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Abstract

English abstract

Accurate energy yield assessments (EYAs) for photovoltaic (PV) systems are critical for their financial
viability, yet simulating the non-linear effects of partial shading over a full year remains computation-
ally prohibitive. High-fidelity models, essential for capturing these mismatch losses, create a significant
bottleneck in the rapid design and optimization of PV projects. This work introduces a novel data-
centric framework to accelerate annual PV simulations by applying statistical aggregation, reducing
the input dataset of operating conditions while preserving the high-resolution information necessary
for accurate shading analysis. We propose and evaluate two methods based on k-means clustering,
with results clearly demonstrating the superiority of one approach. A key advantage of this method is
its tunability, enabling substantial reductions in simulation time while introducing only minimal, con-
trollable error, thereby outperforming standard module-level simulations in both speed and accuracy.
Importantly, when quantifying annual shading-induced power losses, the method drastically reduces
computational overhead with negligible impact on accuracy, contrasting sharply with the significant
underestimation of losses inherent to the module-level approach. This framework offers engineers a
powerful and flexible tool for fast, reliable energy yield assessments without compromising simulation
fidelity.

Resumen en espanol

Las evaluaciones precisas del rendimiento energético (EYA, por sus siglas en inglés) de los sistemas
fotovoltaicos (FV) son fundamentales para su viabilidad financiera; sin embargo, simular los efectos no
lineales del sombreado parcial durante un ano completo sigue siendo computacionalmente prohibitivo.
Los modelos de alta fidelidad, esenciales para capturar estas pérdidas por desajuste (mismatch), crean
un cuello de botella significativo en el diseno y la optimizacion rapidos de los proyectos fotovoltaicos.
Este trabajo presenta un novedoso marco de trabajo centrado en datos para acelerar las simulaciones
anuales de sistemas FV mediante la aplicacién de agregacion estadistica, reduciendo el conjunto de
datos de entrada de las condiciones de operacién y preservando al mismo tiempo la informacién de alta
resolucién necesaria para un analisis preciso del sombreado. Proponemos y evaluamos dos métodos
basados en la agrupacién por k-medias (k-means clustering), y los resultados demuestran claramente la
superioridad de uno de los enfoques. Una ventaja clave de este método es su capacidad de ajuste, que
permite reducciones sustanciales en el tiempo de simulacién introduciendo a la vez un error minimo y
controlable, superando asi a las simulaciones estandar a nivel de médulo tanto en velocidad como en
precisién. Es importante destacar que, al cuantificar las pérdidas de potencia anuales inducidas por el
sombreado, el método reduce drasticamente la carga computacional con un impacto insignificante en la
precisién, lo que contrasta marcadamente con la significativa subestimacién de las pérdidas inherente
al enfoque a nivel de médulo. Este marco de trabajo ofrece a los ingenieros una herramienta potente
y flexible para realizar evaluaciones del rendimiento energético rapidas y fiables sin comprometer la
fidelidad de la simulacion.
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Preface

The company ieco.io focuses its activity in providing an online platform for photovoltaic (PV) system
simulation. This is a crucial tool for engineers in order to design and dimension PV plants. The
company has a range of simulation models, each one with different levels of detail. The more detailed
the considered method, the more precise results are achieved. However, a high level of detail comes with
an also high level of computational cost. At ieco.io, they focus their efforts in providing simulations
that correctly estimate PV system performance when partial shadings are present. However, this can
only be achieved with the highly detailed simulation methods, as the complex mismatching caused by
those partial shadings are not captured with the less detailed methods. For this reason, the simulation
method used for this purpose is very precise and detailed, but also very computationally demanding.

The simulation of a PV system performance is often done for a whole year. For this purpose, we
need to feed meteorological data such as sun irradiance and position into the simulation. Even with
hourly data (considered low resolution data in certain scenarios), we need to consider 8760 data points
for a whole year (number of hours in a year), each one containing meteorological data at an specific
date and hour stamp. For each one of these data points, we need to run a simulation, which turns
into 8760 iterations of the simulation. This is computational prohibitive, as we are considering highly
detailed simulation methods, that are very computationally demanding.

This issue motivates the study done in this work, in which we focus our efforts into reducing the
number of data points that are fed into the simulation, while maintaining the information provided
by the original data. This is done by reducing the 8760 hourly data points into a smaller set of
representative points, containing a large amount of the information of the original data set. This is
achieved by applying unsupervised machine learning algorithms for data segmentation into the data
set. Different methods are studied, as well as its properties and limitations.
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Chapter 1

Introduction

The widespread adoption of photovoltaic (PV) technology is crucial for the global transition to sustain-
able energy. Accurate energy yield assessments (EYAs) are fundamental to this adoption, underpinning
both the financial viability and the design of PV projects (Milosavljevic et al. 2022). However, real-
world conditions (particularly partial shading from obstructions such as buildings or clouds) can cause
significant performance degradation due to non-linear electrical mismatch losses (Saeed et al. 2022).
While high-fidelity simulations at the cell or submodule level can accurately capture these effects, they
are computationally intensive, creating a substantial bottleneck for the annual performance analyses
required for reliable EYAs. An annual simulation involves processing thousands of time steps, and
the computational cost of detailed models renders tasks such as rapid design iteration and large-scale
optimization impractical.

To address this challenge, ieco.io researchers have explored various acceleration strategies. One
common approach is to reduce the input data by using clustering algorithms, such as k-means (Likas
et al. 2003), to generate a set of “representative days” from a full year’s weather data (Miraftabzadeh et
al. 2023; Fahy et al. 2019). Other methods focus on simplifying the physical model itself, employing
techniques like Model Order Reduction (MOR) (Gafurov et al. 2013) or replacing it entirely with
machine learning (ML) surrogate models (Okif et al. 2025). While effective, existing “representative
day” methods often aggregate 24-hour data profiles before clustering, a process that smooths out the
instantaneous variations in sun position and irradiance. This loss of temporal resolution is critical,
as the effects of partial shading are highly sensitive to the moment-to-moment geometry of the sun,
array, and shading objects.

This work introduces a novel framework that accelerates simulations by applying statistical aggre-
gation directly to the instantaneous operating conditions, thereby preserving the high-resolution data
necessary for accurate shading analysis. We present and evaluate two distinct methods: StraightFor-
ward Aggregation (SFA), which applies k-means clustering directly to the multi-dimensional space of
sun irradiance, elevation and azimuth; and Hierarchical Hourly Aggregation (HHA), which first seg-
regates data by hour of the day before clustering. A key contribution of this work is the tunability
of the SFA method, allowing users to explicitly define the desired data reduction percentage and pre-
dictably control the trade-off between simulation speed and accuracy. This study demonstrates that
this data-centric approach provides a more robust and predictable performance improvement across
various scenarios compared to simply using a less detailed physical model.

The contents of this work is an extension of the proceeding Blanco Aguiar et al. (2025), published
at the EUPVSEC 2025 conference by ieco.io. However, as these conference proceedings must follow a
specific format, the cited work is brief, in order match the extension requirements. We further develop
the contents of it in here, exploring in more detail some aspects of the original work.

This document is organized to guide the reader from the fundamental physical principles to the
implementation and evaluation of the proposed acceleration methods:

e Chapter 1: Introduction. This chapter establishes the context of the work. Following this
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overview, we detail the fundamental physics of photovoltaics, the operating conditions (irradi-
ance, temperature, sun position), and the hierarchical structure of PV systems (cells, submodules,
modules, and arrays). We also describe the different tools we use to perform the simulations.

e Chapter 2: Standard Simulation Methods. Here, we describe the existing simulation frame-
work used at ieco.io. We analyze the trade-offs between different levels of simulation granularity
(cell-level, submodule-level, and module-level) and establish the submodule-level simulation as
the optimal balance between accuracy and speed, which serves as the baseline for our experi-
ments.

e Chapter 3: Initial Data Aggregation Methods. This chapter introduces the core con-
tribution of the work. We detail the implementation of the k-means clustering algorithm and
propose two distinct methodologies: StraightForward Aggregation (SFA), which clusters the en-
tire dataset directly, and Hierarchical Hourly Aggregation (HHA), which applies clustering within
hourly groups.

e Chapter 4: Conclusions. We summarize the findings, highlighting the superior performance
of the SFA method, which defines a new Pareto frontier for the speed-accuracy trade-off. We
also discuss the implications for estimating annual shading losses and suggest avenues for future
research, as well as some limitations of this study.

The following sections of this introduction provide the necessary theoretical background regarding
the physics of photovoltaic energy conversion and the system components required to understand the
subsequent chapters. The conceptual PV basics are mainly based on the PV EDUCATION website
(Honsberg and Bowden 2019).

1.1 Photovoltaic basics

The conversion of sunlight into electrical energy via the photovoltaic (PV) effect is a process based
on the principles of semiconductor physics and optics. The power generated by a photovoltaic system
is not an intrinsic property of the device but is instead a dynamic response to the conditions of
its operating environment. A comprehensive understanding of a PV system’s performance, therefore,
begins with an analysis of the primary external variables that dictate its electrical output: the quantity
of incident sunlight and the operating temperature of the PV device itself. These factors define the
potential of the system for energy generation.

1.1.1 Operating conditions data

The electrical output of a photovoltaic device is linked to two primary environmental factors: solar
irradiance, which serves as the energy input, and operating temperature, which modulates the efficiency
of the energy conversion process. When shading objects are present, sun position gives us information
about the shadows cast onto the system. Therefore, a PV system simulation begins with the input of
these operating conditions data.

Solar Irradiance

The fundamental fuel for any photovoltaic system is solar irradiance, defined as the power density of
sunlight incident on a surface. It is typically measured in Watts per square meter (W/m?). The light-
generated current within a solar cell is directly proportional to the intensity of this incident light. While
the mean solar irradiance outside Earth’s atmosphere is approximately 1366/ /m?, the value at the
terrestrial surface is variable, attenuated by atmospheric conditions and by the geometric relationship
between the sun and the PV surface. In addition to this, near objects can cast shadows onto the
system, removing some of its incident sunlight. In order to simulate this shadings, it is important to
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take into account the sun position at each time in order to determine the shadows present in the 3D
scene.

Sun Position

Sun position is a critical input for analyzing shadows in a 3D scene. It provides the necessary infor-
mation to determine the shadows cast onto a PV system by nearby objects, relative to the modules’
positions. These shadows cause a drop in incident sunlight, thereby reducing the system’s power gen-
eration. Sun position is defined as a two-dimensional variable, composed of sun elevation and sun
azimuth, both measured as angles in degrees. We will not get into the details on how these angles
are calculated, as they are given by meteorological data platforms like PVGIS (Huld et al. 2012).
However, it is worth mention that they depend on the location of the PV system in the earth’s surface.

On one hand, sun elevation is the angle that form the line to the sun with the tangent line with
earth’s surface. It ranges from 0° at sunrise to 90° on certain hours, days and locations. Elevations
lower than 02 are not relevant, as there is no sunlight in those scenarios. We show a representation of
this angle in Figure 1.1.

Figure 1.1: Sun elevation angle of the sun (in red) (Honsberg and Bowden 2019).

On the other hand, sun azimuth is the clockwise angle that form the line to the sun and the North
compass direction line. It can range from 0° to 360° depending on the position of the system on the
earth’s surface. We show a representation of the angle in Figure 1.2.

Temperature

While irradiance provides the energy for conversion, the operating temperature of the solar cell is a
critical, and predominantly negative, modulator of the conversion efficiency. As with all semiconduc-
tor devices, solar cells are highly sensitive to temperature. An increase in cell temperature directly
impacts the material’s electronic properties, producing a reduction in the power output. Even though
temperature can be obtained from sun irradiance, it can be treated as an input variable.
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S
180°

Figure 1.2: Azimuth angle of the sun (in red) (Honsberg and Bowden 2019).

1.1.2 Structure of photovoltaic systems

To generate useful levels of voltage and current for practical applications, individual solar cells must be
interconnected into larger, more powerful structures. This assembly follows a well-defined hierarchy,
scaling from a single cell to the expansive layout of a utility-scale power plant, conformed by several
modules. Even though the structure of this union of solar cells can vary, we describe in this section
the structure of the systems used for this work. However, many systems in the industry follow this
structure or a similar one.

Cells

The solar cell is the fundamental building block of a PV system. It is an electronic device that directly
converts the energy of photons in sunlight into electricity. Silicon cells are the most common ones in
the current photovoltaic market, even though they are not the optimal in terms of sunlight energy
absorption. However, the abundance of silicon and its wide spread in the semiconductor manufacturing
industry make them the most used type of cells.

Submodules

A single crystalline silicon solar cell typically produces a low voltage. To achieve a voltage suitable
for applications such as battery charging or grid connection, multiple cells are electrically connected
in series. The first set of series-connected cells conform a half-submodule. Then, two half-submodules
are connected in parallel, conforming a submodule. Each one of these submodules are protected by a
bypass diode, that we will describe in following sections.

Module

Several submodules are connected in series in order to achieve a higher voltage. As already mentioned,
each one of these submodules are protected by a bypass diode. Modules are the main way to scale a
PV system, connecting several ones of them to achieve the desired power output. This connection of
various modules conform an array.
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Array

For applications requiring significant power output, multiple PV modules are interconnected to form
a PV array. An array is the complete power-generating unit and can be configured to meet specific
voltage and current requirements. A series connection of modules, referred to as a string, is used to
increase the overall system voltage. To increase the total current output, multiple strings are then
connected in parallel. This hierarchical series connection of components, from cell to submodule to
module to string, makes the system adapt to any desired power output, making it scalable to more
demanding use cases.

In our work, we will use different array configurations, conformed by JA Solar JAM72_520_440
modules, with 144 cells, which features a twin half-cut cell architecture (Zhang et al. 2017). Their
properties can be consulted in Shanghai JA Solar Technology Co. (2020). These cells are equally
distributed in three submodules connected in series, each one protected by a bypass diode. Therefore,
each submodule is composed of 48 cells. Each submodule, in turn, is composed of two parallel-connected
half-submodules, each containing 24 cells in series. We show this PV system architecture in Figure 1.3.

~ Module

Submodule

Half-submodule

Ilrrrrrrrrrrrrrrrrerrreet

Figure 1.3: Layout of a PV system, from the cell (black) to submodule (orange) to module (green) to
array (gray), from right to left. Half-submodule in bottom-right (dark gray).

1.1.3 Current-voltage (I-V) curve and maximum power point (MPP)

The complete electrical performance of a PV device under a given set of irradiance and temperature
conditions is described by its current-voltage (I-V) characteristic. This curve serves as an essential
diagnostic signature from which all key performance metrics are derived.

The I-V curve is a graphical representation of the relationship between the current (I) flowing
through a solar cell and the voltage (V') across its terminals. In order to characterize it, the solar cell
is modeled as an equivalent simple circuit. A common equivalent circuit model is the single diode model
(Gray 2011), which is motivated on physical principles and characterized by the circuit in Figure 1.4.

This equivalent circuit model is mathematically described as the superposition of the exponential
I-V curve of the semiconductor diode in the dark with the light-generated current, I, (A), taking into
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Figure 1.4: Single diode equivalent circuit, considering physical losses (Sandia National Laboratories
2025).

account some physical losses, derived from the series resistance, Ry (£2), and the shunt resistance, Rqp,
(€2). This superposition effectively shifts the I-V curve down into the fourth quadrant of the graph, the
region where net electrical power can be extracted from the device. However, the curve is flipped into
the first quadrant by convention. This results in the following I-V curve equation in the first quadrant:

, (1.1)

=1, Iy [exp(qv*q[&)l}m

nkT Rsn

where Ij is the diode leakage current density in the absence of light (A), T is the absolute temperature
(K), n is the diode ideality factor (unitless) and ¢ and k are the absolute value of electron charge
(1.602 x 10719C) and the Boltzmann’s constant (1.381 x 10722J/K), respectively.

In Figure 1.4, the components of the Equation 1.1 are represented as Ip := I {exp (%) — 1}

and Iy, := %, so that the equation can be written as I = I, — Ip — I, where the current of the

cell is represeriicéd as the light-generated current, I, considering the voltage-dependent current losses,
Ip, and the shunt resistance-dependent current losses, Igj,.
In an ideal cell, i.e., if Ry = 0 and R, = 0o, Equation 1.1 can be simplified as

e o (25) 1] 0

that can make the intuition for the following explanations easier to visualize, as it simplifies into an
explicit equation, that makes it possible to express the voltage in terms of the current as

nkT Il—l>
V=——In . 1.3
- ( - (1.3)

From Equation 1.3 we can extract that, when I > I, (I — I, < 0), the logarithm becomes
undefined. In reality, when this happens, the cell goes into reverse bias (negative voltage), forcing the
cell to dissipate power. This causes a quick increase in the cells’ temperature, provoking the so called
“hot spots”. If the cell is close to an ideal cell (high Rp), it will be almost instantly destroyed in this
situation, also affecting the nearby cells due to heating. A solution to this problem is described in
Section 1.1.5.

Another property that we can extract from the equation is that the curve is bounded by two critical
operating points:
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e Short-Circuit Current (Is¢): The maximum current that can be drawn from the cell. This
occurs at zero voltage. The value of Ig¢ is nearly identical to the light-generated current I;, and
is directly proportional to the incident solar irradiance.

e Open-Circuit Voltage (Vo¢): The maximum voltage that appears across the cell. This occurs
at zero current. The value of V¢ has a logarithmic dependence on irradiance and is strongly
and inversely dependent on temperature.

The PV system will aim to work under the conditions that generate the highest power output,
extracted from the I-V curve as the maximum P = I x V value. This maximum value is know as
the Maximum Power Point (MPP) of the system. Therefore, the objective of the simulation will be
to extract this MPP for any given system I-V curve, extracted from the operating conditions of the
system. We show in Figure 1.5 an example of the I-V curve of a cell, remarking some of its relevant
points.

4

| IV curve VMP IMF’
SC
\The short circuit current, Ig

5}

=

T

=l Power from

o the solar cell

S P=Vxl

&)

The open circuit voltage,Vge

-

Voltage
g Voc

Figure 1.5: Current voltage (I-V) curve of a solar cell and some of its relevant points, such as Isc,

Voc and, most importantly, M PP, denoted as Py;p (Honsberg and Bowden 2019).

The I-V curve shown corresponds to an ideal uniform illuminated system scenario. In reality,
when partial shadings are present, bypass diodes activate as described in Section 1.1.5. In those cases,
fluctuations in the I-V curve appear, making it harder to find the MPP, as multiple local maximums are
present in the power curve. However, the consideration of these fluctuations is necessary, as neglecting
them in the simulation would provoke errors on the results according to the reality.

1.1.4 Mismatch effect

In an ideal scenario, our whole module could be completely lit by direct sunlight. In that case, we just
need to compute the I-V curve of the entire module as a whole and extract the MPP from it. However,
in a more realistic scenario, the individual cells from the module could not behave all the same. This
can be caused by diverse factors, being partial shading the most important for this work. This effect
must be taken into account, as the power output of the entire PV system can be determined by a
single solar cell with low output. This can lead to dissipate the power generated by the entire module
in a single solar cell, causing it to overheat and provoke a hot spot, provoking irreversible damage to
the module. We show a solution for hot spots in Section 1.1.5.
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Even if the hot spot problem is solved, we need to take into account the mismatch effect into the
simulation, as it plays an important role even in scenarios where hot spots do not occur. For this,
we need to check each cell individually to know how is it behaving. After that, we can join the cells
considering the disposition of them in the module. This is important, as mismatch does not behave
the same when occurring on cells connected in series as in cells connected in parallel.

When cells are combined in series, the total voltage is the sum of the individual cell voltages.
However, current must be the same, so it is equal to the lowest current between both cells. This
provoke a drop in current if one cell connected in series has a I-V curve with low current. This is
shown in Figure 1.6.

Cell 1 Cell 2

ITotal =11 =12

Viotal =V1 +V2

Figure 1.6: Connection between two cells in series. Voltages are added, but current must be the same,
so it is equal to the lowest current (Honsberg and Bowden 2019).

Once we get the I-V curve from the cells connected in series, we need to connect them in parallel.
In that case, we get the opposite effect. The total intensity is the sum of the cells intensities, while
voltage must be the same and forced to be the lowest voltage between both cells. This makes voltage
to be lower than expected in mismatch scenarios. This is shown in Figure 1.7.

Cell 1

“T=“1=“2

Figure 1.7: Connection between two cells in parallel. Intensities are added, but voltage must be the
same, so it is equal to the lowest voltage (Honsberg and Bowden 2019).

Even though the explanation is made for a two-cell connection, the same applies to a larger number
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of cells connection. For example, in our module architecture case, the procedure is the following:
1. Connect two cells in series and get the I-V curve of the connection.
2. Treat that two-cell connection as one and connect it with the next cell in series.
3. Repeat the procedure for all the series connected cells for each half-submodule.
4. Connect each pair of half-submodule in parallel, that will conform the submodules I-V curves.
5

. Finally, connect the three submodules in series as before (if more modules are present in the
array, connect each module as desired depending on the array architecture).

Mismatch effect forces us to compute the I-V curve for each cell of the module and combine them
as corresponds. This can lead to high computational cost in large systems simulations, as we need to
compute a lot of curves and combinations of them. In addition to that, mismatch can cause the final
power-voltage curve of the system to present several local maximums, making it harder to determine
the MPP. Lastly, we have to solve the problem of hot spots, that can cause irreversible damage to the
system. We show a solution for this in the next section.

1.1.5 Bypass diodes

Given the vulnerabilities introduced by series connections and harsh environmental conditions, incor-
porating protective components into the PV module is essential for ensuring long-term reliability and
safety. A bypass diode is a protective semiconductor device connected in parallel across, most com-
monly, a submodule. Its function is to mitigate the destructive effects of current mismatch caused by
partial shading or other non-uniformities.

Under normal, uniform illumination, all cells in a module are generating power. In this state, the
bypass diodes remain inactive. However, if a cell or submodule becomes shaded, its ability to generate
current plummets. The other fully illuminated cells in the same string will attempt to force their
higher current through the shaded section. This causes the shaded cells to dissipate significant power
and leading to a rapid temperature rise known as “hot-spot” heating, which can cause irreversible
damage to the module materials.

The bypass diode prevents this catastrophic failure. When a certain threshold of cell shading oc-
curs in a submodule, the diode activates and provides a low-resistance alternative path for the current.
This allows the current from the healthy submodules to “bypass” the underperforming one, limiting
the reverse voltage across it and preventing thermal runaway. The bypass diode transforms the inher-
ent vulnerability of a series-connected system into a manageable and non-destructive event, thereby
ensuring the system’s long-term operational viability. This behavior is represented in a graphical way
in Figure 1.8.

1.2 Implementation tools

In order to simulate the performance of the PV system, ieco.io developed a codebase to perform the
necessary simulations to estimate this power output. The codebase is written in Python (Python
Software Foundation 2024) and based on the pvlib open source library (Anderson et al. 2023). This
grants us the necessary functions and classes to perform the simulation of a PV system performance.

The codebase comprises several Python modules, totaling approximately 3,300 lines of source code.
The structural organization is detailed below:

o simulation.py: Encapsulates the Simulation class, which contains the core logic for executing
various simulation methods (1,463 lines).

o utils.py: Houses auxiliary functions for intermediate calculations, such as aggregating I-V curves
in series or parallel and deriving single-cell I-V characteristics (566 lines).
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Figure 1.8: Representation of bypass diodes behavior under a partial shading scenario.

e cell.py: Defines the Cell class to establish the physical and electrical properties of individual
solar cells (98 lines).

e module.py: Outlines the Module class, setting the parameters for the specific PV module under
study (523 lines).

e array.py: Specifies the Array class, which defines the configuration of the photovoltaic array (41
lines).

e shading.py: Provides the algorithms necessary for shading calculations, including the determi-
nation of shading factors at both the system and individual cell levels (622 lines).

Complementary Jupyter Notebooks (Granger and Pérez, 2021) were utilized to generate the figures
presented in this work. The long-term objective in ieco.io is the integration of this codebase into its
commercial platform to enhance simulation accuracy under partial shading conditions. Furthermore,
plans are in place to release the software as an open-source tool, thereby facilitating reproducibility
and community access.

Although the primary research objective was the development of aggregation methods, significant
effort was dedicated to computational optimization. This ensures reduced execution time without
compromising simulation fidelity.

1.2.1 Simulation scenarios

The performance of the methods presented in this work is tested in a purely empirical way. For this, we
consider various PV system scenarios, shown in Table 1.1. The scenarios considered range in size from
small systems, corresponding to typical residential installations, to larger commercial-scale systems.
Common shading objects are also considered to measure the accuracy of the methods when it comes to
partial shading effects. We show a more visual representation of the simulation scenarios in Figure 1.9.

We run the simulations on each one of these scenarios with the different simulation methods pre-
sented in this work and compare the results to get an empirical measurement of the characteristics
of these methods. However, the performance results must be seen as purely empirical metrics that
may not cover all the real life scenarios. To achieve a better representation of the performance of
the methods, many more scenarios should be considered, preferable based on existing real life PV
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Tilt Azimuth Parameters
Scenario ID Obstruction(s)

) ®) (dist /height [m], x-range)

1 Module (small residential)

1IM_T20_A0_1IW 20 0 1 infinite wall 1.2 /1.35
IM_T0_A50_1IW 0 50 1 infinite wall 1.2 /1.35
1IM_T30-A-10-1C 30 -10 1 chimney 2 /2, 2€3,4]

#1: 1.5/ 2,z € [=5, —4];
1IM_T30_A-102C 30 -10 2 chimneys

#2:2 /2 x€[3,4]

8 Modules (4 series, 2 parallel, medium residential)

8M_T20_A0_1ITW 0 0 1 infinite wall 1.2 /1.35
8M_T20_A50_1TW 0 50 1 infinite wall 4/2

#1: 1.2/ 1.35, z € [-7, ~2];
8M_T20_A0_2W 0 0 2 walls

#2: 1.2/ 1.35, z € [2,7]
8M_T30-A-10-1C 30 -10 1 chimney 2/2 xe3,4

#1: 15/ 2,z €[5, —4];
8M_T30_A-10_2C 30 -10 2 chimneys

#2:2 /2, x € [3,4]

16 Modules (4 series, 4 parallel, large residential)

16M_T30_A-10_1C 30 -10 1 chimney 2 /2 x€[3,4]

16M_T30_A-10.2C 30 -10 2 chimneys

64 Modules (8 series, 8 parallel, commercial)

64M_T0_A0_1B 0 0 1 box 1/2 z€[3,6]

Box: 1/ 2,z € [3,6];
64M_T0_A0_1B1C 0 0 Box and chimney

Chimney: 1 /2, z € [—4, —3]

Table 1.1: Configuration of simulation scenarios organized by PV system size.
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Figure 1.9: Visual representation of the simulation scenarios considered to measure the accuracy of
the different methods presented in this work. Simulation scenarios range in size and contain different
shading objects.

systems. However, the more scenarios we consider, the more computational resources we need. For
the purpose of this work, we find these scenarios to cover a sufficient range of PV systems variations
while maintaining a reasonable amount of computational resources needed.



Chapter 2

Standard simulation methods

As already mentioned, ieco.io developed a custom Python simulation framework built upon the pvlib
library. The simulation first computes the system’s current-voltage (I-V) curve, from which the power
output is determined by identifying the maximum power point (MPP), as described in Section 1.1.3.
To model the I-V curve of a cell, module or array, we use the single-diode model, described in that
same section.

Our simulation framework supports multiple methods for computing PV system power output.
Since this work focuses on partial shading, a cell-level simulation is the most accurate approach, as
it explicitly models the electrical mismatch between individual cells, modeling the bypass diodes as
described in Section 1.1.5. However, this high detailed simulation method is computationally intensive
for large systems. It requires calculating the I-V curve for each cell and then aggregating these curves
while accounting for mismatch due to shading and the effects of bypass diodes. The high computational
cost motivates the adoption of faster, albeit less precise, simulation methods.

One such alternative is a submodule-level simulation. This approach applies the single-diode model
to each submodule as a whole, calculating an aggregate I-V curve that incorporates the effects of shad-
ing across that submodule. These submodule curves are then combined, taking bypass diodes into
account. This method provides a good approximation of the power output while requiring signifi-
cantly fewer computational resources. For those reasons, we use the submodule-level simulation as a
benchmark method to evaluate the performance of the novel approaches introduced in this paper.

Finally, we consider a module-level simulation method that disregards the mismatch caused by
partial shading. In the following section, the performance of all three approaches (cell-, submodule-,
and module-level) is evaluated under these partial shading scenarios and compared with the simplest
approach that ignores shading.

2.1 Simulation methods comparison

The precision of the simulation methods described above depends on their level of granularity. Less
detailed methods tend to overestimate the system’s power output, as they do not account for the
electrical mismatch losses caused by partial shading as described in Section 1.1.4.

To illustrate this behavior, we present the simulated power output from the different methods for
a specific scenario: a single-module system shaded by two chimneys (Scenario 1M_T30_A-10_2C in
Table 1.1) on November 3rd. We show these results in Figure 2.1, which plots the MPP in Watts
as a function of the hour of the day (from 6:00 to 19:00). We represent each simulation method
by a different color: the ideal, unshaded simulation (red), the module-level simulation (orange), the
submodule-level simulation (blue), and the cell-level simulation (green).

As established above, less detailed simulation methods overestimate the system’s power output
because they neglect the mismatch losses caused by partial shading. This overestimating behavior

13
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Figure 2.1: MPP output on November 3rd from 6 to 19 hours for different simulation methods in a
scenario with a single module shaded by two chimneys.

does not occur as an isolated case for November 3rd as shown on Figure 2.1. The less detailed method
consistently overestimates the MPP output for all the scenarios and date stamp.

In order to compare the different simulation methods in this work, we will use relative metrics, as
we are considering simulation scenarios with distinct scales, so we will need some sort of scaling in the
comparison metrics. With this in mind, we will present the results of a simulation method relative
to a reference method. Those metrics quantify the discrepancies of both methods in terms of MPP
output and computational time. This grants us the results needed to compare the different methods.

To quantify the accuracy of the different methods presented in this work, we compute the error of
a simulation method relative to a reference one for a given scenario as

—mppY
reference_ method| (21)

)

S, [MPPY

new-method

> MPFY)

reference-method

RelativeError =

where t = 1,...,T correspond to the different time steps considered in the simulation (if we consider

hourly input data and we want to perform the simulation of MPP values for the whole year, we have
T = 8760, that corresponds to the hours present in a year) and MPPT(L?M method? MPPr(z)fereme method
the MPP output of the method to compare and the one of the reference method, respectively, at the
time step t.

To compare the long-term performance estimated by a simulation method relative to a reference
one for a given scenario, we will also use the metric

T (®) (®)
. . _ Zt:l(MPPnew _method — MPPreference method)
RelativeDif ference = Z 0

MPP

t=1 reference-method
) f (2.2)

_ Et 1 MPPnew method -1
(t) ’
Zt:l MPPreference method

which calculates the relative difference in annual power output between any two methods being com-
pared.

The utilization of the metrics (2.1) and (2.2) will depend on the use case and the characteristics
of the results that we want to compare. For instance, if we are interested in punctual precision, we
will make use of the relative error (2.1), as it will compute the summation of all the absolute punctual
discrepancies of the two methods to compare, all relative to the reference one. However, relative
difference (2.2) will be useful if we want to compare the estimations of total power output of the
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system throughout the entire simulation period, as it is computed as the ratio between the summation
of all MPP outputs on the simulation period for both methods, minus one. For example, if we get
a ratio greater than one, we will have a positive relative difference, indicating that the new method
estimates a greater power output of the system in the simulation period relative to the reference
one. However, when it comes to punctual precision measurement, this last metric is not useful, as
overestimation of MPP in some time stamps can be compensated by underestimation in other time
stamps. This can be easily extracted from the first expression in equation (2.2), where negative terms
of the summation can be canceled by other positive ones.

Even though this two metrics are different in general, there are some cases where they are equivalent
or opposite. From equation (2.1) and the first expression of equation (2.2), we can easily extract that

if (MPPT(Lte)w,method - MPPfZ?ference,method) > O7Vt = 1’ ) T7 (2 3)
then RelativeError = RelativeDif ference,

and
if (MPP7(Lte)w,method - Mppjz}erence,method) < O7Vt = 1’ e T7 (2 4)

then RelativeError = —RelativeDif ference.

In other words, (2.3) stands that if we consistently overestimate the MPP with a simulation method in
comparison with a reference one for the entire simulation period, then both metrics are equivalent and
(2.4) stands that if we consistently underestimate it, then they are equal in magnitude but opposite
in sign.

This is the case in our simulation methods, as less detailed methods consistently overestimate
the power output of the system. With this in mind, if we take the less detailed simulation method
(unshaded simulation) as the reference one, and compare the other ones relative to it, we can make use
of (2.4) to conclude that it is equivalent to consider relative errors or differences in our case (taking into
account the corresponding sign). We will make use of the relative differences to compare the methods,
as it grants us more information in this case due to the sign, that emphasizes the underestimation of
the more detailed method relative to the unshaded simulation.

With this motivation, Figure 2.2 displays the distribution of the relative differences in power output
for each simulation method, calculated with (2.2) using the ideal (unshaded) simulation method as
reference. Each boxplot (McGill et al. 1978) in the figure summarizes the results across all the scenarios
described previously.
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Figure 2.2: Distribution of the relative differences of the power output throughout a year for every
simulation scenario for each simulation method with the unshaded simulation as the reference.



16 CHAPTER 2. STANDARD SIMULATION METHODS

The results show a clear trend: as the model detail of the simulation method increases, the estimated
annual power output decreases. This reduction, which quantifies the estimated power loss from partial
shading, reaches up to over 30% for the cell-level simulation in scenarios with significant mismatch,
making this most detailed cell-level simulation method crucial in these scenarios with high partial
shading presence if we want precise results.

However, this precision comes at a high computational cost. To quantify this trade-off, we compare
the execution time of the methods by calculating a relative time metric, analogous to (2.2), as

timenew,method - timereference,method o timenew,method

~-1 (2.5)

RelativeTime = - = —
tzmereference,method tlme'reference,method

We represent in Figure 2.3 the relative execution times for each simulation method, calculated with
(2.5) using the unshaded simulation method as the reference. Each boxplot show the distribution of the
relative times between all simulation scenarios. The findings highlight the substantial computational
overhead of the cell-level method, which is on average 2000% slower (21 times the reference time)
and, in the worst case, up to 8000% (81 times the reference time), in comparison with the unshaded
simulation method. In contrast, the submodule-level simulation is far more efficient, showing a mean
slowdown of 200% (3 times the reference time) and a maximum of 600% (7 times the reference time).
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Figure 2.3: Relative times of compute needed for every simulation scenario for each simulation method
with the unshaded simulation as the reference. The right graph is the same as the left one without
the simulation at the cell level results for cleaner visualization.

Taking this speed/accuracy trade-off into account, if we recall Figure 2.2 results, we can see that
the submodule-level simulation seems similar to the cell-level simulation in terms of discrepancies with
the unshaded method. This similarity, added to the enormous advantage in speed shown in Figure 2.3,
makes this simulation method the baseline method used in the industry as a good approximation
to reality while not being computationally prohibitive. This is shown in Figure 2.4, where cell-level
simulation method results in terms of relative differences and times relative to the submodule-level
simulation are represented. From it, we can extract that submodule-level simulation makes for a good
approximation of cell-level simulation for most cases, not surpassing the 2% relative different mark for
all simulation scenarios except for one with high partial shading presence, that present a 8% of relative
difference, that is acceptable in most cases. However, the improvement in computational time makes
this submodule-level simulation method more suitable in the practice, as it is 600% (7 times) faster in
average than the cell-level simulation.

We also show the comparison of the results of the other mentioned methods (unshaded and module-
level) with the submodule-level simulation as the reference in Figure 2.5. This shows us that, even
though this low-detail methods are faster than the submodule-level simulation, they tend to generate
high errors in power output estimation, specially in scenarios with a lot of mismatch effect. This makes
these methods unsuitable for our use case, as we need to take into account as much as possible the
losses caused by partial shadings. However, they may be useful for other use cases, where precision is
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Figure 2.4: Relative differences and times for every simulation scenario for the cell-level simulation
method with the submodule-level simulation as the reference.

not as necessary as in our case and fast results are needed. Moreover, in the following chapter we use
the module-level simulation method as a baseline to compare the errors and computational time saved
by applying the statistical methods over the submodule-level simulation in order to approximate the
results.
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Figure 2.5: Relative differences and times for every simulation scenario for the unshaded and module-
level simulation method with the submodule-level simulation as the reference.

The results presented in this section demonstrate that the submodule-level simulation provides
an effective trade-off between accuracy and computational cost. It delivers a reliable power output
estimation, while remaining computationally efficient. Therefore, we selected this simulation method
as the basis for applying and compare the aggregation methods described in the following chapter.
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Chapter 3

Initial data aggregation methods

Simulating the annual power generation of a PV system requires full year of operating condition data.
In this work, we use an hourly dataset (8760 total data points) that provides solar irradiance, sun
position (azimuth and elevation) and temperature. However, the methods presented here are also
suitable for higher resolution data. To improve efficiency, we exclude data points where the system
generates no power, such as during nighttime or when solar irradiance is zero. For the location studied
in here (Madrid, Spain), this filtering reduces the simulation dataset by approximately half, to roughly
4000 relevant data points.

The high computational cost of using detailed simulation methods with large, year-long datasets
presents a significant challenge. We address this challenge by developing methods to reduce the size
of the operating conditions dataset used for simulation, with the goal of minimizing execution time
while controlling the impact on accuracy.

The proposed approaches reduces data redundancy by aggregating similar operating conditions. For
instance, solar conditions at a specific hour, such as 11:00, are often nearly identical across consecutive
clear-sky days. Instead of simulating each of these points individually, we can use a single representative
point (such as their mean value) to obtain a good approximation of the power output for that period,
thus reducing the size of the input dataset.

To automatically group similar operating conditions, we employ the k-means clustering algorithm,
a widely used unsupervised machine learning technique. This algorithm partitions the original data
into a predefined number of clusters based on similarity. We then select the centroid of each resulting
cluster as a single representative data point. The collection of these centroids constitutes the new,
reduced dataset for our simulation. Figure 3.1 illustrates this data reduction concept, showing how a
large dataset can be effectively summarized by just four cluster centroids.

Our simulation framework implement the k-means algorithm by making use of the scikit-learn
library (Pedregosa et al. 2011). Its documentation describe the procedure to execute the algorithm
in a data set. As already mentioned intuitively, in our case the algorithm divides a dataset of T' data
points x1,...,xp, conformed by the operating conditions mentioned before, into k£ disjoint clusters.
These clusters are described by the mean uj,j =1, ..., k, of the data points inside each cluster. These
mean representative points for each cluster are commonly called “centroids”. With this in mind,
the k-means algorithm aims to choose these k centroids as the ones that minimize the inertia (or
within-cluster sum-of-squares, WC'SS), defined as

T
WCSSs = Zﬂﬁin(Hwt — 1511).- (3.1)
t=0 '’

The steps the algorithm follow for determining the centroids are the following:

1. The algorithm is initialized by selecting k initial centroids. A simple way is to select k random
points from the dataset. However, scikit-learn implements a smarter way of selecting the initial
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Figure 3.1: K-means algorithm intuition. A vast dataset (gray dots in the left graph) is summarized
by just four cluster centroids (red crosses in the right graph).

centroids to speed up convergence (Arthur and Vassilvitskii 2007).

2. With those k initial cluster, the algorithm assign each data point to its nearest centroid, con-
forming a cluster associated with each one of those centroids.

3. For each one of the cluster formed, the mean value of all data points assigned to that cluster is
computed. The centroids are actualized to be these mean values.

4. If there is a significant variation in the position of this new centroids with respect to the previous
ones, the algorithm returns to step 2. If the centroids do not move significantly, the algorithm
ends.

This algorithm always converge. However, it can get stuck into a local minimum. The smart
selection of the initial centroids implemented in scikit-learn generally solves this problem, as it selects
the centroids in a way they are distant from each other.

Even though this is the base algorithm for aggregating similar operating conditions, it can be
applied following different procedures. In this work, we propose and evaluate two distinct approaches
for this aggregation: StraightForward Aggregation (SFA) and Hierarchical Hourly Aggregation (HHA).
As a brief overview, the SFA method applies the k-means algorithm in a more direct way, while the
HHA method first aggregates the dataset into groups by the corresponding hour of the day, and after
that it applies the k-means algorithm inside each hour group. This second method needs a dynamic
way of selecting the number of clusters for each hour of the day group, as we will describe in the
following sections. That makes this second method more complex than the SFA one.

After aggregating the original dataset and obtaining a new reduced dataset of representative op-
erating conditions, we can feed this last one to the simulation and assign the representative results to
their corresponding original data points. However, this simulation can be performed using any method
from the ones described in Chapter 2. In order to be able to measure the impact in the accuracy and
speed of the approximation through the aggregation methods, we use in this step the same method
as the one we use as the precise non-aggregated baseline. We already discussed the selection of the
submodule-level simulation method for this purpose, so this is the one we use.
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Aggregating the data and performing the simulation on the reduced dataset using the sumodule-
level simulation method produces faster results. However, this speed up comes with an accuracy cost.
This behavior recalls us the discussion made in Section 2.1 about the selection of the granularity of the
physical model used in the simulation. We considered three levels of granularity for the simulations
that takes into account shading: module-level, submodule-level and cell-level. If we want faster results
than the ones from the submodule-level simulation, we are forced to reduce the granularity to the
module-level simulation. However, this is a great jump in accuracy loss, especially for scenarios with
high partial shading presence.

With the methods presented in this work, we aim to improve the accuracy of the module-level
simulation, while maintaining (or reducing in the best case) the computational time. For this, we show
the results of applying the aggregation methods over the submodule-level simulation and compare it
with the baseline of the module-level simulation to check if we improve its performance.

3.1 StraightForward Aggregation (SFA)

As its name suggests, the StraightForward Aggregation (SFA) method applies the k-means algorithm
directly to the entire dataset of approximately 4000 operating conditions (once non-relevant operating
conditions are removed). In order to determine the number of clusters to perform, so that the method
is versatile enough to adapt to datasets of different sizes, it uses a parameter for the percentage of data
reduction to perform. For example, to achieve a 80% reduction, we set the number of clusters (k) to
20% of the original dataset size, resulting in

k = dataset_size x (1 — reduction) = 4000 x (1 — 0.80) = 4000 x 0.20 = 800 clusters.

We then perform the simulation only on the centroids of these k clusters, that will conform our new
input dataset of representative operating conditions. To reconstruct the full annual time series of MPP
values, we assign the power output calculated for each centroid to all original data points within that
centroid’s corresponding cluster.

This clustering process can be made in any set of features from the dataset. As we already men-
tioned, our dataset contains the irradiance, sun position and temperature of the system. As temper-
ature can be obtained from irradiance (and they are directly proportional), we found it not relevant
to include it in the clustering process. To determine the optimal set of features for clustering, we
evaluated various combinations of the input variables: solar irradiance, sun elevation and sun azimuth.
The brief analysis concluded that aggregating the data based on all three variables simultaneously
yields the most accurate results. Consequently, the methods described in this work perform clustering
in this 3-dimensional feature space. However, the analysis of this variable selection can be explored
more deeply, even though initial guesses indicate that aggregating on all 3 variables is the best choice.

We show the performance of the SFA method across a range of data reduction percentages for
all simulation scenario from Table 1.1 in Figure 3.2. The top plot shows the relative errors of the
SFA method, calculated using (2.1), with the submodule-level simulation performed on the complete,
non-aggregated dataset as the reference. The bottom plot shows the corresponding relative execution
times, calculated using (2.5). For comparison, we also include the performance of the simpler module-
level simulation as a baseline. The mean error and times for this baseline are indicated by dashed
lines, while the minimum and maximum values across all scenarios are shown as dotted lines. This
allows a direct comparison of the SFA method’s accuracy and speed against the next faster, but less
detailed, simulation approach.

The results reveal the expected trade-off: higher data reduction percentages lead to faster execution
times at the cost of increased error. For instance, an 80% data reduction reduces computation time
by approximately 80% while introducing a mean relative error of about 2.5%.

Notably, an optimal range for the SFA method appears between 60% and 80% reduction. Within
this “sweet spot”, the SFA method not only maintains higher accuracy than the module-level simulation
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Figure 3.2: Relative errors (top) and execution times (bottom) of the SFA method for each simulation
scenario for a grid of data reduction percentages, using the submodule-level simulation as the reference.
The performance of the module-level simulation is plotted as dotted lines (minimum and maximum
values) and dashed lines (mean values across all simulation scenarios). The right-hand graphs show a
zoomed-in view of the x-axis to highlight the “sweet spot”.

but also exceeds its computational speed. This demonstrates a key advantage, providing a solution
that is both faster and more precise than the next simplest modeling approach.

To further analyze these results, Figure 3.3 directly compares the module-level simulation with
the SFA method using an 80% data reduction. The figure displays the distributions of relative errors
(left) and relative execution times (right), using the full submodule-level simulation as the reference

for both.
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Figure 3.3: Relative errors (left) and execution times (right) of the simulation at the module level and

the one performing the SFA with 80% of reduction.

In terms of accuracy, the SFA method achieves a mean error comparable to the module-level
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simulation. However, the distribution of SFA errors is significantly less dispersed. This indicates that
the SFA method is more robust and provides more consistent results, especially in scenarios with high
partial shading, making it’s accuracy loss more predictable in those scenarios.

Regarding execution time, the SFA method not only achieves greater speedup (approximately 80%
reduction) but also demonstrates more predictable performance. The execution time of the module-
level simulation varies considerably depending on the specific scenario, whereas the SFA method’s
runtime remains far more consistent.

A key advantage of the SFA method is its configurability. Based on the performance curves in
Figure 3.2, users can select a specific data reduction percentage to achieve a desired trade-off between
computational speed and simulation accuracy. This flexibility allows the method to adapt to different
application requirements.

While any reduction level is possible, the most compelling results occur for parameters in the 60%
to 80% reduction range. As previously noted, this window provides a solution that is not only faster
but also more accurate than the baseline module-level simulation, representing the optimal operational
“sweet spot” for this approach.

3.2 Hierarchical Hourly Aggregation (HHA)

An alternative approach, the Hierarchical Hourly Aggregation (HHA) method, works in a hierarchical
way, as it first partitions the data before applying clustering. In the initial step, we divide the dataset
into 24 distinct groups, one for each hour of the day. We then apply k-means clustering independently
within each of these hourly groups.

This hierarchical structure introduces a new challenge: determining the optimal number of clusters
(k) for each hourly group, as intra-group variability is not uniform. For example, all data points for
nighttime hours (e.g., 03:00) can be summarized by a single centroid (k = 1), since solar irradiance is
consistently zero. In contrast, conditions at midday (e.g., 12:00) exhibit significant seasonal variation,
with much higher irradiance in summer than in winter, thus requiring a larger k£ to represent them
accurately. We show this in Figure 3.4, where we represent the dispersion of the irradiance values of
Madrid, Spain, for each hour group. The plot exposes the previous intuition, where midday irradiance
values present more variability than the ones at the last or first hours of the day.
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Hour of the day

Figure 3.4: Irradiance distribution for each hour in Madrid, Spain.

To dynamically determine the number of clusters for each hourly group, we introduce a new hyper-
parameter: a target for the percentage of explained variability, or precision per hour. This approach
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selects the minimum number of clusters (k) required to account for a specified portion of the data’s
variance within each hourly subgroup. For instance, if this target is set to 99%, the algorithm deter-
mines, for each hour, the number of clusters needed to explain 99% of that group’s internal variability.
This ensures that hours with high operating conditions variance (e.g., midday) receive more clusters
than hours with low variance (e.g., nighttime).

We base this method on the procedure detailed in Calinski and Harabasz (1974). Given a number of
clusters k over a dataset z1, ..., xp, with centroids p1, ..., i, we can compute the explained variability
of the clusters obtained by the k-means algorithm using

BCSS TSS-WCSS 1 wcCSS
TSS TSS B TSS

Explained Variability = (3.2)
where T'S'S (Total Sum of Squares) is the sum of squared distances between each point and the overall
mean of the data,

T
7SS =" e — ull? (33)
t=1

T
with p = # the overall mean, WSS (Within-Cluster Sum of Squares or inertia) is the sum of
squares between each point and its assigned cluster centroid, previously presented in (3.1) as

T
WCSS = min(|lze - p5]%).
t:O J

and BC'SS (Between-Cluster Sum of Squares) represents the variance between clusters and is obtained

as
BCSS = TSS — WCSS. (3.4)

With these definitions in mind, the algorithm follows these steps:

1. Select a desired percentage of explained variability (precision per hour) and group the data into
hourly groups.

2. Loop from the first hourly group to the last one.
3. Loop from k& = 1 clusters to a maximum number of clusters k = kqz.

4. For that hourly group, determine the explained variability using (3.2) of applying the k-means
algorithm to obtain k clusters. This steps needs to apply the k-means algorithm for k clusters
in the hourly group.

5. If that explained variability exceeds the desired one, then k,,; = k is the desired amount of
clusters for this hourly group, so this last aggregation in ko clusters is stored and the loop from
step 3 is broken, if not, the loop continues.

6. Continue the loop from step 2 until finishing the hourly groups.

With these steps, we get an aggregation of data points inside each hourly group. However, the
process of applying the k-means algorithm for every individual value of the number of clusters & until
achieving the desired explained variability can be computationally intensive. A solution to this could
be exploring the amount of clusters incrementing the value of k£ by more then one on each iteration of
the loop in step 3. However, for the purposes of this work, we will explore it one by one. We show
the performance of the HHA method in Figure 3.5 in the same way we presented the ones of the SFA
method.

As expected, setting a higher target for the explained variability results in improved accuracy but
also increases the computational time. When compared to the previous SFA method (Figure 3.2),
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Figure 3.5: Relative errors (top) and execution times (bottom) of the HHA method for each simulation
scenario for a grid of precision per hour percentages, using the submodule-level simulation as the
reference. The performance of the module-level simulation is plotted as dotted lines (minimum and
maximum values) and dashed lines (mean values across all simulation scenarios). The right-hand
graphs show a zoomed-in view of the x-axis to highlight the “sweet spot”.

the HHA approach achieves a similar level of accuracy and robustness across the different scenarios.
However, it is computationally inferior. The execution time is not only longer, but its variability be-
tween scenarios is also significantly greater. This reduced efficiency is attributed to the computational
overhead required to dynamically determine the optimal number of clusters for each of the 24-hourly
groups. This selection process can be time-consuming, and the cost is not always offset by accuracy
gains, particularly for smaller simulation scenarios.

The results indicate an optimal performance range for the HHA method when the explained vari-
ability target is set between 99.5% and 99.7%. To examine this in detail, Figure 3.6 compares the
HHA method (using a 99.6% target) against the module-level simulation, using the non-aggregated
submodule-level simulation as the reference.

In terms of accuracy, the HHA method offers comparable, or even superior, performance, demon-
strating greater robustness across different scenarios. However, the opposite is true for computational
time. This highlights the previously discussed issue: the method’s significant overhead makes it ill-
suited for smaller scenarios which show the highest relative execution times. If we exclude these specific
scenarios from the analysis, the average performance of the HHA method would more closely resemble
that of the SFA approach. We show the same results from Figure 3.6, but without the scenarios formed
by one single module in Figure 3.7. We can see that, excluding the small scenarios, the HHA method
performs as well as the SFA one. However, the bad behavior of this method in small scenarios makes
the SFA method more interesting in general.

Although the HHA method is outperformed by the SFA one in this study, further refinement
could improve its performance. As already discussed, the current implementation uses a linear search
to determine the number of clusters k per hour, incrementing k by one until it meets the target for
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Figure 3.6: Relative errors (left) and execution times (right) of the simulation at the module level and
the one performing the HHA with 99.6% of precision per hour.
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Figure 3.7: Relative errors (left) and execution times (right) of the simulation at the module level
and the one performing the HHA with 99.6% of precision per hour for scenarios with more than one
module.

explained variability. This process could be significantly accelerated by using a larger step size, thereby
reducing the method’s computational overhead. As the SFA method already provided excellent results,
we did not pursue this optimization further in this work. Nonetheless, we present the HHA concept
here as a promising alternative that, with such modifications, could become a competitive approach
for future research.

3.3 Aggregation methods comparison

To directly compare the two aggregation methods, we need a metric that can describe both methods
in the same plot. For this, from Figure 3.2 and Figure 3.5, we can extract the orange lines for each
method, corresponding to the average performance of them. We compare the methods according to
the average trade-off between speed and accuracy using those values. However, we can also extract
the blue lines corresponding to the maximum values, that represent the worst case scenario for the
methods, with the highest error and lowest computational time saved.

We plot the mean relative errors against the mean relative execution time for both the SFA and
HHA approaches in Figure 3.8. Each point on the plot represents the performance of a method at
a specific parameter setting, averaged across all simulation scenarios. The plot focuses on negative
relative times, as these values indicate a computational speedup. For comparison, we also show the
fixed performance of the baseline module-level simulation, which achieves an average time reduction of
approximately 50% at a mean error of about 4%. This visualization provides a clear comparison of the
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average accuracy-speed trade-off for both proposed methods relative to each other and to a standard,
less detailed approach.

Mean accuracy/speed trade-off for different simulation methods
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Figure 3.8: Mean relative times versus mean relative errors for the SFA and HHA methods for a range
of parameters.

The results demonstrate a clear superiority of the StraightForward Aggregation (SFA) method
over both the HHA and the submodule-level simulation in terms of average performance. The SFA
method consistently defines the Pareto Frontier (Lotov and Miettinen 2008) for the average speed-
accuracy trade-off, providing the best possible accuracy for any given level of computational speedup.
This behavior does not only occur for average performance. We show a similar plot of the maximum
accuracy-speed trade-off in Figure 3.9. The plot is similar to the previous one, but the values correspond
to the maximum errors and times extracted from the blue lines from the figures previously mentioned.
In other words, they serve as a worst case scenario in terms of speed-accuracy trade-off.

We can see the same trend as in the previous figure, demonstrating the SFA method even higher
dominance in this metric. This is caused by the previously discussed phenomenon: module-level
simulation produces a high error in worst case scenarios (high partial shading), while HHA method
behaves similar to the SFA one in terms of errors, but with significantly lower computational time
reduction in worst case scenarios (small systems).

The results presented in this section demonstrate the clear superiority of the SFA aggregation
method over the submodule-level simulation, which outperforms the performance of reducing the detail
of the physical model of the simulation to the module level. Furthermore, this approach offers a versatile
mechanism to tune this trade-off as needed. For instance, focusing on Figure 3.8, users can achieve
an 80% reduction in computational time while introducing a relative error of only about 3%, all in
average performance terms. This same principle can be applied to target any desired balance between
computational cost and precision, highlighting the method’s practical flexibility. This characteristic
contrasts with the unique trade-off value offered by the module-level simulation, that do not provide
any way to tune its performance to match different use cases.
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Figure 3.9: Maximum relative times versus mean relative errors for the SFA and HHA methods for a
range of parameters.

3.4 SFA method for shading power losses

A primary application of detailed PV system simulations, and a central focus of research at ieco.io, is
to quantify the annual energy losses caused by partial shading. The aggregation methods developed in
this work are highly effective for this task, as they significantly reduce the required computational time
while maintaining the accuracy of the submodule-level simulation. To formally analyze these losses,
we define the hourly energy loss due to partial shading with

MP-Ploss = MPPno,shading - MPPshading~ (35)

To evaluate how accurately the method estimates the annual power loss from shading, we adapted
the metric from (2.2). For this analysis, the error is calculated by substituting the total hourly power
outputs with the hourly shading loss values (M PP,,ss) using the full submodule-level simulation as
the reference. The use of relative difference instead of relative error is motivated on the discussion
made when these metrics were presented. As we aim to compare the accuracy on the power output
of the system for the whole year, we will not need a metric that compares the hourly precision of the
simulation, as we are just concerned about the long-term accuracy of the method. Relative difference
is the appropriate metric for this. The results are presented in a similar way to Figure 3.2, but showing
relative differences instead of relative errors, in Figure 3.10. This figure compares the performance of
the SFA method in estimating shading losses against the module-level simulation, which serves a a
performance baseline.

The presented results confirm that the SFA method significantly outperforms the standard module-
level simulation for estimating shading losses. On average, the module-level simulation underestimates
the annual energy loss by approximately 35% compared to the reference full submodule-level simula-
tion, while only being twice as fast. In contrast, the SFA method shows negligible differences in loss
estimation even with data reduction percentages as high as 90%, while drastically reducing computa-
tional time. This demonstrates that the SFA approach provides a far superior balance of speed and
accuracy for this application.

In summary, these results demonstrate that the proposed data aggregation method serves as a
highly effective tool for quantifying annual energy losses from partial shading in a fast way. The
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Figure 3.10: Relative differences (top) and execution times (bottom) of the SFA method for each
simulation scenario for a grid of data reduction percentages, using the submodule-level simulation as
the reference. The performance of the module-level simulation is plotted as dotted lines (minimum

and maximum values) and dashed lines (mean values across all simulation scenarios). The right-hand

graphs show a zoomed-in view of the x-axis to highlight the “sweet spot”.

approach reduces computational time by up to 90% while having negligible impact on the simulation’s

accuracy.
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Chapter 4

Conclusions

This work addressed the significant computational challenge of performing accurate, year-long energy
yield assessments for photovoltaic systems, particularly under the complex conditions of partial shad-
ing. We demonstrated that a key bottleneck arises from the sheer volume of time-step data required
for an annual simulation.

To overcome this, we introduced and evaluated two novel statistical aggregation methods, Straight-
Forward Aggregation (SFA) and Hierarchical Hourly Aggregation (HHA), designed to reduce the size
of the input dataset while preserving the high-resolution information critical for accurate shading
analysis. Both methods leverage k-means clustering to group similar instantaneous operating condi-
tions, defined by solar irradiance, elevation, and azimuth, and use the resulting cluster centroids as
representative points for the simulation.

Our findings clearly establish the superiority of the SFA method. This approach not only proved
more computationally efficient than the HHA method but also consistently outperformed the standard,
less-detailed module-level simulation across all evaluated metrics. The SFA method successfully defines
a new Pareto frontier for the speed-accuracy trade-off, providing the best possible accuracy for any
given level of computational speedup. A key advantage of SFA is its tunability; for example, users
can achieve an 80% reduction in simulation time while introducing a mean relative error of only about
3%, but also achieve a 70% reduction in simulation time introducing a mean relative error of about
2%. This delivers robust, predictable performance that remains consistent across different scenarios,
outperforming simpler modeling approaches.

Crucially, the SFA method proved exceptionally effective for quantifying annual energy losses due
to shading, a primary application of detailed PV simulations and a central focus of research at ieco.io.
While the module-level simulation underestimated these losses by an average of 35%, our SFA approach
reduces computational time by up to 90% with negligible impact on accuracy.

In conclusion, this work presents a data-centric framework that significantly accelerates PV sim-
ulations without compromising the fidelity required to model non-linear shading effects. The SFA
method offers a practical, flexible, and powerful tool for engineers and researchers, enabling rapid
design iterations and reliable financial assessments for PV projects in ieco.io and in any environment.

4.1 Future work and limitations

This work present two data-centric aggregation methods in order to accelerate the traditional PV
system simulation methods. However, the methods were made in a simple way, presenting two different
basic methods for aggregating initial data. The methods can be developed in a more sophisticated
way, considering other variable, steps or some other type of procedures such as another hierarchical
structure as in the HHA method. In addition to this, the presented results of the performance of the
methods were computed using the submodule level simulation as the reference one. Even though this
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is the most used simulation method, other methods such as the module-level or cell-level simulation
can better suit specific scenarios. For example, if we need a highly precise simulation, a cell level
simulation is mandatory, specially in scenarios with a lot of partial shading.

With these considerations, some possible future work to further develop the methods presented in
this work are the following:

e Measure the performance of the present methods using another simulation method as the base
method, such as the cell-level simulation. This can be crucial to consider in scenarios that require
high fidelity results.

e Measure the performance of the methods using higher resolution meteorological data. This can
make the initial data aggregation more relevant, as increasing the resolution of the input data
means increasing its size, making the simulation computationally more expensive. Moreover,
with more data points, there is a higher chance of getting a greater amount of similar operating
conditions, making the aggregation methods more effective.

e Modify the aggregation methods in some way, making them perform better. The modifications
can be done in a lot of ways, such as changing the aggregation algorithm, the parameters of it
or even the steps followed or variable used. The methods presented in this work were made as
simple as possible in order to serve as a base to their further development.

e Measure the precision of the methods in other simulation scenarios. In this work, we considered
just thirteen simple simulation scenarios. However, real-life scenarios are more complex. It would
be interesting to measure the precision of the methods in complex real-life scenarios, where a lot
of shading objects are considered.

As we present a simple initial study of these aggregation methods, some further improvements of
them could make them more effective and interpretable. This work aimed to show some simple initial
data aggregation methods that work very well in certain situations even though they are not very
sophisticated. These methods can make the building block for more complex and effective initial data
aggregation methods or work as a simple way to reduce the computational time while being aware of
the precision loss.
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