica que el subproblema
no puede conducir a una solución mejor, dicho nodo se descarta. Este proceso, conocido como poda,
reduce de forma significativa el número de subproblemas que deben explorarse.

Al inicio del proceso se definen los conjuntos de soluciones factibles y de subespacios aún no
explorados y se actualizan en cada punto del algoritmo. Se parte de una solución inicial igual a ∞, y
un subespacio que es el conjunto total.

1En castellano ramificar y acotar.
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Existen además otros métodos exactos como el Branch and Cut1 (B&C) [5], que es una extensión
del método Branch and Bound. En este caso, además del proceso de ramificación, se incorporan de
forma iterativa cortes que eliminan las soluciones no enteras que aparecen al resolver la relajación
lineal del problema, sin descartar ninguna solución entera factible.. Estos cortes permiten ir reduciendo
progresivamente el tamaño del árbol de búsqueda y mejorando los tiempos de cómputo del algoritmo.

Otra técnica de resolución exacta ampliamente conocida es el algoritmo de Benders [2], que se
basa en la descomposición del problema original en un problema maestro y uno o varios subproblemas.
Este método resulta especialmente adecuado para problemas que presentan variables complicantes,
que son problemas en los que parte importante de la complejidad de su resolución se debe a un
subconjunto, típicamente pequeño, del conjunto de variables. El algoritmo resuelve de forma iterativa
el problema maestro, que contiene las variables complicantes, incorporando información procedente de
los subproblemas hasta converger a una solución óptima del problema original.

3.4.2. Heurísticas

Las técnicas heurísticas nacen de la necesidad de reducir los altos tiempos computacionales de los
métodos exactos para la resolución de los problemas de optimización. Estas técnicas se diseñan para
obtener soluciones de buena calidad y son especialmente útiles en problemas de gran dimensión o
excesivamente complicados, donde el cálculo de la solución óptima resulta imposible.

Distinguiremos dos tipos de heurísticas: las constructivas y las de mejora.

Heurísticas constructivas

Las heurísticas constructivas generan una solución paso a paso, construyéndola desde cero mediante la
incorporación progresiva de elementos o decisiones del problema. Su objetivo es obtener rápidamente
una solución inicial factible, que posteriormente puede ser utilizada como punto de partida para otros
métodos de mejora.

Existen una infinidad de heurísticas constructivas. Una ampliamente conocida y empleada para
resolver los VRP es el algoritmo del vecino más próximo [14], que se basa en construir una
solución inicial seleccionando a cada paso el nodo más cercano al último nodo visitado. Este proceso
se repite hasta que todos los nodos han sido visitados, construyendo una solución localmente óptima
en cada iteración.

Para implementar este algoritmo se sigue el siguiente procedimiento:

1. Se elige un nodo inicial, normalmente el depósito o base operativa.

2. A partir del punto selecionado, se busca entre los nodos no visitados aquel más cercano.

3. Se añade el nodo nuevo a la ruta y se marca como visitado.

4. Se actualiza la posición del vehículo.

5. Se repiten los pasos previos hasta que ya no quedan nodos sin visitar y se finaliza la ruta.

Se puede ver un ejemplo de construcción de la ruta en la Figura 3.4, donde se observa cómo en
la figura de la izaquierda, que se correspondería con la primera iteración del algoritmo, se unieron
los nodos 0 y 1, por ser este uno de los más cercano, junto con 5. A continuación, en la figura de la

1En castellano ramificar y cortar.
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derecha, se añadió el nodo 2, que era el más cercano al nodo 1. El algoritmo continuaría hasta haber
recorrido todos los nodos o hasta satisfacer algún criterio de parada.

Figura 3.4: Representación de las dos primeras iteraciones del algoritmo del vecino más próximo.

Heurísticas de mejora

Las heurísticas de mejora parten de una solución inicial factible, como podría ser la obtenida
por el algoritmo del vecino más próximo, y buscan mejorarla mediante la aplicación de pequeñas
modificaciones. Su objetivo principal es evitar los óptimos locales a favor de una solución óptima
globalmente.

Entre las heurísticas de mejora más conocidas se encuentra el algoritmo 2-opt [6], muy empleado
para la resolución de los problemas TSP y VRP. Partiendo de una solución inical, este método consiste
en seleccionar dos nodos de la ruta que formen un segmento e invertir el sentido de los arcos que
conforman dicho segmento. El objetivo de este procedimiento es reducir el coste de la función objetivo
de forma que se eliminen rutas ineficientes. Si este cambio mejora la solución, entonces se acepta y se
incorpora a la nueva ruta. Este proceso se repite iterativamente hasta que no se pueden encontrar más
mejoras.

A continuación se recogen los pasos a seguir de forma detallada:

1. Se toma una solución inicial, por ejemplo la dada por el algoritmo del vecino más próximo.

2. Se seleccionan dos nodos i y j de la ruta.

3. Se eliminan todos los arcos que unen estos dos puntos, que pueden ser uno o varios si hay nodos
intermedios.

4. Se vuelven a conectar los nodos i y j de forma que se invierte su orden y todos los intermedios.

5. Se verifica si esta ruta es factible y se calcula su función objetivo.

6. Si la solución es mejor que la anterior, se acepta el cambio.

7. Se repite el proceso hasta haber comprobado todos los intercambios posibles.

Se presenta un ejemplo gráfico en la Figura 3.5, donde se observa cómo se hace un intercambio con
el algoritmo 2-opt para intentar reducir el coste total de la solución. En él se seleccionan los nodos 2
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y 3 y se intercambia el arco (2, 3) por el arco (3, 2). Es decir, partimos de la ruta (0, 1, 2, 3, 4, 5, 0) y
obtenemos la ruta (0, 1, 3, 2, 4, 5, 0). Se puede ver fácilmente que esta solución no mejora el coste de la
ruta, por lo tanto no se aceptaría este intercambio y se seguiría con la siguiente iteración.

Figura 3.5: Representación de un intercambio 2-opt.



Capítulo 4

Implementación y evaluación de
resultados

Una vez establecidas las bases teóricas de los problemas de rutas de vehículos y analizada en detalle
la variante con vehículos eléctricos, se está en disposición de abordar un caso real que permita poner en
práctica los conceptos estudiados. En este capítulo se formula la casuística propuesta por Trucksters,
Sección 4.1 y se hace una selección de los métodos empleados para su resolución, Sección 4.2. Asimismo,
se incluye el pseudocódigo utilizado en el desarrollo de los programas implementados. Finalmente, en la
Sección 4.3 se muestran y evalúan los resultados obtenidos, comparando el comportamiento del modelo
exacto con los distintos algoritmos aplicados.

4.1. Formulación del caso de estudio

Para ilustrar los conceptos teóricos introducidos en los capítulos anteriores, la empresa Trucksters
plantea un problema de rutas con vehículos eléctricos que se ajusta a las características del EVRP
descrito en la Sección 3.3. El objetivo de esta sección es detallar la casuística de la empresa, desde la
definición del problema de negocio hasta la formulación del mismo.

En este caso, se cuenta con un único camión que debe partir de su base operativa y regresar a ella
en un tiempo máximo establecido. El cliente ha proporcionado un conjunto de puntos de recogida en
los que el vehículo debe detenerse para cargar la mercancía, así como una ubicación final donde debe
realizarse la descarga tras completar todas las recogidas. Como se trabaja con un vehículo eléctrico, el
camión tiene una autonomía limitada, por lo que resulta necesario incluir una parada en una estación
de carga a lo largo de la ruta. Existen dos empresas eléctricas cuyos cargadores tienen diferentes precios
asociados. Por consiguiente, se requiere decidir el orden en el que el vehículo visitará los puntos de
recogida y, además, determinar en qué estación de carga y en qué punto de la ruta se debe hacer la
parada.

Bajo este contexto, el problema abordado en este Trabajo Din de Máster puede interpretarse como
una instancia concreta del EVRP sin ventanas temporales, con flota homogénea de un único vehículo,
múltiples puntos de recogida, un único punto de descarga final y estaciones de carga heterogéneas en
coste y ubicación.

A continuación, se introducen los conjuntos, parámetros y variables necesarios para llevar a cabo
la formulación del problema:
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N = NC ∪ND = {1, . . . , n} es el conjunto de nodos asociados al cliente.

- NC = {1, . . . , n− 1} hace referencia a los nodos de recogida.

- ND = {n} hace referencia al nodo de descarga.

F = {n + 1, . . . , n + p} se corresponde con las estaciones de carga disponibles.

V = {0}∪{0∗}∪N ∪F = {0, 0∗, 1, . . . , n−1, n, n+1, . . . , n+p} representa el conjunto de nodos,
donde el nodo 0 es la base operativa y 0∗1 representa una base operativa ficticia.

cij hace referencia al coste de ir del nodo i al nodo j. Este coste se calculará como el producto
de los kilómetros recorridos y el precio del kilómetro.

wi es el precio de cargar el camión en el punto de carga i.

dij representa el tiempo que se tarda en ir del nodo i al nodo j.

ti es una variable de decisión continua que define el tiempo de llegada del vehículo al punto i.

xij ∈ {0, 1} es una variable de decisión binaria que vale 1 si el arco (i, j) está en la ruta y 0 en
otro caso.

zi ∈ {0, 1} es una variable de decisión binaria que vale 1 si la estación i es usada y 0 en otro caso.

Desde la perspectiva de negocio, el objetivo general conlleva tanto la reducción de costes fijos,
tales como el alquiler del camión, el salario del conductor o los seguros, así como de costes variables,
asociados directamente a la ruta y a las operaciones de recarga. Dado que los costes fijos no dependen de
la planificación concreta, el objetivo del problema consiste en minimizar los costes variables, definidos
como la suma del coste derivado de los kilómetros recorridos y el coste asociado a la recarga del vehículo
eléctrico.

La formulación del EVRP adaptada a las necesidades de Trucksters es:

1Este nodo es necesario para la programación del problema, ya que evitamos la formación de ciclos en la solución.
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minimizar
∑

i,j∈V

cijxij +
∑
i∈F

wizi (4.1)

sujeto a
∑
j∈V

xij = 1, ∀i ∈ V \{F ∪ {0∗}} (4.2)

∑
i∈V

xij −
∑
h∈V

xjh = 0, ∀j ∈ V \ {{0} ∪ {0∗}} (4.3)∑
j∈V \{{0}∪{0∗}}

x0j = 1 (4.4)

∑
i∈V \{{0}∪{0∗}}

xi0∗ = 1 (4.5)

x0∗j = 0, ∀j ∈ V (4.6)

tj ≥ ti − (1−
∑
h∈V

xhi)L ∀i ∈ NC , j ∈ ND, L ≫ 0 (4.7)

ti + dijxij − tj ≤ (1− xij)L, ∀i, j ∈ V, L ≫ 0 (4.8)∑
i∈N∪{0},j∈F

xij = 1 (4.9)

xij ≤ zi, ∀i ∈ F, j ∈ N (4.10)
xij ≤ zj , ∀i ∈ N, j ∈ F (4.11)
xij , zi ∈ {0, 1}, ∀i, j ∈ V (4.12)
ti ∈ R+, ∀i ∈ V. (4.13)

Se ha planteado un problema de minimización, donde la función objetivo, (4.1), recoge las variables
asociadas a los costes. Como se dijo anteriormente, el propósito del problema es minimizar los costes
que conlleva la distancia de la ruta y los costes asociados a la batería eléctrica. Nótese que ambos
sumandos de esta función se miden en euros, pudiendo contabilizar su valor de manera sencilla.

Se verá a continuación qué representan las restricciones planteadas. La primera, (4.2), nos asegura
que el camión saldrá de todos los puntos de recogida, el punto de descarga y la base operativa,
exactamente una vez. En la restricción (4.3) se impone que si existe un arco de llegada a un nodo,
también tiene que haber un arco de salida, con excepción del punto de partida y de llegada, que es
la base operativa ficticia. La restricción (4.4) obliga al vehículo a partir de la base operativa y la
(4.5) obliga a volver a la base operativa ficticia, que en el problema real serían el mismo punto. La
siguiente restricción, la ec. (4.6), evita que el vehículo, una vez llegue a la base operativa ficticia, siga
con la ruta. Por otro lado, la restricción (4.7) impone que el nodo de descarga solo se visite una vez
que el camión haya pasado por todos los puntos de recogida. La restricción (4.8) hace referencia a
la ordenación temporal de las visitas a los distintos puntos de recogida. La necesidad de parar en un
punto de carga aparece recogida en la restricción (4.9). Las restricciones (4.10) y ec. (4.11) nos dicen
que si un cargador no es usado, no existirá un arco que vaya hasta él. Por último, la restricción (4.12)
nos indica que dichas variables son binarias.

Se puede ver cómo esta formulación es una adaptación del modelo general de la Sección 3.3 a este
caso concreto. Se ha eliminado la restricción relativa a la capacidad del vehículo (restricción (3.24)
del modelo general), ya que se asume que el camión tiene capacidad suficiente para atender a todas
las demandas. De forma similar, al tratarse de instancias pequeñas, se ha prescindido de las variables
relativas a la energía consumida (q) y la capacidad energética (Q), así como de sus restricciones
asociadas (restricciones (3.26), (3.27) y (3.28)). La ruta se realiza con un solo camión, por lo que se
han eliminado los índices correspondientes a los vehículos en las variables y restricciones, así como las
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referencias a las ventanas temporales (restricción (3.32)), ya que no es relevante para la resolución.
Por último, se han añadido nuevas restricciones, que son las ecuaciones (4.6) y (4.7), que no estaban
presentes en el modelo general y el nodo ficticio 0∗.

4.2. Técnicas seleccionadas

Una vez planteado el problema que se va a abordar y explicitado su formulación, es necesario
seleccionar qué métodos se emplearán para su resolución. Esta selección viene motivada tanto por el
objetivo de negocio de Trucksters, que consiste en automatizar el proceso manual de planificación del
camión eléctrico, reduciendo los tiempos de planificación actuales y proporcionando rutas factibles a
un coste operativo competitivo, como por el objetivo técnico de este Trabajo Fin de Máster, que es
analizar y determinar qué algoritmo de optimización resulta más adecuado para la casuística concreta
de la empresa.

Con el fin de dar respuesta a ambos objetivos, y apoyándose en las técnicas descritas en la Sección
3.4, se seleccionan tres métodos de resolución con características complementarias. En primer lugar, se
considera un método exacto, implementado mediante el solver SCIP, que permite obtener soluciones
óptimas o de referencia para el problema planteado. En segundo lugar, se emplea una heurística cons-
tructiva, concretamente el algoritmo del vecino más próximo, caracterizada por su simplicidad y bajo
tiempo de ejecución. Por último, se aplica una heurística de mejora, el algoritmo 2-opt, cuyo objetivo
es refinar soluciones iniciales y mejorar su calidad sin incurrir en elevados costes computacionales.

El objetivo de esta sección es comparar estos tres métodos para seleccionar el más adecuado para
el caso particular que plantea Trucksters. Esta comparación se realizará atendiendo a dos criterios
fundamentales: la calidad de la solución, en términos de costes de solución, y el tiempo de ejecución,
directamente relacionado con la viabilidad de sustituir el proceso manual actual por un procedimiento
automático.

4.2.1. Método exacto

En primer lugar, se va a resolver el problema utilizando la formulación matemática planteada. Este
enfoque permite obtener soluciones óptimas, lo que lo convierte en una referencia de calidad frente
a los resultados obtenidos mediante métodos aproximados. Aunque su coste computacional puede ser
elevado para instancias de gran tamaño, resulta adecuado para el problema abordado, proporcionando
así una referencia de optimalidad.

Existen diversos solvers comerciales y de código abierto capaces de resolver variantes del EVRP
mediante métodos exactos, entre los que destacan Gurobi, CPLEX y SCIP. En este trabajo se emplea
el solver SCIP, un optimizador de código abierto ampliamente utilizado en programación lineal entera
mixta.

La implementación del modelo se realiza utilizando la librería OR-Tools [24], desarrollada por Goo-
gle, que proporciona un entorno de modelado de alto nivel y permite la integración de distintos solvers
externos. En concreto, OR-Tools se utiliza como herramienta de formulación del modelo, mientras que
la resolución se delega en el solver SCIP.

El modelo se codifica siguiendo las variables de decisión, parámetros, restricciones y función objetivo
definidas en la Sección 4.1. Adicionalmente, el modelo incorpora dos hiperparámetros: un valor grande
L y un tiempo máximo de ejecución. En este trabajo se fija L = 105, considerado suficientemente grande
para garantizar la validez de las restricciones de tipo big-M (en el problmema, las restricciones 4.7 y
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4.8). No obstante, este valor podría ajustarse de forma más precisa a partir de los límites superiores
de las variables del modelo, lo que se plantea como una línea futura de trabajo.

En cuanto al tiempo máximo de ejecución, este se adapta al tamaño de las instancias consideradas
y su impacto en la calidad de las soluciones se analiza en la Sección 4.3. Esta parametrización permite
equilibrar la obtención de soluciones de alta calidad con la viabilidad computacional del enfoque exacto.
En este caso se tomará como tiempo máximo un valor de 5 minutos.

4.2.2. Algoritmo del vecino más próximo

Se ha seleccionado como heurística constructiva el algoritmo del vecino más próximo, por ser un
algoritmo sencillo de implementar y que da lugar a soluciones localmente óptimas en cada iteración.
Además, su coste computacional es bajo en comparación con otras heurísticas, lo que lo convierte en
un método interesante para comparar tanto las soluciones obtenidas como los tiempos de ejecución.

Este método se define originalmente para el TSP y cuenta con múltiples adaptaciones estándar para
el VRP. En la literatura existen también extensiones de esta heurística orientadas a resolver variantes
del EVRP.

En este Trabajo Fin de Máster se propone una adaptación específica de la heurística del vecino
más próximo para resolver el problema real planteado. El objetivo principal de esta heurística es la
obtención de soluciones factibles en tiempos de ejecución reducidos, por lo que, durante su adaptación,
se prioriza explícitamente la eficiencia computacional frente a la calidad óptima de la solución.

Una de las particularidades del caso de uso considerado radica en la existencia de una estructura de
precedencia en las visitas, ya que es obligatorio visitar previamente todos los puntos de carga antes de
acceder al punto de descarga. Además, el problema presenta un único punto de descarga y un conjunto
significativamente mayor de puntos de carga.

Dado que el mayor margen de optimización se encuentra en el orden de visita de los puntos de
carga, la heurística propuesta se estructura en dos fases. En una primera fase se construye una ruta
que parte de la base operativa y conecta todos los nodos de carga siguiendo un criterio optimalidad
local. En una segunda fase, una vez completada la secuencia de cargas, se añade el punto de descarga.

Adicionalmente, en este caso de uso es suficiente con visitar un único punto de recarga en cualquier
punto de la ruta. Por este motivo, la heurística finaliza insertando un único cargador en la posición
que minimiza el incremento de distancia total de la ruta construida.

Cabe destacar que el algoritmo propuesto no garantiza, en términos generales, la obtención de
una solución factible, ya que, una vez finalizado el proceso de enrutamiento, la ruta resultante podría
exceder el límite máximo de distancia permitido.

Para evitar esta situación, sería necesario incorporar un test de factibilidad durante la construcción
de la ruta, evaluando las restricciones en cada inserción de nodo, lo que conllevaría un incremento de
los tiempos de ejecución. No obstante, tras la validación experimental del algoritmo sobre el conjunto
de datos utilizado, se ha observado que las soluciones generadas cumplen las restricciones del problema.

En el contexto del estudio comparativo realizado, este algoritmo se plantea explícitamente como una
solución de referencia orientada a la rapidez de ejecución, asumiendo que la calidad de las soluciones
obtenidas puede ser inferior a la de métodos más complejos. Por este motivo, y con el objetivo de no
incrementar la complejidad del algoritmo ni penalizar los tiempos de ejecución, no se ha incorporado
dicho mecanismo de comprobación.

Para implementar el algoritmo, se definen previamente las listas de puntos de recogida no visitados
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(loadings), puntos de descarga no visitados (unloadings) y cargadores (chargers). A mayores, a la base
operativa la llamaremos parking y denotaremos como current_loc la posición del vehículo en cada
momento. Se puede ver el pseudocódigo empleado para la resolución en el Algoritmo 1.

Algoritmo 1 Algoritmo del vecino más próximo para el EVRP
1: Inicializar solución vacía
2: Marcar todos los loadings y unloadings como no visitados
3: while existan nodos por visitar do
4: Iniciar nueva ruta desde parking
5: current_loc ← parking

▷ Loadings
6: while existan loadings no visitados do
7: Elegir el loading más cercano a current_loc
8: Añadirlo a la ruta
9: Marcarlo como visitado

10: current_loc ← loading elegido
11: end while

▷ Unloadings
12: while existan unloadings no visitados do
13: Elegir el unloading más cercano a current_loc
14: Añadirlo a la ruta
15: Marcarlo como visitado
16: current_loc ← unloading elegido
17: end while

▷ Insertar charger
18: if hay chargers disponibles then
19: Elegir el más cercano al último nodo
20: Buscar posición que minimice aumento de distancia
21: Insertar charger
22: end if
23: Terminar ruta en base operativa
24: Añadir ruta a la solución
25: end while
26: Verificar restricciones
27: return solución

4.2.3. Algoritmo 2-opt

Como heurística de mejora se ha seleccionado el algoritmo 2-opt, partiendo de la solución inicial
obtenida con el algoritmo del vecino más próximo. Este algoritmo resulta apropiado ya que da lugar
a mejoras en todas las soluciones, gracias al intercambio de aristas que reducen los costes de la ruta.
Veremos que tiene un coste computacional mayor que el algoritmo de construcción, pero da mejores
resultados también. Esta heurística combina tiempos bajos de ejecución y soluciones competitivas.

El funcionamiento del algoritmo se basa en analizar, dentro de cada ruta, todos los posibles pares
de posiciones (i, j) y evaluar si invertir el subtrayecto comprendido entre ellas mejora la distancia total.
Este procedimiento se repite de manera iterativa hasta que no es posible encontrar ninguna solución
que mejore la inicial.

Previamente a realizar la inversión del segmento, se comprueba si se respetan las restricciones, es
decir:
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Los loadings deben aparecer antes que los unloadings en la ruta.

En cada ruta solo puede haber un charger.

El camión debe salir y retornar al parking.

La distancia total recorrida es inferior a la distancia máxima fijada.

Durante la ejecución, el algoritmo examina el segmento de la ruta entre los nodos i y j. Antes de
realizar la inversión, se comprueba que dicha operación no viola ninguna de las restricciones anteriores.
Si el segmento es válido, se invierte y se calcula la nueva distancia total de la ruta. Si la inversión
representa una mejora, pasa a considerarse la mejor ruta encontrada hasta ese momento y se reinicia
el proceso de búsqueda para seguir explorando posibles mejoras.

Este procedimiento continúa hasta que se recorre la ruta completa sin encontrar ninguna inversión
que reduzca la distancia. Tras la comprobación de que el nuevo recorrido cumple todas las restricciones
impuestas, se añade a la nueva solución optimizada. El proceso se repite de manera independiente para
cada nueva ruta de la solución inicial, hasta que ya no se consiguen mejoras y por tanto no hay nuevas
rutas.

El pseudocódigo del algoritmo se muestra en el Algoritmo 2.

Algoritmo 2 Algoritmo 2-opt para el EVRP
1: Inicializar nueva solución vacía
2: for each ruta en la solución inicial do
3: Copiar la ruta como best_route
4: mejorar← True
5: while mejorar do
6: mejorar← False
7: for i← 1 until penúltimo nodo antes del final do
8: for j ← i + 1 until penúltimo nodo do
9: Seleccionar segmento entre i y j ▷ Respetar restricciones

10: if mezcla loadings y unloadings then
11: continue
12: end if
13: if más de un charger then
14: continue
15: end if
16: Invertir segmento para obtener new_route
17: Calcular distancia de new_route
18: if new_route mejora then
19: best_route← new_route
20: mejorar← True
21: break ▷ Reiniciar búsqueda
22: end if
23: end for
24: end for
25: end while
26: Agregar best_route a nueva solución
27: end for
28: Verificar factibilidad
29: return solución optimizada
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4.2.4. Lenguaje de programación y herramientas

La implementación de los modelos y algoritmos propuestos se ha realizado en Python 3.11, elegido
por su claridad, facilidad de prototipado y amplia disponibilidad de librerías especializadas. Además, se
trata del software de referencia en Trucksters. Se ha seguido una arquitectura orientada a objetos para
representar los elementos del problema de optimización, como nodos de clientes, cargas y descargas,
así como los algoritmos empleados, lo que facilita la extensión y mantenimiento del código.

Se han utilizado diversas librerías según su función: OR-Tools [13] para la interacción con el solver
SCIP; NumPy [21] para el cálculo y la implementación de heurísticas; pandas [15] para la generación
del reporte comparativo; y Folium [10] para la visualización interactiva de rutas. Python permite
así integrar de manera eficiente la resolución del modelo exacto, la implementación de heurísticas, el
análisis de datos y la generación de visualizaciones o reportes, garantizando resultados reproducibles
y un desarrollo flexible del proyecto. El código completo, de elaboración propia, se puede encontrar en
[20], un repositorio de Github creado con la finalidad de poder reproducir los resultados presentados
en este Trabajo Fin de Máster.

4.2.5. Criterios de comparación

Para determinar cuál de los algoritmos seleccionados resulta más adecuado para el caso de Trucks-
ters, se establecen criterios de comparación que reflejan tanto el desempeño operativo como la viabilidad
técnica de su implementación.

En primer lugar, se evaluará la calidad de la solución, medida a través de la función objetivo del
problema, que combina la distancia recorrida, los costes de recarga y cualquier otro coste operativo
relevante. Minimizar esta función objetivo permitirá identificar la solución que resulta más eficiente
desde el punto de vista de la planificación de rutas y de los costes asociados.

En segundo lugar, se considerarán los tiempos de computación, que deben ser inferiores a 5 minutos
por planificación. Superar este umbral incrementaría de manera significativa la complejidad de la
infraestructura técnica necesaria para ejecutar el algoritmo de manera diaria, reduciendo su viabilidad
operativa.

Por último, se evaluará la escalabilidad de los algoritmos, analizando su rendimiento frente a conjun-
tos de datos aumentados que incluyen un mayor número de nodos. Este criterio permitirá determinar
la capacidad de los métodos para mantener su eficiencia y calidad de solución en situaciones más
complejas, anticipando cómo se comportarían en posibles ampliaciones de la flota o incrementos en los
puntos de recogida.

La combinación de estos criterios garantiza que el algoritmo seleccionado no solo proporcione so-
luciones de calidad, sino que también sea robusto, práctico y sostenible, cumpliendo con los objetivos
de negocio y técnicos definidos en este trabajo.

4.2.6. Datos empleados

Para poder implementar los códigos y comparar los distintos métodos, Trucksters ha facilitado un
dataset extraído del proyecto que mantiene con su cliente. Estos datos constan de una serie de puntos,
que intervienen en la planificación diaria del camión eléctrico y que serán los nodos del problema, cada
uno de ellos con su nombre, dirección, coordenadas y tipología operativa. En total disponemos de 17
nodos:
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1 nodo correspondiente a la base operativa.

1 nodo de descarga.

5 nodos que representan estaciones de recarga.

10 nodos que actúan como posibles puntos de recogida.

Se puede ver cómo se distribuyen los 17 nodos en la Figura 4.1. Aparece representado en naranja el
relativo a la base operativa (0), en morado el nodo de descarga (11), en verde las estaciones de recarga
(11-16) y en azul los puntos de recogida (1-10). Se podría pensar que la elección del cargador es trivial,
dado que el nodo 15 se sitúa muy cerca del nodo de descarga. Sin embargo, se corresponde con la
empresa cuyos cargadores son más costosos, por lo que esta decisión no es inmediata.

Figura 4.1: Representación del problema propuesto por Trucksters.

En la operativa diaria, el equipo de planificación de Trucksters recibe el día previo a la entrega los
puntos de carga que debe visitar. Normalmente, el cliente facilita entre 3 y 6 de los 10 posibles puntos
de recogida, aunque en algunas ocasiones podría requerirse la visita a todos los puntos de carga. Para
evaluar los algoritmos frente a distintos escenarios, se generaron aleatoriamente instancias de prueba
con tamaños comprendidos entre 3 y 9 puntos de reocogida, es decir, instancias con 3, 4, 5, 6, 7, 8 y 9
nodos relativos a las recogidas. Para cada tamaño se crearon 10 configuraciones distintas seleccionando
los puntos de carga de manera aleatoria, dando lugar a un total de 70 instancias representativas de
posibles planificaciones. Así, se puede analizar cómo se comportan los algoritmos bajo la variabilidad
típica del proyecto real.

Para el cálculo de las distancias entre nodos se utilizó la distancia geodésica, adecuada para trabajar
con coordenadas y estimar con precisión la distancia recorrida por el vehículo. Estas distancias se
obtuvieron mediante la librería geopy [11], concretamente empleando la función geodesic.

Para los puntos de recarga de la batería se consideraron cargadores pertenecientes a dos empresas
distintas: Ionity y Atlante. Ambas disponen de una tarifa fija por recarga completa y, dado que el
camión siempre repone batería hasta alcanzar el 100 % de su capacidad, se incorporó al modelo un
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coste de carga constante para los puntos de carga de cada empresa. En concreto, los cargadores de
Ionity tienen un precio de 0.61 € por kWh, mientras que los de Atlante presentan una tarifa de 0.64 €
por kWh. Se asumió una capacidad total de batería de 300 kWh, por lo que los costes asociados a una
recarga completa son de 183 € y 192 €, respectivamente.

También fue necesario estimar el tiempo de desplazamiento del camión entre los distintos puntos,
con el objetivo de construir una secuencia temporal a lo largo de la ruta. Para ello, se utilizaron las
distancias geodésicas previamente calculadas y se asumió que el vehículo circula a una velocidad media
de 70 km/h.

Asimismo, para poder expresar la solución en una única unidad de medida, se asumió un coste
por kilómetro de 0.623 €, valor que permite traducir la distancia recorrida directamente en un coste
económico. Así, la función objetivo recogerá el coste de traslado del camión y el coste de la carga de
la batería, todo ello medido en €.

4.3. Comparativa

En esta sección se presenta una comparativa entre los distintos métodos implementados, evaluando
tanto sus tiempos de ejecución como la calidad de las soluciones obtenidas. El objetivo es analizar el
comportamiento de los algoritmos frente a escenarios de distinta complejidad y establecer conclusiones
sobre su rendimiento relativo en condiciones controladas. Para ello, se han empleado las 70 instancias
de prueba descritas en el apartado anterior.

Es importante destacar que el equipo utilizado para la evaluación es un MacBook Air (13-inch,
2017) equipado con un procesador Intel Core i5 de doble núcleo a 1.8 GHz (4 hilos lógicos), 8 GB
de memoria RAM DDR3 a 1600 MHz y arquitectura x64. Los mismos programas ejecutados en un
ordenador diferente podría cambiar los tiempos obtenidos.

En la Tabla 4.1 aparecen recogidos, para cada tamaño de |N |, el valor medio de la función objetivo
y del tiempo medio que el programa tardó en generar cada solución, todo esto para cada uno de los
tres métodos. Esta tabla recoge un resumen de los datos, además, se pueden ver la totalidad de los
resultados en el Apéndice A. En un primer momento se observa cómo, a medida que aumentamos el
tamaño del conjunto de nodos explorados, el valor de la función objetivo también aumenta. Esto tiene
sentido pues a mayor número de puntos que visitar, mayor es también el coste total de la operación.
Sin embargo, esto no ocurre siempre, ya que al escoger los nodos de recogida de manera aleatoria,
pueden ser seleccionados nodos más alejados y por tanto aumentar la distancia entre ellos.

A mayores de la tabla resumen, se incluyen boxplots relativos al tiempo de ejecución, coste de
las soluciones y diferencias porcentuales de las soluciones respecto al método exacto, que permiten
visualizar el comportamiento para cada tamaño de instancia. Estos gráficos los podemos encontrar en
las Figuras 4.3, 4.4 y 4.5.
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Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)

3 246.182 2.9693 · 102 262.030 8.4 · 10−5 255.026 1.87 · 10−4

4 251.099 3.0087 · 102 268.585 9.8 · 10−5 259.914 2.82 · 10−4

5 256.379 3.0087 · 102 272.948 1.05 · 10−4 265.305 4.58 · 10−4

6 266.427 3.0143 · 102 283.021 1.91 · 10−4 275.313 5.49 · 10−4

7 268.065 3.0946 · 102 287.399 1.74 · 10−4 276.814 1.054 · 10−3

8 274.940 3.0149 · 102 299.886 3.19 · 10−4 283.514 1.269 · 10−3

9 280.855 3.0204 · 102 306.094 1.44 · 10−4 288.430 1.453 · 10−3

Tabla 4.1: Comparación de los tres métodos. Se recogen los valores medios de las funciones objetivo y
los tiempos medios por cada tamaño de instancia a lo largo de las 10 ejecuciones.

El modelo exacto se ejecutó fijando un tiempo máximo de cinco minutos, considerado razonable
para instancias pequeñas. Cabe destacar que, para garantizar la obtención de la solución óptima, el
modelo debería ejecutarse sin límite de tiempo. Se puede observar cómo este método emplea el tiempo
máximo establecido (Figura 4.3a).

En este experimento, el modelo exacto logra las mejores soluciones en la totalidad de los casos.
Para los tamaños de problema más pequeños, la heurística 2-opt presenta desviaciones en torno al
3.5 % respecto al solver, mientras que la del vecino más próximo se sitúa aproximadamente en el 7 %.
Al incrementar el número de nodos, el comportamiento de ambas heurísticas varía: el vecino más
próximo incrementa progresivamente su diferencia hasta valores cercanos al 10 %, mientras que 2-opt
tiende a reducirla, alcanzando en algunos casos desviaciones próximas al 1 %. Se pueden observar estas
variaciones en la Figura 4.5.

El algoritmo del vecino más próximo es una heurística que busca conseguir soluciones de forma
veloz, de modo que reduce significativamente el tiempo de cómputo frente a otros métodos, aunque
no garantiza una buena calidad de la solución obtenida. Se puede observar en la Tabla 4.1 y en
la Figura 4.3b cómo el algoritmo del vecino más próximo tarda en encontrar una solución tiempos
extremadamente bajos, de entre 0.000084 y 0.000319 segundos de media. Sin embargo, analizando la
calidad de las soluciones, estas presentan diferencias notables respecto a las obtenidas con el método
exacto. En la Figura 4.5a se aprecia que la solución obtenida es de entre un 4 % y un 10 % superior a
la obtenida con el solver SCIP, siendo esta diferencia mayor para las instancias grandes.

Por último, el algoritmo 2-opt mejora las soluciones obtenidas por la heurística del vecino más pró-
ximo, ya que toma sus costes como solución inicial, aunque sin llegar a alcanzar las soluciones óptimas.
Aún así, se puede observar que, en las instancias de 9 nodos, existen casos donde esta técnica se queda
muy cerca del óptimo calculado, como se comentaba anteriormente. Esto se puede ver gráficamente en
la Figura 4.5b, donde se observan diferencias porcentuales muy pequeñas en las mayores instancias.
En terminos de tiempo de ejecución sorprende que 2-opt presenta tiempos muy pequeños, superiores
solo por milisegundos a los obtenidos por la heurística del vecino más próximo.
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En la Figura 4.2 se muestra un ejemplo de las soluciones obtenidas mediante los tres métodos
analizados, utilizando como referencia una instancia que contiene 9 puntos de recogida. La Figura 4.2a
representa el conjunto completo de nodos considerados en el problema. En amarillo aparece plasmada
la base operativa (0), en azul los nodos relativos a los puntos de recogida (1-9), en verde las estaciones
de carga (12-16) y en morado el nodo de descarga (11). En la Figura 4.2b se presenta la solución
óptima obtenida por SCIP, cuya estructura es coherente y se corresponde con la solución óptima de
la ruta. Dicha solución tiene un coste de 294.04 € y se incluye la visita a un cargador de Ionity, con
un precio de carga de 183 €. La Figura 4.2c recoge la solución generada por el algoritmo del vecino
más próximo, se observa como el recorrido marcado obliga al camión a recorrer una mayor distancia,
haciendo rutas entre nodos absurdas. Esta solución tiene un coste de 312 € y se visita un cargador de
la empresa Atlante, con coste 192 €. Finalmente, la Figura 4.2d muestra la solución mejorada mediante
el algoritmo 2-opt, que difiere de la solución óptima solo en el punto de carga, que sigue siendo de
Ionity, y obteniendo así una ruta más razonable que la proporcionada por el vecino más próximo, con
un coste de 292.73 €.

(a) Nodos del conjunto.
(b) Solución exacta:
(0, 13, 5, 4, 3, 2, 1, 8, 6, 7, 9, 11, 0)

(c) Solución del vecino más próximo:
(0, 7, 6, 8, 9, 5, 4, 3, 2, 1, 15, 11, 0)

(d) Solución de 2-opt:
(0, 5, 4, 3, 2, 1, 8, 6, 7, 9, 11, 15, 0)

Figura 4.2: Representación de las soluciones de cada método para una instancia de 9 puntos de recogida.

En conclusión, considerando los criterios establecidos para la selección del algoritmo más adecua-
do, la heurística 2-opt representa la mejor alternativa para la operativa de Trucksters. En términos de
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calidad de la solución, 2-opt mejora significativamente la solución inicial generada por el vecino más
próximo, alcanzando resultados cercanos al óptimo. Respecto a los tiempos de ejecución, este algoritmo
mantiene valores muy bajos, prácticamente despreciables, lo que garantiza que la planificación auto-
mática no exceda los 5 minutos, cumpliendo con el límite operativo fijado por la empresa y asegurando
la viabilidad diaria del proceso. Por lo tanto, el algoritmo 2-opt ofrece un equilibrio óptimo que satis-
face tanto el objetivo de negocio de automatización eficiente como el objetivo técnico de determinar el
método más adecuado para la casuística concreta de Trucksters.
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Figura 4.3: Boxplots de los tiempos de ejecución para cada método.
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(c) Heurística 2-opt.

Figura 4.4: Boxplots de los costes asociados a la solución.
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(b) Heurística 2-opt.

Figura 4.5: Boxplots de las diferencias porcentuales de cada heurística respecto al modelo exacto.



Capítulo 5

Estudio con datasets aumentados

En el Capítulo 4 se ha presentado una comparativa entre los distintos métodos implementados,
utilizando como base de datos la proporcionada por Trucksters, que se corresponde con una casuística
real. Sin embargo, el conjunto de datos es limitado, con solo 10 puntos de recogida disponibles, lo que
supone una restricción para evaluar el comportamiento de los algoritmos en problemas de gran escala.

En este capítulo se presenta una generalización del problema real, considerando un escenario con
múltiples vehículos eléctricos y un mayor número de nodos de recogida y descarga. Esta extensión
surge de la planificación estratégica de Trucksters, que está evaluando la adquisición de un segundo
vehículo eléctrico para poder atender la posibilidad de que el cliente amplíe los puntos de recogida en
futuras operaciones. De este modo, el trabajo no solo aborda la casuística real actual, sino que también
proporciona información relevante para la planificación y escalabilidad futura de la operativa eléctrica
de la empresa.

Además, dado que la distancia máxima que puede recorrer un vehículo depende de su tipo y
autonomía, el estudio también contempla evaluar el rendimiento de los algoritmos frente a rutas de
distintas longitudes, garantizando que los modelos sean robustos y aplicables a escenarios con vehículos
de diferentes capacidades.

Se generarán instancias más grandes a partir de datos reales mantienendo las principales carac-
terísticas del caso real planteado anteriormente. Así, se garatiza el análisis de escenarios plausibles y
útiles para la planificación de rutas.

Se presenta en la Sección 5.1 una nueva formulación del problema, que se adapta a las nuevas
características del mismo. Además, en la Sección 5.2 se describen las técnicas empleadas para ajustar
los métodos de resolución empleados con anterioridad y se presentan los resultados obtenidos con esta
nueva casuística en la Sección 5.3.

5.1. Formulación del nuevo caso

En la Sección 4.1 se presentó una formulación matemática para el problema de rutas de vehículos
eléctricos planteado por la empresa. Dicha formulación estaba diseñada para un solo camión, que debía
partir de la base operativa y volver a ella, visitando una serie de puntos de recogida y un punto de
descarga. Además, se imponía la restricción de que el vehículo tenía que hacer una parada en una
estación de carga.

41
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Para el nuevo caso, donde el camión tiene que recorrer un mayor número de nodos, es necesario
incluir un límite en la distancia recorrida, ya que la autonomía del vehículo es finita. Los camiones
eléctricos pueden recorrer un máximo de 400 km al día, por lo que se precisa añadir esta restricción al
modelo. Anteriormente, el número de nodos era lo suficientemente pequeño para que no existiese un
problema debido a la distancia recorrida y no fuese necesaria esta restricción.

Asimismo, la inclusión del límite de distancia recorrida permite que haya nodos en la ruta que no
sean visitados por el vehículo. Para solventar este problema, se incorpora al modelo la posibilidad de
emplear más camiones eléctricos, de manera que, si un camión no puede visitar todos los nodos debido
a la restricción de distancia, otro camión puede encargarse de los nodos restantes.

Para formular el problema, se van a utilizar algunos conjuntos, parámetros y variables ya empleados
anteriormente y se van a incluir nuevas definiciones:

N = NC ∪ND = {1, . . . , n} es el conjunto de puntos a visitar del cliente.
- NC = {1, . . . , n− 1} hace referencia a los puntos de recogida.
- ND = {n} hace referencia al punto de descarga.

F = {n + 1, . . . , n + p} se corresponde con las estaciones de carga disponibles.

V = {0}∪{0∗}∪N ∪F = {0, 0∗, 1, . . . , n−1, n, n+1, . . . , n+p} representa el conjunto de nodos,
donde el nodo 0 es la base operativa y 0∗1 representa una base operativa ficticia.

K = {1, . . . , m}, con m ∈ N, m ≥ 1 es el conjunto de camiones eléctricos disponibles.

cij hace referencia al coste de ir del nodo i al nodo j. Este coste se calculará como el producto
de los kilómetros recorridos y el precio del kilómetro.

wi es el precio de cargar un camión en el punto de carga i.

dij representa el tiempo que se tarda en ir del nodo i al nodo j.

dMAX se corresponde con la distancia máxima que puede recorrer un camión.

tk
i es una variable de decisión continua que define el tiempo de llegada del vehículo al punto i.

xk
ij ∈ {0, 1} es una variable de decisión binaria que vale 1 si el arco (i, j) está en la ruta del

vehículo k y 0 en otro caso.

zk
i ∈ {0, 1} es una variable de decisión binaria que vale 1 si la estación de carga i es usada por

el vehículo k y 0 en otro caso. Como cada camión solamente usa una estación de carga, indica a
mayores si el camión k es usado (zk

i = 1) o no (zk
i = 0).

Como novedad, se ha integrado dMAX como parámetro del problema y se han incluido superíndices k
a las variables tk

i , xk
ij y zk

i para indicar el camión al que se refieren.

El uso de múltiples vehículos implica que la función objetivo y las restricciones deben adaptarse
para incluir las nuevas variables. Integrar más de un camión en la ruta conlleva un aumento en el coste
total: cada camión tiene un gasto fijo de 150 € por día de uso, por lo que el modelo buscará hacer rutas
con el menor número de camiones posible. Así, el modelo se puede formular de la siguiente manera:

1Este nodo es necesario para la programación del problema, ya que evitamos la formación de ciclos en la solución.
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minimizar
∑

i,j∈V,k∈K

cijxk
ij +

∑
i∈F,k∈K

wiz
k
i +

∑
i∈F,k∈K

150zk
i (5.1)

sujeto a
∑
j∈V

xk
ij = 1, ∀i ∈ V \{F ∪ {0∗}}, k ∈ K (5.2)

∑
i∈V

xk
ij −

∑
h∈V

xk
jh = 0, ∀j ∈ V \ {{0} ∪ {0∗}}, k ∈ K (5.3)∑

j∈V \{{0}∪{0∗}}

xk
0j = 1, ∀k ∈ K (5.4)

∑
i∈V \{{0}∪{0∗}}

xk
i0∗ = 1, ∀k ∈ K (5.5)

x0∗j = 0, ∀j ∈ V (5.6)

tk
j ≥ tk

i − (1−
∑
h∈V

xk
hi)L ∀i ∈ NC , j ∈ ND, k ∈ K, L ≫ 0 (5.7)

tk
i + dijxk

ij − tk
j ≤ (1− xk

ij)L, ∀i, j ∈ V, k ∈ K, L ≫ 0 (5.8)∑
i∈N∪{0},j∈F

xk
ij = 1, ∀k ∈ K (5.9)

∑
i,j∈V

dijxk
ij ≤ dMAX , ∀k ∈ K (5.10)

xij ≤ zk
i , ∀i ∈ F, j ∈ N, k ∈ K (5.11)

xij ≤ zk
j , ∀i ∈ N, j ∈ F, k ∈ K (5.12)

xij , zk
i ∈ {0, 1}, ∀i, j ∈ V, k ∈ K (5.13)

tk
i ∈ R+, ∀i ∈ V, k ∈ K (5.14)

La función objetivo (5.1) minimiza el coste variable de la operación, que incluye el coste derivado
de los kilómetros recorridos, el coste asociado a la carga de la batería y el coste fijo por el uso de cada
camión. De nuevo, al tratarse de costes, esta función se mide en euros.

Como se puede observar, la formulación es muy similar a la presentada en la Sección 4.1, con
algunas diferencias clave para adaptarse al nuevo escenario. A las variables que hacen referencia a los
camiones, se les añadió el superíndice k, que permite distinguir entre los distintos vehículos. Asimismo,
se añadió una nueva restricción (5.10) que limita la distancia máxima que puede recorrer cada camión,
asegurando que no se exceda la autonomía diaria del vehículo.

Cabe destacar que, si la ruta óptima no supera los 400 km, el modelo empleará un solo camión,
y por tanto, la solución será equivalente a la del modelo original. Es decir, se ha desarrollado una
formulación más general, adaptándose a una nueva casuística.

5.2. Métodos y técnicas seleccionadas

El objetivo de este apartado es analizar la escalabilidad de las técnicas empleadas anteriormente
para instancias mayores. Por lo tanto, se hará uso de los mismos métodos: el modelo exacto mediante
SCIP, el algoritmo del vecino más próximo como heurística constructiva y el algoritmo 2-opt como
heurística de mejora.
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Para implementar el modelo exacto, se ha empleado nuevamente la librería OR-Tools de Google.
Se ajustaron los parámetros del modelo, manteniendo los valores de L = 105 y el tiempo máximo
de duración del recorrido de 15h y a mayores se añadió el límite de distancia máxima dMAX , que se
adaptará a las limitaciones del vehículo empleado. Como se está trabajando con instancias de gran
tamaño, se fijó un tiempo máximo de ejecución de 20 minutos, que es un tiempo que la empresa
considera razonable. Con ese tiempo, el solver es posible que no devuelva la mejor solución existente,
pero se garantiza que el método termine en un tiempo razonable.

Se emplearán los mismos criterios del capítulo anterior: la calidad de la solución obtenida, los
tiempos de cómputo y la escalabilidad de los algoritmos.

Para adaptar la heurística constructiva a los nuevos datos, se ha incluido en el código una compro-
bación de la distancia máxima. El proceso es muy similar al algoritmo con un solo vehículo: se genera
una ruta con los nodos aún no visitados más cercanos, comprobando en cada paso que no se excede
la distancia máxima fijada. Si se alcanza el límite establecido y el vehículo no ha visitado todos los
nodos necesarios, se crea una nueva ruta con un nuevo camión desde el punto de partida. Esta lógica
se repite hasta que se han visitado todos los nodos de carga y descarga.

En el Algoritmo 3 se muestra el pseudocódigo del vecino más próximo adaptado a múltiples vehícu-
los.
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Algoritmo 3 Algoritmo del vecino más próximo para múltiples vehículos
1: Inicializar solución vacía
2: Marcar todos los loadings y unloadings como no visitados
3: while existan nodos por visitar do
4: Iniciar nueva ruta desde el parking
5: current_loc ← parking
6: distancia_ruta ← 0

▷ Loadings
7: while existan loadings no visitados do
8: Elegir el loading más cercano a current_loc
9: if Se supera la distancia de la ruta máxima then

10: break ▷ Cerrar ruta: no cabe este loading respetando el límite
11: end if
12: Añadir loading a la ruta
13: Marcar loading como visitado
14: distancia_ruta ← distancia_ruta + dist(current_loc, loading)
15: current_loc ← loading elegido
16: end while

▷ Unloadings
17: while existan unloadings no visitados do
18: Seleccionar el unloading no visitado más cercano a current_loc
19: if Se supera la distancia de la ruta máxima then
20: break ▷ Cerrar ruta: no cabe este unloading respetando el límite
21: end if
22: Añadir unloading a la ruta
23: Marcar unloading como visitado
24: distancia_ruta ← distancia_ruta + dist(current_loc), unloading)
25: current_loc ← unloading
26: end while

▷ Insertar charger
27: if hay chargers disponibles then
28: Elegir el charger más cercano al último nodo
29: Buscar posición que minice el aumento de distancia
30: Insertar charger
31: end if
32: Terminar ruta en parking
33: Añadir ruta completa a la solución
34: end while
35: Verificar restricciones de factibilidad globales

El algoritmo 2-opt para los nuevos datos es muy similar al algoritmo original. Para implementarlo
con múltiples vehículos, se aplica el algoritmo para cada ruta, verificando en cada paso que se satisfacen
las restricciones de distancia impuestas. Es decir, se tratan las diferentes rutas de los camiones como
si fuesen soluciones iniciales independientes. Aunque, desde un punto de vista académico, sería posible
extender el algoritmo 2-opt incorporando intercambios entre rutas de vehículos distintos, esta mejora
queda fuera del alcance del trabajo y se marca como línea de trabajo futura.

Se puede ver el pseudocódigo de la heurística de mejora en el Algoritmo 4.
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Algoritmo 4 Algoritmo 2-opt para múltiples vehículos
1: Inicializar nueva solución vacía
2: for each ruta (vehículo) en la solución inicial do
3: Copiar la ruta como best_route
4: mejorar← True
5: while mejorar do
6: mejorar← False
7: for i← 1 until penúltimo nodo antes del final do
8: for j ← i + 1 until penúltimo nodo do
9: Seleccionar segmento entre i y j ▷ Respetar restricciones

10: if mezcla loadings y unloadings then
11: continue
12: end if
13: if más de un charger then
14: continue
15: end if
16: Invertir el segmento para obtener new_route
17: Calcular distancia total de new_route
18: if existe un límite de km por vehículo and se supera then
19: continue
20: end if
21: Calcular distancia total de best_route
22: if new_route mejora la distancia de best_route then
23: best_route← new_route
24: mejorar← True
25: break ▷ Reiniciar búsqueda en la nueva ruta
26: end if
27: end for
28: if mejorar then
29: break ▷ Volver a iterar
30: end if
31: end for
32: end while
33: Agregar best_route a la nueva solución
34: end for
35: Verificar factibilidad global de todas las rutas
36: return solución optimizada

5.2.1. Datos empleados

Para evaluar el rendimiento de los métodos seleccionados en situaciones de mayor escala, Trucksters
proporcionó un conjunto de datos ampliado basado en la operativa real. Estos datos representan
posibles puntos de recogida dentro de la provincia de Barcelona, siguiendo patrones coherentes con los
históricos de entregas de la empresa. La estructura de los datos es la siguiente:

1 nodo correspondiente a la base operativa.

1 nodo de descarga.

5 nodos que representa estaciones de recarga.
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129 nodos ampliados que actúan como nodos de recogida.

En total, disponemos de 136 nodos, lo que permite generar instancias de mayor tamaño para
evaluar el comportamiento de los algoritmos. En concreto, se han generado 30 instancias diferentes,
seleccionando un tamaño de |N |, correspondiente a los nodos de recogida, de 10, 15 y 20. Para cada
tamaño, se han creado 10 instancias distintas seleccionando los nodos de forma aleatoria.

Para el cálculo de las distancias, los costes y los tiempos se emplearon los mismos métodos usados
con anterioridad.

5.3. Comparativa

En esta sección se realiza una comparativa de los tres métodos implementados con las técnicas de
la Sección 5.2, utilizando la base de datos ampliada.

Se ha evaluado el comportamiento de los algoritmos con tres distancias máximas permitidas para
los vehículos. La primera dMAX = 400, se corresponde con la limitación actual permitida para el
camión eléctrico disponible. La segunda y tercera, dMAX = 200 y dMAX = 150, son una extrapolación
de las características del vehículo a posibles camiones eléctricos.

Para seguir la estructura de la Sección 4.3, se han recogido en las Tablas 5.1, 5.2 y 5.3 los resultados
medios de las 10 instancias para cada |N | (el coste medio de la solución obtenida y los tiempos de
ejecución). A mayores, se ha incluido una columna en cada método que indica los camiones medios
que han sido necesarios para calcular la ruta (|K|) y el número de instancias resueltas por cada uno
(S.). Se pueden ver las tablas con los resultados completos en el Apéndice B.

Se presentan además en las Figuras 5.1 y 5.2, 5.3, boxplots relativos al tiempo de cómputo, al coste
de la solución y a la diferencia porcentual de la solución de las heurísticas respecto al método exacto
por cada método y cada tamaño de |N |.

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| S. Coste (€) Tiempo (s) |K| S. Coste (€) Tiempo (s) |K| S.

10 304.303 1.200 · 103 1 10 331.975 9.2 · 10−5 1 10 313.732 1.321 · 10−3 1 10

15 349.398 1.200 · 103 1 10 378.621 1.2 · 10−4 1 10 349.123 5.757 · 10−3 1 10

20 403.713 1.200 · 103 1 10 385.656 1.59 · 10−4 1 10 362.249 1.110 · 10−3 1 10

Tabla 5.1: Comparación de los tres métodos con nodos ficticios y dMAX = 400. Se recogen los valores
medios de las funciones objetivo, los tiempos medios de ejecución, el número medio de camiones (|K|)
y el número de instancias resueltas (S.) para cada tamaño.
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Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| S. Coste (€) Tiempo (s) |K| S. Coste (€) Tiempo (s) |K| S.

10 391.732 1.202 · 103 1.4 10 508.8 2.050 · 10−4 1.9 10 496.9 1.421 · 10−3 1.9 10

15 652.574 1.202 · 103 2.3 10 590.1 2.901 · 10−4 2 10 576.8 5.656 · 10−3 2 10

20 569.585 1.204 · 103 2 2 634.1 1.203 · 10−3 2.2 10 622.2 2.435 · 10−3 2.2 10

Tabla 5.2: Comparación de los tres métodos con nodos ficticios y dMAX = 200. Se recogen los valores
medios de las funciones objetivo, los tiempos medios de ejecución y el número medio de camiones (|K|)
y el número de instancias resueltas (S.) para cada tamaño.

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| S. Coste (€) Tiempo (s) |K| S. Coste (€) Tiempo (s) |K| S.

10 494.47 1.200 · 103 1.9 10 582.0 1 · 10−3 2.2 10 573.2 1.921 · 10−3 2.2 10

15 831.034 1.200 · 103 3.2 5 799.0 2.45 · 10−4 3 10 786.8 4.757 · 10−3 3 10

20 - - - 0 873.7 4.59 · 10−4 3.3 10 864.0 8.410 · 10−3 3.3 10

Tabla 5.3: Comparación de los tres métodos con nodos ficticios y dMAX = 150. Se recogen los valores
medios de las funciones objetivo, los tiempo de ejecución y el número medio de camiones (|K|) y el
número de instancias resueltas (S.) para cada tamaño.

En este nuevo experimento, se fijó un tiempo máximo de 20 minutos de ejecución para el método
exacto. Se puede ver en la Tablas 5.1, 5.2 y 5.3 como, de nuevo, el solver emplea el tiempo máximo
establecido. Para la distancia de 400 km, se observa como el método exacto da lugar a soluciones buenas
para los conjuntos de |N | = 10 y |N | = 15, sin embargo, en el caso de |N | = 20, ambas heurísticas
consiguen reducir el coste de la ruta calculada.

Para los casos de límite de distancia de 200 km y 150 km, el solver ya no es capaz de resolver de forma
eficaz el problema. Esto es debido a que la región factible se hace más pequeña y el problema se vuelve
más complejo, lo que provoca que 20 minutos no sean suficientes para su resolución. Para solventar
esto, sería necesario ampliar el tiempo límite de ejecución. Además, esto justifica la incorporación de
la columna relativa a las soluciones encontradas. Como podemos ver en las Tablas 5.2 y 5.3, el método
exacto tiene dificultades a la hora de encontrar soluciones para los tamaños |N | = 15 y |N | = 20.

Para |N | = 10, el método exacto presenta las mejores soluciones en media de las tres técnicas,
mientras que para |N | = 15, es mejorada por ambas heurísticas. Destaca el rendimiento eficaz en
media que presenta el solver para |N | = 20 con dMAX = 200, debido a que se está haciendo la media
para tan solo dos instancias con las que se obtuvo solución con este método.

En el caso de la heurística del vecino más próximo, este sigue siendo el método que peores soluciones
proporciona de forma general. Este comportamiento se puede apreciar de manera muy clara en la
Figura 5.3, donde las diferencias respecto al método exacto para dMAX = 400 son, por lo general,
mayores a 0. En los casos en los que se disminuye la distancia permitida, podemos ver algunos casos
donde la heurística consigue mejorar al solver, aunque, de nuevo, se debe tener en cuenta que no se
comparan todas las posibles soluciones. En cuanto a tiempos de ejecución, la heurística constructiva
sigue presentando los tiempos más pequeños, siendo el más competitivo en este aspecto para todos los
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experimentos realizados.

Por último, el algoritmo 2-opt parece proporcionar de nuevo un equilibrio entre tiempo y calidad
de soluciones. En las instancias de 10 nodos de recogida para dMAX = 400, esta técnica no mejora de
media las soluciones del solver, sin embargo, a medida que aumentamos los nodos, se aprecia como
estas diferencias empiezan a ser menores, consiguiendo la heurística reducir los costes de la ruta en
algunas ocasiones(Figura 5.3f). Para los otros dos tamaños, el algoritmo vuelve a ser muy eficiente para
reducir la solución. En ambos casos cumple su cometido de reducir el coste del algoritmo del vecino
más próximo, con un aumento de tiempo despreciable.

En la Figura 5.2 se aprecia que, a medida que aumenta el tamaño de las instancias, y por tanto la
longitud de la ruta, se incrementa a su vez el coste para ambas heurísticas. No obstante, esta diferencia
parece mayor entre las instancias con |N | = 10 y |N | = 15, que con |N | = 15 y |N | = 20. Esto puede
ser debido a que la disposición de los puntos de recogida es más próxima a medida que aumentamos su
número. Es por esto que no se plantea en este Trabajo Fin de Máster realizar pruebas con un mayor
número de nodos, que además, conllevaría unos tiempos de ejecución muy elevados.

Cabe destacar que, a pesar de haber adaptado todos los métodos para incluir múltiples vehículos,
para el caso de dMAX = 400, en la mayoría de los casos bastaría con usar la formulación planteada en
la Sección 4, dado que se emplea únicamente un camión para llegar a la solución en 29 de 30 instancias.
Para dMAX = 200, el número de vehículos parece estar muy próximo a dos, aumentando ligeramente
su número según se incrementa el número de puntos de recogida. En el caso de dMAX = 150, se
necesita un vehículo más para satisfacer la demanda de los clientes. La empresa Trucksters tendría que
hacerse con dos camiones eléctricos que pudiesen recorrer un máximo de 150 km para poder resolver
esta casuística.

En conclusión, según los criterios establecidos de calidad de solución, tiempo de cómputo y escala-
bilidad, el algoritmo 2-opt presenta un buen desempeño. La calidad de las soluciones para un tiempo
límite de 20 minutos es, por lo general, la mejor, reduciendo los costes respecto al método exacto
en varios casos, que no llega a alcanzar la solución óptima. El tiempo empleado es de apenas unos
milisegundos, por lo que proporciona soluciones inmediatas. A mayores, esta técnica presenta un buen
funcionamiento para instancias de mayor tamaño y diferentes valores de dMAX . El algoritmo 2-opt
satisface los requerimientos tanto técnicos, como de negocio, siendo el idóneo para incorporarse a la
operativa de la empresa.
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Figura 5.1: Boxplots de tiempos de ejecución. En la primera columna, los resultados para dMAX = 400;
en la segunda, para dMAX = 200; y en la tercera, para dMAX = 150.
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Figura 5.2: Boxplots de los costes asociados a la solución. En la primera columna, los resultados para
dMAX = 400; en la segunda, para dMAX = 200; y en la tercera, para dMAX = 150.
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Figura 5.3: Boxplots de las diferencias porcentuales de cada heurística respecto al modelo exacto.En la
primera columna, los resultados para dMAX = 400; en la segunda, para dMAX = 200; y en la tercera,
para dMAX = 150.



Capítulo 6

Conclusiones y líneas de trabajo
futuro

A lo largo de este trabajo se ha desarrollado un modelo de optimización para resolver el problema de
rutas de vehículos eléctricos planteado por la empresa Trucksters. El objetivo era planificar el itinerario
de un camión eléctrico que partía de una base operativa, visitaba varios puntos de recogida, realizaba
la descarga en una localización fijada y regresaba de nuevo a la base. A mayores, el vehículo debía
parar en una estación de recarga antes de agotar la batería del mismo.

La finalidad de este Trabajo Fin de Máster es la comparación de diferentes metodologías seleccio-
nadas. Para ello, en un primer momento se llevó a cabo una modelización del problema planteado en
la Sección 4.1. La formulación recogía las restricciones necesarias para que el camión realizase el reco-
rrido por los diferentes puntos, cumpliendo las necesidades de los vehículos eléctricos. Posteriormente
se implementó la casuística para resolverlo mediante los métodos seleccionados: un método exacto con
el solver SCIP, la heurística del vecino más próximo y el algoritmo 2-opt. Para ello se desarrolló un
código de elaboración propia en el lenguaje de programación Python.

Por último, se realizó un análisis comparativo de los resultados obtenidos con las tres técnicas y dos
conjuntos de datos diferentes, adaptando los métodos para ambos casos. Las soluciones mostraban que
el modelo exacto proporcionaba, para los casos con un único vehículo, de forma general, los menores
costes para el problema, pero conllevando tiempos de ejecución elevados. Sin embargo, con más de un
vehículo, el solver ya no era tan competente. El algoritmo del vecino más próximo ofrecía una solución
constructiva rápida, con tiempos muy bajos, aunque con una calidad de solución moderada para todos
los experimentos. La heurística 2-opt proporcionaba un equilibrio óptimo entre calidad de solución y
tiempo de ejecución, teniendo el mejor rendimiento tanto para instancias pequeñas como de mayor
tamaño, y conviertiéndose en el algoritmo seleccionado para implementar en la empresa.

Se han alcanzado los objetivos y los resultados esperados por los algoritmos, aún así, existen ámbitos
donde el trabajo podría seguir mejorándose. En primer lugar, las rutas que se han estudiado son
en un entorno limitado, dentro de la provincia de Barcelona. Una posible línea de trabajo futuro
sería el análisis de rutas nacionales o internacionales, que impliquen mayores distancias y tiempos de
viaje. Así, se podrían implementar nuevas restricciones y variables que se adapten a las exigencias
de estos escenarios. Por otro lado, en la formulación empleada se eliminaron las ventanas temporales
y las restricciones relativas a la capacidad energética del vehículo. Una posible mejora podría ser
la implementación de estas restricciones al modelo, adaptándolo aún más a las necesidades reales
de los clientes. En relación con la modelización del problema, se comentó que la selección de L se
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hizo de forma que se garantizase la validez de las restricciones de tipo big-M. En este contexto, esta
elección se podría realizar de forma más precisa, siendo una posible área en la que mejorar el modelo.
Además, las distancias utilizadas para evaluar las rutas se calculan mediante la distancia geodésica,
sin considerar el relieve del terreno, la estructura real de la red de carreteras ni posibles desvíos. Una
mejora relevante para futuros trabajos sería incorporar distancias reales obtenidas de mapas o servicios
de geolocalización. Por último, se ha implementado un algoritmo 2-opt para múltiples vehículos que
mejoraba únicamente las rutas ya elegidas por la heurística constructiva. Se podría mejorar de forma
que se permitiesen los intercambios entre rutas de diferentes vehículos.

En conclusión, en este Trabajo Fin de Máster se han revisado los conceptos necesarios para abor-
dar el problema de rutas de vehículos eléctricos, se ha propuesto una formulación que satisface las
necesidades de la empresa y se han diseñado dos algoritmos heurísticos, implementados con un código
de elaboración propia. Además, los resultados alcanzados pueden considerarse satisfactorios, ya que se
reducen los tiempos de planificación marcados en un principio. En definitiva, se ha demostrado que la
automatización de la planificación de rutas para vehículos eléctricos es viable y beneficiosa.



Apéndice A

Resultados de los métodos

En la Sección 4.3 se incluyó un resumen de los resultados obtenidos para el experimento. En este
apéndice se recogerán los datos al completo para una mejor comprensión.

Se pueden ver en la Tabla A.1 estos resultados. Se omite el número de vehículos empleados en cada
instancia por ser en todas 1.

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)

Instancia 1 3 268.74 3.0052 · 102 292.52 8.7400 · 10−5 277.71 1.3230 · 10−4

Instancia 2 3 231.35 3.0073 · 102 248.09 8.2000 · 10−5 240.34 1.9490 · 10−4

Instancia 3 3 231.19 3.0089 · 102 240.46 7.3900 · 10−5 240.18 1.3560 · 10−4

Instancia 4 3 212.75 2.6220 · 102 222.72 8.0300 · 10−5 221.65 1.6490 · 10−4

Instancia 5 3 263.86 3.0057 · 102 284.82 8.6400 · 10−5 272.26 2.1230 · 10−4

Instancia 6 3 253.54 3.0090 · 102 264.82 9.1200 · 10−5 262.44 1.3880 · 10−4

Instancia 7 3 258.94 3.0084 · 102 278.59 8.3500 · 10−5 267.91 2.6040 · 10−4

Instancia 8 3 239.47 3.0093 · 102 251.00 8.7300 · 10−5 247.87 1.8270 · 10−4

Instancia 9 3 259.40 3.0092 · 102 276.66 8.3900 · 10−5 268.37 2.5500 · 10−4

Instancia 10 3 242.58 3.0075 · 102 260.62 8.8700 · 10−5 251.53 1.9780 · 10−4

Instancia 11 4 256.01 3.0089 · 102 274.94 8.8200 · 10−5 264.87 3.3240 · 10−4

Instancia 12 4 265.19 3.0081 · 102 284.84 8.3300 · 10−5 274.16 3.0380 · 10−4

Instancia 13 4 226.36 3.0090 · 102 234.42 9.3900 · 10−5 234.23 1.9100 · 10−4

Instancia 14 4 269.85 3.0083 · 102 308.71 1.0100 · 10−4 278.48 2.8180 · 10−4

Instancia 15 4 254.94 3.0093 · 102 274.44 1.2400 · 10−4 263.93 3.3950 · 10−4

Instancia 16 4 242.58 3.0081 · 102 260.63 9.1900 · 10−5 251.54 3.3830 · 10−4

Instancia 17 4 264.56 3.0092 · 102 285.69 9.5900 · 10−5 273.36 2.2490 · 10−4

Instancia 18 4 253.01 3.0091 · 102 263.41 1.2000 · 10−4 261.98 3.3650 · 10−4

Instancia 19 4 237.63 3.0085 · 102 247.64 9.7800 · 10−5 246.43 2.2470 · 10−4

55



56 CAPÍTULO 6. CONCLUSIONES Y LÍNEAS DE TRABAJO FUTURO

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)

Instancia 20 4 240.86 3.0091 · 102 251.13 8.5800 · 10−5 250.16 2.4940 · 10−4

Instancia 21 5 265.83 3.0084 · 102 290.68 9.3100 · 10−5 274.82 4.7820 · 10−4

Instancia 22 5 255.20 3.0091 · 102 271.60 8.6900 · 10−5 264.19 4.5880 · 10−4

Instancia 23 5 256.46 3.0087 · 102 274.13 1.8190 · 10−4 265.04 6.2650 · 10−4

Instancia 24 5 242.20 3.0087 · 102 258.35 9.7800 · 10−5 251.20 4.9910 · 10−4

Instancia 25 5 253.11 3.0090 · 102 264.26 9.4000 · 10−5 262.08 5.0050 · 10−4

Instancia 26 5 269.76 3.0084 · 102 294.31 1.5920 · 10−4 278.73 4.3250 · 10−4

Instancia 27 5 274.46 3.0083 · 102 283.55 8.6700 · 10−5 283.26 4.1760 · 10−4

Instancia 28 5 247.96 3.0094 · 102 265.98 9.4900 · 10−5 256.96 4.7410 · 10−4

Instancia 29 5 253.10 3.0086 · 102 263.52 8.4800 · 10−5 262.07 3.2360 · 10−4

Instancia 30 5 245.71 3.0087 · 102 263.10 7.3200 · 10−5 254.70 3.7210 · 10−4

Instancia 31 6 242.22 3.0082 · 102 258.48 7.3200 · 10−4 251.22 5.1440 · 10−4

Instancia 32 6 255.07 3.0085 · 102 266.07 8.1800 · 10−5 264.64 6.4480 · 10−4

Instancia 33 6 275.10 3.0091 · 102 283.78 1.1080 · 10−4 283.50 4.5580 · 10−4

Instancia 34 6 275.05 3.0083 · 102 283.78 1.2740 · 10−4 283.45 4.3470 · 10−4

Instancia 35 6 241.83 3.0229 · 102 252.05 1.3080 · 10−4 250.80 5.3540 · 10−4

Instancia 36 6 271.51 3.0131 · 102 282.67 3.0570 · 10−4 280.14 5.6290 · 10−4

Instancia 37 6 281.94 3.0085 · 102 310.12 9.7100 · 10−5 290.90 5.2790 · 10−4

Instancia 38 6 273.31 3.0087 · 102 297.14 1.0590 · 10−4 282.31 6.5490 · 10−4

Instancia 39 6 281.04 3.0082 · 102 309.27 1.0260 · 10−4 290.00 5.9610 · 10−4

Instancia 40 6 267.20 3.0088 · 102 286.85 1.1570 · 10−4 276.17 5.6300 · 10−4

Instancia 41 7 255.93 3.0097 · 102 265.63 1.3130 · 10−4 263.34 1.2044 · 10−3

Instancia 42 7 258.53 3.0086 · 102 275.00 1.0530 · 10−4 267.53 8.7570 · 10−4

Instancia 43 7 276.02 3.0076 · 102 284.70 8.8600 · 10−5 284.42 5.6700 · 10−4

Instancia 44 7 275.51 3.0091 · 102 284.66 5.9020 · 10−4 284.31 7.2950 · 10−4

Instancia 45 7 257.10 3.0065 · 102 274.47 1.0180 · 10−4 266.09 2.2124 · 10−3

Instancia 46 7 272.47 3.0080 · 102 300.93 1.3200 · 10−4 281.46 1.1582 · 10−3

Instancia 47 7 282.65 3.0087 · 102 310.77 1.2160 · 10−4 291.64 1.4790 · 10−3

Instancia 48 7 282.07 3.0080 · 102 310.25 1.5520 · 10−4 291.03 7.6330 · 10−4

Instancia 49 7 272.12 3.0088 · 102 300.53 1.0070 · 10−4 281.08 8.1910 · 10−4

Instancia 50 7 248.25 3.0196 · 102 267.05 2.1500 · 10−4 257.24 7.3110 · 10−4

Instancia 51 8 277.35 3.0185 · 102 301.90 6.8930 · 10−4 286.32 1.1091 · 10−3

Instancia 52 8 282.73 3.0182 · 102 310.85 2.6150 · 10−4 291.72 1.0713 · 10−3

Instancia 53 8 259.37 3.0179 · 102 276.85 1.0490 · 10−4 268.36 2.1588 · 10−3

Instancia 54 8 259.60 3.0180 · 102 276.90 9.6900 · 10−5 268.52 2.4769 · 10−3
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Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) Coste (€) Tiempo (s) Coste (€) Tiempo (s)

Instancia 55 8 272.31 3.0181 · 102 300.63 1.4136 · 10−3 281.27 1.0472 · 10−3

Instancia 56 8 282.68 3.0094 · 102 310.85 1.4110 · 10−4 291.67 8.7800 · 10−4

Instancia 57 8 277.40 3.0168 · 102 298.39 1.3490 · 10−4 282.41 9.9170 · 10−4

Instancia 58 8 273.82 3.0084 · 102 302.14 1.1340 · 10−4 282.78 9.7460 · 10−4

Instancia 59 8 281.33 3.0069 · 102 309.45 1.3000 · 10−4 290.32 9.1380 · 10−4

Instancia 60 8 282.81 3.0169 · 102 310.90 1.0720 · 10−4 291.77 1.0700 · 10−3

Instancia 61 9 283.79 3.0178 · 102 311.88 1.0930 · 10−4 292.75 1.0357 · 10−3

Instancia 62 9 283.81 3.0174 · 102 311.77 2.6190 · 10−4 292.76 1.1075 · 10−3

Instancia 63 9 283.63 3.0182 · 102 311.83 1.3470 · 10−4 292.59 1.2773 · 10−3

Instancia 64 9 287.92 3.0183 · 102 311.77 1.5200 · 10−4 292.64 1.8108 · 10−3

Instancia 65 9 273.84 3.0197 · 102 302.27 1.4780 · 10−4 282.80 2.0908 · 10−3

Instancia 66 9 262.62 3.0419 · 102 276.92 1.4940 · 10−4 268.54 2.4307 · 10−3

Instancia 67 9 282.86 3.0180 · 102 310.98 1.2490 · 10−4 291.85 1.2360 · 10−3

Instancia 68 9 282.28 3.0198 · 102 310.48 1.2240 · 10−4 291.24 1.2708 · 10−3

Instancia 69 9 280.37 3.0159 · 102 302.03 1.3620 · 10−4 286.45 1.1942 · 10−3

Instancia 70 9 287.43 3.0173 · 102 311.01 9.6700 · 10−5 292.68 1.0766 · 10−3

Tabla A.1: Comparación de los tres métodos de las instancias reales de la Sección 4.3.
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Apéndice B

Nuevo caso planteado

En la Sección 5.3 se incluyó un resumen de los resultados obtenidos para los experimentos. En este
apéndice se recogerán los datos al completo para una mejor comprensión.

Se pueden ver en las Tablas B.1, B.2 y B.3 estos resultados.

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K|

Instancia 1 10 340.53 1.2020 · 103 1 351.64 1.6260 · 10−4 1 344.30 2.5404 · 10−3 1

Instancia 2 10 334.93 1.2022 · 103 1 373.68 2.7280 · 10−4 1 343.48 4.4978 · 10−3 1

Instancia 3 10 294.64 1.2018 · 103 1 317.24 1.6530 · 10−4 1 302.03 2.2629 · 10−3 1

Instancia 4 10 315.47 1.2021 · 103 1 350.25 3.5990 · 10−4 1 324.95 2.2303 · 10−3 1

Instancia 5 10 304.74 1.2029 · 103 1 342.37 2.4010 · 10−4 1 314.69 3.2033 · 10−3 1

Instancia 6 10 281.28 1.2022 · 103 1 322.16 7.2640 · 10−4 1 288.81 1.8245 · 10−3 1

Instancia 7 10 305.34 1.2017 · 103 1 324.32 1.9800 · 10−4 1 318.96 1.3801 · 10−3 1

Instancia 8 10 296.25 1.2017 · 103 1 320.90 6.9440 · 10−4 1 305.45 4.0359 · 10−3 1

Instancia 9 10 265.83 1.2025 · 103 1 296.60 2.0690 · 10−4 1 274.43 1.3590 · 10−3 1

Instancia 10 10 310.33 1.2020 · 103 1 320.59 1.6640 · 10−4 1 320.22 1.4856 · 10−3 1

Instancia 11 15 338.61 1.2031 · 103 1 385.30 2.4820 · 10−4 1 337.47 6.6489 · 10−3 1

Instancia 12 15 372.51 1.2019 · 103 1 382.83 4.5790 · 10−4 1 380.87 3.6046 · 10−3 1

Instancia 13 15 386.04 1.2024 · 103 1 395.90 1.9940 · 10−4 1 371.64 5.2416 · 10−3 1

Instancia 14 15 373.78 1.2026 · 103 1 401.81 2.8890 · 10−4 1 352.25 7.5320 · 10−3 1

Instancia 15 15 332.25 1.2028 · 103 1 364.07 1.8880 · 10−4 1 338.52 7.7401 · 10−3 1

Instancia 16 15 322.12 1.2025 · 103 1 323.78 2.6760 · 10−4 1 306.59 8.0076 · 10−3 1

Instancia 17 15 338.77 1.2034 · 103 1 409.61 8.0710 · 10−4 1 355.02 1.0230 · 10−2 1

Instancia 18 15 315.25 1.2030 · 103 1 366.27 3.8230 · 10−4 1 322.20 1.4934 · 10−2 1

Instancia 19 15 344.80 1.2034 · 103 1 366.83 2.5990 · 10−4 1 349.75 8.9265 · 10−3 1

Instancia 20 15 385.36 1.2034 · 103 1 389.81 4.0610 · 10−4 1 376.92 2.2560 · 10−3 1
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Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K|

Instancia 21 20 346.97 1.2031 · 103 1 346.33 2.3030 · 10−4 1 330.98 9.1254 · 10−3 1

Instancia 22 20 404.46 1.2034 · 103 1 386.80 3.3260 · 10−4 1 383.10 1.0857 · 10−2 1

Instancia 23 20 390.42 1.2033 · 103 1 397.81 3.8110 · 10−4 1 360.34 5.3415 · 10−2 1

Instancia 24 20 348.45 1.2047 · 103 1 385.21 3.0350 · 10−4 1 339.31 2.4952 · 10−2 1

Instancia 25 20 401.43 1.2043 · 103 1 391.86 3.8590 · 10−4 1 363.66 2.1208 · 10−2 1

Instancia 26 20 386.12 1.2033 · 103 1 434.27 3.8450 · 10−4 1 399.08 2.0240 · 10−2 1

Instancia 27 20 354.09 1.2047 · 103 1 375.71 3.7900 · 10−4 1 355.26 4.0223 · 10−2 1

Instancia 28 20 330.75 1.2042 · 103 1 347.66 2.8410 · 10−4 1 328.63 1.6703 · 10−2 1

Instancia 29 20 695.25 1.2039 · 103 2 414.19 3.5960 · 10−4 1 392.23 1.8511 · 10−2 1

Instancia 30 20 381.59 1.2048 · 103 1 376.72 2.6260 · 10−4 1 369.90 2.1208 · 10−2 1

Tabla B.1: Comparación de los tres métodos para las instancias sintéticas de la Sección 5.3 con dMAX =
400.

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K|

Instancia 1 10 545.02 1.2034 · 103 2 583.92 1.5790 · 10−4 2 567.56 7.6400 · 10−4 2

Instancia 2 10 573.73 1.2021 · 103 2 555.41 1.8690 · 10−4 2 555.09 1.7118 · 10−3 2

Instancia 3 10 293.68 1.2033 · 103 1 510.94 1.9530 · 10−4 2 503.03 1.5974 · 10−3 2

Instancia 4 10 525.83 1.2019 · 103 2 535.58 2.0260 · 10−4 2 528.11 8.6540 · 10−4 2

Instancia 5 10 304.04 1.2023 · 103 1 532.86 2.6270 · 10−4 2 519.18 1.8551 · 10−3 2

Instancia 6 10 280.37 1.2034 · 103 1 511.72 2.1010 · 10−4 2 488.50 1.9912 · 10−3 2

Instancia 7 10 305.34 1.2022 · 103 1 521.16 2.0690 · 10−4 2 513.38 1.1354 · 10−3 2

Instancia 8 10 294.55 1.2022 · 103 1 524.29 2.0870 · 10−4 2 512.02 3.1842 · 10−3 2

Instancia 9 10 265.97 1.2026 · 103 1 296.60 2.1000 · 10−4 1 274.43 1.8051 · 10−3 1

Instancia 10 10 528.79 1.2028 · 103 2 515.11 2.0930 · 10−4 2 507.75 1.6757 · 10−3 2

Instancia 11 15 788.59 1.2032 · 103 3 580.58 2.6640 · 10−4 2 567.54 3.8923 · 10−3 2

Instancia 12 15 846.00 1.2028 · 103 3 621.43 2.5970 · 10−4 2 606.39 1.9200 · 10−3 2

Instancia 13 15 628.97 1.2030 · 103 2 607.81 2.1080 · 10−4 2 594.29 2.9392 · 10−3 2

Instancia 14 15 578.53 1.2040 · 103 2 585.56 2.9470 · 10−4 2 576.28 3.5244 · 10−3 2

Instancia 15 15 568.39 1.2028 · 103 2 571.37 3.6610 · 10−4 2 564.12 7.8215 · 10−3 2

Instancia 16 15 306.83 1.2023 · 103 1 523.18 5.4880 · 10−4 2 510.44 1.1411 · 10−2 2

Instancia 17 15 611.27 1.2020 · 103 2 622.64 2.9130 · 10−4 2 615.28 4.4073 · 10−3 2

Instancia 18 15 562.13 1.2026 · 103 2 584.41 2.2620 · 10−4 2 561.80 4.8786 · 10−3 2

Instancia 19 15 831.08 1.2027 · 103 3 586.86 2.0030 · 10−4 2 583.95 2.7081 · 10−3 2
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Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K|

Instancia 20 15 803.95 1.2029 · 103 3 616.78 2.3670 · 10−4 2 587.61 1.6529 · 10−3 2

Instancia 21 20 - - - 574.17 1.3362 · 10−3 2 567.65 6.8537 · 10−3 2

Instancia 22 20 - - - 579.29 9.5070 · 10−4 2 571.61 3.4052 · 10−3 2

Instancia 23 20 - - - 831.78 1.8451 · 10−3 3 809.85 1.6579 · 10−2 3

Instancia 24 20 - - - 569.26 8.7410 · 10−4 2 547.90 2.8056 · 10−2 2

Instancia 25 20 - - - 608.10 9.2470 · 10−4 2 595.57 6.9831 · 10−3 2

Instancia 26 20 - - - 616.82 1.5039 · 10−3 2 615.43 6.0953 · 10−3 2

Instancia 27 20 - - - 586.39 1.1722 · 10−3 2 572.13 5.5166 · 10−3 2

Instancia 28 20 557.14 1.2044 · 103 2 546.55 4.8530 · 10−4 2 545.60 4.9498 · 10−3 2

Instancia 29 20 - - - 819.10 2.5423 · 10−3 3 799.21 1.5520 · 10−2 3

Instancia 30 20 582.03 1.2046 · 103 2 609.08 3.9620 · 10−4 2 597.49 4.6097 · 10−3 2

Tabla B.2: Comparación de los tres métodos para instancias sintéticas de la Sección 5.3 fijando dMAX =
200.

Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K|

Instancia 1 10 0.00 1.2015 · 103 0 799.15 2.8240 · 10−4 3 789.25 8.9170 · 10−4 3

Instancia 2 10 568.97 1.2016 · 103 2 793.48 2.4200 · 10−4 3 790.22 9.9100 · 10−4 3

Instancia 3 10 534.18 1.2018 · 103 2 533.91 2.0270 · 10−4 2 529.29 1.5342 · 10−3 2

Instancia 4 10 536.53 1.2017 · 103 2 549.41 1.6060 · 10−4 2 526.24 5.9280 · 10−4 2

Instancia 5 10 517.96 1.2008 · 103 2 536.43 1.4350 · 10−4 2 529.57 1.3645 · 10−3 2

Instancia 6 10 486.56 1.2019 · 103 2 515.26 2.0500 · 10−4 2 512.08 6.9290 · 10−4 2

Instancia 7 10 513.29 1.2016 · 103 2 540.70 1.6790 · 10−4 2 525.05 2.7045 · 10−3 2

Instancia 8 10 500.15 1.2020 · 103 2 540.25 2.1170 · 10−4 2 533.30 1.0807 · 10−3 2

Instancia 9 10 266.14 1.2026 · 103 1 487.33 1.8860 · 10−4 2 475.94 1.4591 · 10−3 2

Instancia 10 10 526.44 1.2016 · 103 2 523.60 2.2850 · 10−4 2 521.26 1.2020 · 10−3 2

Instancia 11 15 779.00 1.2018 · 103 3 798.60 1.9350 · 10−4 3 787.28 3.8526 · 10−3 3

Instancia 12 15 - - - 1079.57 3.0300 · 10−4 4 1073.31 1.2560 · 10−3 4

Instancia 13 15 1058.39 1.2018 · 103 4 820.62 2.0180 · 10−4 3 811.90 1.3017 · 10−3 3

Instancia 14 15 800.58 1.2018 · 103 3 793.33 2.8000 · 10−4 3 787.48 2.0904 · 10−3 3

Instancia 15 15 - - - 786.12 2.0550 · 10−4 3 777.42 1.5895 · 10−3 3

Instancia 16 15 728.82 1.2027 · 103 3 533.30 2.9030 · 10−4 2 523.02 2.3044 · 10−3 2

Instancia 17 15 - - - 824.32 1.0948 · 10−3 3 799.59 3.8193 · 10−3 3

Instancia 18 15 788.38 1.2032 · 103 3 553.45 2.0750 · 10−4 2 536.05 3.0413 · 10−3 2
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Modelo exacto Vecino más próximo 2-opt

|N | Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K| Coste (€) Tiempo (s) |K|

Instancia 19 15 - - - 773.93 1.6587 · 10−3 3 763.39 1.6432 · 10−3 3

Instancia 20 15 - - - 1027.20 9.8480 · 10−4 4 1008.48 1.4918 · 10−3 4

Instancia 21 20 - - - 562.96 3.6170 · 10−4 2 552.52 3.3831 · 10−3 2

Instancia 22 20 - - - 1044.09 3.4820 · 10−4 4 1033.19 1.5522 · 10−3 4

Instancia 23 20 - - - 802.55 3.4670 · 10−4 3 794.86 5.4869 · 10−3 3

Instancia 24 20 - - - 765.41 2.4050 · 10−4 3 761.92 9.1246 · 10−3 3

Instancia 25 20 - - - 1029.59 3.5470 · 10−4 4 1016.66 2.1591 · 10−3 4

Instancia 26 20 - - - 1279.72 3.4880 · 10−4 5 1276.66 1.2482 · 10−3 5

Instancia 27 20 - - - 848.12 3.8080 · 10−4 3 813.87 1.4862 · 10−3 3

Instancia 28 20 - - - 557.24 3.5320 · 10−4 2 554.85 6.1889 · 10−3 2

Instancia 29 20 - - - 1062.05 3.5160 · 10−4 4 1050.61 2.6396 · 10−3 4

Instancia 30 20 - - - 785.41 2.6530 · 10−4 3 784.47 2.7698 · 10−3 3

Tabla B.3: Comparación de los tres métodos para instancias sintéticas de la Sección 5.3 fijando dMAX =
150.
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