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Breve resumen del trabajo:

El objetivo principal será desarrollar modelos que permitan predecir, a corto y medio plazo,
el volumen de demanda de los principales clientes, el cual está estrechamente relacionado
con la estacionalidad del sector al que pertenecen. Además, se prestará especial atención a
la predicción de la demanda en d́ıas festivos y periodos especiales, basándose en el compor-
tamiento histórico de cada cliente. El trabajo comparará y evaluará distintas metodoloǵıas
de series temporales, desde enfoques clásicos como ARIMA hasta métodos más recientes
como modelos Prophet. Se buscará una solución que combine alta capacidad predictiva con
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Estimando que el trabajo está terminado, dan su conformidad para su presentación y defensa ante un
tribunal. Además, Doña Maŕıa José Ginzo Villamayor, don Jose Ameijeiras Alonso y don Diego Airas
Fernández

→
si ↭ no

autorizan a la publicación de la memoria en el repositorio de acceso público asociado al Máster en
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Resumo

Resumo en galego

Este Traballo de Fin de Máster presenta unha metodolox́ıa integral para a predición da demanda
lox́ıstica na empresa Trucksters, aplicando técnicas de modelización de series temporais. O obxecti-
vo principal é anticipar o volume de env́ıos nun mercado caracterizado pola súa alta volatilidade e
dependencia de eventos estacionais.

A investigación desenvólvese baixo unha abordaxe comparativa entre a metodolox́ıa clásica ARIMA
e os modelos Prophet, baseados nos modelos aditivos xeneralizados, co obxectivo de determinar que
arquitectura captura con maior precisión a complexidade da demanda. Para tal fin, a estratexia de
modelización articúlase mediante unha metodolox́ıa dual: por unha banda, contrástase a utilidade
da segmentación estratéxica de clientes a través de clústeres e, por outra, avaĺıase o rendemento dos
modelos sobre a base de datos orixinal fronte a unha serie depurada de at́ıpicos. Esta análise permite
demostrar que o tratamento previo da información e a modelización desagregada logran reducir o
rúıdo estat́ıstico e mitigar o impacto das anomaĺıas. Como resultado, obténse un marco preditivo máis
estable e robusto que optimiza a planificación operativa e a rendibilidade comercial de Trucksters.

English abstract

This Master’s Thesis presents a comprehensive methodology for logistic demand forecasting at
Trucksters, using advanced time-series modeling techniques. The central objective is to anticipate
shipment volumes in a market defined by high volatility and a strong dependence on seasonal patterns.

The research is developed under a comparative approach between the classic ARIMA methodology
and Prophet generalized additive models, in order to determine which architecture most accurately
captures the complexity of demand. To this end, the modeling strategy is articulated through a dual
methodology: on the one hand, the utility of strategic customer segmentation through clusters is
contrasted, and on the other, the performance of the models is evaluated on the original database
versus a series cleared of outliers. This analysis demonstrates that the prior treatment of information
and disaggregated modeling reduce statistical noise and mitigate the impact of anomalies. As a result,
a more stable and robust predictive framework is obtained that optimizes Trucksters operational
planning and commercial profitability.
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Prefacio

O sector do transporte e lox́ıstica constitúe a columna vertebral da economı́a actual, actuando como
indicador da mobilidade de mercadoŕıas e da integración dos mercados globais. Nun contexto económico
cada vez máis competitivo, o desempeño eficiente das cadeas de subministración é determinante non
só para a rendibilidade das empresas, senón tamén para a estabilidade do comercio internacional.

Non obstante, a xestión deste activo enfróntase a unha complexidade crecente. A demanda de
servizos de transporte non é nin lineal nin estática; senón que se ve influenciada por unha multiplicidade
de factores que abarcan desde a actividade macroeconómica e os patróns de comercio internacional ata
a estacionalidade climática e os cambios no comportamento do consumidor final. Tal e como sinalan
Basavaraju e Valilai (2025), a precisión na planificación da demanda impacta directamente nos niveis
de inventario e no rendemento global dunha empresa. A dificultade radica en que, frecuentemente, as
compañ́ıas carecen de información completa ou a tempo real sobre estes factores exóxenos, o que xera
escenarios de incerteza que dificultan a toma de decisións e a optimización da cadea de subministración.

Estreitamente ligado á evolución da demanda, o comportamento dos prezos engade unha capa
adicional de complexidade. As tarifas no sector lox́ıstico presentan flutuacións significativas debido
á dispoñibilidade de capacidade, os custos operativos (combustible, persoal) e a presión competitiva.
Boin et al. (2020), destacan que unha estratexia de prezos dinámica e baseada en datos pode incre-
mentar a marxe operativa dunha empresa lox́ıstica entre un 30% e un 60% . Ademais, a globalización
introduciu novas variables de estacionalidade; por exemplo, informes recentes do sector destacan a
necesidade de incorporar calendarios internacionais, como o Ano Novo chinés, para anticipar correcta-
mente os picos de carga en Europa (Maersk , 2025), evidenciando que a previsión de prezos e demanda
constitúe un desaf́ıo cada vez máis sofisticado.

Neste escenario global sitúase o caso de estudo deste traballo: a empresa Trucksters. Esta empresa
emerxente irrompeu no sector cun modelo de negocio innovador baseado nun sistema de relevos de
camións dirixido mediante intelixencia artificial. Un dos seus principais obxectivos consiste en reducir
os tempos de tránsito de longa distancia e mellorar as condicións laborais dos condutores.

Para unha compañ́ıa desta natureza, a volatilidade non é só unha estat́ıstica, senón que constitúe
un reto operativo diario. A planificación de rutas, a asignación de camións e condutores nos puntos
de relevo e a xestión da capacidade dependen de forma cŕıtica dunha anticipación precisa da carga
de traballo. En Trucksters, errar na previsión implica ineficiencias directas: camións parados ou inca-
pacidade para cubrir o servizo comprometido. Polo tanto, a modelización da demanda e dos prezos
transcende o ámbito académico para converterse nunha necesidade operativa de primeira orde.

Outra caracteŕıstica de Trucksters radica na complexidade da demanda dos seus clientes. Dende
unha perspectiva de negocio, pódese intúır que esta demanda depende de múltiples factores, como o
sector de actividade do cliente ou o mes do ano (existencia de peak seasons). En consecuencia, unha das
necesidades clave da empresa consiste en dispoñer dun método cient́ıfico e reproducible que permita
anticipar a demanda dos seus clientes con maior precisión.

Neste contexto, a literatura académica ofrece un amplo abanico de ferramentas para abordar este
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problema, dende os modelos estat́ısticos clásicos ata enfoques máis recentes baseados en algoritmos
de aprendizaxe automática. Se ben a utilidade teórica destas técnicas está amplamente demostrada, a
súa aplicación práctica en contextos reais non sempre é trivial, tal e como demostran Revelo e Mafla
(2025).

Este Traballo Fin de Máster sitúase na intersección entre a literatura académica e a práctica
empresarial. O obxectivo principal consiste en aplicar, avaliar e comparar distintas metodolox́ıas de
previsión, dende enfoques clásicos como os ARIMA ata métodos máis recentes como Prophet sobre os
datos reais de Trucksters. Este tipo de metodolox́ıas son amplamente utilizadas na práctica, aplicándose
a problemas similares ao abordado neste proxecto, como son os estudos de Ertürk (2024) e Wu et al.
(2024). Búscase daquela, non só achegar evidencia emṕırica sobre o rendemento destes modelos, senón
tamén xerar implicacións prácticas que sirvan de soporte para a toma de decisións estratéxicas na
compañ́ıa.

Estrutura da memoria

A memoria orgańızase en dous bloques principais: o desenvolvemento metodolóxico e a aplicación
práctica.

No bloque metodolóxico, o Caṕıtulo 1 define en detalle o problema de negocio e o contexto do
mercado. O Caṕıtulo 2 establece o marco teórico, fundamentando as técnicas de análise multivariante,
detección de at́ıpicos e modelización de series temporais Box-Jenkins e Prophet, aśı como as ferramentas
computacionais empregadas.

Na parte práctica, o Caṕıtulo 3 aborda a análise exploratoria, a segmentación de clientes e a limpeza
de datos. O Caṕıtulo 4 constitúe o núcleo da investigación, desenvolvendo os modelos preditivos e
analizando o impacto da eliminación de at́ıpicos. Finalmente, o Caṕıtulo 5 sintetiza as conclusións
acadadas e propón liñas futuras de investigación para continuar mellorando a intelixencia lox́ıstica da
empresa.



Parte I

Metodolox́ıa
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Caṕıtulo 1

O problema da demanda no sector

do transporte

Este caṕıtulo establece o marco operativo e de negocio sobre o que se fundamenta o presente
Traballo Fin de Máster. O obxectivo consiste en trasladar a problemática xeral da predición de demanda
á realidade concreta do transporte de mercadoŕıas da empresa Trucksters.

Durante a última década, a lox́ıstica transcendeu a súa función tradicional de movemento de mer-
cadoŕıas para converterse nun ecosistema complexo gobernado pola información. A dixitalización do
sector e a integración dos mercados globais incrementaron exponencialmente o volume de datos dis-
poñibles, pero tamén a volatilidade e a incerteza operativa. Neste escenario, a vantaxe competitiva das
empresas xa non reside unicamente na capacidade de transporte, senón na capacidade anaĺıtica para
anticipar as flutuacións do mercado.

A previsión de demanda constitúe, polo tanto, o desaf́ıo central. Non se trata unicamente dun
exercicio estat́ıstico, senón dunha necesidade cŕıtica para paliar o impacto de factores exóxenos e
garantir a eficiencia operativa.

Para abordar esta cuestión, o caṕıtulo estrutúrase en tres bloques diferenciados. Na Sección 1.1 ana-
lizarase o contexto macroeconómico do transporte en Europa, achegando datos sobre a situación actual
do mercado. Posteriormente, na Sección 1.2, presentarase o caso de estudo espećıfico de Trucksters,
detallando como o seu modelo de negocio baseado en relevos acentúa a necesidade dunha planificación
precisa. Finalmente, na Sección 1.3 formalizaranse os obxectivos xerais e espećıficos que guiarán o
desenvolvemento metodolóxico do traballo.

1.1. Contexto actual do sector

O transporte de mercadoŕıas garante a fluidez das cadeas de subministración industriais e o abas-
tecemento do consumo nunha economı́a altamente interconectada. Non obstante, a última década, e
moi especialmente no peŕıodo post-pandemia, produciuse un punto de inflexión na dinámica operativa
do sector.

Historicamente, a lox́ıstica xestionábase baixo criterios de estabilidade e optimización de custos.
Porén, tal e como analizan Boin et al. (2020), o sector experimentou unha transformación radical: a
lox́ıstica deixou de ser un centro de custos para converterse nunha vantaxe competitiva e nun elemento
de diferenciación estratéxica.

Tras a recuperación do sector posterior á pandemia sufrida no 2020, a realidade actual do mercado
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4 CAPÍTULO 1. O PROBLEMA DA DEMANDA NO SECTOR DO TRANSPORTE

europeo caracteŕızase pola escasez de condutores e o crecente número de empresas que quebran, o
que aumenta os colos de botellas no propio mercado. Isto pode contrastarse mediante o barómetro de
transporte de Timocom (2025), un indicador do mercado que mostra a situación actual de ofertas de
cargas e camións no transporte por estrada europeo. Este barómetro é empregado polas empresas para
averiguar os prezos do mercado e empregar dita información nas negociacións.

Figura 1.1: Evolución do ratio de ofertas de carga fronte ao espazo de camións no mercado europeo.
A gráfica ilustra a proporción de flota ocupada durante os meses de 2024 (azul escuro) e 2025 (azul
claro).

Fonte: Barómetro de Transporte de Timocom (2025).

A Figura 1.1 mostra a proporción de camións ocupados no mercado europeo durante os últimos
dous anos. Esta gráfica representa como, a pesar de estar o mercado certamente estabilizado (apenas
difire o comportamento entre 2024 e 2025), a demanda é extremadamente elevada, superándose apenas
un 30% da flota dispoñible nos meses de menor carga. Isto deriva nuns prezos cada vez máis caros,
provocando que cada decisión a nivel lox́ıstico sexa determinante no futuro dunha empresa.

1.2. Trucksters: Un modelo de negocio innovador

No contexto de mercado presentado sitúase Trucksters, empresa para a cal se realizou este estudo.
Fundada como unha compañ́ıa tecnolóxica de transporte de mercadoŕıas, Trucksters irrompeu no sector
lox́ıstico europeo cunha proposta de valor innovadora: a optimización do transporte de longa distancia
mediante un sistema de relevos de condutores constrúıdo mediante intelixencia artificial.

A diferenza do modelo tradicional, onde un único condutor realiza a ruta completa (véndose obri-
gado a deter o camión para cumprir cos descansos regulamentarios), o modelo de Trucksters baséase na
substitución do condutor en puntos estratéxicos ao longo do corredor. Isto permite que a mercadoŕıa
se manteña en movemento continuo, reducindo os tempos de tránsito. Simultaneamente, este sistema
permite aos condutores regresar aos seus domicilios con maior frecuencia, mellorando substancialmente
a súa calidade de vida e conciliación (véxase Trucksters , 2026).

Este modelo de negocio, experimentou un crecemento exponencial nos últimos anos. Porén, desde
o punto de vista da análise de datos e da previsión de demanda, a natureza emerxente da empresa
introduce unha serie de particularidades e desaf́ıos que condicionan a metodolox́ıa deste traballo:

Histórico temporal limitado: Ao tratarse dunha empresa de recente creación, as series temporais
dispoñibles son curtas en comparación con operadores históricos. Isto limita a capacidade de
capturar ciclos de longo prazo e require o uso de modelos eficientes en contextos de mostras
reducidas.
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Cambios estruturais na tendencia: A serie histórica reflicte distintas etapas de madurez empresa-
rial. Durante a súa curta historia, a empresa presenta fases de crecemento agresivo (captación de
cota de mercado) seguidas de fases de consolidación e optimización de marxes (Caṕıtulo 3). Estas
variacións na estratexia comercial, que inclúen cambios na poĺıtica de mercado para gañar com-
petitividade, introducen dificultades estruturais na serie de demanda que os modelos estat́ısticos
deben ser capaces de captar.

Alta sensibilidade operativa: A natureza do sistema de relevos require unha sincronización case
perfecta. Un erro na previsión de demanda non só implica perdas económicas, senón que pode
desaxustar a rede de relevos, deixando condutores sen camión ou camións sen condutor en puntos
intermedios da ruta.

Ademais destes factores internos, Trucksters opera cunha carteira de clientes extraordinariamente
heteroxénea. Esta diversidade implica que o comportamento da demanda non é uniforme. Axustar un
único modelo preditivo para o agregado total da compañ́ıa enmascaraŕıa as dinámicas particulares de
cada sector, mentres que modelar cliente a cliente resultaŕıa inviable ao rúıdo estat́ıstico.

Unha vez coñecidos os contextos económicos do mercado, aśı como a natureza e poĺıtica de negocio
de Trucksters, o caṕıtulo conclúe coa presentación formal dos obxectivos do proxecto.

1.3. Obxectivos do traballo

A meta fundamental do traballo consiste na identificación do modelo de previsión máis adecuado
para Trucksters. Para iso, selecciónanse dous enfoques de modelización de series temporais: os modelos
clásicos ARIMA e o modelo Prophet. A decisión de empregar estas metodolox́ıas xustif́ıcase no seu
amplo uso en estudos recentes, como son Ertürk (2024) ou Wu et al. (2024).

Estes modelos avaliaranse sobre datos reais da empresa, comparando o seu rendemento mediante
métricas do erro axeitadas (Sección 2.4). Adicionalmente, ante a heteroxeneidade dos clientes cos que
traballa Trucksters, no traballo analizarase se a aplicación dun procedemento previo de segmentación
dos clientes permite mellorar a capacidade preditiva dos modelos. Deste xeito, o traballo non aporta
só unha evidencia do desempeño de distintas técnicas de previsión, senón que tamén ofrece a Trucksters
recomendacións prácticas sobre o procesamento de datos, facilitando aśı a toma de decisións baseada
en anaĺıtica avanzada.

Polo tanto, no vindeiro caṕıtulo abordaranse diversos conceptos de análise multivariante, aśı co-
mo de series temporais, asentando as bases teóricas do marco metodolóxico a seguir durante todo o
proxecto.
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Caṕıtulo 2

Cuestións e fundamentos teóricos

Como xa se introduciu no caṕıtulo anterior, os datos que son obxectivo neste proxecto presentan
dependencia temporal. No ámbito da lox́ıstica e o transporte internacional, a análise de observacións
illadas carece de valor estratéxico; a vantaxe competitiva reside na capacidade de modelar a dinámica
temporal da demanda para anticipar temporadas de alto volume.

Neste caṕıtulo desenvólvense os fundamentos teóricos e metodolóxicos necesarios para abordar
esta problemática dende unha perspectiva da ciencia de datos. A estratexia proposta non se limita
á modelización directa, senón que percorre un fluxo completo dende o preprocesado avanzado ata a
avaliación preditiva.

A estrutura do caṕıtulo orgańızase como segue:

Para resolver o problema da heteroxeneidade de clientes exposto no Caṕıtulo 1, comezaranse abor-
dando técnicas de análise multivariante na Sección 2.1. En particular, centrarase o estudo na análise
de correspondencias (CA) e o clustering.

Na Sección 2.2 presentarase o algoritmo Isolation Forest. Esta ferramenta de Machine Learning
empregarase no Caṕıtulo 4 para a detección de outliers, permitindo un estudo dual durante o traballo:
analizar os resultados sobre os datos orixinais fronte aos acadados nos datos depurados.

A continuación, a Sección 2.3 constitúe o núcleo da modelización temporal. Tras revisar os con-
ceptos previos necesarios, estudaranse os modelos de Box-Jenkins (ARIMA), que permiten capturar a
estrutura de autocorrelación lineal dos datos, e o modelo Prophet, baseado en modelos aditivos xene-
ralizados (GAM), caracterizados pola súa robustez ante estacionalidades múltiples e eventos exóxenos.

Finalmente, as Seccións 2.4 e 2.5 detallan, respectivamente, as métricas estat́ısticas para avaliar
a precisión das predicións e o entorno computacional de Python empregado para a implementación
práctica de todo o fluxo de traballo.

2.1. Técnicas de Análise Multivariante

A modelización de series temporais en contextos empresariais complexos enfróntase frecuentemente
ao desaf́ıo da heteroxeneidade latente. Cando se analiza a demanda agregada dunha compañ́ıa, é ha-
bitual que a serie global sexa o resultado da superposición de múltiples compoñentes con dinámicas
estocásticas moi distintas (diferentes estacionalidades, sensibilidade a prezos ou tendencias de crece-
mento). En tales escenarios, a construción dun modelo único para o total pode resultar ineficiente, xa
que tende a suavizar os patróns espećıficos de cada subgrupo, perdendo precisión preditiva.

7
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No contexto do presente traballo, a carteira de clientes de Trucksters componse de empresas perten-
centes a sectores diversos (dende alimentación perecedeira ata retail) e suxeitas a tipolox́ıas contrac-
tuais distintas. Co obxectivo de mellorar a capacidade de xeneralización dos modelos de predición, faise
necesaria unha estratexia de segmentación que permita agrupar os clientes en clústeres homoxéneos,
proceso que se levará a cabo no Caṕıtulo 4. A hipótese subxacente é que, ao modelar por separado
grupos con comportamentos similares, reducirase a varianza intragrupo e maximizarase a precisión dos
futuros modelos de series temporais considerados (Sección 2.3).

Para levar a cabo esta segmentación de forma rigorosa e non arbitraria, empregaranse técnicas de
análise multivariante. Tendo presente a información dispoñible sobre os distintos env́ıos no Apéndice
A, as variables fundamentais para caracterizar aos clientes son de natureza cualitativa ou categórica
(tipo de contrato e sector da empresa). En consecuencia, as técnicas clásicas de agrupamento baseadas
en distancias eucĺıdeas non resultan aplicables de forma directa.

Por conseguinte, def́ınese unha metodolox́ıa en dúas etapas, secuencialmente dependentes, cuxos
fundamentos teóricos se detallan na presente sección:

1. Análise de Correspondencias (CA): Técnica de redución de dimensións para transformar a
información categórica nun espazo vectorial continuo.

2. Técnicas de formación de grupos (Clustering): Técnica de clasificación non supervisada
para identificar os grupos naturais de clientes sobre o espazo transformado.

A referencia fundamental seguida nesta sección é Pateiro e Sánchez (2024).

2.1.1. Análise de Correspondencias

O primeiro paso da análise multivariante que se aplicará na práctica (Sección 3.2) reside no estudo
da relación entre dúas variables discretas (tipo de contrato e sector) mediante a súa distribución
conxunta de frecuencias.

As táboas de frecuencias, tamén coñecidas como táboas de continxencia, reflicten a distribución
conxunta do par formado polas dúas variables discretas, que se denotarán por (c, s) durante a presente
sección. Partindo das frecuencias relativas, a táboa de continxencia pode expresarse como segue:

c \ s s1 s2 ··· sJ Marginal C

c1 f11 f12 ··· f1J f1.

c2 f21 f22 ··· f2J f2.
...

...
...

. . .
...

...

cI fI1 fI2 ··· fIJ fI.

Marxinal S f.1 f.2 ··· f.J 1

Cadro 2.1: Estrutura dunha táboa de continxencia para as frecuencias relativas conxuntas e marxinais
de dúas variables categóricas c e s.

No Cadro 2.1 fij representa a frecuencia relativa do par (ci, sj), (f1., ... , fI.) a distribución marxinal
da variable c e (f.1, ... , f.J) a correspondente distribución marxinal da variable s.

Test de independencia

Como xa se sinalou, a análise de correspondencias pretende estudar a relación entre dúas variables,
sendo o caso extremo a independencia entre elas. Polo tanto, un paso previo ao CA consiste en verificar a
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existencia dunha relación estatisticamente significativa entre as variables de interese. Con este obxectivo
constrúese o estat́ıstico chi-cadrado:

ω2 = n
I∑

i=1

J∑

j=1

(fij ↑ fi.f.j)2

fi.f.j
, (2.1)

sendo n o tamaño mostral. Baixo a hipótese nula de independencia, o estat́ıstico ω2 constrúese aśı e
segue unha distribución chi-cadrado con (I ↑ 1) ↓ (J ↑ 1) graos de liberdade. Aśı, fixado un nivel de
significación do 5%, rexeitariase a hipótese de independencia se

ω2 > ω2
0.95,(I→1)↑(J→1),

é dicir, se o estat́ıstico calculado como se indicou na ecuación (2.1) supera o cuantil 0.95 da distribución
chi-cadrado con (I ↑ 1) ↓ (J ↑ 1) graos de liberdade. No caso de que non se rexeite a independencia
das variables, a análise de correspondencias careceŕıa de sentido.

Análise de compoñentes principais dos perf́ıs estandarizados

Unha vez contrastada a existencia de relación entre as variables de interese, procédese a elaborar a
CA. A idea deste procedemento reside en aplicar unha análise de compoñentes principais (PCA) sobre
os perf́ıs de fila estandarizados (ou columnas estandarizadas), os cales se definen a continuación.

Definición 2.1 Dadas dúas variables categóricas (c, s) e as súas correspondentes distribucións mar-
xinais (f1., ... , fI.) e (f.1, ... , f.J), def́ınese o perfil de fila i-ésimo como

ri =

(
fi1
fi.

, ··· , fiJ
fi.

)
.

Analogamente, def́ınese o perfil da columna j-ésima como

pj =

(
f1j
f.j

, ··· , fIj
f.j

)
.

Aśı, o resultado fundamental da análise de correspondencias reside na obtención das coordenadas
principais (ou scores) tanto para as filas como para as columnas. Estas puntuacións obtéñense proxec-
tando os perf́ıs orixinais sobre os autovectores da matriz de covarianzas. A continuación explicarase
brevemente o precedemento da análise de compoñentes principais sobre os perf́ıs de fila estandarizados,
sendo o caso dos perf́ıs de columna estandarizados análogo e podéndose consultar na referencia Pateiro
e Sánchez (2024).

Sexa C unha matriz cuxas filas son os perf́ıs de fila estandarizados. A análise de compoñentes
principais (PCA) dos perf́ıs de fila estandarizados consiste na diagonalización da matriz de covarianzas
!r dos perf́ıs de fila estandarizados. Tendo en conta que ditos perf́ıs suman 1 por columna, o número
máximo de dimensións que aportan información será: mı́n{I ↑ 1, J ↑ 1}.

En particular, o estat́ıstico ω2 (ec. 2.1) dividido polo tamaño da mostra n denomı́nase inercia
e presenta unha interpretación moi interesante. En efecto, denotando por ε1 o autovalor nulo (pola
perda dunha dimensión), cúmprese que

ω2

n
= traza(!r) = ε2 + ...+ εJ , (2.2)

sendo εk o k-ésimo autovalor da matriz de covarianzas !r. Aśı, denotando por V a matriz cuxas
columnas son os autovectores asociados aos autovalores calculados, as coordenadas das filas respecto
das compoñentes principais virán dadas polas columnas da matriz A = CV .
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Deste xeito, a análise de correspondencias (CA) actúa como unha técnica de cuantificación de datos
categóricos. As puntuacións obtidas nos eixos que recollen a maior parte da inercia servirán como
variables numéricas de entrada para o algoritmo de clustering que se describirá na Sección 2.1.2. Isto
permite aplicar distancias métricas sobre unha información que, orixinalmente, carećıa dunha estrutura
de espazo vectorial, superando aśı a limitación de traballar con variables puramente cualitativas no
Caṕıtulo 3.

2.1.2. Análise Clúster

A análise clúster é unha técnica de clasificación non supervisada que busca formar grupos dentro
dunha mostra en base a certas caracteŕısticas da mesma. Dentro dos procedementos de formación de
grupos dist́ınguense varios tipos de métodos, centrándose esta sección nos métodos xerárquicos.

Este tipo de algoritmos parten dunha matriz de distancias entre os individuos, agrupándoos en base
a estas distancias en distintos niveis. Daquela, para o problema do presente traballo, empregaranse as
coordenadas calculadas mediante a análise de correspondencia (CA) explicada na sección previa como
inputs para formar os grupos.

En particular, a construción dos clústeres levarase a cabo mediante un algoritmo aglomerativo.
Estes tipos de algoritmos presentan os seguintes pasos:

1. Def́ınense os clústeres C1, ... , Cn formados cada un por un único individuo.

2. Búscanse os grupos Cq e Cl que estén máis próximos, xuntándose e redućındose, en consecuencia,
o número de grupos.

3. Recalcúlanse as distancias de todos os demais grupos ao correspondente clúster formado.

4. O algoritmo detense cando só existe un único grupo, repet́ındose en caso contrario os pasos 2 e
3.

Á vista da estrutura do algoritmo, un paso crucial reside na selección da distancia considerada
entre os grupos. Neste proxecto, decidiuse traballar co método do máximo, que define a distancia entre
dous grupos Cq e Cl como:

d(Cq, Cl) = máx
i↓Cq,j↓Cl

dij ,

sendo dij a distancia entre os individuos i e j.

Cómpre sinalar que existen outras formas de definir as distancias entre clústeres, as cales se poden
consultar na referencia Pateiro e Sánchez (2024).

O resultado do algoritmo xerárquico aglomerativo refĺıctese visualmente a través dun dendrogra-
ma, como o que se presenta a modo de exemplo na Figura 2.1. Esta árbore de clasificación permite
observar de forma intuitiva as sucesivas unións ou fusións realizadas polo algoritmo: no eixo horizontal
dispóñense os individuos (ou categoŕıas da análise de correspondencias), mentres que o eixo vertical
representa a distancia á que se produce cada unión.

A selección do número óptimo de grupos (K) é un paso cŕıtico que require equilibrar a parsimonia
do modelo coa homoxeneidade interna dos grupos. Ao contrario que nos métodos de partición, no
clustering xerárquico o número de grupos dećıdese a posteriori analizando a estrutura da árbore.

Na correspondente análise clúster que se realizará no Caṕıtulo 3, na decisión do número de grupos a
considerar seguirase un criterio que busca un equilibrio entre a calidade matemática e a interpretación
de negocio. A finalidade é que cada clúster represente un segmento de mercado con necesidades e
previsión de demanda diferenciadas. Daquela, por unha banda buscarase de forma visual un corte no
correspondente dendrograma nun nivel de distancia onde exista un salto significativo entre unións. Un
espazo vertical longo sen fusións indica que os grupos existentes nese nivel están ben diferenciados. Por
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Figura 2.1: Dendrograma xerado mediante un exemplo de simulación de clasificación xerárquica aglo-
merativa empregando o método do máximo. O eixo horizontal identifica as categoŕıas, mentres que o
eixo vertical representa a distancia de disimilitude entre grupos. A liña descontinua marca un hipotéti-
co nivel de corte para a definición de K = 3 clústeres.

outra banda, buscarase que os grupos formados teñan certa coherencia a nivel de mercado, facilitando
aśı a aplicación de estratexias de planificación diferenciadas en Trucksters.

Unha vez determinado o valor de K, apĺıcase a función de corte para asignar a cada categoŕıa
un identificador de clúster único. Estas etiquetas constitúen a base para a segmentación das series
temporais de pedidos que se analizarán no Caṕıtulo 4.

2.2. Detección de outliers: Isolation Forest

Unha vez segmentada a carteira de clientes, o seguinte paso cŕıtico no preprocesado de datos é a
identificación e tratamento de observacións at́ıpicas ou outliers. Estas observacións representan datos
con caracteŕısticas estatisticamente diferentes do conxunto xeral de datos. No contexto deste traballo,
o interese da análise dos outliers radica no estudo do seu impacto sobre os modelos axustados no
Caṕıtulo 4.

A literatura estat́ıstica clásica ofrece métodos baseados na distribución dos datos, como o Z-score ou
o Rango Intercuart́ılico (IQR). Porén, estas técnicas presentan limitacións severas ante datos con alta
asimetŕıa, colas pesadas ou comportamentos multimodais, caracteŕısticas que presentan as variables do
presente proxecto (véxase Sección 3.3). Ante esta problemática, optouse pola aplicación dun algoritmo
non paramétrico baseado en árbores de decisión: o Isolation Forest (IF), introducido por Liu et al.
(2012).

Fundamento teórico do algoritmo

A diferenza da maioŕıa de métodos de detección de anomaĺıas que intentan modelar os puntos
“normais” para identificar aqueles que se saen do patrón, o IF baséase na suposición de que os at́ıpicos
son poucos e diferentes.

A idea subxacente a este algortimo resulta bastante sinxela: separar as observacións mediante
árbores de decisión e medir a profundidade media precisa para dividir cada variable. De forma máis
expĺıcita:

1. Contrúese un conxunto de árbores de decisión aleatorias (denominados iTrees). En cada nodo, a
variable e o valor de corte considerados para dividir os datos eĺıxense de forma aleatoria.
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2. Este procedemento reṕıtese en cada árbore ata que todas as observacións queden illadas nun
nodo da árbore cada unha.

3. Calcúlase a profundidade media para cada observación, entendéndose a profundidade como a
distancia á ráız da árbore (a profundidade da ráız seŕıa 0).

4. Para decidir se unha observación é un at́ıpico, o algoritmo normaliza a profundidade media
dende a ráız ata a folla nunha puntuación de anomaĺıa s. Valores próximos a 1 indican unha alta
probabilidade de ser un outlier, mentres que valores inferiores a 0.5 suxiren observacións normais.

A intuición matemática do modelo reside en que as observacións anómalas requiren de moi poucas
particións para ser illadas, resultando nunha menor profundidade. Pola contra, os puntos normais,
requiren un maior número de cortes e presentan profundidades significativamente máis longas.

Deste xeito, o Isolation Forest permite unha detección de outliers robusta, eficiente computacio-
nalmente e independente da distribución estat́ıstica das variables consideradas.

2.3. Modelización de series temporais

Nesta sección explicaranse os conceptos correspondentes aos modelos de series temporais que se
empregarán no Caṕıtulo 4.

As referencias clave nesta sección serán: Aneiros (2024), Cryer e Chan (2008), Box et al. (2015) e
Taylor e Letham (2018).

2.3.1. Conceptos previos

Antes de definir en que consiste unha serie temporal, é preciso introducir o concepto de proceso
estocástico.

Definición 2.2 Un proceso estocástico consiste nun conxunto de variables aleatorias, {Yt}t↓P , de-
finidas sobre o mesmo espazo de probabilidade. O conxunto P denomı́nase dominio temporal e
representa os intres nos que se observa o fenómeno.

En particular, o traballo centrarase no proceso estocástico {Yt}t↓Z, sendo Z o conxunto dos números
enteiros. Aśı, o sub́ındice t indica o instante de tempo na que se observa.

A partires dun proceso estocástico, é posible definir as series de tempo.

Definición 2.3 Unha serie de tempo trátase dunha realización dun proceso estocástico e denotarase
por

{y1, ... , yT }, T ↔ Z.

Na práctica, pártese do coñecemento dunha serie temporal e trátase de atopar o proceso estocástico
que a xerou. Porén, isto non é sempre posible. Por iso, a forma de actuar é constrúır un proceso
estocástico “básico” que poida xerar unha serie de tempo das caracteŕısticas da serie obxecto de
estudo.

Tal e como se explica no Caṕıtulo 2 de Cryer e Chan (2008), para poder facer inferencia sobre a
estrutura dun proceso estocástico, é preciso facer algunhas suposicións sobre a serie temporal. A máis
importante é o concepto de estacionariedade. A idea básica deste concepto reside en que as leis de
probabilidade que dominan o comportamento da serie non cambian ao longo do tempo. Dunha forma
máis formal, introdúcense a continuación os conceptos de estacionariedade estrita e estacionariedade
débil.



2.3. MODELIZACIÓN DE SERIES TEMPORAIS 13

Definición 2.4 Def́ınese un proceso estocástico {Yt}t↓Z como estritamente estacionario se, da-
dos t1, ... , tn momentos e un retardo k, a distribución conxunta de {Yt1 , ... , Ytn} é a mesma que a
distribución de {Yt1→k, ... , Ytn→k}.

Como esta suposición é dif́ıcil de verificar, def́ınese unha condición similar pero menos restritiva.

Definición 2.5 Dirase que un proceso estocástico {Yt}t↓Z é debilmente estacionario (ou estacio-

nario de segunda orde) se se cumpren as seguintes condicións:

1. E(Yt) = µt = µ, ↗ t ↔ Z.

2. Cov(Yt, Yt+k) = ϑ(t, t+ k) = ϑk, ↗ t, k ↔ Z.

A condición de estacionariedade débil consiste en que a media sexa constante ao longo do tempo e a
autocovarianza dependa exclusivamente do retardo k. En particular, como consecuencia da segunda
propiedade, a varianza de cada variable Yt non depende do intre t.

Durante o presente traballo, os termos serie estacionaria e proceso estacionario farán referencia a
esta segunda definición.

A partires das defincións previas, introdúcese agora un exemplo de proceso estacionario que xoga
un papel fundamental na construción do resto de procesos e modelos que se estudarán.

Definición 2.6 Sexa unha secuencia de variables aleatorias {at}t↓Z incorreladas, con media 0 e va-
rianza constante finita ϖ2. Dirase que o proceso formado por estas variables aleatorias é de rúıdo

branco.

Observación 2.1 Na definición anterior, se o proceso segue ademais unha distribución gaussiana,
entón as variables aleatorias que o conforman son independentes e identicamente distribúıdas (i.i.d.).

Figura 2.2: Representación dun proceso de rúıdo branco gaussiano con media nula e varianza unitaria
(µ = 0 e ϖ2 = 1).

Dende unha perspectiva visual, unha realización de rúıdo branco caracteŕızase por unha oscilación
puramente aleatoria arredor de cero, sen presentar ningunha tendencia nin ciclo recoñecible (ver Figura
2.2). Esta ausencia de patróns implica que o valor pasado do proceso non aporta ningunha información
para predicir o valor futuro, sendo este o obxectivo ideal para os residuos de calquera modelo de
predición que se axuste no Caṕıtulo 4.
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Introdúcense a continuación un par de conceptos que serán claves na identificación do modelo: as
funcións de autocorrelacións.

Definición 2.7 Def́ınese a función de autocorrelacións simples (fas) como segue

ϱ(s, t) =
ϑ(s, t)

ϖsϖt

,

onde ϑ(s, t) = Cov(Ys, Yt) é a covarianza entre as observacións nos momentos s e t.

É importante sinalar que a fas é unha medida da dependencia lineal existente entre Ys e Yt e toma valo-
res no intervalo [↑1, 1]. Na práctica (Caṕıtulo 4), o seu gráfico ou correlograma permitirá identificar
a necesidade de aplicar diferenzas para acadar a estacionariedade e determinar a orde de compoñentes
de media móbil (MA).

Definición 2.8 Def́ınese a función de autocorrelacións parciais (fap) da seguinte forma

ς(s, t) =
Cov

(
Ys ↑ Ŷ (s,t)

s , Yt ↑ Ŷ (s,t)
t

)

√
Var

(
Ys ↑ Ŷ (s,t)

s

)
Var

(
Yt ↑ Ŷ (s,t)

t

) ,

onde Ŷ (s,t)
j

é o mellor preditor lineal de Yj constrúıdo a partires das variables medidas nos intres entre
s e t sen inclúır os extremos.

Ao igual que a fas, a fap toma valores no intervalo [↑1, 1]. A súa utilidade reside en que permite
illar a dependencia directa entre dous instantes, o que resultará fundamental no presente traballo para
identificar a orde dos procesos autorregresivos (AR).

Figura 2.3: Correlogramas fas (esquerda) e fap (dereita) para un proceso autorregresivo AR(1) con
parámetro φ1 = 0.7. Na fas obsérvase un decaemento positivo, caracteŕıstico dun proceso con forte
persistencia ou memoria de curto prazo. Pola contra, a fap mostra un único pico significativo no
primeiro retardo e un corte brusco cara a cero nos restantes, o que permite identificar a orde p = 1 do
modelo autorregresivo.

Na Figura 2.3 represéntanse a modo de exemplo os correlogramas da fas e fap mostrais para un
proceso autorregresivo de orde 1 (ver Sección 2.3.2).

Para rematar esta sección, preséntanse unha serie de propiedades de interese dun proceso estocásti-
co.



2.3. MODELIZACIÓN DE SERIES TEMPORAIS 15

Definición 2.9 Dirase que un proceso estocástico, {Yt}t↓Z, é un proceso lineal, se admite unha re-
presentación do tipo

Yt = c+
+↔∑

i=→↔
↼iat→i, onde

+↔∑

i=→↔
|↼i| < ↘,

sendo {at}t↓Z un proceso de rúıdo branco e os coeficientes ↼i determinan a influencia de cada inno-
vación pasada e presente sobre o valor actual do proceso.

Sinálese que todo proceso lineal é estacionario, onde a súa función de autocovarianzas será:

ϑk = ϖ2
a

+↔∑

i=→↔
↼i↼i+k.

Definición 2.10 Un proceso estocástico {Yt}t↓Z dise causal (MA(↘)) se admite unha representación
do tipo

Yt = c+
+↔∑

i=0

↼iat→i, con
+↔∑

i=0

|↼i| < ↘,

con {at}t↓Z rúıdo branco e os coeficientes ↼i determinan a influencia de cada innovación pasada e
presente sobre o valor actual do proceso.

Definición 2.11 Un proceso estocástico {Yt}t↓Z será invertible (AR(↘)) se admite unha represen-
tación da forma

Yt = c+ at +
+↔∑

i=1

↽iYt→i, con
+↔∑

i=1

|↽i| < ↘,

onde {at}t↓Z é rúıdo branco e os coeficientes ↽i representan os pesos asignados ás observacións pasadas
para explicar o valor da actual.

Unha vez introducidas estas definicións, presentarase un resultado fundamental que garante que
calquera proceso estacionario ou ben é lineal ou ben se pode transformar para que o sexa.

Teorema 2.1 Se un proceso estocástico {Yt}t↓Z é estacionario e non ten compoñentes deterministas,
entón admite unha representación do tipo

Yt =
+↔∑

i=0

↼iat→i, con ↼0 = 1 e
+↔∑

i=0

↼2
i
< ↘,

onde {at}t↓Z é rúıdo branco e os coeficientes ↼i determinan a influencia de cada innovación pasada e
presente sobre o valor actual do proceso.

Daquela, nesta sección presentáronse os fundamentos básicos no contexto da análise das series
temporais. A continuación, introducirase unha aproximación clásica ao estudo deste tipo de procesos.

2.3.2. Modelos de Box-Jenkins

Como se indicou na sección previa, atopar o proceso estocástico xerador dunha serie de tempo non
é unha tarea fácil. Nesta sección tratarase de constrúır un modelo estocástico sinxelo que poida xerar
a serie de tempo dispoñible. Para iso, empregarase a metodolox́ıa Box-Jenkins, consistente en tres
etapas: identificación e selección do modelo xerador da serie, estimación dos parámetros do modelo
seleccionado e validación ou diagnose das hipóteses do mesmo.

Fundamentalmente nesta sección seguirase a estrutura da referencia Aneiros (2024).
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Procesos ARIMA(p,d,q)

Para comezar, def́ınense posibles modelos para series estacionarias.

Definición 2.12 Un proceso autorregresivo de orde p, AR(p), é un proceso estocástico {Yt}t↓Z que
admite unha represetación do tipo

Yt = c+ φ1Yt→1 + ...+ φpYt→p + at, (2.3)

sendo c,φ1, ... ,φp constantes con φp ≃= 0 e {at}t↓Z un proceso de rúıdo branco.

É preciso sinalar que a representación dada por (ec. 2.3) dá lugar a un proceso estacionario se, e só se,
o polinomio caracteŕıstico φ(z) = 1↑φ1z↑ ...↑φpzp non ten ráıces de módulo 1. En particular, será un
proceso causal se tampouco ten ráıces de módulo menor ca 1. Ademais, sempre é invertible.

Definición 2.13 Un proceso de médias móbiles de orde q, MA(q), é un proceso estocástico {Yt}t↓Z
que admite unha representación do tipo

Yt = c+ at + ⇀1at→1 + ...+ ⇀qat→q, (2.4)

con c, ⇀1, ... , ⇀q constantes, ⇀q ≃= 0 e {at}t↓Z un proceso de rúıdo branco.

Para este tipo de procesos cúmprese que sempre son estacionarios e causais, mentres que serán inver-
tibles se, e só se o polinomio caracteŕıstico ⇀(z) = 1+ ⇀1z + ...+ ⇀qzq non ten ráıces de módulo menor
ou igual ca 1.

Agora ben, se nun mesmo proceso existe estrutura autorregresiva (AR) e de médias móbiles (MA),
xorden os modelos ARMA que se definen a continuación.

Definición 2.14 Un proceso ARMA de ordes p e q, ARMA(p, q) é un proceso estocástico {Yt}t↓Z
que admite a representación

Yt = c+ φ1Yt→1 + ...+ φpYt→p

+ at + ⇀1at→1 + ...+ ⇀qat→q,
(2.5)

con c,φ1, ... ,φp, ⇀1, ... , ⇀q (φp ≃= 0, ⇀q ≃= 0) constantes e {at}t↓Z un proceso de rúıdo branco.

Observación 2.2 Considerando o operador retardo B tal que

BYt = Yt→1,

pódese reescribir de forma máis compacta o modelo (2.5) da seguinte forma

φ(B)Yt = c+ ⇀(B)at,

sendo
φ(B) = 1↑ φ1B ↑ ...↑ φpB

p e ⇀(B) = 1 + ⇀1B + ...+ ⇀qB
q.

Tendo en conta as propiedades dos procesos autorregresivos e de medias móbiles, obsérvase que a
representación anterior dá lugar a un proceso estacionario se, e só se, o polinomio φ(z) non ten ráıces
de módulo 1. Será, en efecto, causal se dito polinomio tampouco ten ráıces con módulo menor ca 1.
Ademais, será invertible se o polinomio ⇀(z) tampouco ten ráıces de módulo menor ou igual a 1.

Os modelos ARMA presentados até o momento constitúen unha familia de procesos estacionarios.
Porén, na práctica non é habitual atoparse con series de tempo xeradas por procesos constantes en
media e varianza, en especial ao traballar con series de demanda como as que se estudarán na práctica
(Caṕıtulo 4). A solución ante esta situación reside en transformar a serie para ter a estacionariedade
e posteriormente axustar un modelo ARMA.

Unha das principais causas da falta de estacionariedade dunha serie é a presenza de tendencia no
nivel da serie, isto é, existe unha relación entre o nivel medio da mesma e o tempo. Para enfrontar este
problema, proponse diferenciar a serie de forma regular.
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Definición 2.15 Dada unha serie temporal {Yt}t↓Z, def́ınese a primeira diferenza regular (d = 1)
como o proceso {Wt}t↓Z obtido mediante:

Wt = Yt ↑ Yt→1, ↗t ↔ Z.

En particular, se unha vez diferenciada a serie regularmente segue observándose tendencia, repeti-
rase o proceso sobre a serie diferenciada (en xeral, é suficiente con d ⇐ 3).

Unha vez presentada esta idea, xorden un novo tipo de modelos coñecidos como ARIMA, que
consisten en aplicar d diferenzas regulares á serie de tempo orixinal e posteriormente axustar un
modelo ARMA sobre a serie estacionaria.

Definición 2.16 Un proceso ARIMA de ordes p, d e q, ARIMA(p,d,q) é un proceso estocástico
{Yt}t↓Z que admite unha representación do tipo

φ(B)(1↑B)dYt = c+ ⇀(B)at,

onde c é unha constante, φ(B) é o polinomio correspondente á parte autorregresiva, ⇀(B) o polinomio
correspondente á parte de medias móbiles e {at}t↓Z un proceso de rúıdo branco. Ademais, φ(z) non
ten ráıces de módulo 1.

Observación 2.3 Destáquese que un proceso {Yt}t↓Z é ARIMA(p, d, q) se, e só se, {(1 ↑ B)dYt}t↓Z
é un proceso ARMA(p, q).

A identificación das ordes óptimas (p, d, q) para as series de Trucksters realizarase seguindo criterios
de parsimonia e minimización de indicadores como o AIC, proceso que se detallará máis adiante na
presente sección.

Procesos ARIMA estacionais

Os procesos ARIMA(p, d, q) estudados no apartado anterior son capaces de capturar a falta de
estacionariedade causada pola presenza de tendencia. Non obstante, non recollen a ausencia de esta-
cionariedade debida á presenza de compoñente estacional, isto é, a presenza de patróns repetitivos.
Ditos patróns obsérvanse graficamente tanto no comportamento da serie coma nos correspondentes
correlogramas (fas e fap) cunha frecuencia ou peŕıodo s. Isto motiva o estudo de novos procesos: os
modelos ARMA estacionais.

Definición 2.17 Def́ınese un proceso ARMA estacional de ordes P e Q e con peŕıodo estacional
s como un proceso estocástico {Yt}t↓Z que admite unha representación da forma

Yt = c+ ”1Yt→s + ...+ ”PYt→Ps

+ at +#1at→s + ...+#Qat→Qs,
(2.6)

onde c,”1, ... ,”P ,#1, ... ,#Q son constantes tales que ”P ≃= 0,#Q ≃= 0 e {at}t↓Z é un proceso de rúıdo
branco.

Observación 2.4 Cómpre sinalar varias consideracións sobre os procesos ARMA estacionais:

De forma análoga aos procesos ARMA, a representación anterior (ec. 2.6) pode reescribirse da
seguinte forma

”(Bs)Yt = c+#(Bs)at,

sendo agora

”(Bs) = 1↑ ”1B
s ↑ ...↑ ”PB

Ps e #(Bs) = 1 +#1B
s + ...+#QB

Qs,

e Bs representa o operador retardo estacional, BsYt = Yt→s.
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Os procesos ARMA(P,Q)s son, en particular, procesos ARMA(sP, sQ) con moitos coeficientes
nulos, polo cal as condicións de causalidade, invertibilidade e estacionariedade derivan directa-
mente das propiedades xa expostas para os procesos ARMA.

Os procesos ARMA estacionais aśı definidos modelan a dependencia estacional, é dicir, a relación
entre Yt e as observacións sucedidas en intres de tempo separados por múltiplos do peŕıodo estacional
s.

Agora ben, é posible que nun mesmo proceso existan dependencia regular e estacional. Aśı, com-
binando os modelos ARMA(p, q) e os modelos ARMA(P,Q)s xorden os modelos ARMA estacionais
multiplicativos.

Definición 2.18 Un proceso ARMA estacional multiplicativo de ordes p, q, P e Q e peŕıodo
estacional s, ARMA(p, q)↓ (P,Q)s, é un proceso estocástico {Yt}t↓Z que admite a seguinte represen-
tación

φ(B)”(Bs)Yt = c+ ⇀(B)#(Bs)at, (2.7)

sendo c unha constante, φ(B) e ”(Bs) os correspondentes polinomios autorregresivos, ⇀(B) e #(Bs)
os polinomios de medias móbiles e {at}t↓Z un proceso de rúıdo branco.

Observación 2.5 Unha forma análoga de constrúır os modelos anteriores seŕıa a partires dun ARMA
non estacional onde {at}t↓Z en lugar de ser rúıdo branco é un ARMA estacional.

Como se indicou previamente, é posible que a serie non sexa estacionaria como consecuencia da
presenza de compoñente estacional. Cando unha serie presenta dependencia estacional e o nivel medio
da serie depende de dito peŕıodo estacional, será preciso diferenciar a serie, pero neste caso de forma
estacional.

Definición 2.19 Dada unha serie temporal {Yt}t↓Z con dependencia estacional de peŕıodo s, def́ınese
a primeira diferenza estacional (D = 1) como o proceso {Vt}t↓Z obtido mediante:

Vt = Yt ↑ Yt→s, ↗t ↔ Z.

Permitindo aśı introducir os procesos ARIMA estacionais.

Definición 2.20 Un proceso ARIMA estacional de ordes P , D, Q e con peŕıodo estacional s,
ARIMA(P,D,Q)s é un proceso estocástico {Yt}t↓Z que admite a seguinte representación

”(Bs)(1↑Bs)DYt = c+#(Bs)at, (2.8)

sendo c unha constante, ”(Bs) o polinomio autorregresivo, #(Bs) o polinomio de medias móbiles e
{at}t↓Z un proceso de rúıdo branco.

Recompilando todas as ideas descritas ata o momento, constrúense os modelos ARIMA estacionais
multiplicativos, a partir dos cales se poden axustar unha gran parte das series de tempo como as
do presente traballo. Ademais, ditos procesos inclúen todos os anteriores presentados como casos
particulares.

Definición 2.21 Un proceso ARIMA estacional multiplicativo de ordes p, d, q, P , D, Q e
peŕıodo estacional s, ARIMA(p, d, q)↓ (P,D,Q)s é un proceso estocástico {Yt}t↓Z que se pode escribir
como segue

φ(B)”(Bs)(1↑B)d(1↑Bs)DYt = c+ ⇀(B)#(Bs)at, (2.9)

onde c é unha constante, φ(B) e ”(Bs) son os correspondentes polinomios autorregresivos, ⇀(B) e
#(Bs) os de medias móbiles e {at}t↓Z un proceso de rúıdo branco.

Aśı, a forma de proceder ante unha serie non estacionaria pola presenza de tendencia na práctica
(Caṕıtulo 4) será a seguinte:
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Comézase eliminando (en caso de existir) a tendencia aplicando d diferenzas regulares.

Posteriormente, elimı́nase (se é preciso) a compoñente estacional aplicando D diferenzas estacio-
nais. En xeral, é suficiente con D = 1.

Unha vez que a serie diferenciada é estacionaria, modelizarase a través dun modelo ARMA como
os presentados (regular, estacional ou multiplicativo).

Queda daquela explicada a forma de proceder ante series non estacionarias debido á tendencia.
Agora ben, recordando a Definición 2.5 de serie estacionaria, outra posible causa da falta de estaciona-
riedade seŕıa a heterocedasticidade, isto é, varianza non constante. Este fenómeno é habitual en series
temporais de demanda lox́ıstica como as de Trucksters. Para solucionar a falta de homocedasticidade,
o máis habitual na práctica é aplicar unha transformación logaŕıtmica aos datos x = log(y), áında que
existen outro tipo de transformacións, coñecidas como transformacións Box-Cox (véxase Shumway e
Sto$er, 2017):

xt =

{
y
ω
t →1
ω

, para ε ≃= 0,

log(yt), para ε = 0
(2.10)

Observación 2.6 Nótese que as transformacións anteriores apĺıcanse unicamente a series {yt}t↓Z
con todos os seus valores positivos. En caso de que a serie conteña algún valor non positivo, é preciso
aplicar a transformación á serie {xt}t = {yt}t + c, ↗t ↔ Z sendo c unha constante que garanta que
xt > 0 ↗t ↔ Z.

Para a selección do ε óptimo existen varios métodos como o de máxima verosimilitude, sobre os
que non se pretende afondar neste traballo.

Metodolox́ıa de construción do modelo

Recordemos que, tal e como se determinou na Sección 1.3, o obxectivo fundamental do traballo
reside en facer predicións sobre o comportamento futuro das series temporais de demanda. Aśı, unha
vez establecido o marco teórico dos procesos estocásticos e tras introducir os modelos clásicos de series
temporais, o seguinte paso seŕıa decidir cal dos modelos xa presentados se axusta mellor ás series
temporais que se estudarán práctica.

Por conseguinte, o presente apartado detallará as distintas etapas da metodolox́ıa de Box-Jenkins,
unha das metodolox́ıas que se aplicarán no Caṕıtulo 4 para estudar as series de demanda.

Identificación e selección dun modelo xerador da serie

Na práctica, o primeiro paso consiste en seleccionar un modelo que poida ser xerador da serie
de tempo. Para iso, é recomendable comezar levando a cabo unha análise exploratoria sobre a serie
temporal. Para iso, cómpre apoiarse no gráfico secuencial da serie, aśı como nos gráficos de autoco-
rrelacións simples (fas) e parciais (fap) (véxase Figura 2.3). Esta análise exploratoria permite extraer
unha primeira idea de como é o comportamento da serie de demanda.

Inicialmente, abordarase o estudo da variabilidade da serie. Aśı, se no gráfico secuencial se observan
problemas de heterocedasticidade, é necesario facer unha transformación de Box-Cox (ec. 2.10) sobre
a serie orixinal. Na práctica, aplicarase fundamentalmente a transformación logaŕıtmica (Caṕıtulo 4).

Posteriormente, o seguinte aspecto a tratar será a presenza de tendencia. En particular, os proble-
mas de tendencia poden detectarse ou ben no gráfico secuencial ou ben na gráfica da fas mostral, que
tomaŕıa valores positivos que decaen lentamente a cero a medida que aumenta o retardo. Ante esta
situación, aplicaranse d diferenzas regulares, como xa se explicou na sección previa.

Tras eliminar a tendencia, o seguinte paso residirá no estudo da presenza de compoñente estacional.
Este fenómeno observarase unha vez máis no gráfico secuencial da serie (comportamento ćıclico con
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peŕıodo s); aśı como na gráfica da fas mostral, que amosará unha forte correlación positiva no retardo
estacional, converxendo lentamente a cero cando crece o retardo e, ademais, con periodicidade do
mesmo peŕıodo ca serie. Daquela, no caso de que a serie presente tendencia estacional, aplicaranse D
diferencias estacionais de peŕıodo s, como se detallou previamente.

Unha vez se teña a serie diferenciada, o seguinte paso consistirá en determinar as ordes dos poli-
nomios autorregresivos e de medias móbiles: parte regular (p, q) e estacional (P , Q). Como primeira
idea, pódese observar novamente o gráfico secuencial aśı como os gráficos das funcións de autocorrela-
cións simple e parcial mostrais (véxase Aneiros, 2024 e o Caṕıtulo 6 de Box et al., 2015). Porén, esta
metodolox́ıa por si soa carece de validez, pois tan só é un criterio gráfico. En particular, este enfoque
é subxectivo e pode provocar a identificación de varios posibles procesos como xeradores da serie e, en
calquera caso, os modelos identificados serán relativamente sinxelos.

Por conseguinte, a forma de proceder será suxerir un modelo mediante a interpretación gráfica e, a
continuación, seleccionar as ordes mediante a minimización dalgún criterio de información. Ditos ı́ndices
permiten seleccionar o modelo óptimo buscando o equilibrio entre a bondade de axuste (maximizar
a verosimilitude) e a complexidade do modelo (penalizar o número de parámetros). Os criterios máis
empregados na práctica son os seguintes:

Criterio de información de Akaike (AIC):

AIC(M) = ↑2 log(L(⇁̂r+1)) + 2r.

Criterio de información de Akaike corrixido (AICc):

AICc(M) = ↑2 log(L(⇁̂r+1)) + 2(rT + r + 2)/(T ↑ r ↑ 2).

Criterio de información Bayesiano (BIC):

BIC(M) = ↑2 log(L(⇁̂r+1)) + r log(T ).

Sendo L(⇁̂r+1) a función de verosimilitude do modelo avaliada nos estimadores de máxima verosimi-
litude; r a cantidade de parámetros (sen contar a varianza das innovacións) do modelo; T o tamaño
mostral; e M o modelo correspondente con vector de parámetros ⇁r+1. Na práctica, co fin de evitar o
sobreaxuste, ante modelos con diferenzas no criterio de información inferiores a 2 unidades, seleccio-
narase sempre o modelo máis sinxelo (menor número de parámetros).

Estimación do modelo seleccionado

Unha vez seleccionado un modelo como posible xerador da serie, o seguinte paso será estimar os
parámetros do devandito modelo.

Por simplicidade, explicarase o caso dun modelo ARMA1 e presentaranse dous métodos: estimación
por mı́nimos cadrados e por máxima verosimilitude.

Dado entón un modelo ARMA(p, q), os parámetros que se deben estimar son os seguintes:

c,φ1, ... ,φp, ⇀1, ... , ⇀q e ϖ2
a
,

onde ϖ2
a
representa a varianza das innovacións. Considérese unha estimación de ditos parámetros, o

vector das estimacións vaise denotar como:

β̃ = (c̃, φ̃1, ... , φ̃p, ⇀̃1, ... , ⇀̃q, ϖ̃
2
a
).

1
O caso dos modelos ARMA estacionais será análogo inclúındo máis parámetros.
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Ademais, os residuos asociados a dita estimación def́ınense como

ât = yt ↑ (c̃+ φ̃1yt→1 + ...+ φ̃pyt→p + ⇀̃1ât→1 + ...+ ⇀̃qât→q),

e a súa suma de cadrados

S(β̃) =
T∑

t=1

â2
t
.

Estimación por mı́nimos cadrados e mı́nimos cadrados condicionados. A estimación dos
parámetros polo método dos mı́nimos cadrados obtense mediante os valores de β̂ que minimicen a
función S,

β̂ = argmı́n
ε̃

S(β̃).

Ao buscar este mı́nimo poden aparecer dúas dificultades:

Se p > 0, os valores dos residuos â1, ... , âp dependen dos valores non observados de Y0, ... , Y1→p.

Se ademais q > 0, âp+1 depende dos valores âp, âp→1, ... , âp+1→q, que á súa vez dependen de
valores non observados da serie.

Co fin de solventar ambos problemas, xorde o método dos mı́nimos cadrados condicionados:

mı́n
ε̃

T∑

t=p+1

â2
t
,

s. a. âp = âp→1 = ... = âp+1→q = 0.

Estimación por máxima verosimilitude. Para estimar por máxima verosimilitude os parámetros
buscarase neste caso o vector β̂ que maximiza a función de verosimilitude:

β̂ = argmáx
ε̃

f
ε̃
(y1, ... , yT ),

sendo f
ε̃
a función de densidade conxunta asociada a un vector aleatorio (Ỹ1, ... , ỸT )↗ procedente dun

proceso ARMA(p, q) con coeficientes β̃.

Observación 2.7 É preciso sinalar que, baixo certas condicións de regularidade, cúmprese que:

Os estimadores de máxima verosimilitude dos parámetros do modelo excepto o da varianza das
innovacións (ϖ̂2

a
) son asintoticamente inesgados, eficientes e con distribución normal.

O estimador de máxima verosimilitude da varianza das innovacións é consistente.

Partindo da normalidade asintótica, validarase o modelo contrastando a significación individual de
cada parámetro mediante o test da t de Student. Na práctica, seguirase un procedemento iterativo:
se algún parámetro non resulta estatisticamente significativo, eliminarase do modelo (fixándoo a 0) e
procederase a reaxustar o modelo reducido.

Diagnose do modelo

Unha vez estimados os parámetros, procederase á fase de diagnose, cuxo obxectivo é validar que
os residuos do modelo axustado satisfán as hipóteses fundamentais de rúıdo branco (independencia,
homocedasticidade e normalidade). Este proceso conćıbese como un ciclo iterativo: no caso de que
algunha destas hipóteses se incumpra, o modelo considerarase inadecuado, o que obrigará a retornar
á etapa de identificación para propoñer unha nova estrutura e repetir o procedemento ata obter un
modelo estatisticamente válido.
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A suposición fundamental é que as innovacións {at}t↓Z sexan rúıdo branco, é dicir, deben ser
incorreladas, con media cero e varianza constante.

Como hipótese adicional tamén se comproba que as innovacións sexan gaussianas. Aı́nda que esta
condición non é estritamente limitante para a validez do modelo, resulta adecuada. En caso de non
cumprirse esta última hipótese, en caso de calcular intervalos de predición non se “garantirá” o nivel
de confianza dos intervalos constrúıdos en base á distribución do erro de predición.

Nótese que, como as innovacións (a1, ... , aT ) non son observables, os contrastes realizaranse sobre
os residuos do modelo (â1, ... , âT ).

Antes de facer os distintos contrastes, pode ser de axuda representar o gráfico secuencial dos
residuos. Isto permite notar problemas de tendencia ou variabilidade non constante principalmente,
invalidando a hipótese de rúıdo branco.

Contraste de incorrelación. En primeiro lugar, cómpre verificar se os residuos están incorrelados.
Para iso, adoptarase un enfoque mixto: gráfico e anaĺıtico.

Por unha parte, analizarase o correlograma dos residuos, que consiste na representación gráfica das
funcións de autocorrelación (fas e fap) definidas anteriormente. Baixo a hipótese de rúıdo branco e
fixado un nivel de significación do 5%, espérase que aproximadamente o 95% dos coeficientes de auto-
correlación mostral se atopen dentro das bandas de confianza de Anderson, definidas por ±1.96/

→
T .

Visualmente, a existencia de barras que sobresaen de xeito significativo destes ĺımites indicaŕıa a pre-
senza de información sistemática non recollida polo modelo, o que obrigaŕıa a revisar a súa estrutura.

Por outra banda, para unha validación formal, empregarase o contraste de Ljung-Box (Caṕıtulo 8
de Box et al., 2015), que contrasta a hipótese nula de incorrelación conxunta ata un retardo m, isto é:

H0 : ϱ1 = ϱ2 = ··· = ϱm = 0

H1 : ⇒j ↔ {1, ... ,m} tal que ϱj ≃= 0

O estat́ıstico de proba def́ınese como:

Qm = T (T + 2)
m∑

k=1

ϱ̂2
k

T ↑ k
(2.11)

onde T é o tamaño da mostra e ϱ̂k a autocorrelación mostral de orde k dos residuos.

Baixo a hipótese nula, o estat́ıstico Qm (ec. 2.11) segue asintoticamente unha distribución ω2 con
m↑ (p+ q) graos de liberdade, onde p e q son as ordes da parte regular e estacional do modelo. Para
o nivel de significación fixado (5%), rexeitarase a hipótese de incorrelación se o valor de Qm supera o
cuantil 0.95 da distribución ω2

m→(p+q)
2.

Contraste de media cero. Unha vez comprobada a incorrelación dos residuos, contrastarase se a
media dos mesmos é nula. Para levar a cabo isto, empregarase o test da t de Student para a media
dunha mostra. Neste caso o estat́ıstico vén dado por:

t =
¯̂a

ŝâ/
→
T
, (2.12)

onde ¯̂a e ŝâ denotan a media e a cuasivarianza mostral dos residuos e T o tamaño mostral.

2
No caso dos ARMA estacionais multiplicativos a única diferenza reside nos graos de liberdade da distribución ω2

sendo nese caso m→ (p+ q + P +Q)
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Baixo a hipótese nula (H0 : µa = 0) dito estat́ıstico segue unha distribución t de Student que se
aproxima asintoticamente por unhaN(0, 1). Daquela, fixado un nivel de significación do 5%, rexeitarase
que os residuos teñen media nula se

|¯̂a| ⇑ 1.96
ŝâ→
T
.

Contraste de homocedasticidade. Para verificar a estabilidade da varianza nos residuos, na
práctica (Caṕıtulo 4) empregarase o estat́ıstico de contraste Hk. Este test avaĺıa se a varianza dos
residuos é constante ao longo da serie comparando a variabilidade no tramo final da mostra coa do
tramo inicial.

Formalmente, a hipótese nula (H0) asume que a varianza é constante (homocedasticidade), mentres
que a hipótese alternativa (H1) suxire que a varianza aumenta ou diminúe co tempo (heterocedastici-
dade). O estat́ıstico calcúlase como a razón entre a suma de cadrados dos residuos no último terzo da
serie e a do primeiro terzo:

Hk =

∑
T

t=T→k+1 â
2
t∑

d+k

t=d+1 â
2
t

, (2.13)

sendo k o número de observacións considerado en cada tramo (na práctica tomarase un terzo da
mostra).

Baixo a hipótese nula, o estat́ıstico Hk (ec. 2.13) segue unha distribución Fk,k. Aśı, rexeitarase a
homocedasticidade se o p-valor asociado ao estat́ıstico é inferior ao nivel de significación considerado
(ς = 0.05 neste traballo).

Contraste de normalidade. A última etapa da validación do modelo céntrase na distribución das
innovacións. Como xa se sinalou previamente, a normalidade non é indispensable para a validez do
modelo, mais si é adecuada.

Para avaliar esta hipótese, empregaranse criterios gráficos aśı como contrastes formais. Sobre a
análise gráfica, pode resultar de utilidade un gráfico Q-Q plot dos residuos. Dito gráfico representa
os cuant́ıs mostrais fronte aos dunha distribución normal estándar. No caso en que se cumpra que as
innovacións son i.i.d. con distribución normal, a disposición da mostra debeŕıa ser aproximadamente
lineal (en particular aliñánse sobre a diagonal principal). Pola contra, desviacións nos extremos repre-
sentaŕıan a presenza de colas pesadas ou asimetŕıa, o que indicaŕıa a non normalidade das innovacións.

Para unha validación anaĺıtica rigorosa existen varias opcións. Unha delas é o test de Jarque-Bera
que se basea en verificar se os coeficientes de asimetŕıa e curtose dos residuos coinciden cos dunha
distribución normal.3

Aśı, o estat́ıstico da proba seŕıa:

JB = T

(
S2

6
+

(K ↑ 3)2

24

)
, (2.14)

onde T é o tamaño da mostra, S o coeficiente de asimetŕıa mostral e K o coeficiente de curtose mostral.

Baixo a hipótese nula (H0 : a distribución das innovacións é gaussiana) o estat́ıstico JB (ec. 2.14)
distribúese de acordo a unha ω2 con dous graos de liberdade. Daquela, se JB supera o cuantil de orde
0.95 dunha ω2

2 rexeitarase a normalidade dos residuos.

Cómpre sinalar que o test de Jarque-Bera non é a única opción para contrastar a normalidade das
innovacións. Outra opción seŕıa o contraste de Shapiro-Wilk (véxase Aneiros, 2024).

3
Recordemos que a distribución N(0, 1) ten simetŕıa 0 e coeficiente de curtose 3.
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Predición

Unha vez validado o modelo e tras comprobar que os residuos satisfán as hipóteses de rúıdo branco,
procédese á etapa final e obxectivo principal deste estudo: a predición de valores futuros. En particular,
na práctica buscarase predicir os valores da serie para un horizonte h baseándose na información
dispoñible ata o intre T .

Considérese o preditor que minimice o erro cadrático medio de predición (MSE) que será:

ŶT (h) = E[YT+h|Y1, ... , YT ].

Para obter estas predicións na práctica, seguirase un procedemento recursivo que se fundamenta
na expresión do modelo axustado (ec. 2.9):

1. Expansión do modelo: reescŕıbese o modelo ARIMA de xeito que no lado esquerdo queden os
termos Yt e no lado dereito quedarán o resto de termos.

2. Desprazamento temporal: substitúese o ı́ndice temporal t por T + h.

3. Substitución de valores: reemplázanse os termos teóricos polas súas respectivas estimacións ou
valores coñecidos de acordo ás seguintes indicacións: os valores observados (Yt, t ⇐ T ) polos seus
valores reais; as futuras observacións (Yt, t > T ) polas correspondentes predicións (calculadas
recursivamente); as innovacións pasadas (at, t ⇐ T ) polos residuos estimados; e as innovacións
futuras pola súa esperanza, que é cero.

A predición puntual obtida, ŶT (h), denomı́nase predición con orixe en T e horizonte h.

Observación 2.8 Cómpre ter en conta as seguintes consideracións:

Se d = 0, as predicións a longo prazo converxerán á media do proceso.

Se d = 1, as predicións a longo prazo converxerán, ou ben a unha constante se c = 0, ou ben a
unha recta se c ≃= 0.

Se d > 1, as predicións a longo prazo converxerán, ou ben a unha constante se c = 0, ou ben
presentarán tendencia cadrática se c ≃= 0. Nos futuros axustes deste proxecto (Caṕıtulo 4) ,
decidiuse non inclúır a constante neste caso, posto que unha tendencia cuadrática é perigosa
á hora de predicir.

No caso de modelos estacionais (ARIMA estacionais multiplicativos), este comportamento da tendencia
sucede de forma análoga, pero co patrón estacional superposto á tendencia base definida por d e c.

Ademais de obter as predicións puntuais, tamén se podeŕıan constrúır intervalos de predición.
Para iso existen dous posibles escenarios: se as innovacións son gaussianas, os intervalos constrúense
a partires desta propiedade; se non se cumpre a normalidade, a alternativa reside en aplicar técnicas
de remostreo (Bootstrap sobre os residuos). Para profundizar sobre a construción dos mesmos, poden
consultarse as referencias Cao e Fernández (2022) e o Caṕıtulo 5 de Box et al. (2015).

Extensións dos modelos Box-Jenkins: Análise de intervencións e at́ıpicos

Na modelización de series temporais económicas e lox́ısticas, é frecuente a aparición de observa-
cións que diverxen significativamente do comportamento estocástico esperado do proceso base. Estas
anomaĺıas, se non son tratadas adecuadamente, poden distorsionar a identificación do modelo ARIMA
adecuado, comprometendo a precisión das predicións.

Na presente sección, abordarase a caracterización teórica destes fenómenos, distinguindo dous tipos
de factores segundo a dispoñibilidade a priori sobre o momento de ocurrencia.
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Por unha banda, unha serie de tempo pode estar afectada por factores exóxenos de cronolox́ıa
coñecida, tales como eventos especiais (Black Friday) ou cambios na poĺıtica de mercado da empresa.
A análise de intervención permite incorporar estes efectos deterministas ao modelo.

Por outra banda, estudarase a detección de valores at́ıpicos que suceden en intres descoñecidos. Den-
de unha perspectiva teórica, estes impactos clasif́ıcanse segundo a súa natureza en at́ıpicos aditivos
(AO), que afectan só á observación puntual, e at́ıpicos innovativos (IO), que afectan á innovación
e o seu efecto propágase no tempo segundo a estrutura do modelo. Cómpre sinalar que, no axuste dos
modelos do Caṕıtulo 4, os at́ıpicos modelaranse mediante variables dummy.

Durante este apartado seguirase fundamentalmente a referencia Box et al. (2015).

Análise de intervención

A análise de intervención estuda modelos de series temporais nos que se inclúen variables ficticias
para representar sucesos exóxenos que producen efectos deterministas. As intervencións clasif́ıcanse en
dous tipos: os efectos permanentes, que provocan un cambio no nivel da serie a partires dun intre
coñecido; e os efectos transitorios, que provocan cambios en algúns valores da serie, mais a longo
prazo o nivel da mesma non se ve afectado.

Durante a presente análise, suporase que a intervención tivo lugar nun momento h coñecido. Ade-
mais, denotarase por {Yt}t↓Z o proceso que xera a serie intervida, e {Xt}t↓Z o proceso xerador da
serie se non sufrise intervención. En particular, dito proceso será un ARIMA dos explicados na Sección
2.3.2.

Antes de explicar a modelización dos efectos permanentes e transitorios, cómpre definir dúas fun-
cións que serán de gran utilidade.

Definición 2.22 Def́ınese a función chanzo

(
S(h)
t

)
como

S(h)
t

=

{
0, si t < h,

1, si t ⇑ h.
(2.15)

Def́ınese a función impulso

(
P (h)
t

)
como

P (h)
t

=

{
0, si t ≃= h,

1, si t = h.
(2.16)

Observación 2.9 As funcións definidas anteriormente cumpren que

S(h)
t

↑ S(h)
t→1 = P (h)

t
.

S(h+j)
t

= S(h)
t→j

se j ⇑ 0.

Aśı, o modelo para unha serie con intervención será da forma:

Yt = ω(B)f (h)
t

+Xt, (2.17)

onde ω(B) denomı́nase función de transferencia e f (h)
t

será a función chanzo (ec. 2.15), se o efecto
é permanente, ou a función impulso (ec. 2.16), se o efecto é transitorio.

A clave da análise de intervención reside en como se modela a función de transferencia, ω(B), que
describe o impacto da intervención.
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Modelización dos efectos permanentes. Os efectos permanentes caracteŕızanse por alterar o
nivel medio ou tendencia da serie a partires do intre da intervención t = h. A continuación preséntanse

tres tipos de estruturas básicas para modelar estes efectos, baseadas na función chanzo S(h)
t

.

En primeiro lugar, considérese o caso no cal a intervención provoca un desprazamento inmediato e
constante no nivel da serie. O efecto consiste nun salto de ω0 unidades a partires do intre t = h. Aśı,
o modelo seŕıa:

Yt = ω0S
(h)
t

+Xt.

Outro caso dase cando o salto non é brusco, senón que o nivel da serie cambia gradualmente dende
o momento da intervención (t = h) ata outro intre t = h+ l. Daquela, o modelo (ec. 2.17) escribirase
como:

Yt = (ω0 + ω1B + ...+ ωlB
l)S(h)

t
+Xt.

Por último, modélase o caso onde o efecto da intervención consiste en variar gradualmente o nivel
da serie dende o intre t = h. Este comportamento dinámico captúrase mediante un parámetro ▷
(0 < ▷ < 1). O correspondente modelo será:

Yt =
ω0

1↑ ▷B
S(h)
t

+Xt.

En particular, a función de transferencia pódese reescribir como ω(B) = ω0(1 + ▷B + ...+ ▷jBj + ...).

Modelización dos efectos transitorios. A diferenza dos anteriores, os efectos transitorios tan
só cambian algúns valores da serie, sen presenciarse efecto no nivel asintoticamente. De forma análoga
aos efectos permanentes, preséntanse tres estruturas para modelizar os efectos, baseadas neste caso na

función impulso P (h)
t

.

Un exemplo paradigmático deste tipo de fenómenos no sector lox́ıstico é o Black Friday. Este evento
xera un incremento masivo na demanda de transporte durante unha semana espećıfica, pero unha vez
transcorrido o peŕıodo de ofertas, o volume de pedidos tende a retornar aos seus niveis habituais.
Dependendo de como se disipe este impacto (de forma instantánea ou gradual), empregarase unha das
seguintes estruturas:

En primeiro lugar, considérase o caso no cal a intervención provoca un cambio de ω0 unidades
unicamente no intre no cal sucede (t = h). Entón, o modelo resulta:

Yt = ω0P
(h)
t

+Xt.

Outro posible efecto transitorio dunha intervención consiste en variar tódolos valores da serie dende
o intre t = h ata o momento t = h+ l. Neste caso, o modelo será:

Yt = (ω0 + ω1B + ...+ ωlB
l)P (h)

t
+Xt.

Por último, establécense os modelos no caso de que o efecto transitorio provoque variacións na serie
dende o intre t = h ata o final. Neste caso as variacións estarán xeradas a partires dos parámetros ω0

e ▷ (0 < ▷ < 1). Aśı, o modelo (ec. 2.17) reescŕıbese como segue:

Yt =
ω0

1↑ ▷B
P (h)
t

+Xt.

Partindo dos modelos de intervención presentados ata o momento podeŕıan constrúırse outros máis
sofisticados (véxase Aneiros, 2024).
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Neste momento nace unha pregunta moi natural: como se constrúe un modelo de intervención na
práctica?

O primeiro a decidir será o tipo de efecto e a función de transferencia seleccionada. Isto identificarase
facendo a exploración da serie completa (y1, ... , yT ). Tras isto, deberase seleccionar un modelo ARIMA
como posible xerador do proceso sen intervención {Xt}t↓Z. Para tal fin existen dúas opcións:

Propoñer un modelo en base ao estudo das observacións previas á intervención.

Suxerir como modelo o ARIMA que minimice algún dos criterios de información xa explicados
(AIC, BIC ou AICc) na estimación do modelo para o proceso completo {Yt}t↓Z.

O seguinte paso seŕıa estimar os parámetros do modelo ARIMA seleccionado e da función de trans-
ferencia ω(B). Isto realizarase mediante máxima verosimilitude, mais non se entrará en detalle neste
procedemento.

Análise de at́ıpicos

En ocasións, as observacións dunha serie de tempo poden estar afectadas por erros ou perturbacións
que crean efectos espurios nas series e resultan en comportamentos “inusuais”. Estas observacións que
se saen do comportamento habitual da serie denomı́nanse outliers ou valores at́ıpicos. A presenza deste
tipo de observacións nunha serie de tempo compromete a selección e estimación dun modelo ARIMA,
podendo provocar nesgos nas estimacións dos parámetros ou distorsionar a identificación da estrutura
de correlación (fas/fap). A casúıstica de que o momento h no cal sucede un evento que dá lugar a
un at́ıpico fose coñecido, estaŕıa cuberto pola análise de intervención descrita previamente. Porén,
na práctica, a presenza de outliers é descoñecida ao comezo da análise da serie, co cal será preciso
buscar algunha alternativa para tratar estes casos. Neste apartado explicaranse outras metodolox́ıas
para modelar o efecto destes at́ıpicos na serie de tempo.

É preciso facer varias consideracións previas ao desenvolvemento do presente apartado:

Suporase que só hai un at́ıpico no intre t = h.

A serie con efecto do at́ıpico provén do proceso {Yt}t↓Z.

O proceso xerador da serie sen efecto do at́ıpico denotarase por {Xt}t↓Z e provén dun proceso
ARIMA dos definidos na Sección 2.3.2.

Agora ben, como xa se indicou previamente, na teoŕıa distinguiranse dous tipos de valores at́ıpicos: os
at́ıpicos aditivos (AO) e os at́ıpicos innovativos (IO).

Por unha parte, os at́ıpicos aditivos (AO) serán aqueles nos que o valor da serie no intre t = h foi
xerado de forma distinta ao resto. En particular, terase que

Yt = ωAP
(h)
t

+Xt,

sendo P (h)
t

a función impulso definida por (ec. 2.16).

Por outra banda, nos at́ıpicos innovativos (IO) a innovación no intre t = h foi xerada de forma
distinta ao resto. Neste caso, as innovacións do proceso {Yt}t↓Z serán:

et = ωIP
(h)
t

+ at,

sendo at as innovacións do proceso {Xt}t↓Z e P (h)
t

de novo a función impulso.

Dende un punto de vista práctico, a detección de at́ıpicos reaĺızase a través da análise dos residuos
do modelo estimado. Por conseguinte, resulta fundamental caracterizar o efecto que exercen os at́ıpicos
aditivos e innovativos sobre a estrutura dos residuos.
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Asumindo que o proceso ARIMA é invertible, póndense expresar as innovacións do proceso sen
“contaminar” en función da serie mediante a relación at = ↽(B)Xt, onde ↽(B) = 1 ↑

∑↔
j=1 ↽jBj .

De forma análoga, é posible facer o propio sobre as innovacións do proceso co efecto do at́ıpico:
et = ↽(B)Yt. Baixo estas condicións, estúdase o impacto dos at́ıpicos sobre os residuos.

No caso dos at́ıpicos aditivos, o efecto no residuo non se limita ao intre h, senón que se propaga
aos momentos posteriores dependendo da estrutura autorregresiva do modelo. En particular:

et = ωA↽(B)P (h)
t

+ at.

Isto implica que o residuo no intre t = h sofre un incremento ωA, mais nos momentos seguintes (t > h),
o residuo vese afectado por ↑ωA↽t→h.

En canto ao efecto dos at́ıpicos innovativos, xa se explicou que o efecto deste tipo de outliers afecta
directamente ás innovacións. De feito tense que

et = ωIP
(h)
t

+ at.

Neste caso o único residuo que se ve afectado é o do momento do at́ıpico (t = h).

Partindo destas relacións, o problema de detección de at́ıpicos redúcese a estimar o parámetro
ω nun modelo de regresión simple sobre os residuos et = ωẑt + at e contrastar a súa significación
(mediante o contraste da t de Student). A variable explicativa ẑt dependerá do tipo de at́ıpico (AO ou
IO) e dos parámetros do modelo ARIMA estimado.

Na práctica, descoñécese a priori o número, localización (h) e natureza dos at́ıpicos. Por ese mesmo
motivo, será preciso implementar un procedemento de detección iterativo aplicado sobre a totalida-
de das observacións. O algoritmo que se empregará na práctica (Caṕıtulo 4) baséase no método de
Bonferroni e consta das seguintes etapas:

1. Estimación inicial: Axústase un modelo ARIMA á serie orixinal e obtéñense os residuos esti-
mados.

2. Cálculo de estat́ısticos: Para cada intre t, calcúlanse os estat́ısticos t de Student baixo as
hipóteses nulas de que dita observación é un at́ıpico aditivo ou innovativo.

3. Selección de candidatos: Identif́ıcanse como candidatos todos aqueles puntos cuxos p-valores
asociados sexan inferiores a 0.05/T (na práctica fixarase un nivel de significación do 5%).

4. Identificación e estimación: De entre tódolos candidatos seleccionarase aquel de menor p-
valor. Incorpórase o efecto de dito at́ıpico ao modelo e recalcúlanse os residuos.

5. Converxencia. O proceso reṕıtese iterativamente sobre os novos residuos ata que non se detecte
ningún at́ıpico adicional significativo.

2.3.3. Modelos Prophet

Unha vez analizada a metodolox́ıa clásica de Box-Jenkins, nesta sección preséntase unha alternativa
moderna e flexible, especialmente deseñada para modelar series con fortes compoñentes estacionais e
influencias de eventos de calendario, caracteŕısticas t́ıpicas das series de demanda: o modelo Prophet.

Este algoritmo, desenvolto por Taylor e Letham (2018) no equipo de Core Data Science de Face-
book, afástase do corrente dos modelos ARIMA. Mentres que os métodos clásicos proxectan o erro a
través dunha estrutura de dependencia temporal, Prophet baséase no enfoque dos Modelos Aditivos
Xeneralizados (GAM). Conceptualmente, aborda o problema de predición como un exercicio de
axuste de curvas (curve fitting).
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A formulación matemática do Prophet fundaméntase na descomposición da serie temporal y(t) en
tres compoñentes principais: tendencia, estacionalidade e festivos, aos que se lles suma un termo de
erro.

y(t) = g(t) + s(t) + h(t) + ◁t. (2.18)

No modelo (2.18) tense que:

g(t) representa a tendencia ou crecemento non periódico (cambios no nivel da serie).

A compoñente s(t) modela a estacionalidade periódica (patróns semanais, anuais,...).

h(t) recolle o efecto de festivos e eventos especiais (Black Friday).

Por último, ◁t é o termo do erro, para o que se asume unha distribución normal.

Esta estrutura aditiva aporta unha serie de vantaxes: flexibilidade á hora de axustar estacionalidades
máis complexas; robustez fronte a datos faltantes e non precisa que as observacións sexan equiespa-
cidadas (a diferenza dos modelos ARIMA); o axuste é computacionalmente rápido; e, ademais, os
parámetros do modelo son facilmente interpretables.

Nas seguintes subseccións detallarase a especificación das distintas compoñentes e como esta estru-
tura permite incorporar coñecemento do sector (festivos, Black Friday,...) de forma máis intuitiva ca
nos modelos clásicos.

Modelo da tendencia

A compoñente da tendencia, g(t), captura os cambios non periódicos no nivel da serie temporal.
O modelo Prophet permite implementar dous tipos de crecemento para esta compoñente: un modelo
de crecemento lox́ıstico saturado e un modelo de crecemento lineal segmentado.

O crecemento lox́ıstico é axeitado para problemas onde se coñece un ĺımite f́ısico de capacidade.
Porén, neste proxecto non se empregará esta opción, pois non se imporá un ĺımite superior á capacidade
de crecemento da empresa. Se o lector quere afondar neste tipo de modelos pode consultar a referencia
básica desta sección Taylor e Letham (2018). Por conseguinte, considerarase un modelo de crecemento
lineal segmentado.

Neste tipo de modelos, os cambios na tendencia incorpóranse definindo unha serie de puntos de
cambio. Ditos puntos denotaranse por tj con j = 1, ... , S. Def́ınese ademais para cada punto de cambio
(tj):

aj(t) =

{
1, si t ⇑ tj ,

0, si t < tj .

Aśı, a tendencia formúlase como:

g(t) =



k +
S∑

j=1

aj(t)▷j



 t+



m+
S∑

j=1

aj(t)ϑj



 , (2.19)

onde:

k é a taxa de crecemento base.

▷j representa o cambio na taxa de crecemento que se produce no intre tj .

m é o parámetro de desprazamento.

ϑj = ↑tj▷j para asegurar a continuidade de g(t).
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Na definición da función de tendencia g(t) (ec. 2.19) obsérvase un problema: como se seleccionan
os puntos de cambio tj? Os puntos de cambio poden ser especificados manualmente se as datas de
cambios de poĺıtica na empresa ou novos contratos son coñecidos de antemán. Porén, o máis habitual
na práctica é seleccionalos automaticamente a partires dun conxunto de candidatos.

O modelo especifica unha gran cantidade de puntos de cambio, empregando a distribución a priori
▷j ⇓ Laplace(0, 0)4. O parámetro 0 permite controlar a flexibilidade do modelo á hora de detectar
cambios na tendencia. Cómpre sinalar que, as consideracións sobre ▷j non teñen impacto sobre a taxa
de crecemento base k, co cal se 0 é próximo a 0 o axuste redúcese a un modelo lineal estándar (non
segmentado).

Agora ben, á hora de facer as predicións, a tendencia terá unha taxa constante. Mostrouse que
o modelo para a tendencia asume que existen S puntos de cambio dunha mostra de T puntos, pro-
dućındose en cada un deles un cambio da forma ▷j ⇓ Laplace (0, 0). Aśı, simularanse cambios de taxa
futuros que imitan os axustados reemplazando 0 por unha varianza estimada a partir dos datos. En
particular, podeŕıa empregarse inferencia Bayesiana partindo da distribución a priori de 0 , ou ben
estimar mediante máxima verosimilitude o parámetro de escala ε = 1

S

∑
S

j=1 |▷j |.

Os futuros puntos de cambios mostréanse aleatoriamente de forma que a frecuencia coincida coa
do histórico, é dicir, ↗j > T :

{
▷j = 0 con probabilidade T→S

T
,

▷j ⇓ Laplace(0,ε) con probabilidade S

T
.

En consecuencia, a incerteza na predición da tendencia mı́dese asumindo que o futuro vai presentar a
mesma frecuencia e magnitude media de cambios no nivel da serie ca o histórico.

Ademais, unha vez estimado o parámetro ε, pódese usar este modelo para simular tendencias futuras
e contrúır intervalos de predición. Non obstante, a hipótese de que a tendencia ten un comportamento
similar á observada é moi forte, co cal non se espera que os intervalos aśı constrúıdos teñan cobertura
exacta. Porén, poden resultar de utilidade á hora de notar un problema de sobreaxuste. En particular,
se 0 é grande o modelo presenta unha maior flexibilidade á hora de axustarse á serie histórica e o
erro de entrenamento diminuirá. A consecuencia disto será unha maior amplitude dos intervalos de
predición.

Estacionalidade

A segunda compoñente estrutural do modelo é a estacionalidade, s(t), que captura as variacións
periódicas da serie temporal (patróns semanais, mensuais ou anuais). A diferenza dos modelos ARIMA
que axustan a estacionalidade mediante diferenciación ou retardos estacionais ŕıxidos, Prophet modela
estes efectos como unha función continua baseada en series de Fourier (véxase López Pouso, 2019).

Esta aproximación permite modelar múltiples peŕıodos estacionais simultaneamente e manexar
periodicidades non enteiras (por exemplo, un ano como 365.25 d́ıas). Formalmente, sexa P o peŕıodo
estacional, a compoñente s(t) pode aproximarse pola seguinte suma de senos e cosenos:

s(t) =
N∑

n=1

(
an cos

(
2↽nt

P

)
+ bn sen

(
2↽nt

P

))
. (2.20)

Para poder axustar a estacionalidade será necesario estimar 2N coeficientes: an e bn, n = 1, ... , N que
seguen unha distribución a priori N(0,ϖ2).

O parámetro N xoga un papel fundamental no axuste. Un valor baixo de dito parámetro xera unha
estacionalidade suave, mentres que un N elevado captura estacionalidades con cambios bruscos e alta

4
A distribución de Laplace resulta da diferenza de dúas variables aleatorias exponenciais i.i.d.
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frecuencia, podendo caer no sobreaxuste. Prophet emprega os valores N = 10 para a estacionalidade
anual e N = 3 para a estacionalidade semanal. Na práctica, a selección de dito parámetro levarase a
cabo mediante unha busca en malla (Grid Search) minimizando algún criterio do erro (Sección 4.3).

Matricialmente, esta compoñente intégrase no modelo xeral xerando una matriz de regresores X(t)
formada polos termos sinusoidais de xeito que s(t) = X(t)β sendo β o vector dos 2N coeficientes
(a1, b1, ... , aN , bN ).

Festivos e eventos

Os festivos ou campañas especiais teñen un impacto significativo sobre as series temporais no ámbito
económico e lox́ıstico. A miúdo os efectos destas datas non seguen patróns estacionais, co cal non son
capturados pola compoñente s(t) definida previamente.

Prophet é capaz de modelar tales efectos mediante a terceira compoñente do modelo (ec. 2.18):
h(t). En particular, dita compoñente permite incorporar ao modelo unha listaxe de datas asumindo
que os efectos son independentes entre si.

É posible inclúır unha fiestra de efecto para cada un dos festivos, o que permite reflectir o impacto
do evento tanto nos d́ıas previos coma nas datas posteriores á mesma. Matematicamente, para cada
data especial i, sexa Di o conxunto dos d́ıas previos e posteriores ao evento. Engádese unha función
indicadora para representar se a observación t sucede dentro da fiestra do evento i, e a cada data
especial aśıgnase un parámetro 1i que captura o efecto do festivo no modelo. Daquela xérase unha
matriz de regresores

Z(t) = [1(t ↔ D1), ... , 1(t ↔ DL)],

onde L é o número total de eventos considerados. Aśı, a compoñente do modelo h(t) escribirase como
segue

h(t) = Z(t)1, (2.21)

sendo 1 o vector dos parámetros de impacto (1i) para cada festivo i. Para evitar o sobreaxuste, impónse
sobre o vector de parámetros 1 unha distribución a priori N(0, v2), onde o parámetro v permite regular
a flexibilidade.

2.4. Medidas de adecuación das predicións

A formalización matemática dos modelos de series temporais cobra sentido práctico ao ser contras-
tada coa súa eficacia preditiva. Co obxectivo de garantir unha toma de decisións óptima na planificación
operativa de Trucksters, resulta imprescindible definir un conxunto de métricas de erro que faciliten a
comparación entre as diferentes arquitecturas e aseguren a selección do modelo con maior exactitude
na estimación da demanda futura.

En particular, consideraranse catro métricas distintas: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE),Mean Absolute Percentage Error (MAPE) eMean Absolute
Scaled Error (MASE) que se definen a continuación.

No que segue, denotarase por eT (h) = yT+h ↑ ŷT (h) o erro de predición observado con orixe en T
e horizonte h e consideraranse as predicións obtidas para horizontes h = 1, ... , H.

Definición 2.23 Def́ınese o RMSE como a seguinte métrica do erro:

RMSE =

√√√√ 1

H

H∑

h=1

e2
T
(h). (2.22)
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O RMSE é unha métrica éstandar que penaliza fortemente os grandes erros. O preditor que minimiza
teoricamente esta métrica é a media. Porén, presenta unha limitación principal: depende das unidades
da serie observada. Ademais, é unha métrica sensible ante a presenza de at́ıpicos.

Definición 2.24 Def́ınese o MAE como o promedio dos erros absolutos, é dicir:

MAE =
1

H

H∑

h=1

|eT (h)|. (2.23)

O MAE resulta unha métrica máis robusta ante outliers ca o RMSE e a súa interpretación é directa.
Ademais, o preditor que a minimiza é a mediana. Non obstante, presenta o mesmo inconvinte ca
métrica anterior, pois depende das unidades da serie.

Definición 2.25 Def́ınese o MAPE como a seguinte medida porcentual:

MAPE =
1

H

H∑

h=1

|ϱT (h)|, (2.24)

sendo ϱT (h) =
eT (h)
yT+h

· 100.

O MAPE trátase dun erro porcentual, co cal a súa interpretación é moi sinxela. Ademais, soluciona
o problema das métricas anteriores, pois non depende das unidades. Pola contra, non é unha medida
útil cando a serie presenta algún valor próximo a 0, pois resultaŕıan en erros desproporcionados.

Definición 2.26 Def́ınese o MASE como:

MASE =
1

H

H∑

h=1

|pT (h)|, (2.25)

onde

pT (h) =
eT (h)

1
T→1

∑
T

t=2 |yt ↑ yt→1|
.

En particular, o MASE é un erro escalado que se constrúe a partires do MAE calculado sobre o preditor
näıve5 na mostra histórica.

Esta última métrica ten unha interpretación moi interesante, pois un valor inferior a 1 indicaŕıa
que o modelo axustado pred́ı, en media, mellor que o preditor näıve a horizonte 1, é dicir, a predición
é mellor ca simplemente considerar o valor observado anterior como predición. Por ser adimensional e
estable en cero, considérase unha das métricas máis robustas para comparar series heteroxéneas.

Observación 2.10 No caso de que a serie temporal teña compoñente estacional de peŕıodo s, o pre-
ditor näıve consiste en predecir o valor nun intre t (yt) como o respectivo valor observado no peŕıodo
anterior (yt→s). Daquela, na fórmula do MASE (ec. 2.25) o termo do erro escalado reescribiŕıase como:

pT (h) =
eT (h)

1
T→s

∑
T

t=s+1 |yt ↑ yt→s|
.

En resumo, a selección destas catro métricas configuran un marco de avaliación rigoroso. O uso comple-
mentario do RMSE e o MAE permite cuantificar o impacto operativo dos erros de magnitude, mentres
que o MASE e o MAPE facilitan a comparativa do rendemento dos distintos modelos.

5
O preditor näıve consiste en predecir o valor da serie nun intre t (yt) mediante o valor observado no momento anterior

t→ 1 (yt→1)
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2.5. Ferramentas Computacionais

A implementación práctica de todas as técnicas descritas neste caṕıtulo levouse a cabo empregando
a linguaxe de programación Python (consúltese Python Software Foundation, 2026). A elección desta
linguaxe fundamentouse na súa versatilidade, a potencia das súas bibliotecas especializadas en series
temporais, ademais de ser o entorno de traballo empregado pola empresa Trucksters.

O desenvolvemento organizouse de forma modular (dividindo o traballo en diferentes scripts) para
garantir a reprodutivilidade e a escalabilidade do código.

Entorno de desenvolvemento e xestión de datos

Utilizouse o entorno interactivo Jupyter Notebook, que permitiu combinar a execución de código
coa documentación técnica e a visualización inmediata de resultados. Para a manipulación estruturada
de datos e os cálculos numéricos básicos, as bibliotecas fundamentais foron Pandas e NumPy.

Bibliotecas espećıficas empregadas no traballo

Dependendo da técnica estat́ıstica aplicada, utilizáronse as seguintes libreŕıas de referencia:

Análise Multivariante e Outliers. Para a análise de correspondencias utilizouse a libreŕıa prince,
mentres que para o clustering xerárquico e a detección de anomaĺıas mediante Isolation Forest em-
pregáronse SciPy e scikit-learn respectivamente.

Modelización de Series Temporais. A metodolox́ıa de Box-Jenkins implementouse mediante
statsmodels e a biblioteca de automatización pmdarima. Para a metodolox́ıa baseada en compoñentes,
empregouse Prophet, desenvolta polo equipo Core Data Science de Facebook.

Representación gráfica. Os diferentes gráficos de resultados e diagnóstico xeráronse mediante
Matplotlib e Seaborn.

Funcións propias. Un aspecto clave do deseño computacional deste traballo foi a creación dun
módulo de funcións personalizadas denominado Funcions.py e que se pode consultar en Airas (2026).
Este ficheiro actúa como o centro da análise de series temporais, recollendo os procedementos precisos
na aplicación das distintas metodolox́ıas de series temporais:

Preprocesado: Automatización da carga de datos e agregación semanal.

Diagnóstico: Funcións para a xeración de correlogramas (fas/fap) e contrastes de validación.

Visualización de compoñentes: Desenvolvemento de funcións gráficas espećıficas para des-
compoñer o impacto de festivos, estacionalidade e regresores extra nos modelos Prophet.

Esta estrutura modular permite que o código sexa facilmente adaptable a estudos futuros, sen
necesidade de comezar o traballo dende cero, ademais de axudar a un mellor seguimento dos scripts
empregados no presente proxecto.

Dispoñendo agora de todas estas ferramentas, poderase afrontar a parte práctica do traballo. O
seguinte caṕıtulo comezará coa presentación e análise exploratoria da base de datos de Trucksters.
Posteriormente, no Caṕıtulo 4 procederase á implementación computacional e ao axuste dos modelos
propostos no presente caṕıtulo. O proxecto rematará coa especificación das conclusións en base aos
resultados acadados.
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Caṕıtulo 3

Análise exploratoria dos datos

Unha vez establecida a fundamentación metodolóxica no caṕıtulo precedente, este terceiro bloque
ten como obxectivo implementar ditas técnicas mediante unha Análise Exploratoria de Datos (EDA)
exhaustiva. Esta fase resulta crucial para transformar os datos brutos en coñecemento estat́ıstico,
permitindo validar as hipóteses de partida e adecuar a estratexia de modelización.

Ao longo deste caṕıtulo, procederase á caracterización das variables que integran a base de datos,
poñendo especial atención na análise clúster (descrita na Sección 3.2) para identificar patróns de com-
portamento entre os diversos perf́ıs de clientes. Aśı mesmo, examinaranse as relacións e dependencias
entre as variables de interese, o que permitirá detectar posibles estruturas de correlación e valores
at́ıpicos. Todo este proceso servirá de ponte necesaria para garantir a robustez e interpretabilidade dos
modelos de series temporais que se desenvolverán no Caṕıtulo 4.

Co obxectivo de garantir a reprodutivilidade dos resultados, o código en Python empregado para
este tratamento de datos e a xeración de visualizacións pode consultarse no seguinte repositorio de
GitHub: Airas (2026).

3.1. Preprocesamento e preparación de datos

O obxectivo deste proxecto consiste en estudar distintos modelos para predicir o volume de env́ıos
solicitados nunha data determinada por un cliente e, daquela, ver se é posible anticipar a chamada peak
season. Para iso, traballouse cunha serie de variables obtidas da base de datos relacional PostgreSQL
da empresa, aloxada en Google Cloud, mediante consultas SQL adaptadas á súa estrutura.

En particular, na base de datos recóllese información acerca de cada pedido que se leva a cabo.
A continuación, inclúese un resumo das variables presentes na base de datos, áında que para unha
explicación máis detallada recoméndase consultar o Apéndice A.

Identificadores e datos básicos: Inclúense variables coma o ID do pedido, que permite ras-
trexar cada env́ıo de forma única; ou información sobre cliente, orixe e destino, datos clave para
estudar patróns xeográficos e de demanda. A información sobre o cliente será fundamental para
a agrupación da carteira de clientes mediante a análise clúster da Sección 3.2.

Variables de volume e distancia: Disponse de variables indicadoras da eficiencia e aproveita-
mento da flota, como son os quilómetros con carga e os quilómetros percorridos en baleiro. Tamén
se inclúe información sobre o tipo de remolque, que pode afectar á capacidade de transporte e
á selección de rutas.

37
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Variables económicas: Información acerca dos prezos por cliente e provedor, variables que
permiten avaliar marxes e custos asociados.

Variables temporais: Conteñen información sobre a data do env́ıo, axudando a analizar ten-
dencias ao longo do tempo e identificar épocas de alta demanda.

Festivos e datas especiais: Indicadores de se o pedido foi realizado durante un festivo ou
algunha data especial coma o Black Friday. A información detallada sobre os festivos e eventos
especiais considerados no traballo pode consultarse no Apéndice B.

Variables derivadas (feature engineering): Co obxectivo de extraer un maior potencial
anaĺıtico da base de datos, xeráronse variables que permiten estandarizar a información e facilitar
a modelización posterior. Entre estas destacan o prezo por quilómetro (e/km), que actúa como
un indicador de rendemento homoxéneo; a pertenza a un determinado clúster de cliente (obtida
mediante a análise que se detalla na Sección 3.2); e as agregacións temporais en escalas semanais
e mensuais, indispensables para a análise de series temporais.

Tras unha entrevista co responsable de operacións na empresa, identificouse que a demanda de
env́ıos depende fortemente do sector do cliente e de picos estacionais, o que orientou a selección de
variables e xustificou a necesidade da creación de clústeres de clientes.

Cómpre sinalar que, como a información sobre o sector ao que pertence cada cliente non estaba
codificada na base de datos relacional, engadiouse de forma manual a partir do coñecemento por parte
do responsable da empresa. Aśı, dada a elevada carteira de clientes da que dispón Trucksters, o traballo
limitouse ás 100 rutas con maior volume histórico. Por conseguinte, esta decisión introduce un nesgo
de selección deliberado que debe ser tido en conta á hora xeneralizar as conclusións do proxecto.

3.1.1. Filtrado dos datos orixinais

Unha vez introducidas as novas variables e antes de iniciar a análise exploratoria, resulta funda-
mental realizar un primeiro filtrado dos datos. O obxectivo é eliminar observacións que non reflictan
un comportamento real ou que poidan introducir nesgos nos modelos, inclúındo aquelas que poden
deberse a erros na recollida ou rexistro dos datos.

En primeiro lugar, identificáronse diferentes tipos de erros ou valores at́ıpicos nos datos recollidos:

Algúns env́ıos presentan prezos negativos para os clientes, representando compensacións que se
lles realizan debido a problemas no reparto.

Outros env́ıos teñen a distancia percorrida nula, correspondendo a casos “artificiais” creados pola
empresa para representar penalizacións por cancelacións de última hora ou axustes derivados da
flutuación nos prezos do combustible.

Finalmente, observouse que os prezos por quilómetro (tanto para clientes como para provedores)
superiores a 3e son consecuencia de erros na recollida dos datos. A lóxica destes erros foi revisada
co responsable de negocio, quen confirmou que se trataba de observacións que non reflect́ıan a
operativa real da empresa.

Tras esta validación, optouse por exclúır todos estes rexistros da base de datos, asegurando que a
información utilizada na análise exploratoria e nos modelos preditivos reflicta correctamente o com-
portamento real dos env́ıos.

Por último, débese ter en conta que a finalidade deste traballo é predicir o volume de pedidos nunha
data determinada. Polo tanto, é fundamental considerar que os datos presentan unha dependencia
temporal. Aśı, ao analizar a base de datos obsérvase que só unha pequena parte dos rexistros é anterior
ao ano 2022 (concretamente o 3.2%). Isto débese a dous factores: o forte crecemento da empresa a
partir do propio ano 2022 e á falta de rexistros nos anos previos. En consecuencia, pódese asumir que
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os datos anteriores ao 2022 non reflicten adecuadamente a realidade actual da empresa e que a súa
inclusión podeŕıa ter un impacto negativo nos modelos que se desenvolverán. Por este motivo, decidiuse
traballar coa información dispoñible a partir do 1 de xaneiro de 2022.

En relación aos datos máis recentes, a consulta da base de datos realizouse a comezos da segunda
semana de outubro de 2025. Dado que a base de datos se actualiza diariamente, disponse de rexistros
ata a primeira semana do devandito mes. Aśı, ao non contar coa información completa de outubro,
optouse por empregar os datos ata a última semana de setembro de 2025, inclusive.

Tras a aplicación destes criterios de exclusión e o filtrado temporal, o conxunto de datos final para
o estudo pasou de 21271 observacións iniciais a un total de 19869 rexistros. Esta mostra constitúe a
base sobre a que se aplicará o estudo realizado neste traballo.

3.2. Análise clúster

Tras falar co responsable na empresa, formulouse a hipótese de que a demanda depende do tipo de
cliente e o sector ao que pertence. Isto fai pensar que un modelo xenérico non sexa capaz de modelar
o comportamento da demanda, o cal indica que seŕıa práctico engadir máis detalle ao modelo. Se se
pensa no nivel extremo, é dicir un modelo por cliente, atopaŕıanse certos problemas para clientes dos
que non existe suficiente mostra, polo cal o modelo non seŕıa estatisticamente robusto (presentaŕıa
moita variabilidade), ademais de supoñer un maior tempo computacional. Outra solución, á vista
da información dispoñible, seŕıa agrupar aos clientes directamente por sector, mais isto supoŕıa unha
perda da información do tipo de contrato. Por conseguinte, este traballo optou por un punto intermedio,
agrupando por tipo de cliente tendo en conta o sector e o contrato ou acordo que teñen con Trucksters,
o que permite detectar posibles relacións entre distintos tipos de clientes. Para levar a cabo esta
agrupación, seguirase o procedemento explicado na Sección 2.1: análise de correspondencias seguido
dun algoritmo aglomerativo xerárquico.

Por conseguinte, as variables seleccionadas para o clustering serán o sector do cliente e o tipo de
contrato (ver Apéndice A), sendo estas variables categóricas. Por unha banda, cómpre sinalar que
os clientes clasif́ıcanse en 7 sectores distintos: alimentación, electrónica, froita, industria, paqueteŕıa,
transporte e retail. Por outra banda, existen 2 tipos de contratos entre estes clientes e Trucksters: fixo
(fix ) ou puntual (spot). Os clientes con contrato fixo presentan unha demanda máis estable por existir
un acordo con Trucksters, mentres que para os clientes con contrato puntual a demanda presenta maior
variabilidade.

Tendo en conta o tipo de variables consideradas para o clustering, é fundamental percatarse que
os algoritmos de formación de grupos mediante aglomeración dos individuos baséanse no cálculo de
distancias. Como estas variables son categóricas, para poder aplicar o algoritmo correspondente, pre-
viamente é necesario facer unha análise de correspondencias (CA) (ver Sección 2.1.1). Dita técnica
de análise multivariante permite estudar a relación entre dúas variables categóricas e proxectalas nun
espazo de menor dimensionalidade. Aśı, as coordenadas resultantes do CA serán os valores cos que se
calcularán as distancias na análise clúster. O primeiro paso para levar a cabo a análise de correspon-
dencias consiste en calcular a táboa de continxencia das variables de interese. Ditas táboas reflexan a
distribución conxunta do par formado polas variables categóricas. O Cadro 3.1 amosa a distribución
conxunta para as variables de estudo.

Á hora de estudar a relación entre dúas variables, a situación máis extrema prodúcese cando as
variables son independentes. En consecuencia, antes de proceder ca CA, é esencial verificar a existencia
dunha relación estatisticamente significativa entre as variables categóricas. Empregarase para iso o test
de independencia chi-cadrado (ω2) detallado na Sección 2.1.1. No código complementario ao traballo
(consúltese Airas, 2026) pode verse que, fixando un nivel de significación do 5%, rexéitase a hipótese
de independencia. Esta relación contrastada xustifica a aplicación da análise de correspondencias.



40 CAPÍTULO 3. ANÁLISE EXPLORATORIA DOS DATOS

Sector Fixo (fix) Puntual (spot) Total

Alimentación 1063 111 1174

Electrónica 781 490 1271

Froita 572 2 574

Industria 1173 188 1361

Paqueteŕıa 9535 211 9746

Retail 1878 1.661 3539

Transporte 1233 971 2204

Total 16235 3634 19869

Cadro 3.1: Táboa de continxencia: Frecuencias de pedidos por sector e tipo de contrato. A distribución
amosa unha clara predominancia de contratos fixos en sectores como a paqueteŕıa, mentres que no
retail a modalidade spot ten un peso relativo moito maior.

Cómpre recordar que a análise de correspondencias consiste en aplicar unha análise de compoñentes
principais (PCA) aos perf́ıs de fila (ou columnas) estandarizados, calculados a partires da táboa de
continxencia (Cadro 3.1). Tendo en conta que ditos perf́ıs cumpren a condición de que suman 1 por
columnas (ou por filas), o número máximo de dimensións que aportan información será o mı́n(I ↑
1, J ↑ 1), sendo I e J o número de categoŕıas das filas e columnas, respectivamente. Daquela, como
as variables de interese constan de 7 sectores e 2 tipos de contrato, a representación das compoñentes
resultantes será unidimensional.

Figura 3.1: Proxección conxunta dos perf́ıs de fila e columna resultante da análise de correspondencias.
A proximidade entre puntos reflicte a asociación entre as categoŕıas de ambas variables.

Na Figura 3.1 obsérvase a representación gráfica do resultado da CA levada a cabo. Como xa se
indicou, a primeira compoñente concentra a totalidade da inercia entre o sector e o tipo de contrato.
Aśı, vese como os sectores de electrónica, transporte e retail están fortemente asociados a non ter un
acordo asinado. Isto suxire que os clientes de ditos sectores traballan coa empresa de forma menos
regular e a prezos de mercado. Por outra banda, o resto de sectores están asociados a un contrato fixo.
Serán entón clientes cos cales Trucksters traballa baixo algún tipo de acordo (número de rutas, volume
semanal...), co cal espérase que a demanda sexa máis estable ou previsible.

Agora ben, as coordenadas obtidas mediante a CA empregaranse como inputs na análise clúster.
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A construción dos grupos levouse a cabo mediante un algoritmo aglomerativo considerando o método
do máximo (véxase Sección 2.1.2), que define a distancia entre clústeres como a maior distancia entre
os individuos dos grupos. O paso cŕıtico no algoritmo reside na selección do número de grupos (K)
que se forman. Observando o dendrograma do clustering (Figura 3.2), o corte considerouse no maior
salto de distancia entre unións (liña punteada), dando lugar a tres clústeres ben diferenciados.

Figura 3.2: Dendrograma resultante do procedemento de clúster xerárquico. A árbore ilustra as etapas
de fusión das observacións ata a formación de K = 3 grupos homoxéneos. A liña discontinua marca a
altura de corte considerada.

Os grupos formáronse, en particular, agrupando os distintos sectores, tal e como se describe a
continuación:

Clúster 1: formado polos clientes dos sectores de electrónica, retail e transporte. Este grupo
consta de 7014 observacións, representando un 35.3% da totalidade dos datos.

Clúster 2: formado polos clientes de sectores de froita e paqueteŕıa, resulta o grupo máis repre-
sentativo cun total de 10320 observación (51.9% da mostra).

Clúster 3: conformado polos clientes adicados á alimentación e á industria. Este grupo tan só pre-
senta 2525 pedidos, representando un 12.8% do total.

Nas seccións seguintes, centrarase o estudo no comportamento das distintas variables dispoñibles
en cada un dos clústeres por separado, o que aportará unha maior información dos datos cos que se
traballa neste proxecto.

3.3. Análise descritiva

Unha vez definida a estrutura da carteira de clientes mediante a análise de clústeres, o seguinte paso
metodolóxico consiste na caracterización detallada de cada grupo. Esta fase de análise exploratoria
non só pretende describir o estado actual dos datos, senón identificar as dinámicas subxacentes que
determinarán o comportamento das series temporais de demanda e prezos.

Un aspecto fundamental ao realizar unha análise exploratoria dos datos reside no estudo das corre-
lacións entre as variables. Tendo en conta a natureza continua das variables de interese nesta sección,
traballouse co coeficiente de correlación de Pearson (ϱ). Cómpre recordar que dito coeficiente é unha
medida da relación lineal entre pares de variables, calculado como o cociente entre a covarianza e o
produto das desviacións t́ıpicas de ambas magnitudes.
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Figura 3.3: Matriz de correlación de Pearson das variables numéricas. Obsérvase unha colinealidade
severa entre as variables orixinais de distancia e prezo (ϱ > 0, 80), que se ve mitigada ao empregar as
variables ratio (prezos por quilómetro).

A Figura 3.3 representa graficamente a matriz de correlacións. Nela obsérvase un problema de
colinealidade severo entre o grupo de variables orixinais. Por exemplo, entre as variables que representan
distancias e prezos totais, os coeficientes de correlación son superiores a 0.80. Isto indica que ditas
variables recollen información redundante.

Por outra banda, é importante sinalar que as variables derivadas (calculadas a partir dos datos
orixinais seguindo os criterios da Sección 3.1) mitigan esta colinealidade. En efecto, obsérvase que as
variables que representan os prezos por quilómetro presentan coeficientes de correlación moito máis
moderados (↑0, 48 < ϱ < 0, 49). Por conseguinte, esta análise xustifica centrar o estudo descritivo
detallado nas variables derivadas, evitando aśı a duplicidade de información e garantindo unha análise
máis eficiente e robusta.

Prezo por quilómetro.

En primeiro lugar, estudarase a distribución do prezo por quilómetro, diferenciando entre clientes
e provedores.

Dende unha perspectiva de negocio, Trucksters xestiona transporte tanto con flota propia como con
colaboradores externos. Cada colaborador ten un prezo ou custo por quilómetro percorrido. A nivel
contractual, este prezo adoita ser fixo. Porén, en peŕıodos de alta demanda, cando a empresa precisa
aumentar a capacidade, pode incorporar colaboradores adicionais a un custo superior para cubrir os
picos, xerando aśı variacións no prezo do provedor.

De forma análoga, Trucksters distingue entre dous tipos de clientes: fixos e puntuais. Por unha
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banda, os clientes con contrato fixo (fix ) constitúen rutas que se pactan a longo prazo, normalmente
anual, cun prezo previamente acordado. Por outra banda, os clientes con contrato puntual (spot)
presentan prezos que se fixan segundo a dinámica do mercado en cada servizo.

En consecuencia, tanto as flutuacións no prezo do provedor coma as do prezo dos clientes poden
reflectir cambios na demanda. En particular, un aumento de prezos pode indicar o inicio da peak season,
pois requerirase de maior capacidade e os custos axústanse á situación de mercado. Por conseguinte,
o prezo por quilómetro pode aportar información sobre a serie da demanda, xustificando aśı o seu
estudo.

Dende unha perspectiva anaĺıtica, na Figura 3.4 obsérvase, graficamente, o comportamento do
prezo por quilómetro de todos os clientes. Á esquerda represéntase un histograma que permite ver
que a variable ten unha forma unimodal, presentando unha forte concentración dos datos arredor da
tendencia central. En efecto, o rango intercuart́ılico (que contén o 50% das observacións) é pequeno
(IQR = 0.22 e/km). Respecto á simetŕıa, a gráfica amosa unha certa asimetŕıa positiva, apoiada no
feito de que a media (1.20 e/km) é lixeiramente superior á mediana (1.19 e/km). Isto indica que a
cola dereita contén os valores extremos máis influentes. No diagrama de caixas da dereita (boxplot)
reaf́ırmase esta asimetŕıa positiva, vendo como se teñen máis datos extremos na parte dereita (os que
caen fóra do “bigote”).

Figura 3.4: Análise exploratoria do prezo por quilómetro para os clientes. O histograma amosa a
frecuencia e concentración dos prezos, mentres que o boxplot permite visualizar a dispersión e os
prezos significativamente afastados da media.

A análise clúster levada a cabo na Sección 3.2 permite estudar o comportamento desta variable en
cada un dos tres clústeres. A Figura 3.5 representa, na gráfica superior, os histogramas do prezo por
quilómetro dentro de cada clúster, mentres que a gráfica inferior representa unha comparación entre os
tres clústeres mediante un boxplot. Aśı, obsérvanse certas diferenzas tanto na tendencia central coma
na forma da distribución.

Para os clientes de electrónica, retail e transporte (clúster 1) vense os prezos máis baixos cunha
media de 1.15 e/km que coincide neste caso coa mediana. É salientable a presente simetŕıa, que
contrasta co comportamento global e co que sucede nos outros dous clústeres. Porén, este grupo é o que
presenta un rango intercuart́ılico maior (IQR = 0.27 e/km), o que suxire unha maior heteroxeneidade
na distribución dos prezos. Pódese pensar que, o motivo da dispersión e da tendencia máis barata dos
prezos presente resida nos clientes do sector de transporte, que se trataban de cargas revendidas por
outra empresa de transporte, co cal os prezos non resultan tan competitivos.

Para os clientes de froita e paqueteŕıa (clúster 2), a media (1.23 e/km) é lixeiramente superior
á mediana (1.20 e/km) presentando daquela unha certa asimetŕıa positiva. Estatisticamente, é o grupo
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máis homoxéneo, co rango intercuart́ılico máis curto dos tres clústeres (IQR = 0.20 e/km).

Por último, os clientes dos sectores de alimentación e industria (clúster 3) presentan os prezos medios
máis caros, e a asimetŕıa positiva máis clara, sendo neste caso a media (1.26 e/km) e a mediana (1.21
e/km). Aśı, este comportamento pode responder seguramente a clientes cos que se acordou algunha
ruta con prezos moi competitivos.

Figura 3.5: Análise exploratoria do prezo por quilómetro para os clientes segmentado por clúster. A
figura superior mostra os histogramas e a inferior os boxplots. Clúster 1 (azul), clúster 2 (laranxa) e
clúster 3 (verde).

Unha vez estudada a distribución dos prezos para os clientes, é preciso facer o propio cos prezos
dos provedores, estudando en primeiro lugar o comportamento global e vendo posteriormente se hai
diferenzas no comportamento entre clústeres.

Na Figura 3.6 obsérvase mediante o histograma (Figura (3.6a)) e o diagrama de caixas (Figura
(3.6b)) como a distribución dos prezos por quilómetro para os provedores presenta unha clara forma
unimodal, cunha concentración en torno á media todav́ıa superior ao caso dos clientes. En termos da
tendencia, os prezos resultan inferiores, sendo agora a media 1.10 e/km fronte os 1.20 e/km para
os clientes. En cuanto á forma, a variable presenta certa asimetŕıa positiva (mediana 1.09 e/km) e,
como xa se sinalou, os prezos están todav́ıa máis concentrados neste caso, sendo o rango intercuart́ılico
(IQR) 0.10 e/km. Aśı, obsérvase unha maior estabilidade dos prezos no caso dos provedores.

Facendo agora o estudo desagregado por clúster, na Figura 3.7 represéntanse os histogramas para
cada clúster na parte superior, e os boxplot na gráfica inferior. Mediante estas representacións gráficas,
destácase a similitude do comportamento dos prezos dos provedores para os dous primeiros clústeres, en
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(a) Histograma (b) Boxplot

Figura 3.6: Análise exploratoria do prezo por quilómetro para os provedores. O histograma amosa a
frecuencia e concentración dos prezos, mentres que o boxplot permite visualizar a dispersión e os prezos
significativamente afastados da media.

contra do que suced́ıa no caso dos prezos dos clientes, onde se presenciaban maiores diferenzas entre os
clientes do clúster 1 e o resto. Porén, neste caso o clúster 3 (alimentación e industria) presenta o prezo
en media máis alto (1.15 e/km), sendo aproximadamente 0.06 e/km superior aos outros clústeres.
Ademais da tendencia central lixeiramente superior, cómpre salientar para este tipo de clientes unha
maior dispersión dos prezos, presentando o maior rango intercuart́ılico (IQR = 0.13 e/km).

En śıntese, a segmentación estratéxica mediante a análise de clústeres permite validar a existencia
de patróns de comportamento diferenciados na poĺıtica de prezos. No que respecta aos clientes, os
resultados suxiren que a tendencia e a volatilidade do prezo están fortemente condicionadas pola
modalidade contractual predominante en cada segmento (fixa ou puntual). Pola contra, a estrutura
de custos asociada aos provedores amosa unha maior dependencia do sector de actividade do cliente,
independentemente do tipo de acordo comercial subxacente. Esta caracterización resulta fundamental
para o obxecto do presente traballo: a heteroxeneidade detectada nos ratios de prezo, confirma que un
modelo de predición global seŕıa insuficiente.

Evolución temporal do prezo por quilómetro

Tras caracterizar a distribución estática das ratios de prezo, resulta imperativo abordar o seu com-
portamento desde unha perspectiva dinámica. Dada a dependencia temporal intŕınseca dos rexistros
e o obxectivo de predicir o volume de env́ıos, a análise da evolución cronolóxica das variables cla-
ve é un paso cŕıtico. Este procedemento non só busca identificar as compoñentes estruturais clásicas
(tendencia, estacionalidade e ciclos), senón tamén avaliar a heteroxeneidade destas dinámicas entre
os clústeres identificados. Comprender se as flutuacións de prezos seguen un patrón simultáneo ou se,
pola contra, cada segmento de clientes responde a ciclos de mercado diferenciados, será determinante
para a especificación e comprensión dos modelos preditivos que se desenvolverán no Caṕıtulo 4.

Para este fin, calcúlanse os prezos medios mensual e diariamente, sendo fundamental sinalar que,
con motivo de mellorar a interpretación, para a visualización diaria empregaranse os datos diarios
suavizados (véxase Airas, 2026). De igual forma que no apartado anterior, estúdase en primeiro lugar
o caso dos clientes.

A Figura 3.8 representa a evolución temporal no caso dos clientes tanto mensualmente (Figura
(3.8a)), como diariamente (Figura (3.8b)). De forma xeral, obsérvase unha clara evolución crecente
dos prezos ao longo destes últimos anos.
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Figura 3.7: Análise exploratoria do prezo por quilómetro para os provedores segmentado por clúster.
A figura superior mostra os histogramas e a inferior os boxplots. Clúster 1 (azul), clúster 2 (laranxa)
e clúster 3 (verde).

(a) Mensualmente (b) Diariamente

Figura 3.8: Evolución temporal do prezo medio por quilómetro para os clientes (2022-2025). Á esquerda
represéntase a serie agregada por meses, mentres que á dereita móstrase o prezo diario suavizado.
Obsérvase tendencia crecente dos prezos.

O ano 2022 comeza cunha forte tendencia crecente, partindo de prezos bastante baixos (1 e/km),
chegando durante o mes de novembro a prezos medios superiores a 1.25 e/km. Este aumento tan
significativo dos prezos é consecuencia do efecto rebote que sufriu o sector tras a cáıda provocada pola
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pandemia dous anos atrás.

Durante a primeira metade do ano 2023, obsérvase a única fase de descenso dos prezos nos datos
dispoñibles, caendo ata valores medios inferiores aos 1.10 e/km. Tras isto, os prezos recuperan a ten-
dencia á alza, sendo salientable novamente o efecto que causa nos mesmos o Black Friday, provocando
que os prezos medios máximos do ano sucedan novamente neste último trimestre.

A partires do 2024, a tendencia dos prezos segue a ser creciente pero máis estable ca nos anos
previos. Este aumento constante dos últimos dous cursos fundaméntase no crecemento da empresa, que
presenta unha posición de maior poder no mercado, conseguindo traballar a prezos máis beneficiosos
para a mesma.

Para un estudo máis detallado, será de interese repetir a análise para cada clúster por separado. Aśı,
a Figura 3.9 amosa as tres series temporais resultantes, revelando patróns de tendencia e estacionalidade
distintos. A maior discrepancia atópase entre os clientes de alimentación e industria (clúster 3) con
respecto ao resto, posto que durante o último trimestre do 2022 presentan un pico que chega a superar
os 1.6 e/km. Consultando esta información co responsable de negocio, identificouse un grupo de
viaxes a finais de 2022 correspondentes a env́ıos procedentes de España con dirección Reino Unido.
En consecuencia, o elevado prezo está motivado polas aduanas (traballo extra), aśı como o eurotúnel
(custo extra). Cómpre sinalar que este tipo de exportacións deixaron de levarse a cabo tras estes meses
debido á pouca rendabilidade das mesmas, motivo polo cal non se aprecian picos tan elevados noutros
anos.

Figura 3.9: Evolución temporal do prezo medio por quilómetro para os clientes segmentado por clústers
(2022-2025). Os clústeres diferéncianse por cores: clúster 1 (azul), clúster 2 (laranxa) e clúster 3 (verde).

Este fenómeno concorda co observado ao estudar a distribución dos prezos na Figura 3.5, onde se
apreciaba que o clúster 3 presentaba unha asimetŕıa positiva considerable. Posteriormente, os prezos
dos clientes de alimentación e industria caen e aseméllanse ao comportamento do clúster 1, conformado
polos clientes de transporte, retail e electrónica. Por outra banda, do clúster formado polos clientes
dos sectores de froita e paqueteŕıa obsérvase unha tendencia crecente e estable durante os últimos dous
anos, provocando que nas últimas datas das que se teñen datos presenten prezos medios claramente
superiores ao resto (1.4 e/km).

Para os provedores, a Figura 3.10 ilustra a evolución temporal do prezo medio por quilómetro
mensualmente (Figura (3.10a)) e diariamente (Figura (3.10b)). De forma similar aos clientes, durante
o ano 2022 obsérvase unha clara tendencia crecente que alcanza o pico máximo no mes de novembro,
dándose prezos medios cercanos a 1.25 e/km. Como xa se indicou, esta tendencia inicial vén explicada
seguramente pola recuperación do sector trala pandemia. Posteriormente os prezos caen de forma
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considerable ata comezos do ciclo seguinte.

(a) Mensualmente (b) Diariamente

Figura 3.10: Evolución temporal do prezo medio por quilómetro para os provedores (2022-2025). Á es-
querda represéntase a serie agregada por meses, mentres que á dereita móstrase o prezo diario suavi-
zado. Obsérvase tendencia decrecente dos prezos durante os últimos anos.

O ano 2023 establece un patrón de maior estabilidade, áında que se observa unha tendencia lixei-
ramente decrecente durante a primeira metade do ano. Novamente, neste curso obsérvase o efecto que
ten o Black friday nos datos, pois os prezos crecen ata rematar o mes de novembro e caen durante
decembro. Non obstante, a oscilación dos prezos neste ano é menor á observada no curso anterior, sen
chegar a superar en ningún intre os 1.15 e/km.

Os valores durante o 2024 mantéñense nun rango moito máis constante (próximo aos 1.10 e/km),
sendo salientable a cáıda que se produce no mes de outubro, aspecto que parece inflúır no impacto
que ten neste ano o Black Friday, sendo os picos de agosto nalgúns momentos superiores aos de
novembro. Como xa se explicou, este comportamento tan diferente aos anos previos vén explicado polo
crecemento de Trucksters, presentando unha posición de mercado máis forte e podendo negociar prezos
máis competitivos.

Da mesma maneira ca no caso dos clientes, cómpre facer a análise segmentada pos clúster e ver
aśı as diferenzas nos prezos medios dos provedores en función dos tipos de clientes.

Figura 3.11: Evolución temporal do prezo medio por quilómetro para os provedores segmentado por
clústers (2022-2025). Os clústers diferéncianse por cores: clúster 1 (azul), clúster 2 (laranxa) e clúster
3 (verde).

Mediante a Figura 3.11 represéntanse as tres series temporais. Consecuentemente aos prezos dos
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clientes, obsérvase un pico extremo a finais do 2022 para o clúster 3, chegando a valores próximos a
1.70 e/km. Tras isto, obsérvase unha cáıda moi rápida nos prezos de dito clúster, mais a diferenza dos
prezos dos clientes, existe un pequeno repunte durante o primeiro trimestre de 2023. Ademais disto,
neste caso apenas se notan máis diferenzas nos prezos dos provedores entre clúster amosando para
todos os clústeres un comportamento estable en torno aos 1.10 e/km dende mediados do 2023.

Daquela, obsérvase como os prezos medios para os provedores presentan unha menor volatilidade ca
os prezos para os clientes. Esta idea pode contrastarse representando nunha mesma gráfica a tendencia
temporal dos prezos para os clientes e os provedores.

(a) Mensualmente (b) Diariamente

Figura 3.12: Comparativa da evolución do prezo medio por quilómetro entre clientes e provedores (2022-
2025). Á esquerda represéntase a serie mensual e á dereita a diaria con suavizado temporal. Obsérvase
un incremento na marxe bruta a partir de 2024, cunha estabilización dos custos de transporte fronte
ao aumento das tarifas de venda.

En efecto, a Figura 3.12 presenta a comparación directa da evolución histórica do prezo medio por
quilómetro para os clientes e os provedores. A análise mostra unha diverxencia clara nas tendencias
a partires da segunda metade do 2023. Mentres os prezos dos provedores mostran unha tendencia
á estabilización arredor de 1.10 e/km, os clientes manteñen a tendencia crecente, sendo a diferenza
nos últimos meses próxima a 0.20 e/km.

Facendo agora o propio para cada clúster (Figura 3.13), af́ınase un pouco a interpretación. Daquela,
cómpre sinalar que as diferenzas dos prezos medios observadas débense especialmente aos clientes de
froita e paqueteŕıa. Para os sectores que forman este clúster, os prezos dos clientes manteñen, dende
a segunda metade do 2023, a tendencia crecente ata superar os 1.35 e/km nas últimas datas, sendo
os dos provedores próximos a 1.10 e/km. Porén, é notable sinalar como tanto para o clúster 1, que
presenta maiores flutuacións nos prezos, coma no clúster 3, máis estable tralo pico xa sinalado, o
comportamento dos prezos para clientes e provedores apenas difire.

En definitiva, a análise cronolóxica revela un desacoplamento significativo entre as series de prezos
de clientes e provedores a partir da segunda metade de 2023. Esta diverxencia, especialmente acentuada
no clúster 2 (froita e paqueteŕıa), constitúe unha evidencia emṕırica da consolidación de Trucksters no
mercado lox́ıstico. A capacidade de manter unha tendencia ascendente nos prezos de venda mentres se
estabilizan os custos de subcontratación amosa unha optimización da rendibilidade estratéxica. Desde
o prisma da modelización, este fenómeno é de vital importancia: confirma que a dinámica de prezos
non responde a un proceso estacionario único, senón que está influenciada por cambios estruturais na
posición competitiva da empresa.

Evolución temporal do volume de pedidos

Como culminación desta fase exploratoria, abórdase o estudo da variable obxectivo central deste
traballo: o volume de env́ıos. Tras analizar os prezos dos clientes e provedores, resulta fundamental
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Figura 3.13: Comparativa da evolución do prezo medio por quilómetro entre clientes e provedores
segmentado por clúster (2022-2025). Obsérvanse maiores diferenzas no clúster 2 (gráfico intermedio),
fronte a maior similitude no clúster 1 (superior) e clúster 3 (inferior).

caracterizar o comportamento dinámico da demanda, xa que estas series constituirán o obxecto de
predición nos modelos que se desenvolverán no Caṕıtulo 4.

Para iso, mediante a Figura 3.14, represéntase a evolución mensual (Figura (3.14a)) e semanal
(Figura (3.14b)). Por outra banda, a Figura 3.15 permite afondar no comportamento histórico ao
representar a evolución semanal desagregada por ano.

Con respecto á tendencia, a serie comeza no 2022 cunha clara tendencia crecente, consecuente coa
fase de crecemento da empresa e recuperación do sector trala pandemia. Non entanto, os anos 2023
e 2024 amosan unha estabilización do nivel de volume, observando un comportamento máis ćıclio. O
comportamento da serie durante o ano 2025 difire dos cursos anteriores, presenciándose unha tendencia
lixeiramente decrecente. A pesares de que isto poda parecer estraño, a explicación reside nas poĺıticas
de mercado da empresa. En particular, como consecuencia do crecemento de Trucksters nos anos
previos, a estratexia seguida durante o presente ano céntrase en minorar o volume de env́ıo, mais
incrementando a rentabilidade dos mesmos. Este feito concorda co comportamento dos prezos medios
estudados anteriormente (véxanse Figuras 3.12 e 3.13).

En cuanto á estacionalidade, pese a non observar comportamentos con exactamente os mesmos
patróns anualmente, si se nota o impacto do Black Friday, provocando que as últimas semanas de no-
vembro constitúan o peŕıodo de maior volume de env́ıos cada ano. Porén, en contra do comportamento
esperado por intuición durante o Nadal, no mes de decembro obsérvase unha cáıda salientable. En
particular, nos anos 2023 e 2024 ditas semanas constitúen o volume mı́nimo de pedidos anual.

Pola súa parte, a Figura 3.15 confirma a alta variabilidade semanal e permite ver con maior claridade
o inicio da peak season nos anos 2023 e 2024, principalmente. Porén, é natural cuestionarse se o impacto
do Black Friday ten a mesma importancia en todos os sectores.
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(a) Volume mensual (b) Volume semanal

Figura 3.14: Evolución do volume de env́ıos: comparativa entre agregación mensual (esquerda) e se-
manal (dereita). A representación semanal pon de manifesto a volatilidade e os patróns ćıclicos da
demanda que a agregación mensual tende a ocultar.

Por conseguinte, unha vez feita esta primeira análise xeral e seguindo coa metodolox́ıa do proxecto
até o momento, reṕıtese este estudo para cada grupo de clientes desagregado. Para iso, mediante
a Figura 3.16 represéntase o volume de env́ıos por semana para cada clúster no espazo temporal
considerado no proxecto.

Esta representación gráfica permite ter un coñecemento máis refinado do comportamento do volume
de env́ıos. En particular, con respecto ao impacto do Black Friday, o clúster máis influenciado por dito
evento é o conformado polos sectores de froita e paqueteŕıa (curva laranxa). En efecto, nos anos 2022
e 2024 dito clúster mostra un crecemento significativo a comezos do mes de novembro, alcanzando
máximos absolutos de volume (100 env́ıos semanais en 2022 e máis de 80 en 2024). Ademais destes
picos, o devandito clúster mantén un volume base máis alto e estable ca os outros grupos durante a
maior parte do ano.

Por outra banda, sobre o clúster 1 (sectores de transporte, retail e electrónica) cómpre sinalar a
súa gran variabilidade, presentando flutuacións semanais máis significativas (serie azul). O efecto do
Black Friday non é tan acusado neste grupo, áında que no ano 2023 si se observa un pico a finais
de novembro, que repunta tamén en decembro. Recórdese que a dispersión no comportamento deste
clúster pode estar asociado á ausencia de contrato por parte da empresa cos clientes dos sectores
correspondentes. Ademais disto, é notable a cáıda considerable do volume durante o ano 2025, sendo
en particular o clúster cunha tendencia máis descendente no presente curso.

Por último, os clientes dos sectores de alimentación e industria (curva verde) conforman o clúster
con volume base menor, operando principalmente entre 10 e 30 pedidos semanais. Neste grupo, o efecto
da peak season é residual e a súa tendencia é bastante constante, sendo sectores máis estables. Porén,
durante o 2025 obsérvanse picos pronunciados (superando os 40 env́ıos semanais) en varias semanas
do primeiro trimestre. Este aspecto terá gran influenza á hora de avaliar os modelos que se axustarán
no Caṕıtulo 4.

En resumo, o estudo cronolóxico do volume de env́ıos confirma a elevada heteroxeneidade da deman-
da, validando a segmentación estratéxica realizada na Sección 3.2. A disparidade observada demostra
que a estacionalidade e as tendencias non son factores transversais a toda a carteira, senón que res-
ponden á idiosincrasia operativa de cada sector. Aśı mesmo, o cambio de tendencia detectado no ano
2025 reflicte o éxito do axuste estratéxico cara á rendibilidade comercial, o que supón un reto adicional
para a modelización preditiva.
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(a) 2022 (b) 2023

(c) 2024 (d) 2025

Figura 3.15: Comparativa anual do volume de pedidos semanal (2022-2025). Obsérvanse patróns esta-
cionais recorrentes e tendencia decrecente no 2025.

(a) 2022 (b) 2023

(c) 2024 (d) 2025

Figura 3.16: Comparativa anual do volume de pedidos semanal segmentada por clúster (2022-2025).
O clúster 2 (laranxa) amosa o maior impacto da peak season e o nivel base máis elevado.
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3.4. Detección e impacto dos at́ıpicos

Unha fase cŕıtica na análise exploratoria consiste na identificación e tratamento de valores at́ıpi-
cos ou outliers. Nun contexto de modelización estat́ıstica, estas observacións representan desviacións
significativas respecto ao comportamento xeral da mostra que, de non seren xestionadas, podeŕıan
comprometer a robustez e a capacidade de xeneralización dos modelos preditivos. O obxectivo deste
apartado é identificar ditas anomaĺıas, analizar a súa natureza e avaliar o seu impacto nas variables
clave anteriormente descritas.

Cómpre distinguir este proceso do cribado inicial realizado na Sección 3.1.1. Namentres aquel
filtrado se centrou na eliminación de erros de rexistro e operacións non reais (como os prezos superiores a
3 e/km), a presente sección aborda a detección de anomaĺıas estat́ısticas derivadas da propia dinámica
do mercado.

Tendo en conta a análise destas variables levada a cabo durante o presente caṕıtulo, presentando as
distribucións colas pesadas e certa asimetŕıa positiva, non é recomendable empregar os criterios clásicos
de detección de at́ıpicos (IQR ou Z-score). Daquela, optouse por unha metodolox́ıa non paramétrica
como é o algoritmo Isolation Forest (véxase Sección 2.2), que resulta máis eficaz illando anomaĺıas en
distribucións complexas sen asumir normalidade.

A eficacia da detección mediante este algoritmo reside na correcta especificación do hiperparámetro
de contaminación (contamination), que define a proporción esperada de observacións anómalas no
conxunto de datos. A selección deste limiar require un compromiso cauteloso: unha eliminación excesiva
de rexistros podeŕıa inducir a unha perda artificial de variabilidade, derivando en modelos con risco
de sobreaxuste (overfitting) que non representaŕıan fielmente a volatilidade real do mercado.

Partindo do suposto de que os at́ıpicos representan unha pequena proporción dos datos, o valor da
contaminación fixouse en 0.0235 (2.35%). Esta cifra non é arbitraria, senón que responde a un proceso
de axuste iterativo baseado na distribución emṕırica dos prezos. Tras realizar probas de sensibilidade,
observouse que este valor identifica con precisión aquelas observacións que exceden os rangos operativos
validados pola empresa, sen comprometer a estrutura das series temporais. Deste xeito, garántese que
o filtrado actúe exclusivamente sobre as colas máis extremas e potencialmente erróneas da distribución.

Tras aplicar o algoritmo, créase un conxunto de datos reducido que se empregará para levar a cabo
unha análise de sensibilidade dos modelos que se axustarán no Caṕıtulo 4.

Agora ben, de forma exploratoria, cómpre estudar o impacto de prescindir de ditas observacións.
Como se detectan os outliers mediante as variables dos prezos por quilómetro, as diferenzas máis
salientables veranse ao representar a evolución temporal das mesmas. Recórdese, en particular, que
ao estudar estas variables sobre os datos orixinais, o clúster 3 presentaba picos elevados dos prezos
medios por quilómetro. Daquela, é de esperar que os clientes de alimentación e industria presenten as
diferenzas máis marcadas.

Na Figura 3.17, represéntase a evolución temporal dos prezos medios por d́ıa para cada clúster
tanto para os clientes (Figura (3.17a)), coma provedores (Figura (3.17b)). Comparando estas gráficas
coas orixinais (Figuras 3.9 e 3.11), obsérvase unha atenuación dos picos que se detectaban no clúster 3,
especialmente no caso dos provedores. Aśı, os prezos no conxunto de datos depurados presentan unha
dispersión moito menor, tendo un comportamento máis estable.

Por outra banda, existe o risco de que os prezos elevados, marcados como at́ıpicos polo algoritmo,
sexan en realidade consecuencia natural do incremento da demanda polo Black Friday. Aśı, estaŕıase
cometendo un erro ao diminúır o volume de pedidos durante a peak season, tendo isto impacto negativo
sobre o obxectivo do proxecto.

Para descartar este risco, a Figura 3.18 representa a evolución temporal do volume de pedidos
mensual por clúster, comparando a serie orixinal (liña continua) coa serie resultante trala eliminación
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(a) Clientes (b) Provedores

Figura 3.17: Impacto dos at́ıpicos no prezo medio diario suavizado dos clientes e provedores segmentado
por clúster (2022-2025). O clúster 3 (verde) presenta as maiores diferenzas con respecto á serie orixinal.

dos outliers (liña discontinua). Esta comparación resulta fundamental para asegurar que ao eliminar
os at́ıpicos non se prescinde fundamentalmente dos picos provocados polo Black Friday.

(a) Clúster 1: Pedidos (b) Clúster 2: Pedidos (c) Clúster 3: Pedidos

Figura 3.18: Impacto da eliminación de at́ıpicos no volume de pedidos mensuais por clúster (2022-2025).
O maior impacto obsérvase na serie do clúster 3 (verde), correspondente aos sectores de alimentación
e industria.

Para o clúster 1 (Figura 3.18a), obsérvanse as maiores diferenzas a partires de 2024, onde principal-
mente cae o volume de env́ıos no último trimestre, aśı como durante os meses do 2025. Non obstante,
a tendencia decrecente aśı como os ciclos estacionais mantéñense representados.

Pola súa parte, para os clientes do clúster 2 (Figura 3.18b) apenas se detectan cambios na demanda
de pedidos. Isto concorda coa análise elaborada ao longo do presente caṕıtulo, onde xa se detallou que
os clientes de froita e paqueteŕıa presentaban unha maior estabilidade de mercado, con prezos que
flutuaban en menor medida.

Por último, para o clúster 3 (Figura 3.18c) apréciase unha diminución máis considerable dos env́ıos,
sendo notable en peŕıodos de alta volatilidade nos prezos (finais do 2022). Como xa se explicou na
análise previa, os clientes de dito clúster presentaban os picos máis marcados nos prezos por quilómetro.

Como conclusión deste caṕıtulo, pódese afirmar que a análise exploratoria desenvolta permitiu aca-
dar un coñecemento profundo da natureza e complexidade do problema obxecto de estudo. O carácter
multidimensional dos datos, a identificación de patróns de comportamento diferenciados por clústeres
e o estudo temporal das variables de interese constitúen a base necesaria para afrontar con garant́ıas
metodolóxicas os obxectivos propostos pola empresa. No vindeiro caṕıtulo, procederase á especifi-
cación, axuste e avaliación de diversos modelos de series temporais, cuxo rendemento comparativo
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permitirá determinar a estratexia óptima para a predición do volume de env́ıos.
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Caṕıtulo 4

Implementación de modelos de

series temporais

Tras a caracterización exhaustiva dos datos e a consolidación do marco metodolóxico nos caṕıtulos
precedentes, este caṕıtulo aborda a fase de implementación e validación dos modelos estocásticos
detallados na Parte I. O obxectivo fundamental radica en identificar a metodolox́ıa preditiva que mellor
capture a estrutura temporal da demanda, proporcionando a Trucksters unha ferramenta robusta para
a anticipación das súas necesidades lox́ısticas.

En coherencia coa estratexia de segmentación definida no caṕıtulo anterior, a modelización es-
trutúrase en dúas dimensións complementarias. En primeiro lugar, desenvólvese un estudo global sobre
o volume total de pedidos para establecer unha liña base de rendemento. Nunha segunda instancia, o
estudo desagrégase por clústeres co propósito de capturar as dinámicas espećıficas de cada segmento
de clientes. Esta dualidade permite avaliar se o incremento na complexidade da análise non só aporta
unha maior interpretabilidade desde a óptica de negocio, senón que tamén se traduce nunha mellora
significativa da precisión estat́ıstica.

No que respecta ás técnicas de estimación, a Sección 4.2 ded́ıcase ao axuste da metodolox́ıa de Box-
Jenkins. Complementariamente, na Sección 4.3 explórase o potencial do algoritmo Prophet, baseado
nun modelo aditivo xeneralizado que facilita a xestión de estacionalidades complexas. Finalmente, na
Sección 4.4 reaĺızase un estudo de robustez mediante a comparación do rendemento dos modelos sobre
o conxunto de datos orixinal fronte á serie depurada de at́ıpicos. Este procedemento resulta esencial
para cuantificar o impacto das anomaĺıas na estabilidade das previsións e determinar a configuración
óptima para a empresa.

Se o lector quere afondar no código empregado durante o presente caṕıtulo, pode consultar Airas
(2026).

4.1. Deseño experimental

Antes de proceder ao axuste dos modelos, resulta imperativo definir o marco experimental que
garante a comparabilidade e a validez estat́ıstica dos resultados. Esta sección detalla o protocolo
seguido para avaliar cal é a mellor arquitectura de previsión para a demanda de Trucksters.

57
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Obxectivos e xustificación dos modelos

Tal e como se estableceu no primeiro caṕıtulo do traballo (Sección 1.3), o obxectivo central do
experimento é determinar o modelo de previsión con maior capacidade preditiva. Para tal fin, a selección
de métodos fundamentouse na complementariedade das súas aproximacións:

ARIMA: Seleccionouse como representante da metodolox́ıa clásica de Box-Jenkins. É o estándar
para modelar series temporais baseándose na súa propia estrutura de dependencia lineal (auto-
correlación), resultando ideal para series cun comportamento estocástico estable.

Prophet : Escolleuse pola súa flexibilidade para xestionar series temporais de negocio que presen-
tan estacionalidades múltiples e efectos de calendario complexos. Ao basearse nun modelo aditivo
de descomposición, permite integrar de forma directa coñecemento experto sobre festividades e
cambios de tendencia.

Definición dos conxuntos de adestramento e test

Dada a natureza temporal dos datos, optouse por dividir a serie histórica nunha mostra de ades-
tramento e outra de test:

Conxunto de Adestramento (01/01/2022 - 31/12/2024). Empregarase para a identifica-
ción e axuste dos modelos (157 semanas).

Conxunto de Test (01/01/2025 - 30/09/2025). As observacións do ano 2025 resérvanse
exclusivamente para a avaliación dos modelos (38 semanas).

En particular, para a avaliación no conxunto de test, empregarase unha metodolox́ıa de Rolling

Window Forecasting . Esta técnica fudaméntase en readestrar e reavaliar iterativamente o modelo
semana a semana, sendo unha aproximación máis adecuada ca predicir directamente para todo o
horizonte de 2025. Isto permite á empresa simular un escenario operativo real onde as previsións se
actualizan a medida que pechan novos datos.

Métricas de avaliación e hipóteses

A selección do “mellor” modelo basearase nas métricas do erro definidas na Sección 2.4.

MAE e RMSE: Permiten cuantificar a magnitude do erro en unidades reais de pedidos. En
particular, o RMSE penaliza con maior severidade as desviacións de gran magnitude.

MAPE: Permite interpretar o erro en termos porcentuais.

MASE: Para comparar o rendemento do modelo fronte a un preditor “inxenuo” (näıve), sendo
unha métrica fundamental en series con estacionalidade.

As hipóteses fundamentais que se pretenden validar son:

1. Os modelos segmentados por clúster superan en precisión ao modelo global ao capturar dinámicas
espećıficas dos sectores.

2. A inclusión de variables exóxenas (festivos e at́ıpicos) incrementa a robustez do modelo ante
picos de demanda como Black Friday.

Estratexia de modelización nos modelos ARIMA

Para cada serie temporal, seguirase o esquema iterativo explicado na Sección 2.3.2: selección e
axuste do modelo, diagnose ou análise dos residuos e predición.

Porén, cómpre recordar que, un elemento que xogaba un papel fundamental neste proxecto eran os
festivos ou eventos especiais. En particular, durante a análise exploratoria realizada no caṕıtulo previo,
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detallouse o efecto do Black Friday sobre as distintas series temporais. Daquela, co fin de capturar este
efecto mediante os modelos ARIMA, previamente a seleccionar o posible modelo xerador da serie,
levarase a cabo unha análise de intervención, constrúındo variables dummy para modelar o efecto do
Black Friday.

Estratexia de modelización nos modelos Prophet

Aı́nda que os modelos Prophet e ARIMA parten de aproximacións matemáticas diferentes, a análise
realizada pola metodolox́ıa de Box-Jenkins proporciona información estrutural clave sobre as series
temporais de Trucksters. Co obxectivo de garantir a coherencia entre as distintas etapas do proxecto e
maximizar a precisión preditiva, aproveitarase o coñecemento aportado polos modelos ARIMA á hora
de aplicar a metodolox́ıa Prophet.

Tratamento de at́ıpicos

Por unha banda, Prophet é capaz de manexalos at́ıpicos presentes na mostra de adestramento, mais
só no caso de ser axustados como cambios na tendencia. De non ser aśı, a mellor opción para tratar a
presenza de outliers seŕıa eliminándoos manualmente, posto que o algoritmo non presenta problemas
coa presenza de datos faltantes. Porén, para non prescindir desta información, optouse por incorporar
os at́ıpicos detectados na fase ARIMA como regresores externos.

Deste xeito, introdúcense variables binarias (dummy) para as datas sinaladas (Ot). Isto permite
ao modelo estimar un coeficiente espećıfico para o impacto de cada anomaĺıa, illando o seu efecto e
evitando que distorsione a estimación das compoñentes de tendencia e estacionalidade.

Tratamento de festividades e efectos de calendario

A natureza da actividade lox́ıstica de Trucksters implica unha forte dependencia do calendario
laboral, onde certas festividades teñen impacto sobre a demanda de pedidos. Prophet incorpora unha
compoñente (h(t)) para modelar estes eventos, mediante a que se capturará o efecto dos festivos consi-
derados (Apéndice B). Porén, debido á condición semanal dos datos, a data da festividade debe moverse
ao d́ıa da semana empregado como representante da mesma, neste caso luns. Ademais, cómpre sinalar
que, por ter datos semanais, o efecto de moitos festivos será capturado pola compoñente estacional do
modelo. Daquela, tan só será preciso engadir aqueles festivos que suceden en diferentes semanas ao
longo da serie.

Aı́nda que Prophet dispón desta compoñente espećıfica para captar o impacto de festividades
ou eventos especiais, a análise exploratoria (Sección 3.3) revelou unha heteroxeneidade significativa
no impacto da peak season entre os distintos clústeres. Mentres que certos sectores presentan un
comportamento anticipado ou de corrección posterior, outros amósanse insensibles ao evento.

En consecuencia, en lugar de empregar unha configuración xenérica de festividade, decidiuse mo-
delar o Black Friday mediante as variables exóxenas resultantes da análise de intervención realizada
nos modelos ARIMA. Esta aproximación outorga unha maior flexibilidade, permitindo activar ou des-
activar o regresor segundo a sigificación estat́ıstica observada en cada clúster, garantindo aśı un axuste
adaptado á realidade operativa de cada segmento de clientes.

Selección de hiperparámetros e validación cruzada

A diferenza dos modelos ARIMA, onde a elección da orde (p, d, q) se basea principalmente na análise
de correlogramas e criterios de información (AIC), en Prophet a complexidade do modelo regúlase a
través de hiperparámetros que controlan a flexibilidade da tendencia e da estacionalidade.

Para garantir a capacidade de xeneralización do modelo e evitar o sobreaxuste (overfitting), imple-
mentouse un procedemento de busca en grella (Grid Search) combinado cunha estratexia de validación
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cruzada sobre unha orixe deslizante (rolling origin cross-validation).

En concreto, def́ınese un espazo de busca centrado en tres principais parámetros:

Un parámetro para controlar a sensibilidade ante o cambio de tendencia nos datos
(changepoint prior scale). Valores elevados permiten unha tendencia máis flexible (risco de
sobreaxuste) mentres que valores baixos forzan unha tendencia máis ŕıxida.

Outro parámetro encargado de regular a magnitude das flutuacións estacionais permitidas
(seasonality prior scale). De forma similar, valores elevados permiten axustar grandes osci-
lacións nos ciclos periódicos.

Un último parámetro encargado de controlar o impacto das festividades inclúıdas
(holidays prior scale) e cunha interpretación similar aos anteriores.

Adicionalmente, definiuse a estrutura da estacionalidade (seasonality mode) de forma determinis-
ta para cada clúster, aproveitando a diagnose de varianza que se realizará na análise ARIMA. Aśı, para
aqueles clústeres onde se detecte heterocedasticidade e se precise transformación logaŕıtmica, fixouse
unha estacionalidade de tipo multiplicativo. Pola contra, nos casos de varianza estable, mant́ıvose a
estacionalidade aditiva. Esta transferencia de información estrutural entre modelos permite reducir o
espazo de busca sen comprometer a precisión teórica.

Unha vez definida a grella, o rendemento de cada combinación de parámetros avaliouse mediante
validación cruzada temporal. Este método consiste en realizar unha serie de cortes (cuto!s) na historia
da serie, adestrando o modelo cos datos anteriores ao corte realizando predicións sobre un horizonte
temporal fixo.

Debido ás caracteŕısticas dos datos dispoñibles neste traballo, o esquema de validación configurouse
do seguinte xeito: estableceuse un peŕıodo inicial de adestramento suficiente para captar a estacionali-
dade anual, seguido de cortes trimestrais e proxectando un horizonte de predición dun mes. Finalmente,
seleccionouse aquela combinación de hiperparámetros que minimizou o RMSE promediado sobre todos
os cortes realizados.

Por último, é preciso sinalar que se fixou un nivel de significación do 5% para todos os contrastes
que se levarán a cabo.

4.2. Modelos ARIMA

Nesta sección abordarase a implementación práctica da metodolox́ıa clásica de Box-Jenkins, cons-
trúındo modelos ARIMA capaces de capturar a estrutura de dependencia lineal e posibles patróns
estacionais da demanda do transporte.

Seguindo a estrutura definida no deseño experimental, comezarase polo caso da serie global e
posteriormente a axustarase un modelo para cada un dos clústeres constrúıdos.

4.2.1. Modelo Global

Análise de intervención

O primeiro paso consiste en caracterizar o impacto do Black Friday na demanda agregada. A Figura
4.1 mostra a evolución temporal da serie global, onde se marcaron en vermello as semanas centrais do
evento para os anos 2022, 2023 e 2024.

A inspección visual revela que o efecto do evento é de tipo transitorio. Porén, non se observa efecto
só na propia semana do Black Friday, tamén se aprecia impacto tanto nas semanas previas coma
un efecto rebote nas posteriores. Dada a heteroxeneidade deste comportamento, non seŕıa correcto
modelalo cunha única variable dummy de ventá. No seu lugar, def́ınense tres regresores de intervención
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independentes que se incluirán no modelo ARIMA como variables exóxenas: unha variable binaria
activa nas dúas semanas previas, unha variable binaria activa na semana do Black Friday, e unha
última variable dummy activa nas dúas semanas posteriores ao evento.

Figura 4.1: Análise de intervención na serie de demanda global: Impacto do Black Friday. As semanas
centrais do evento márcanse en vermello.

Selección e axuste do modelo

Unha vez definidas as variables exóxenas para capturar o efecto do Black Friday, procédese á iden-
tificación da estrutura estocástica do modelo.

(a) Serie orixinal (b) Serie diferenciada

Figura 4.2: Gráfico secuencial, fas e fap da serie de demanda global. Represéntase á esquerda a serie
orixinal e á dereita a serie tras unha diferenza regular (d = 1). Non se observan problemas de hetero-
cedasticidade.

A Figura 4.2 mostra a evolución temporal e os correlogramas (fas e fap) para a serie orixinal (Figura
(4.2a)). Tanto no gráfico secuencial coma na lenta cáıda no fas apréciase un claro comportamento non
estacionario (tendencia estocástica). En consecuencia, apĺıcase unha diferenza regular (d = 1). Nas
gráficas da Figura (4.2b) obsérvase que a diferenciación logrou estabilizar a media da serie. A análise
visual non suxire problemas de heterocedasticidade nin presenza de compoñente estacional. Centrando
o estudo na estrutura de autocorrelación da serie diferenciada:

A fas presenta un pico significativo no retardo 1, suxerindo un termo de media móbil (q = 1).
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A fap mostra da mesma forma un valor significativo no retardo 1, o que podeŕıa indicar alterna-
tivamente a presenza dun termo autorregresivo (p = 1)1.

Isto permite propoñer como candidatos iniciais un ARIMA(0, 1, 1) ou ben un ARIMA(1, 1, 0).

Para a selección definitiva, compáranse os modelos suxeridos graficamente co modelo óptimo en
termos do AIC, resultando neste caso un ARIMA(1, 1, 1). Recórdese que, co fin de evitar o sobreaxuste,
seleccionábase o modelo máis sinxelo (menos parámetros) que diste menos de dúas unidades ao AIC
óptimo.

Modelo AIC

ARIMA(0, 1, 1) 1325.59

ARIMA(1, 1, 0) 1334.93

ARIMA(1, 1, 1) 1325.08

Cadro 4.1: Comparativa dos valores AIC para os modelos candidatos na serie de demanda global.
En negro destácase o modelo seleccionado en termos do AIC óptimo e tendo en conta o criterio de
parsimonia.

Á vista do Cadro 4.1, obsérvase que a diferenza entre o modelo automático ARIMA(1, 1, 1) e o
modelo ARIMA(0, 1, 1) é inferior a 2 unidades. Daquela seleccionarase como modelo candidato un
ARIMA(0, 1, 1).

Unha vez escollido o modelo, o seguinte paso será detectar a presenza de at́ıpicos: innovativos
(IO) e aditivos (AO). Cómpre recordar que na práctica ambos tipos de outliers modelaranse mediante
variables dummy, que se incluirán no modelo como variables exóxenas (da mesma forma que o efecto do
Black Friday). Aśı, implementando o algoritmo explicado na parte teórica (Sección 2.3.2), detectáronse
dous at́ıpicos: as semanas 25/12/2023 e 23/12/2024.

Tras isto, axústase o modelo resultante: ARIMA(0, 1, 1) con variables exóxenas (efecto do Black
Friday e at́ıpicos). Nesta etapa o procedemento será estimar por máxima verosimilitude os parámetros
do modelo. Aśı, en caso de que algún dos parámetros non sexa significativo (nivel de significación
do 5%), suprimirase dito parámetro e reaxústase o modelo. Este proceso reṕıtese ata que todos os
elementos do modelo sexan estatisticamente significativos.

O Cadro 4.2 permite ver as estimacións, xunto co erro asociado á estimación e o p-valor corres-
pondente ao contraste de significación dos mesmos. En particular, todos os parámetros considerados
no modelo orixinal son estatisticamente significativos.

A análise dos coeficientes recollidos no Cadro 4.2 permite extraer conclusións fundamentais sobre
a dinámica da demanda global de Trucksters:

Impacto do Black Friday: Os tres regresores asociados ao evento presentan coeficientes po-
sitivos e altamente significativos. O impacto neto é máximo durante a semana central (BFpeak)

cun incremento estimado de aproximadamente 29 pedidos sobre a tendencia base. É salientable
que o efecto se anticipa nas dúas semanas previas (BFpre ⇔ 17) e mantense, áında que con menor
intensidade, nas dúas posteriores (BFpre ⇔ 16), o que valida a estratexia de modelar o evento
como unha ventá de intervención ampliada e non como un punto illado.

1
As bandas de confianza asumen un nivel de significación ε = 0.05. Baixo a hipótese nula de incorrelación, espérase

estatisticamente que o 5% das autocorrelacións mostrais queden fóra das bandas. Polo tanto, picos illados en retardos

altos deben interpretarse con cautela, pois adoitan ser atribúıbles ao azar e non a un patrón estrutural real.
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Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

BFpre 17.010 5.987 2.841 0.004

BFpeak 28.962 11.723 2.470 0.013

BFpost 15.873 5.228 3.036 0.002

O23/12/24 -64.659 8.799 -7.349 < 0.001

O25/12/23 -42.758 9.636 -4.437 < 0.001

⇀1 (MA 1) -0.533 0.084 -6.325 < 0.001

ϖ2 (Varianza) 221.822 24.100 9.204 < 0.001

Cadro 4.2: Resumo da estimación dos parámetros para o modelo ARIMA(0, 1, 1) con variables de
intervención. Inclúense os coeficientes asociados ao impacto do Black Friday e eventos at́ıpicos, todos
eles significativos cun nivel de significación do 5%.

Impacto dos at́ıpicos: Os outliers detectados coinciden coas semanas de Nadal de 2023 e 2024.
Os coeficientes negativos e de gran magnitude (↑42.76 e ↑64.66 respectivamente) cuantifican o
drástico descenso da actividade lox́ıstica durante o peche industrial e comercial de fin de ano.

Compoñente estocástica (⇀1): O parámetro de media móbil (MA(1)) presenta un valor de
↑0.533. A significación deste termo indica que a serie ten memoria de curto prazo respecto aos
erros de predición pasados, en particular o correspondente ao peŕıodo inmediatamente anterior.

Diagnose do modelo

Unha vez estimados os parámetros, é imperativo validar as hipóteses estruturais subxacentes. O
obxectivo é confirmar que os residuos (ât) se comportan como un proceso de rúıdo branco gaussiano
(incorrelado, de media cero e distribución normal).

A Figura 4.3 presenta o panel de diagnose gráfica. Na gráfica secuencial (superior esquerda) non
se aprecian problemas de heterocedasticidade nin incumprimento da hipótese de media 0. Mediante
o correlograma (fas) descártase a presenza de autocorrelación, posto que ningún retardo excede as
bandas de confianza significativas.

Respecto á normalidade, o histograma e o gráfico dos cuant́ıs mostran un axuste razoable á distri-
bución teórica, áında que se aprecia unha lixeira asimetŕıa nas colas. Para confirmar visualmente estas
propiedades, empréganse os contrastes formais.

O Cadro 4.3 resume os resultados dos tests estat́ısticos. O contraste de Ljung-Box (p = 0.530)
confirma a ausencia de correlación serial. No tocante á normalidade, obsérvase unha discrepancia
marxinal entre o test de Shapiro-Wilk (p = 0.091, que acepta a normalidade) e o de Jarque-Bera
(p = 0.050, no ĺımite do rexeitamento). Dado o tamaño da mostra (N ⇔ 150), prioŕızase o resultado
de Shapiro-Wilk por ser máis robusto en mostras finitas, conclúındo que a hipótese de normalidade
é aceptable para os fins do modelo.
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Figura 4.3: Diagnose de residuos para o modelo de demanda global: evolución temporal para o contraste
de homocedasticidade (superior esquerda), correlograma fas para verificar a incorrelación (superior
dereita), e histograma xunto co gráfico Q-Q para a validación da normalidade (inferiores).

Contraste P-valor

Media 0 (t-test) 0.370

Incorrelación (Ljung-Box) 0.530

Homocedasticidade (test H) 0.440

Normalidade (Shapiro-Wilk) 0.091

Normalidade (Jarque-Bera) 0.050

Cadro 4.3: Resultados dos contrastes de hipóteses sobre os residuos do modelo. O modelo
ARIMA(0, 1, 1) resulta válido e con residuos gaussianos.

Predición

Finalmente, avaĺıase a capacidade preditiva do modelo nun escenario real. Seguindo a estratexia de
Rolling Window definida no deseño experimental, emprégase o modelo ARIMA(0, 1, 1) estimado con
datos ata 2024 para proxectar a demanda semana a semana durante os datos do ano 2025 (horizonte
h = 1). En cada paso, actuaĺızase o conxunto de información co dato real observado para predicir o
seguinte.
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A Figura 4.4 compara a serie real (azul) coa predición do modelo (laranxa). O axuste visual é no-
tablemente preciso: o modelo ARIMA, axudado polas variables de intervención, é capaz de capturar
fielmente a tendencia decrecente estrutural que sofre a demanda ao longo do 2025. Isto indica que o
modelo non só memorizou o pasado, senón que xeneraliza correctamente a dinámica do proceso.

Figura 4.4: Gráfica comparativa da serie real (azul) na mostra de test (2025) fronte ás predicións do
ARIMA(0, 1, 1) realizadas mediante a técnica rolling window a horizonte h = 1 (laranxa).

Para cuantificar con precisión o rendemento do modelo na mostra de test (2025), calculáronse as
métricas do erro definidas no marco teórico (Sección 2.4). O Cadro 4.4 resume os valores obtidos.

Métrica Valor

MAE 7.90

RMSE 11.15

MAPE 8.18%

MASE 0.60

Cadro 4.4: Avaliación da capacidade predictiva do modelo ARIMA(0, 1, 1) para a serie global: métricas
de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos semanais.
MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

A interpretación destas medidas permite valorar a utilidade do modelo. Por unha parte, mediante o
MAE e o RMSE pódese medir a precisión en volume. Por construción o RMSE penaliza fortemente os
erros grandes, mais neste caso non dista moito do valor do MAE (aproximadamente 11 e 8). Tendo en
conta o volume semanal de pedidos, desviacións de 8 env́ıos semanais supoñen unha gran aproximación
para a empresa.

Por outra banda, o MAPE é unha medida porcentual. No sector do transporte, un erro do 8.18%
considérase satisfactorio.
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Por último, o valor do MASE (0.60) constitúe o indicador máis relevante de calidade do axuste. Ao
ser inferior a 1, indica que o modelo proposto supera ao preditor “inxenuo” (que consiste en considerar
o último valor observado como predición). Especificamente, o modelo reduce nun 40% o erro cometido
polo preditor näıve de horizonte 1.

En conclusión, o modelo de Box-Jenkins axustado, incorporando a análise de intervención, demostra
un rendemento preditivo robusto e constitúe unha ferramenta fiable para anticipar as necesidades
lox́ısticas a nivel global.

Aı́nda que o modelo global proporciona unha estimación robusta da carga de traballo total, como
xa se observou no Caṕıtulo 3, a agregación dos datos pode enmascarar dinámicas diverxentes entre os
distintos perf́ıs de clientes. Por conseguinte, procédese ao axuste da metodolox́ıa de Box-Jenkins para
cada un dos tres clústeres.

4.2.2. Modelo para o Clúster 1

O primeiro grupo estaba formado polos clientes dos sectores de transporte, retail e electrónica.

Análise de intervención

Ińıciase o estudo caracterizando o impacto do Black Friday nos clientes dos sectores considerados.
A Figura 4.5 representa a evolución temporal da demanda dos clientes do primeiro clúster, repre-
sentándose en vermello as semanas do Black Friday.

Figura 4.5: Análise de intervención na serie de demanda dos sectores de transporte, retail e electrónica:
Impacto do Black Friday. As semanas centrais do evento márcanse en vermello.

Novamente o efecto do evento é de tipo transitorio (non afecta ao nivel medio da serie). Porén, a
diferenza do caso xeral, neste clúster obsérvase unha maior volatilidade e heteroxeneidade interanual
no impacto do evento.

Mentres que o 2024 se asemella ao patrón estándar (pico na semana central), o ano 2023 presenta
un comportamento anómalo cun repunte da actividade nas semanas posteriores e no 2022 o impacto
é apenas considerable.

Ante a presente dispersión, e co obxectivo de capturar tanto a anticipación como o efecto rebote,
def́ınese unha estrutura de intervención máis delimitada ca o caso global, composta por tres regresores
puntuais: unha variable para a semana previa, outra para a semana central, e unha última variable
para a observación posterior.

Esta configuración busca o equilibrio entre capturar o efecto da peak season e evitar o sobreaxuste
debido ao rúıdo inherente á serie desagregada.
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Selección e axuste do modelo

Tras constrúır os regresores externos que formarán parte do modelo, procédese á identificación da
estrutura estocástica do mesmo.

A Figura 4.6 mostra a evolución temporal e os correlogramas para a serie orixinal (Figura (4.6a)).
No gráfico secuencial e na cáıda lenta presente na fas obsérvase falta de estacionariedade pola presenza
de tendencia. Para corrixilo, diferénciase regularmente a serie (d = 1) e observando as gráficas corres-
pondentes á serie diferenciada (Figura (4.6b)), non se aprecian problemas na estacionariedade da serie
(compoñente estacional ou heterocedasticidade). Centrando o estudo na estrutura de correlación da
serie diferenciada, tanto o fas coma o fap mostran picos para o primeiro retardo, o que leva a propoñer
como modelos candidatos para a serie orixinal un ARIMA(0, 1, 1) ou ben un ARIMA(1, 1, 0).

(a) Serie orixinal (b) Serie diferenciada

Figura 4.6: Gráfico secuencial, fas e fap da serie de demanda do clúster 1. Represéntase á esquerda a
serie orixinal e á dereita a serie tras unha diferenza regular (d = 1). Non se observan problemas de
heterocedasticidade.

Tras esta primeira suxerencia gráfica, selecciónase o modelo óptimo en termos do criterio de infor-
mación de Akaike (AIC), resultando un ARIMA(1, 1, 2). Comparando os distintos modelos propostos
en termos do AIC (Cadro 4.5) o ARIMA(0, 1, 1) resulta o modelo seleccionado por ser máis sinxelo e
distar en menos de dúas unidades do criterio de información óptimo.

Modelo AIC

ARIMA(0, 1, 1) 1184.64

ARIMA(1, 1, 0) 1190.18

ARIMA(1, 1, 2) 1183.63

Cadro 4.5: Comparativa dos valores AIC para os modelos candidatos na serie de demanda do clúster
1. En negro destácase o modelo seleccionado en termos do AIC óptimo e tendo en conta o criterio de
parsimonia.

A seguinte etapa consiste na detección dos at́ıpicos (tanto aditivos coma innovativos). Ao aplicar o
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algoritmo correspondente ao modelo seleccionado non se atopa ningún outlier, polo que non será preciso
engadir máis regresores ao modelo resultante.

En consecuencia, axústase o ARIMA(0, 1, 1) con tres variables exóxenas. Est́ımanse os parámetros
do modelo por máxima verosimilitude e, de forma recursiva, elimı́nanse aqueles coeficientes que non
resulten significativos. Aśı, o modelo final é:

Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

BFpeak 10.910 3.904 2.794 0.005

BFpost 14.612 4.420 3.306 0.001

⇀1 (MA 1) -0.480 0.068 -7.010 < 0.001

ϖ2 (Varianza) 110.521 9.272 11.920 < 0.001

Cadro 4.6: Resumo da estimación dos parámetros para o modelo ARIMA(0, 1, 1) con variables de
intervención. Inclúense os coeficientes asociados ao impacto do Black Friday todos eles significativos
cun nivel de significación do 5%. Non se detectaron at́ıpicos.

A análise dos resultados recollidos no Cadro 4.6 permite debullar a dinámica espećıfica da demanda
para os sectores de transporte, retail e electrónica:

Efecto diferido do Black Friday: Un dos achados máis notables deste modelo é a significación
e magnitude dos regresores de intervención. Mentres que no modelo global o impacto era máxi-
mo na semana central, no clúster 1 obsérvase que o efecto rebote ou posterior (BFpost ⇔ 14.6)
supera o impacto da propia semana do evento (BFpeak ⇔ 10.9). Este fenómeno valida a obser-
vación visual previa sobre o comportamento anómalo de 2023 e suxire que, para estes sectores,
a presión lox́ıstica non se esgota na semana do evento, senón que se estende ás semanas seguin-
tes, posiblemente debido á xestión de entregas pendentes ou a unha demanda máis dilatada no
tempo.

Ausencia de anticipación e at́ıpicos: A variable correspondente ao efecto da semana previa
ao Black Friday (BFpre) non resultou ter un efecto significativo. Ademais, a nula detección de
at́ıpicos, suxire que as flutuacións da serie quedan explicadas pola propia estrutura estocástica e
os regresores do Black Friday.

Diagnose do modelo

Unha vez estimados os parámetros, contrástase a validez do modelo axustado.

En primeiro lugar, lévase a cabo un diagnóstico gráfico mediante a Figura 4.7. Na representación
secuencial dos residuos (superior esquerda) non se presencia incrumpimento nas hipótese de homoce-
dasticidade nin de media cero. Grazas ao correlograma (fas) descártase a presenza de autocorrelación
nos residuos, ao non superarse para ningún retardo as bandas de confianza.

Sobre a hipótese de normalidade, o histograma e o gráfico dos cuant́ıs amosan certa asimetŕıa nas
colas, o que leva a dubidar sobre o cumprimento de dita hipótese.

Para confirmar a interpretación visual, cómpre aplicar os contrastes correspondentes. No Cadro
4.7 resúmense os resultados dos tests estat́ısticos. Os contrastes de Ljung-Box (p-valor = 0.64) e de
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Figura 4.7: Diagnose de residuos para o modelo de demanda do clúster 1: evolución temporal para
o contraste de homocedasticidade (superior esquerda), correlograma fas para verificar a incorrelación
(superior dereita), e histograma xunto co gráfico Q-Q para a validación da normalidade (inferiores).

homocedasticidade (p-valor = 0.30) descartan a presenza de autocorrelación e heterocedasticidade.
Tampouco se rexeita a hipótese de media cero (p-valor = 0.781). Porén, tal e como se intúıa nas gráfi-
cas, os residuos non seguen unha distribución normal. En particular, rexéitase dita hipótese tanto co
contraste de Jarque-Bera (p-valor < 0.001) coma co test de Shapiro-Wilk (p-valor = 0.001). Non obs-
tante, recórdese que dita hipótese non resultaba eliminatoria, isto é, o modelo aśı axustado é correcto,
mais se se quixeran constrúır intervalos de predición seŕıa preciso empregar técnicas Bootstrap.

Contraste P-valor

Media 0 (t-test) 0.781

Incorrelación (Ljung-Box) 0.640

Homocedasticidade (test H) 0.300

Normalidade (Shapiro-Wilk) 0.001

Normalidade (Jarque-Bera) < 0.001

Cadro 4.7: Resultados dos contrastes de hipóteses sobre os residuos do modelo. O modelo
ARIMA(0, 1, 1) resulta válido e con residuos non gaussianos.
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Predición

Finalmente avaĺıase a capacidade preditiva do modelo. Recórdese que para constrúır as predicións
aplicábase a técnica do Rolling-Window.

Mediante a Figura 4.8 compárase a serie real (azul) coa predición do modelo (laranxa). Visualmente
o axuste asemella considerablemente preciso. O modelo ARIMA(0, 1, 1) con dous regresores externos,
é capaz de captar a cáıda nos tres primeiros meses e a posterior estabilización do mercado.

Figura 4.8: Gráfica comparativa da serie real (azul) na mostra de test (2025) fronte ás predicións do
ARIMA(0, 1, 1) realizadas mediante a técnica rolling window a horizonte h = 1 (laranxa).

Para cuantificar o rendemento do modelo na mostra de test (2025), no Cadro 4.8 resúmense os
valores das métricas calculadas.

Métrica Valor

MAE 3.88

RMSE 4.85

MAPE 15.57%

MASE 0.45

Cadro 4.8: Avaliación da capacidade predictiva do modelo ARIMA(0, 1, 1) para a serie do clúster 1:
métricas de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos
semanais. MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

Mediante o MAE e o RMSE obsérvase que o modelo comete erros en 4 pedidos semanais, o cal a nivel
lox́ıstico non supón un problema demasiado preocupante. Porén, o MAPE neste caso é lixeiramente
superior ao obtido na serie global (15.57%). Isto débese á escala da serie, estando agora entre 20 e
40 pedidos semanais, co cal erros en 4 unidades supoñen unha porporción máis considerable. Non
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obstante, obténse un gran resultado a niveis do MASE (0.45), mellorándose de forma moi significativa
a capacidade preditiva do modelo näıve.

En definitiva, os resultados obtidos para o segmento de transporte, retail e electrónica demostran un
desempeño preditivo satisfactorio e de alto valor estratéxico para a empresa. Lógrase unha modelización
precisa malia a volatilidade intŕınseca deste clúster, caracterizado pola predominancia de contratos
puntuais (spot) e a ausencia de acordos de volume a longo prazo con Trucksters. A capacidade do
modelo para anticipar a tendencia e as flutuacións semanais nestas condicións valida a utilidade da
segmentación previa.

4.2.3. Modelo para o Clúster 2

A continuación, abórdase a modelización dos clientes pertencentes aos sectores de paqueteŕıa e
froita (Clúster 2).

Análise de intervención

Ińıciase o axuste caracterizando o impacto do Black Friday. Como se adiantou na análise explora-
toria (Caṕıtulo 3), este clúster presenta a maior sensibilidade á peak season. A Figura 4.9 evidencia
un claro efecto transitorio: nos exercicios de 2022 e 2024, o incremento da demanda comeza de forma
visible dúas semanas antes do evento, seguido dunha corrección posterior.

Figura 4.9: Análise de intervención na serie de demanda dos sectores de paqueteŕıa e froita: Impacto
do Black Friday. As semanas centrais do evento márcanse en vermello.

Baseándose neste comportamento, def́ınense tres variables dummy de intervención:

1. Unha variable de anticipación activa nas dúas semanas previas (t↑ 2, t↑ 1).

2. Unha variable impulso para a semana central (t).

3. Unha variable de corrección para a semana posterior (t+ 1).

Selección e axuste do modelo

O seguinte paso é a identificación da estrutura estocástica. Unha análise preliminar sobre a serie
bruta revelou problemas de heterocedasticidade nos residuos, o que invalidaba o suposto de varianza
constante. Por conseguinte, procederase a aplicar unha transformación logaŕıtmica (ec. 2.10, ε = 0)
para estabilizar a varianza antes de continuar co proceso de identificación. Os detalles do estudo da
serie orixinal pódense consultar no código (véxase Airas, 2026).
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(a) Serie transformada (b) Serie transformada diferenciada

Figura 4.10: Gráfico secuencial, fas e fap da serie de demanda do clúster 2 tras aplicar a transformación
logaŕıtmica. Represéntase á esquerda a serie orixinal e á dereita a serie tras unha diferenza regular
(d = 1).

A Figura 4.10 representa o gráfico secuencial e os correlogramas para a serie transformada (Figura
(4.10a)). Novamente obsérvase falta de estacionariedade debido a tendencia regular (cambio do nivel
medio no gráfico secuencial e cáıda lenta na fas). Na serie diferenciada (Figura (4.10b)) corŕıxese a ten-
dencia presente. Centrándose nos correspondentes correlogramas, tanto no fas coma no fap detéctanse
picos significativos nos segundos retardos, o que leva a suxerir como posibles modelos candidatos para
a serie transformada un ARIMA(2, 1, 0) ou ben un ARIMA(0, 1, 2).

Co obxectivo de identificar o modelo óptimo, calcúlase aquel con menor AIC. En particular, o
modelo seleccionado polo algoritmo coincide co ARIMA(2, 1, 0) proposto pola inspección visual (Cadro
4.9).

Modelo AIC

ARIMA(0, 1, 2) -118.64

ARIMA(2, 1, 0) -119.33

Cadro 4.9: Comparativa dos valores AIC para os modelos candidatos na serie de demanda do clúster
2. En negro destácase o modelo seleccionado en termos do AIC óptimo e tendo en conta o criterio de
parsimonia.

Para o modelo seleccionado apĺıcase o algoritmo de detección de at́ıpicos. Neste caso captúranse
tres outliers nas semanas: 31/01/2022, 25/12/2023 e 23/12/2024. O impacto destas observacións
engádese ao modelo mediante variables dummy que se inclúen como regresores externos.

Tras identificar todas as compoñentes do modelo, axústase o correspondente ARIMA(2, 1, 0) con seis
variables exóxenas. Est́ımanse os coeficientes por máxima verosimilitude e elimı́nanse, recursivamente,
aqueles parámetros non significativos.

No Cadro 4.10 recóllense as estimacións dos parámetros xunto co erro asociado ás mesmas, aśı como
o p-valor correspondente ao contraste de significación. Á vista da análise de intervención previa, resulta
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Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

O31/01/22 0.384 0.036 10.650 < 0.001

O23/12/24 -0.403 0.045 -9.016 < 0.001

O25/12/23 -0.379 0.073 -5.215 < 0.001

φ2 (AR 2) -0.213 0.093 -2.277 0.023

ϖ2 (Varianza) 0.018 0.002 10.148 < 0.001

Cadro 4.10: Resumo da estimación dos parámetros para o modelo ARIMA(2, 1, 0) con variables de
intervención. Inclúense os coeficientes asociados aos at́ıpicos detectados, todos eles significativos cun
nivel de significación do 5%. Non se detectou efecto significativo do Black Friday.

destacable que ningún dos regresores que capturaban o efecto do Black Friday resultase significativo.
Este feito choca coa interpretación que se fixo do impacto da peak season neste clúster. Porén, este
fenómeno expĺıcase pola interacción de dous factores derivados do axuste do modelo. Por unha banda,
debido á natureza da transformación logaŕıtmica, os picos do Black Friday compŕımense, reducindo
a diferenza co comportamento habitual da serie. Por outra banda, a compoñente autorregresiva de
segunda orde (φ2) captura eficazmente a inercia da serie. A dinámica de aceleración da demanda
é absorbida polo modelo, facendo redundante a variable exóxena, xa que o propio histórico recente
permite anticipar o cambio de nivel.

En conclusión, o modelo é capaz de modelar o impacto do Black Friday sen a necesidade de engadir
regresores externos.

Outra particularidade estrutural deste modelo é a selección dunha compoñente autorregresiva de
segunda orde (φ2) significativa, mentres que o termo de primeira orde (φ1) foi exclúıdo. Estatistica-
mente, isto é coherente coa fas observada na Figura 4.10, onde se apreciaba un pico illado no retardo
2.

Diagnose do modelo

Unha vez estimados os parámetros, a seguinte etapa consiste en contrastar a validez do modelo
aśı axustado.

Comézase cunha interpretación gráfica do comportamento dos residuos mediante a Figura 4.11.
Á vista das gráficas, non se observa incumprimento da hipótese sobre a inesgadez dos residuos, nin
problemas de heterocedasticidade (a serie foi transformada co obxectivo de corrixir isto). Tampouco
se detectan problemas de autocorrelación nos residuos (fas).

En canto á hipótese de normalidade, obsérvase certa asimetŕıa (histograma e gráfico de cuant́ıs) o
cal nos permite intúır a non gaussianidade dos residuos.

Co fin de confirmar a interpretación visual, no Cadro 4.11 resúmense os resultados dos distintos
contrastes estat́ısticos.

Aśı, o diagnóstico dos residuos trala transformación logaŕıtmica amosa un p-valor de 0.05 para o test
de homocedasticidade. Se ben este resultado se atopa no ĺımite de significación estat́ıstica, considérase
aceptable dado o bo comportamento do modelo noutras métricas (contraste de Ljung-Box (p-valor =
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Figura 4.11: Diagnose de residuos para o modelo de demanda do clúster 2: evolución temporal para
o contraste de homocedasticidade (superior esquerda), correlograma fas para verificar a incorrelación
(superior dereita), e histograma xunto co gráfico Q-Q para a validación da normalidade (inferiores).

Contraste P-valor

Media 0 (t-test) 0.276

Incorrelación (Ljung-Box) 0.700

Homocedasticidade (test H) 0.050

Normalidade (Shapiro-Wilks) 0.020

Normalidade (Jarque-Bera) < 0.001

Cadro 4.11: Resultados dos contrastes de hipóteses sobre os residuos do modelo. O modelo
ARIMA(2, 1, 0) resulta válido e con residuos non gaussianos.

0.700) e contraste de media 0 (p-valor = 0.276)). Daquela asúmese a homocedasticidade, entendendo
que o modelo captura adecuadamente a dinámica principal da serie temporal.

Por outra banda, tal e como se adiantaba mediante a interpretación gráfica dos residuos, rexéitase a
hipótese de normalidade tanto co test de Jarque-Bera (p-valor < 0.001) coma co test de Shapiro-Wilks
(p-valor = 0.020). Aśı e todo, o incumprimento desta hipótese non invalida o modelo axustado.
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Predición

Tras a validación do modelo, avaĺıase o rendemento preditivo do mesmo. A Figura 4.12 representa
unha comparación entre as predicións calculadas polo modelo ARIMA(2, 1, 0) (liña laranxa) xunto cos
valores da serie observada (liña azul). Á vista da gráfica, o axuste asemella captar con precisión o
comportamento da serie durante a mostra de test. En particular, detecta a tendencia crecente inicial,
aśı como a posterior cáıda do nivel medio.

Figura 4.12: Gráfica comparativa da serie real (azul) na mostra de test (2025) fronte ás predicións do
ARIMA(2, 1, 0) realizadas mediante a técnica rolling window a horizonte h = 1 (laranxa).

Co obxectivo de xustificar o bo rendemento do modelo, o Cadro 4.12 recolle as métricas do erro
das predicións calculadas. En particular, obsérvanse valores claramente baixos do MAE (3.60) e do
RMSE (4.94), que, recórdese, med́ıan a precisión volume. Tendo en conta ademais a demanda semanal
de pedidos, erros medios próximos a 4 env́ıos semanais supoñen unha proporción pouco significativa,
dando lugar a un MAPE = 7.38%. Por último, é importante salientar a mellora preditiva que presenta
o modelo axustado con respecto ao preditor näıve, sendo o MASE = 0.63.

Métrica Valor

MAE 3.60

RMSE 4.94

MAPE 7.38%

MASE 0.63

Cadro 4.12: Avaliación da capacidade predictiva do modelo ARIMA(2, 1, 0) para a serie do clúster 2:
métricas de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos
semanais. MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

En conclusión, a metodolox́ıa Box-Jenkins ofrece resultados robustos para os sectores de froita e
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paqueteŕıa. O modelo final ARIMA(2, 1, 0) demostrou ser capaz de interiorizar a estacionalidade da
peak season a través da súa propia estrutura dinámica e da transformación logaŕıtmica, sen depender
de regresores externos complexos. Isto simplifica a operativa de predición futura sen sacrificar precisión
(MAPE ⇔ 7%).

4.2.4. Modelo para o Clúster 3

Para rematar coa metodolox́ıa Box-Jenkins, reṕıtese o proceso sobre os clientes que conforman o
último clúster (alimentación e industria).

Análise de intervención

A análise exploratoria do Caṕıtulo 3 amosou un efecto marxinal do Black Friday sobre o compor-
tamento da serie temporal dos clientes de alimentación e industria. En efecto, a Figura 4.13 reforza
a análise previa, destacando en vermello as semanas correspondentes co evento nos anos de mostra.
Porén, co fin de captar posibles impactos que non se están a interpretar de forma visual, decidiuse
constrúır 3 variables dummy seguindo a metodolox́ıa dos modelos anteriores. Aśı e todo, neste caso
tan só se captura o efecto na semana previa e posterior (ademais do evento central).

Figura 4.13: Análise de intervención na serie de demanda dos sectores de alimentación e industria:
Impacto do Black Friday. As semanas centrais do evento márcanse en vermello.

Cómpre sinalar que esta práctica non supón un sobreaxuste posto que, en caso de confirmarse a au-
sencia de impacto da peak season, as variables regresoras corrrespondentes non resultarán significativas
e serán eliminadas do modelo.

Selección e axuste do modelo

A seguinte etapa consiste na identificación da estrutura estocástica do modelo. A Figura 4.14 re-
presenta o gráfico secuencial e os correlogramas da serie orixinal. A inspección visual da evolución
temporal revela unha certa estrutura heterocedástica. En particular, a volatilidade da serie non é cons-
tante, senón que presenta unha correlación positiva co nivel da media: os peŕıodos de maior demanda
(2024) presentan unha dispersión significativamente superior aos peŕıodos de menor nivel.

Co obxectivo de estabilizar a varianza, aplicouse unha transformación logaŕıtmica á serie (ec. 2.10,
ε = 0). Repetindo a análise gráfica sobre a serie aśı transformada (Figura 4.15), detéctase falta de
estacionariedade debido á tendencia observada no gráfico secuencial e na lenta cáıda da autocorrelación
simple (Figura (4.15a)). Este feito corŕıxese aplicando unha diferenza regular (d = 1). Centrando o
estudo nos gráficos da serie diferenciada resultante (Figura (4.15b)), non se observan problemas da
estacionariedade.
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Figura 4.14: Gráfico secuencial, fas e fap da serie de demanda do clúster 3. Represéntase á esquerda
a serie orixinal e á dereita a serie tras unha diferenza regular (d = 1). Obsérvanse problemas de
heterocedasticidade.

En particular, atendendo aos autocorrelogramas, tanto no fas coma no fap existen picos significa-
tivos nos segundos retardos, o que leva a suxerir como posibles modelos para a serie transformada un
ARIMA(0, 1, 2) ou ben un ARIMA(2, 1, 0).

(a) Serie transformada (b) Serie transformada diferenciada

Figura 4.15: Gráfico secuencial, fas e fap da serie de demanda do clúster 3 tras aplicar a transformación
logaŕıtmica. Represéntase á esquerda a serie orixinal e á dereita a serie tras unha diferenza regular
(d = 1).

Co obxectivo de identificar o modelo óptimo, calcúlase aquel que minimice o criterio de información
de Akaike (AIC). O Cadro 4.13 recolle unha comparación dos valores do correspondente criterio para
os modelos candidatos. En consecuencia, selecciónase o ARIMA(2, 1, 0).

Para o modelo seleccionado, apĺıcase o algoritmo de detección de outliers, sen que se detectase,
neste caso, ningunha observación at́ıpica.

Polo tanto, a seguinte etapa será axustar o modelo identificado. Novamente, procédese á estimación
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Modelo AIC

ARIMA(0, 1, 2) 151.79

ARIMA(2, 1, 0) 149.92

Cadro 4.13: Comparativa dos valores AIC para os modelos candidatos na serie de demanda do clúster
3. En negro destácase o modelo seleccionado en termos do AIC óptimo e tendo en conta o criterio de
parsimonia.

dos coeficientes por máxima verosimilitude e, de forma recursiva, elimı́nanse aqueles parámetros non
significativos.

Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

φ1 (AR 1) -0.429 0.084 -5.139 < 0.001

φ2 (AR 2) -0.311 0.082 -3.807 < 0.001

ϖ2 (Varianza) 0.137 0.013 10.404 < 0.001

Cadro 4.14: Resumo da estimación dos parámetros para o modelo ARIMA(2, 1, 0). Non se detectou
efecto significativo do Black Friday a un nivel de significación do 5%. Tampouco se detectaron at́ıpicos.

O Cadro 4.14 recolle as estimacións dos parámetros, o erro estándar de ditas estimacións e o p-
valor do correspondente contraste de significación. En particular, a exclusión por falta de significación
estat́ıstica de todos os regresores asociados á peak season confirma a hipótese formulada na análise ex-
ploratoria. A diferenza dos sectores orientados ao consumo final, a lox́ıstica de alimentación e industria
responde a ciclos de produción e abastecemento estables, resultando inmune ás flutuacións inducidas
por eventos do calendario comercial.

Por outra banda, a natureza negativa dos dous parámetros autorregresivos (φ1 e φ2) reflicte un
comportamento oscilatorio con tendencia á autocorrección. No contexto lox́ıstico de Trucksters, isto
tradúcese nun mecanismo de compensación proporcional: un incremento porcentual na demanda du-
rante unha semana determinada tende a ser seguido por axustes á baixa nas semanas posteriores para
estabilizar o nivel medio.

Diagnose do modelo

A continuación, estúdase a validez do modelo axustado na etapa anterior. A Figura 4.16 permite
facer un primeiro diagnóstico gráfico. Na primeira gráfica represéntase a evolución temporal dos resi-
duos, onde non se observan problemas de heterocedasticidade nin incumprimento da hipótese de media
cero dos residuos. O correlograma (fas) non mostra autocorrelacións significativas para ningún retardo,
descartando problemas na hipótese de incorrelación. Pola contra, os gráficos inferiores (histograma e
Q-Q plot) amosan a presenza de colas pesadas, o cal suxire a ausencia de normalidade nos residuos.

Co fin de reforzar a interpretación gráfica, o Cadro 4.15 recolle os resultados dos distintos contrastes
aplicados sobre os residuos.

En particular, os contrastes de Ljung-Box (p-valor = 0.660) e de homocedasticidade (p-valor =
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Figura 4.16: Diagnose de residuos para o modelo de demanda do clúster 3: evolución temporal para
o contraste de homocedasticidade (superior esquerda), correlograma fas para verificar a incorrelación
(superior dereita), e histograma xunto co gráfico Q-Q para a validación da normalidade (inferiores).

Contraste P-valor

Media 0 (t-test) 0.431

Incorrelación (Ljung-Box) 0.660

Homocedasticidade (test H) 0.720

Normalidade (Shapiro-Wilk) 0.046

Normalidade (Jarque-Bera) < 0.001

Cadro 4.15: Resultados dos contrastes de hipóteses sobre os residuos do modelo. O modelo
ARIMA(2, 1, 0) sen regresores externos resulta válido e con residuos non gaussianos.

0.720), xunto co test de media cero (p-valor = 0.431) validan as hipóteses fundamentais do modelo
axustado.

Por outra banda, tal e como se intúıa pola interpretación gráfica, conf́ırmase a falta de normalidade,
rexeitándose dita hipótese de forma contundente co test de Jarque-Bera (p-valor < 0.001), mentres
que o test de Shapiro-Wilk (p-valor = 0.046) sitúase no ĺımite da rexión de rexeitamento.
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Predición

Unha vez confirmada a validez do modelo axustado, mı́dese o rendemento preditivo do mesmo. A
Figura 4.17 compara a serie real (azul) coa predición do modelo ARIMA(2, 1, 0) (laranxa).

Figura 4.17: Gráfica comparativa da serie real (azul) na mostra de test (2025) fronte ás predicións do
ARIMA(2, 1, 0) realizadas mediante a técnica rolling window a horizonte h = 1 (laranxa).

Á vista da gráfica, obsérvase un rendemento considerablemente inferior aos acadados nos anteriores
clústeres. Como se sinalou na análise exploratoria (Secćıon 3.3), o primeiro trimestre da mostra de test
presenta unha alta volatilidade con picos de demanda considerables. O modelo, pola súa natureza,
tende a suavizar estas oscilacións, subestimando a magnitude dos picos iniciais.

Este baixo rendemento que se amosa na gráfica conf́ırmase nas métricas do erro (Cadro 4.16). Os
valores do MAE (4.59) e do RMSE (7.65) son elevados en relación ao volume medio da serie, resultando
nun MAPE de 20.73%. Ademais, a métrica máis preocupante resulta o MASE (1.42), por acadar un
valor superior a 1, o cal indica que o modelo se comporta peor ca o preditor näıve (de horizonte 1).

Métrica Valor

MAE 4.59

RMSE 7.65

MAPE 20.73%

MASE 1.42

Cadro 4.16: Avaliación da capacidade predictiva do modelo ARIMA(2, 1, 0) para a serie do clúster 3:
métricas de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos
semanais. MAPE é medida porcentual. MASE > 1 indica peor rendemento ca o preditor näıve.

Aśı e todo, a inspección visual suxire que o erro se concentra nese primeiro trimestre de alta inesta-
bilidade. Para avaliar a capacidade do modelo en condicións de mercado máis estables, recalculáronse
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as métricas exclúındo este peŕıodo transitorio (Cadro 4.17).

Métrica Valor

MAE 2.68

RMSE 3.46

MAPE 17.21%

MASE 0.83

Cadro 4.17: Avaliación da capacidade predictiva do modelo ARIMA(2, 1, 0) para a serie do clúster 3,
recortando o primeiro trimestre: métricas de erro calculadas sobre o conxunto de test (38 semanas).
RMSE e MAE mı́dense en env́ıos semanais. MAPE é medida porcentual. MASE < 1 indica mellor
rendemento ca o preditor näıve.

Daquela, obsérvase unha mellora drástica no rendemento. O MAE redúcese practicamente á me-
tade (2.68), e, o máis relevante, o MASE descende ata 0.83, validando que o modelo achega melloras
preditivas ao modelo “inxenuo” (näıve) cando a serie non presenta volatilidade extrema. Isto permite
conclúır que o modelo é útil para a planificación en escenarios estándar, áında que presenta limitacións
ante cambios bruscos de nivel a curto prazo.

A aplicación da metodolox́ıa Box-Jenkins aos tres clústeres de clientes permitiu asentar unha liña
base robusta para a predición da demanda en Trucksters. A través da identificación, estimación e
diagnose, extráense tres conclusións sobre a natureza das series tratadas:

Heteroxeneidade estrutural: A análise confirmou que cada segmento de negocio posúe unha
dinámica estocástica diferenciada. Mentres os clientes do clúster 1 puideron modelarse directa-
mente, os outros sectores precisaron de transformacións de estabilización da varianza (logaŕıtmi-
cas) para satisfacer a hipótese de homocedasticidade.

Impacto do Black Friday: Observáronse diferenzas no efecto da peak season sobre os distintos
clústeres, confirmando a análise do Caṕıtulo 3. En particular, para os sectores de transporte,
retail e electrónica foi preciso introducir variables exóxenas para modelar o impacto do Black
Friday. Pola súa parte, no cluster 2 (froita e paqueteŕıa), o modelo era quen de captar o efecto
mediante as súas compoñentes estocásticas, mentres que para os clientes do último clúster non
se apreciaba impacto significativo da peak season.

Limitacións ante volatilidade: Se ben os modelos ARIMA demostraron unha gran capacidade
de axuste en peŕıodos estables, a predición do clúster 3 evidenciou as limitacións dos modelos
clásicos para anticipar cambios bruscos de nivel ou picos de volatilidade non ćıclicos.

Estes resultados, a pesar de ser moi positivos, suxiren a necesidade de explorar metodolox́ıas alterna-
tivas que poidan ofrecer unha maior flexibilidade no tratamento de tendencias non lineais e efectos de
calendario complexos.

4.3. Modelos Prophet

Unha vez avaliada a capacidade preditiva dos modelos clásicos (ARIMA), neste apartado explórase
unha aproximación baseada en Modelos Aditivos Xeneralizados (GAM): o modelo Prophet.
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Recórdese que, ao contrario da metodolox́ıa de Box-Jenkins, a cal se centra en estudar a estrutura
de autocorrelación dos datos para proxectar a serie cara ao futuro, Prophet formula o problema de
predición como un exercicio de axuste de curvas. Daquela, axustaranse as distintas compoñentes do
modelo explicadas na Sección 2.3.3 tanto para o caso global, coma para cada clúster por separado.

Tendo presentes consideracións previas explicadas na Sección 4.1, abórdase o axuste dos distintos
modelos.

4.3.1. Modelo Global

Comézase estudando a serie agregada de todos os clientes. Retomando a análise previa, no axuste
ARIMA resultaron significativas 5 variables exóxenas: 3 delas encargadas de captar o impacto do Black
Friday, mentres que as restantes modelaban os at́ıpicos detectados (25/12/2023 e 23/12/2024). Dado
que non se detectaron problemas de heterocedasticidade na serie orixinal, configúrase o modelo Prophet
considerando estacionalidade aditiva.

Procedeuse á selección automática de hiperparámetros, inclúındo no modelo tanto as variables
dummy coma os festivos correspondentes. Tras aplicar este procedemento, o modelo óptimo obtivo un
RMSE = 19.42 na fase de validación.

Unha vez axustado o modelo, realizáronse as predicións para o conxunto de test (2025) mediante
a técnica de Rolling Window descrita no deseño experimental. A Figura 4.18 compara a serie real
(azul) coa predición do modelo (laranxa). Na primeira representación (Figura (4.18a)), obsérvase un
axuste visual aceptable: o modelo Prophet captura con precisión a tendencia e estacionalidade durante
a primeira metade do ano. Porén, o algoritmo non é capaz de anticipar a cáıda estrutural da demanda
rexistrada nos últimos meses da mostra.

Ademais, este algoritmo destaca pola súa capacidade para xerar intervalos de incerteza sen su-
posicións de normalidade estritas. Na Figura (4.18b) represéntanse ditos intervalos para un nivel de
confianza do 80%. Obsérvase como, na etapa final do ano, os datos reais caen sistematicamente por
debaixo do ĺımite inferior do intervalo, confirmando estatisticamente que o cambio de tendencia é unha
anomaĺıa que o modelo non pode explicar coa información histórica dispoñible.

(a) Predicións (b) Intervalos de predición do 80%

Figura 4.18: Validación mediante Rolling Window para a demanda global: comparación no conxunto
de test (38 semanas) entre a serie real (azul) e as predicións do modelo Prophet (laranxa). Á dereita
móstrase o detalle das predicións cos seus intervalos de confianza ao 80%.

Co obxectivo de cuantificar o rendemento preditivo, calculáronse as métricas de erro recollidas no
Cadro 4.18. O MAE e o RMSE presentan valores próximos (16.19 e 19.19 respectivamente), o que
indica un erro medio absoluto próximo aos 17 env́ıos semanais. Pola súa parte, o MAPE sitúase nun
18.53%, un resultado aceptable áında que con marxe de mellora dado o nesgo final. Por último, obtense
un MASE de 0.72. Este valor inferior á unidade indica que o modelo Prophet supera en rendemento ao
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preditor inxenuo estacional (Seasonal Näıve con m=52), validando a súa utilidade fronte a simplemente
replicar o comportamento do ano anterior.

Métrica Valor

MAE 16.19

RMSE 19.19

MAPE 18.53%

MASE 0.72

Cadro 4.18: Avaliación da capacidade predictiva do modelo Prophet para a serie de demanda global:
métricas de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos
semanais. MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

Outra vantaxe do modelo Prophet resulta a interpretabilidade das súas compoñentes. A Figura 4.19
desagrega a serie temporal nas súas partes constitúıntes, permitindo unha interpretación detallada dos
factores que impulsan a demanda global en Trucksters.

Figura 4.19: Descomposición das compoñentes do modelo Prophet para a demanda global. A disposición
amosa a tendencia de fondo (superior esquerda), o patrón estacional semanal (superior dereita), o
impacto dos d́ıas festivos (inferior esquerda) e o efecto dos regresores exóxenos inclúıdos (inferior
dereita).

A primeira gráfica (cuadrante superior esquerdo) representa a compoñente da tendencia g(t). Esta
captura a evolución estrutural do negocio a longo prazo, illada de efectos estacionais. A curva mostra
tres etapas diferenciadas:
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Unha primeira etapa de crecemento case lineal durante o 2022, caracteŕıstica da fase de recupe-
ración do mercado.

Durante o 2023 e comezos do 2024 estabiĺızase o volume nunha demanda relativamente elevada,
representando a consolidación no mercado de Trucksters.

No 2025 obsérvase un cambio de inflexión cara á baixa.

O segundo gráfico (superior dereita) representa a compoñente estacional do modelo s(t). A diferenza
da tendencia, este patrón reṕıtese de forma case idéntica ano tras ano. En particular, obsérvase de forma
clara a peak season mediante unha escalada progresiva durante o outono que culmina en novembro,
seguida dunha cáıda brusca durante o Nadal.

O panel inferior esquerdo representa o impacto das festividades consideradas polo modelo h(t).
Como se intúıa, o efecto é estritamente negativo. O modelo aprendeu correctamente que, en datas
sinaladas a actividade detense, reducindo volume á predición base de forma puntual.

Por último, represéntase o impacto dos regresores inlcúıdos no modelo. Obsérvanse picos extremos
negativos, que se corresponden cos outliers detectados mediante o ARIMA. É importante notar que,
ao modelar estes eventos extremos neste panel separado, ev́ıtase que “contaminen” a tendencia ou a
estacionalidade habitual. O modelo entende que esas cáıdas drásticas non son parte do comportamento
normal do mercado, senón excepcións que deben subtraerse especificamente neses d́ıas.

Tras esta primeira aproximación global, abordarase o axuste do modelo Prophet para os datos
desagregados por clúster.

4.3.2. Modelo para o Clúster 1

En primeiro lugar, estúdase a serie dos clientes de transporte, retail e electrónica. Recuperando
a análise ARIMA, tan só resultaron significativas dúas variables exóxenas: a primeira modelaba o
impacto na demanda do Black Friday, mentres que a restante captaba o impacto na semana posterior
ao evento. Nesta serie tampouco se detectaron problemas de heterocedasticidade, co cal o modelo
Prophet configurouse con estacionalidade aditiva.

Na selección automática dos hiperparámetros inclúense as dúas variables exóxenas indicadas e os
festivos considerados pola empresa. O modelo resultante da validación cruzada presentou un RMSE
de 13.91.

Tras axustar o modelo, reaĺızanse as predicións sobre a mostra de test. A Figura 4.20 presenta a
comparación gráfica da serie real (azul) coa predición (laranxa). Na Figura (4.20a) obsérvase que, áında
que o modelo captura correctamente a dinámica das flutuacións e o repunte previo ao verán, existe
unha sobreestimación sistemática do nivel da demanda. O modelo proxecta un volume de pedidos
inferior ao do ano anterior (liña gris), captando a tendencia negativa, pero non con tanta intensidade
como a cáıda real que experimentou o mercado no primeiro trimestre.

Esta sobreestimación conf́ırmase na gráfica (4.20b), que visualiza os intervalos de predición ao 80%
de confianza. A serie real sitúase frecuentemente no ĺımite inferior da banda de confianza, chegando a
caer por debaixo da mesma en varios momentos do primeiro trimestre. Isto suxire que a contracción
da demanda neste clúster foi máis significativa do que a historia recente da serie permit́ıa anticipar.

Para cuantificar o rendemento, calculáronse as métricas de erro (Cadro 4.19). Os valores do MAE
(9.46) e do RMSE (10.87) son elevados en relación ao volume medio da serie, reflect́ındose nun MAPE
do 40.44%. Non obstante, o MASE (0.62) ofrece unha lectura moi positiva.

O feito de que o MASE sexa significativamente menor a 1 indica que o modelo Prophet é moito máis
preciso que o preditor näıve estacional. Isto expĺıcase pola forte cáıda interanual da demanda: mentres
que o preditor näıve proxectaŕıa os altos volumes de 2024 (erros moi grandes), Prophet foi capaz de



4.3. MODELOS PROPHET 85

(a) Predicións (b) Intervalos de predición do 80%

Figura 4.20: Validación mediante Rolling Window para a demanda no clúster 1: comparación no
conxunto de test (38 semanas) entre a serie real (azul) e as predicións do modelo Prophet (laranxa).
Á dereita móstrase o detalle das predicións cos seus intervalos de confianza ao 80%.

anticipar o cambio de tendencia á baixa, áında que fose de forma conservadora. En conecuencia, malia
o erro absoluto, o modelo achega valor preditivo real fronte á simple repetición do ciclo anterior.

Métrica Valor

MAE 9.46

RMSE 10.87

MAPE 40.44%

MASE 0.62

Cadro 4.19: Avaliación da capacidade predictiva do modelo Prophet para a serie do clúster 1: métricas
de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos semanais.
MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

Por último, interprétanse as distintas compoñentes que conforman o modelo. A Figura 4.21 des-
agrega a serie temporal do clúster 1 nas súas catro compoñentes. A descomposición revela patróns moi
espećıficos que validan a natureza comercial dos sectores que compoñen este grupo.

A primeira gráfica (superior esquerda) representa a compoñente da tendencia g(t). A evolución
mostra un comportamento de “V invertida” moi marcado. Até mediados do 2023 obsérvase un rápido
crecemento lineal, onde o volume base pasou de 30 a máis de 42 unidades semanais. A serie acada o
seu máximo estrutural durante o terceiro trimestre do 2023 e, a partires deste máximo, a tendencia
sofre unha cáıda constante e simétrica á subida anterior. O modelo proxecta que, para finais de 2025,
a demanda estrutural (sen contar estacionalidade) caerá por baixo dos niveis iniciais de 2022. Esta
compoñente explica por que o modelo de predición insist́ıa en baixar as proxeccións, malia que a inercia
histórica fose alta.

No seguinte panel (superior dereito), represéntase a compoñente da estacionalidade s(t). A diferenza
da suavidade observada no modelo global, a estacionalidade do clúster 1 presenta unha alta volatilidade
de frecuencia. O patrón reflicte a dinámica propia do sector retail, suxeito a múltiples campañas
comerciais curtas e agresivas ao longo do ano, máis alá dunha única época de pico. As oscilacións de
amplitude indican que a estacionalidade engade unha variabilidade considerable á operativa semanal.
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Na parte inferior esquerda da figura, comézase vendo a representación gráfica da compoñente h(t)
encargada das festividades. O efecto destas datas mantense consistente coa lóxica do negocio: cáıdas
drásticas da actividade (picos negativos de ata 9 pedidos) que representan o peche operativo en d́ıas
non laborables.

Por último, obsérvase o impacto dos regresores externos inclúıdos no modelo. Neste caso, a dife-
renza do modelo global, tan só se inclúıan as variables correspondentes á semana do Black Friday e
a posterior. Aśı, se no caso anterior se observaban cáıdas significativas (outliers), aqúı preséncianse
picos positivos extremos. Ditos impulsos, que engaden aproximadamente 20 pedidos adicionais á de-
manda base, corresponden ao impacto da peak season. A magnitude é considerable: un incremento de
20 pedidos sobre unha base de 40 supón un aumento puntual do 50% da carga de traballo.

Figura 4.21: Descomposición das compoñentes do modelo Prophet para a demanda no clúster 1. A
disposición amosa a tendencia de fondo (superior esquerda), o patrón estacional semanal (superior
dereita), o impacto dos d́ıas festivos (inferior esquerda) e o efecto dos regresores exóxenos inclúıdos
(inferior dereita).

4.3.3. Modelo para o Clúster 2

A continuación modélase o caso dos clientes de paqueteŕıa e froita. Partindo da análise ARIMA
da sección previa, neste caso só resultaban significativas tres variables exóxenas correspondentes aos
outliers detectados (31/01/2022, 25/12/2023 e 23/12/2024). Ademais, neste clúster foi necesario aplicar
unha transformación logaŕıtmica aos datos para corrixir problemas de heterocedasticidade, polo que
se configurará o modelo Prophet con estacionalidade multiplicativa.

Aśı, inclúense estes regresores externos e as festividades na selección automática dos hiperparáme-
tros. O modelo óptimo resultante da validación cruzada presenta un RMSE de 8.64.

Unha vez axustado o modelo, reaĺızanse as predicións sobre a mostra de test (2025). Mediante a
Figura 4.22 represéntase a comparación visual da serie real (azul) coa predición (laranxa). Na Figura
(4.22a) obsérvase un comportamento dual: mentres que o modelo capta de forma acertada a dinámica
do primeiro trimestre, non é quen de axustar a cáıda estrutural visible nos meses posteriores. O modelo,
guiado pola inercia histórica, proxecta un volume de pedidos sostido similar ao do ano anterior (liña
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(a) Predicións (b) Intervalos de predición do 80%

Figura 4.22: Validación mediante Rolling Window para a demanda no clúster 2: comparación no
conxunto de test (38 semanas) entre a serie real (azul) e as predicións do modelo Prophet (laranxa).
Á dereita móstrase o detalle das predicións cos seus intervalos de confianza ao 80%.

gris), sobreestimando a demanda real que experimentaron os sectores de paqueteŕıa e froita a partir
do segundo trimestre.

Este desaxuste conf́ırmase dramaticamente na Figura (4.22b), que representa os intervalos de predi-
ción ao 80% de confianza. Aı́nda que nun comezo a serie real se mantén dentro das bandas, rapidamente
rompe o ĺımite inferior das mesmas cara á metade do ano. Isto suxire que a cáıda do mercado neste
clúster non foi un simple desv́ıo aleatorio, senón un cambio de réxime estrutural que a historia previa
da serie non permit́ıa anticipar.

Co obxectivo de avaliar numericamente o rendemento preditivo, no Cadro 4.20 resúmense as dis-
tintas métricas do erro calculadas. Tendo en conta o nivel medio da serie durante o 2025, os valores
do MAE (9.61) e do RMSE (10.70) considéranse moderados. Obsérvase de feito un MAPE do 21.34%,
sendo este un resultado aceptable para o mercado.

O dato máis salientable, con todo, é o MASE de 0.66. Este valor inferior a 1 indica que, a pesar
de que o modelo non proxecta a cáıda con exactitude, Prophet é considerablemente máis preciso que o
preditor näıve estacional. Isto débese a que o modelo suaviza o rúıdo histórico, mentres que o método
inxenuo teŕıa replicado os picos áında máis altos de 2024, xerando un erro global superior.

Métrica Valor

MAE 9.61

RMSE 10.70

MAPE 21.34%

MASE 0.66

Cadro 4.20: Avaliación da capacidade predictiva do modelo Prophet para a serie do clúster 2: métricas
de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos semanais.
MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

Para rematar con este clúster, estúdanse as distintas compoñentes do modelo axustado, recollidas
na Figura 4.23. A diferenza dos casos anteriores, este modelo configurouse con estacionalidade multipli-
cativa, o que implica que os efectos estacionais e os eventos non suman unha cantidade fixa de pedidos,
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senón que actúan como factores que amplifican ou reducen a tendencia base en termos porcentuais.

Na representación da tendencia (superior esquerda), obsérvase un perfil de crecemento e esgota-
mento moi definido. A serie comeza cunha forte pendente positiva, pasando dun nivel base de 44 env́ıos
semanais a case superar os 60 e acadando o pico estrutural a comezos do 2023. Dende entón, a ten-
dencia describe unha liña descendente cotinua e suave. Para o horizonte de predición, o modelo estima
que a demanda base caerá ata os 49 pedidos.

Na segunda gráfica, represéntase a compoñente estacional s(t), confirmándose a elevada estaciona-
lidade dos sectores de paqueteŕıa e froita. Ao ser multiplicativo, o eixo OY móstrase en porcentaxes,
revelando flutuacións extremas. A demanda aumenta nun 40% nos picos e cae preto dun 25% nos vales
respecto á tendencia. Isto implica que a carga de traballo case se duplica entre o momento máis baixo e
o máis alto do ano. Ademais, obsérvase un patrón bimodal claro. Un pico forte no verán (xullo-agosto),
posiblemente impulsado polas campañas de froita de verán, e outro pico cara a final de ano.

No terceiro gráfico (inferior esquerdo), móstrase o impacto dos festivos. Aı́nda que estas datas
presentan un coeficiente negativo, a súa magnitude neste modelo resulta marxinal (apenas superando
o 0.35%). Isto expĺıcase pola potencia da compoñente estacional. O modelo Prophet integrou as grandes
cáıdas de actividade (peches por festivos) directamente na curva de estacionalidade anual, deixando
á compoñente h(t) unicamente un rol de axuste residual.

Por último, represéntase o impacto dos outliers inclúıdos no modelo. De forma análoga, obsérvase un
impacto porcentual negativo moi reducido (arredor do 0.10%). Novamente, isto suxire que a estrutura
multiplicativa e a estacionalidade anual foron suficientes para capturar a dinámica destas datas sen
necesidade de asignar un peso elevado a estes regresores externos, a diferenza do que ocorŕıa nos
modelos ARIMA onde non se detectaba estacionalidade.

Figura 4.23: Descomposición das compoñentes do modelo Prophet para a demanda no clúster 2. A
disposición amosa a tendencia de fondo (superior esquerda), o patrón estacional semanal (superior
dereita), o impacto dos d́ıas festivos (inferior esquerda) e o efecto dos regresores exóxenos inclúıdos
(inferior dereita).
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4.3.4. Modelo para o Clúster 3

Para rematar, estúdase a serie temporal dos clientes de alimentación e industria. Recuperan-
do a análise ARIMA, neste caso ningún dos regresores externos considerados resultou significativo,
amosándose un efecto residual da peak season e sen detectar ningún outlier. Ademais, aplicouse a
transformación logaŕıtmica sobre os datos, co fin de corrixir problemas de heterocedasticidade. Daque-
la, o modelo Prophet neste clúster configurarase con estacionalidade multiplicativa.

Aśı pois, tendo en conta os correspondentes festivos, procedeuse á selección automática dos hiper-
parámetros, resultando un modelo que presenta un RMSE na validación cruzada de 5.78.

Unha vez axustado o modelo, reaĺızanse as predicións sobre a mostra de test. Na Figura 4.24
represéntase a comparación visual da serie real (azul) fronte a predición (laranxa).

A Figura (4.24a) permite apreciar a natureza suavizadora do modelo Prophet. Durante o primeiro
trimestre, o modelo demostra unha boa capacidade para detectar a sincrońıa temporal dos picos de
demanda (axusta correctamente os momentos de subida e baixada).

Pola contra, a partir do segundo trimestre, cando a demanda real sofre unha cáıda severa, obsérvase
unha clara tendencia á sobreestimación. O modelo, influenciado pola inercia histórica, proxecta un
descenso máis suave ca o real, mantendo a predición (liña laranxa) sistematicamente por riba dos
valores observados (liña azul) durante os meses centrais do ano. Non é ata o último trimestre cando
ambas series volven converxer.

Esta lectura conf́ırmase na gráfica dos intervalos de predición (Figura (4.24b)). Mentres que no
inicio do ano a serie real escapa ocasionalmente polo ĺımite superior (picos non captados), durante a
fase central sitúase frecuentemente rozando o ĺımite inferior da banda de confianza, confirmando que
a cáıda do mercado foi máis profunda do que o rango de incerteza do modelo estimaba probable.

(a) Predicións (b) Intervalos de predición do 80%

Figura 4.24: Validación mediante Rolling Window para a demanda no clúster 3: comparación no
conxunto de test (38 semanas) entre a serie real (azul) e as predicións do modelo Prophet (laranxa).
Á dereita móstrase o detalle das predicións cos seus intervalos de confianza ao 80%.

Finalmente, o Cadro 4.21 resume o desempeño numérico. O MAPE sitúase nun 35.84%, un valor
penalizado pola sobreestimación do val central. O dato máis relevante é o MASE de 0.97. Ao situarse
lixeiramente por debaixo de 1, indica que o modelo mellora, áında que de forma axustada, o rendemento
do preditor näıve estacional. Isto suxire que, a pesar das dificultades para replicar a amplitude exacta
da volatilidade, Prophet aporta valor ao anticipar correctamente os puntos de xiro e a dirección da
tendencia, superando a un modelo “inxenuo” que simplemente repetiŕıa os niveis do ano anterior.

Aśı e todo, é importante recordar que a alta volatilidade deste clúster resultaba nun rendemento
todav́ıa peor na metodolox́ıa de Box-Jenkins. Cómpre matizar que, mentres que a avaliación do modelo
ARIMA se realizou fronte ao preditor näıve básico (m = 1), obtendo un MASE de 1.42, a avaliación
de Prophet realizouse contra un competidor máis robusto para este tipo de datos: o näıve estacional
(m = 52).
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Métrica Valor

MAE 7.34

RMSE 9.50

MAPE 35.84%

MASE 0.97

Cadro 4.21: Avaliación da capacidade predictiva do modelo Prophet para a serie do clúster 3: métricas
de erro calculadas sobre o conxunto de test (38 semanas). RMSE e MAE mı́dense en env́ıos semanais.
MAPE é medida porcentual. MASE < 1 indica mellor rendemento ca o preditor näıve.

Neste contexto, o feito de que o Prophet lograse un MASE inferior a 1 (0.97), mentres que ARIMA
non logrou mellorar nin sequera á predición inxenua simple, evidencia a superioridade da aproximación
de compoñentes para capturar a complexa dinámica dos clientes deste clúster.

Para rematar con esta análise, estúdanse as compoñentes do modelo Prophet constrúıdo para os
clientes de alimentación e industria. A Figura 4.25 desagrega a serie temporal nas súas partes consti-
túıntes. É importante lembrar que, ao igual que no clúster 2, aqúı tamén se aplicou unha estacionalidade
multiplicativa, polo que as variacións estacionais exprésanse en porcentaxes sobre a tendencia base.

Figura 4.25: Descomposición das compoñentes do modelo Prophet para a demanda no clúster 3. A
disposición amosa a tendencia de fondo (superior esquerda), o patrón estacional semanal (superior
dereita), o impacto dos d́ıas festivos (inferior esquerda) e o efecto dos regresores exóxenos inclúıdos
(inferior dereita). Neste caso non hai regresores externos.

A primeira gráfica (superior esquerda) representa a tendencia do modelo (g(t)). A curva de ten-
dencia explica a forma da predición final. Durante os dous primeiros anos, a demanda mant́ıvose en
niveis baixos (entre 5 e 10 pedidos), tocando un mı́nimo estrutural a mediados de 2023. A partir de
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finais de 2023, obsérvase un crecemento vertical e explosivo, triplicando o volume base ata rozar os
30 pedidos a mediados de 2024. Aśı, o modelo detecta que ese crecemento non era sostible e proxecta
unha corrección igual de agresiva para 2025, devolvendo a demanda aos niveis de 2022 (arredor de
10 pedidos). Esta compoñente é a responsable de que a predición (liña laranxa na gráfica) teña esa
pendente negativa tan marcada.

Con respecto á compoñente estacional (s(t)), na segunda gráfica refĺıctese a natureza irregular do
sector industrial e de alimentación. As flutuacións son extremas, oscilando entre un incremento do 40%
e unha diminución do 50% respecto á tendencia. Isto indica que, á marxe do volume anual, a carga de
traballo semanal é moi inestable. A diferenza das ondas suaves dos outros clústeres, aqúı obsérvanse
“dentes de serra” moi frecuentes.

Por outra banda, sobre a compoñente que capta o impacto dos festivos (h(t)), chama a atención
que o efecto estimado para os festivos é lixeiramente positivo (arredor do 1.2%). Non obstante, ao
comparar a escala desta compoñente coa da estacionalidade, conclúese que o impacto dos festivos
é absolutamente marxinal e desprezable. O modelo confirma que, para este tipo de clientes industriais,
o calendario laboral ten moita menos relevancia operativa que os seus propios ciclos de produción.

Por último, tal e como se indicou previamente, neste modelo non se inclúıron regresores externos,
posto que non resultaron significativos durante a análise feita mediante os modelos ARIMA. Por iso o
último gráfico da Figura 4.25 mostra unha representación baleira.

En śıntese, a implementación da metodolox́ıa Prophet permite extraer conclusións fundamentais
sobre a capacidade preditiva e a estrutura da demanda en Trucksters:

Superioridade estat́ıstica fronte ao modelo inxenuo: O indicador máis robusto do éxito
desta aproximación é o valor do MASE, que se situou sistematicamente por debaixo da unidade
en tódalas series (0.62 < MASE < 0.97). Isto confirma que, malia as perturbacións da serie, o
modelo baseado en compoñentes é significativamente máis eficaz que a simple réplica do ciclo
anual anterior (Seasonal Näıve), logrando capturar a tendencia de fondo e as estacionalidades
complexas que a metodolox́ıa ARIMA non sempre acadaba a procesar.

Interpretabilidade e valor de negocio: A gran vantaxe competitiva de Prophet reside na
transparencia da súa descomposición. A capacidade de illar a tendencia g(t) dos efectos esta-
cionais s(t) e das intervencións exóxenas h(t) permite á empresa diferenciar entre o crecemento
estrutural do negocio e as flutuacións puntuais de mercado.

Dificultade ante o cambio de réxime en 2025: A tendencia á sobreestimación detectada
na fase final da mostra de test non se debe a unha deficiencia do algoritmo, senón a un cam-
bio de réxime estrutural na demanda. Como se analizou, a nova poĺıtica comercial orientada
á rendibilidade xerou unha contracción no volume que a historia previa da serie non permit́ıa
anticipar.

Tras levar a cabo os distintos axustes durante a presente sección, farase o propio sobre o conxunto
de datos reducido resultante da análise de at́ıpicos da Sección 3.4.

4.4. Análise de sensibilidade: Aplicación a datos sen at́ıpicos

Durante a presente sección estudarase o impacto dos at́ıpicos detectados no Caṕıtulo 3. A metodo-
lox́ıa a seguir consistirá en repetir os procedementos desenvoltos durante as seccións previas aplicados
ao conxunto de datos reducido.

Levando a cabo unha primeira análise gráfica do impacto dos outliers sobre as series temporais de
demanda, á vista da Figura 4.26 é de esperar que as principais diferenzas con respecto aos modelos
constrúıdos nas Seccións 4.2 e 4.3 se acaden nos clientes de retail, transporte e electrónica, por ser dito
clúster onde se observan maiores diferenzas no volume de pedidos (Figura (4.26a)).
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(a) Cluster 1: Pedidos (b) Cluster 2: Pedidos (c) Cluster 3: Pedidos

Figura 4.26: Impacto da eliminación de at́ıpicos no volume de pedidos mensuais por clúster (2022-2025).
O maior impacto obsérvase na serie do clúster 3 (verde), correspondente aos sectores de alimentación
e industria.

Aśı e todo, o obxectivo consistirá en contrastar unha posible mellora dos modelos ao traballar con
datos máis estables.

Cómpre sinalar que, dada a extensa explicación levada a cabo dos modelos axustados sobre a base
de datos orixinais, nesta sección tan só se presentará un resumo dos resultados acadados. Se o lector
desexa afondar no axuste dos distintos modelos pode consultar o código empregado (Airas, 2026).

4.4.1. Modelos ARIMA

Para o axuste da metodolox́ıa de Box-Jenkins, empregarase a información obtida da análise de inter-
vención levada a cabo para cada unha das series na Sección 4.2. Para cada un dos modelos, explicitarase
a estimación dos parámetros tras a detección de outliers e a eliminación de termos non significativos no
modelo seleccionado, aśı como unha comparación da precisión das predicións calculadas con respecto
aos resultados obtidos sobre os datos orixinais.

Modelo Global

Para a serie global, o impacto do Black Friday modelárase mediante tres variables dummy que
abarcan un espazo temporal de 5 semanas. Unha vez seleccionado o modelo óptimo en termos do AIC,
tras aplicar o algoritmo de detección de outliers detectáronse dúas observacións at́ıpicas que coinciden
coas achadas no modelo orixinal (24/12/2023 e 23/12/2024). Aśı, os coeficientes estimados do
modelo resultante (unha vez eliminados os termos non significativos) pódense consultar no Cadro 4.22.

En comparación co modelo estimado para os datos orixinais (Cadro 4.2) obsérvanse resultados
certamente similares. En particular, os parámetros estimados presentan valores lixeiramente inferiores
neste caso, mais cunha interpretación análoga á explicada no modelo orixinal.

Tras validar o modelo aśı axustado, proceso no que non se afondará nesta sección, procedeuse a
avaliar a capacidade preditiva do mesmo. Os resultados das métricas do erro das predicións recóllense
no Cadro 4.23, que permite ademais comparar os resultados cos dos datos orixinais. En efecto, obsérvase
unha lixeira mellora, redućındose nun env́ıo semanal de media o erro cometido. Esta melloŕıa refĺıctese
nun menor erro porcentual (MAPE = 7.81%) aśı como no MASE que se reduce de 0.60 nos datos
orixinais a 0.54 sobre a base de datos reducida.

Os resultados acadados reforzan o bo rendemento preditivo que presenta a metodolox́ıa de Box-
Jenkins sobre a serie de demanda global, confirmando un impacto positivo da eliminación de observa-
cións at́ıpicas.
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Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

BFpre 16.003 5.913 2.706 0.007

BFpeak 27.263 13.454 2.026 0.043

BFpost 14.755 5.202 2.836 0.005

O23/12/24 -62.457 8.863 -7.047 < 0.001

O25/12/23 -41.833 9.271 -4.512 < 0.001

ω1 (MA 1) -0.527 0.082 -6.427 < 0.001

ε2 (Varianza) 210.745 22.421 9.400 < 0.001

Cadro 4.22: Estimación dos parámetros do modelo ARIMA(0, 1, 1) con regresores para a serie global
depurada. Modelo final tras a eliminación de termos non significativos. A estimación dos parámetros
mı́dese en env́ıos/semana.

Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 7.90 7.07

RMSE 11.15 9.84

MAPE 8.18% 7.81%

MASE 0.60 0.54

Cadro 4.23: Comparativa do rendemento preditivo na serie global: Impacto da eliminación de outliers.

Seguindo a estrutura da Sección 4.2, repetirase o procedemento para cada clúster por separado,
contrastando as posibles diferencias do impacto dos outliers en función do tipo de cliente.

Modelo para o Clúster 1

Para os clientes do clúster 1 (transporte, retail e electrónica), o impacto da peak season tan só abran-
gúıa un intervalo temporal de tres semanas, sendo o efecto máis reducido ca no modelo global. Apli-
cando o procedemento de selección do modelo en termos do AIC e tras facer o propio co algoritmo de
detección de outliers, detectouse como at́ıpica a observación do 25/12/2023, contrastando coa ausen-
cia de outliers no caso orixinal. Os parámetros estimados do modelo axustado unha vez eliminados os
coeficientes non significativos recóllense no Cadro 4.24.

En contraste co modelo estimado para os datos orixinais (Cadro 4.6), a principal diferenza reside
na incorporación dun parámetro adicional para estimar o efecto do outlier detectado. En particular, o
at́ıpico presenta un impacto negativo de 24 env́ıos na semana do 25/12/2023. O resto de parámetros
presentan valores similares ao modelo orixinal, sendo a súa interpretación análoga.
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Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

BFpeak 9.706 3.692 2.629 0.009

BFpost 11.361 4.460 2.547 0.011

O25/12/23 -24.096 5.343 -4.510 < 0.001

ω1 (MA 1) -0.482 0.069 -7.032 < 0.001

ε2 (Varianza) 98.575 8.826 11.168 < 0.001

Cadro 4.24: Estimación dos parámetros do modelo ARIMA(0, 1, 1) con regresores para a serie do clúster
1 depurada. Modelo final tras a eliminación de termos non significativos. A estimación dos parámetros
mı́dese en env́ıos/semana.

Posteriormente, tralo proceso de diagnose, avaliouse a capacidade preditiva do modelo sobre a
mostra de test. No Cadro 4.25 recóllense os resultados das métricas do erro tanto para a serie orixinal
coma para a serie axustada sobre os datos sen at́ıpicos. En particular, a precisión do modelo resulta moi
similar ao caso orixinal, redućındose apenas o erro absoluto medio en 0.18 env́ıos semanais. Porén, esta
lixeira disminución non se proxecta en termos do erro porcentual, sendo neste caso o MAPE = 16.28%,
indicando que erros de 3.70 env́ıos semanais supoñen unha proporción maior da demanda ca os 3.88
env́ıos semanais na serie orixinal. O aumento nesta métrica expĺıcase pola diminución no volume de
demanda semanal neste clúster ao eliminar os at́ıpicos, feito que xa se sinalou na Figura 4.26. Aśı e
todo, en termos do MASE non se aprecian diferenzas, acadándose en ambos casos un resultado que
mellora de forma moi significativa a predición näıve (0.45).

Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 3.88 3.70

RMSE 4.85 4.82

MAPE 15.57% 16.28%

MASE 0.45 0.45

Cadro 4.25: Comparativa do rendemento preditivo na serie do clúster 1: Impacto da eliminación de
outliers.

En conclusión, a pesar de que os clientes de retail, transporte e electrónica acusaban un maior
impacto ao eliminar as observacións at́ıpicas da súa serie de demanda, o modelo ARIMA axustado
sobre estes datos non consegue mellorar os resultados obtidos no axuste sobre a serie orixinal.

Modelo para o Clúster 2

Os clientes dos sectores de paqueteŕıa e froita presentaban unha maior sensibilidade á peak season,
modelándose o efecto da mesma dende as dúas semanas previas ao Black Friday até a semana posterior
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ao evento. Da mesma forma ca na serie orixinal, foi preciso aplicar unha transformación logaŕıtmica
(ec. 2.10, ϑ = 0) para estabilizar a varianza.

Solucionado o problema da heterocedasticidade, aplicouse o precedemento de selección do modelo
óptimo en termos do AIC. Posteriormente, o algoritmo de detección de outliers marcou as mesmas
observacións at́ıpicas ca no modelo orixinal: 31/01/2022, 25/12/2023 e 23/12/2024. Aśı, os coefi-
cientes estimados do modelo resultante (trala eliminación dos termos non significativos) recóllense no
Cadro 4.26.

O modelo presenta caracteŕısticas similares ao axustado na serie orixinal, destacando a ausencia
de significación dos coeficientes que modelaban o impacto do Black Friday. Ademais, a compoñente
autorregresiva de segunda orde (ϖ2) resulta significativa a pesar de non inclúırse o termo de primeira
orde (ϖ1). As estimacións dos parámetros restantes apenas difiren coas do modelo axustado sobre a
serie orixinal, co cal a súa interpretación xa foi abordada.

Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

O31/01/22 0.388 0.037 10.604 < 0.001

O23/12/24 -0.384 0.047 -8.134 < 0.001

O25/12/23 -0.368 0.076 -4.817 < 0.001

ϖ2 (AR 2) -0.202 0.092 -2.191 0.028

ε2 (Varianza) 0.018 0.002 10.199 < 0.001

Cadro 4.26: Estimación dos parámetros do modelo ARIMA(2, 1, 0) con regresores para a serie do clúster
2 transformada. Modelo final tras a eliminación de termos non significativos.

Tras isto, e unha vez avaliado o modelo axustado, mediuse a calidade das predicións sobre os datos
do 2025 (mostra de test). O Cadro 4.27 resume os resultados acadados sobre a serie orixinal e sobre a
correspondente serie modificada. Neste caso a precisión do modelo é certamente positiva, mellorando o
erro absoluto medio (pasa de 3.60 a 3.07 env́ıos semanais). A diferenza do que suced́ıa no clúster 1, esta
mellora en termos absolutos supón unha diminución do erro porcentual, representando o erro cometido
un 6.49% do volume medio semanal. En consecuencia, tamén se produce unha mellora considerable
en termos do MASE, redućındose do 0.63 acadado sobre a serie orixinal a 0.55 neste caso.

A pesar de que o clúster 2 amosaba menos sensibilidade á eliminación de pedidos at́ıpicos, os
resultados acadados para os clientes de paqueteŕıa e froita presentan unha mellora considerable sobre
os da serie orixinal.

Modelo para o Clúster 3

Para finalizar coa metodolox́ıa clásica de Box-Jenkins, estúdase o impacto dos at́ıpicos sobre os
sectores de alimentación e industria. Recórdese que, na análise de intervención previa ao axuste do
modelo para a serie orixinal, observouse un efecto marxinal do Black Friday, modelándose o impacto tan
só dende a semana previa ao evento até a posterior ao mesmo. Seguindo o procedemento aplicado sobre
a serie orixinal, foi preciso estabilizar a varianza da serie mediante unha transformación logaŕıtmica
(ec. 2.10, ϑ = 0).

Tras solucionarse o problema de heterocedasticidade presente na serie temporal, seleccionouse o
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Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 3.60 3.07

RMSE 4.94 4.32

MAPE 7.38% 6.49%

MASE 0.63 0.55

Cadro 4.27: Comparativa do rendemento preditivo na serie do clúster 2: Impacto da eliminación de
outliers.

modelo óptimo en termos do AIC. Ao aplicar o algoritmo de detección de outliers identificouse unha
observación at́ıpica: 02/05/2022. Isto difire co caso orixinal, onde o algoritmo non detectaba ningún
at́ıpico. Ademais, chama a atención que o outlier sexa no mes de maio, pois durante os modelos
axustados ao longo do caṕıtulo, os at́ıpicos indentificados correspond́ıanse na súa maioŕıa con semanas
de decembro ou xaneiro, reflectindo o complexo comportamento do mercado posterior ao Black Friday.

Parámetro Estimación Erro Estándar Estat́ıstico z P-valor

O02/05/22 -1.088 0.358 -3.037 0.002

ω1 (MA 1) -0.457 0.088 -5.219 < 0.001

ω2 (MA 2) -0.216 0.085 -2.539 0.011

ε2 (Varianza) 0.113 0.012 9.607 < 0.001

Cadro 4.28: Estimación dos parámetros do modelo ARIMA(0, 1, 2) con regresores para a serie do clúster
3 transformada. Modelo final tras a eliminación de termos non significativos.

As estimacións do modelo resultante tras eliminar aqueles termos non significativos amósanse no
Cadro 4.28. Ademais da inclusión do outlier non presente no modelo axustado na serie orixinal, obsérva-
se un achado moi relevante: mentres que para serie orixinal se identificou un ARIMA(2, 1, 0) (Cadro
4.14), na serie depurada axústase un proceso ARIMA(0, 1, 2). Este cambio ten unha interpretación
estat́ıstica clara: a ausencia de outliers na serie orixinal estaba a introducir unha falsa estrutura de
autocorrelación. Isto implica que, en condicións normais de operación, a demanda non presenta unha
dependencia forte do nivel de pedidos das semanas previas.

Para interpretar os coeficientes estimados é preciso recordar que se está a traballar coa serie trans-
formada.

Aśı, observando o Cadro 4.28, os parámetros da parte de medias móbiles son negativos, reflectindo
a dinámica de corrección das innovacións no modelo. Pola súa parte, o coeficiente asociado ao outlier
(→1.088) indica unha cáıda do 66% ((1→ e→1.088) · 100) no volume de pedidos polo efecto do at́ıpico.

Posteriormente, tras superar o modelo a etapa de diagnose, avaliouse o calidade das predicións
sobre a mostra de test. No Cadro 4.29 resúmense as métricas do erro cometido tanto na serie orixinal
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coma na serie depurada. En particular, o rendemento neste clúster resultaba moi baixo, empeorándose
inclusive a predición do modelo “inxenuo”. Obsérvase aśı que, tras depurar a serie, os resultados non
melloran significativamente. O MAE apenas diminúe (4.33 fronte ao 4.59 orixinal), representando de
feito un erro porcentual maior (MAPE = 22.01%). Ademais, o resultado en termos do MASE continúa
sendo moi negativo, empeorándo de forma considerable ao preditor näıve.

Porén, convén recordar a gran dificultade que presentaba o estudo da serie de demanda para os
clientes deste clúster: a alta volatilidade durante o primeiro trimestre do 2025. A presenza destes
picos de demanda complica a capacidade preditiva das aproximación de Box-Jenkins. En particular, a
eliminación de at́ıpicos apenas reduciu a volatilidade existente (Figura 4.26), derivando nun rendemento
preditivo similar sobre a serie depurada.

Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 4.59 4.33

RMSE 7.65 6.67

MAPE 20.73% 22.01%

MASE 1.42 1.44

Cadro 4.29: Comparativa do rendemento preditivo (ARIMA(2, 1, 0) vs ARIMA(0, 1, 2)) na Serie do
clúster 3: Impacto da eliminación de outliers.

Aplicando o mesmo razonamento empregado durante o estudo dos resultados sobre a serie orixinal
(Sección 4.2), recalculáronse as métricas exclúındo o primeiro trimestre da mostra de test. Aśı, no
Cadro 4.30 amósase unha mellora drástica no rendemento. Porén, os resultados conseguidos sobre
a serie orixinal son lixeiramente mellores neste caso: o erro absoluto medio diminúe ata 2.68 env́ıos
fronte aos 2.82 env́ıos semanais na serie modificada, mentres que en termos porcentuais os resultados
seguen sen ser particularmente bos (17.21% e 19.88% respectivamente). Non obstante, a diferenza máis
positiva atópase no MASE, mellorando neste caso os modelos en ambas series respecto ao preditor näıve
(0.83 e 0.94) áında que de forma minoritaria.

Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 2.68 2.82

RMSE 3.46 3.53

MAPE 17.21% 19.88%

MASE 0.83 0.94

Cadro 4.30: Comparativa do rendemento preditivo (ARIMA(2, 1, 0) vs ARIMA(0, 1, 2)) na Serie do
clúster 3 recortada: Impacto da eliminación de outliers.

En conclusión, na serie de demanda dos clientes de alimentación e industria, a eliminación de env́ıos
at́ıpicos non supuxo unha mellora en termos preditivos. En efecto, os resultados amosados polo modelo
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axustado sobre a serie depurada resultaron peores ca os obtidos sobre a serie de pedidos orixinais.
Estes resultados suxiren que, para series altamente volátiles e con picos concentrados, é recomendable
explorar modelos alternativos ou máis robustos que poidan captar mellor a dinámica irregular da
demanda.

Antes de sacar conclusións sobre o impacto dos outliers neste traballo, débese repetir estudo sobre
os modelos Prophet, comparando os resultados cos obtidos na Sección 4.3.

4.4.2. Modelos Prophet

Para que os resultados sexan comparables, continuarase coa metodolox́ıa explicada na Sección 4.1,
aproveitando a información estrutural aportada polos modelos ARIMA á hora de aplicar a metodolox́ıa
Prophet. En particular, tanto os at́ıpicos coma as correspondentes variables dummy que resultaron
significativas no axuste de Box-Jenkins incluiranse como variables exóxenas no modelo Prophet.

Tras isto, a selección dos hiperparámetros do modelo levarase a cabo cabo mediante o procedemen-
to de Grid Search empregando rolling origin cross-validation. Ademais, a estrutura de estacionalidade
seleccionouse en función das caracteŕısticas da varianza estudadas no ARIMA. Aśı, se o modelo resul-
taba heterocedástico, considerouse unha estacionalidade multiplicativa, mentres que no caso de non
precisar a serie unha corrección da varianza, mant́ıvose a estacionalidade aditiva.

Finalmente, avaliarase o rendemento preditivo do modelo axustado sobre a serie sen outliers em-
pregando as mesmas métricas dos modelos ARIMA, cunha diferenza clave en termos do MASE. Esta
variación fundaméntase na diferenza de construción dos modelos: mentres que os ARIMA non inclúıan
compoñente estacional, esta resulta elemental no axuste Prophet, provocando que o modelo “inxenuo”
co que se comparan os resultados sexa o näıve estacional durante a presente sección.

Modelo Global

Unha vez máis, ińıciase a análise mediante o estudo da serie global. Recuperando o axuste ARIMA
previo, incluiranse 5 variables exóxenas no modelo Prophet : dúas modelan o efecto dos at́ıpicos detec-
tados (25/12/2023 e 23/12/2024), mentres que as outras tres reflicten o impacto da peak season sobre a
serie. Tras inclúır no modelo tanto as variables dummy coma os correspondentes festivos (Apéndice B),
seleccionáronse os hiperparámetros acadando o modelo óptimo un RMSE= 19.15 na fase de validación.

Unha vez axustado o modelo, mediuse a súa calidade preditiva sobre a mostra de test, obtendo
os resultados que se recollen no Cadro 4.31. En comparación cos resultados acadados sobre a serie
orixinal, prodúcese unha lixeira mellora: en termos de erro absoluto, o modelo equivócase en case 15
env́ıos semanais (14.90) fronte aos 16.19 na serie completa. Isto proxéctase nunha diminución do 1%
a nivel porcentual, sendo o erro cometido inferior ao 18.%. Non obstante, en relación á comparación
co preditor näıve estacional, apenas se aprecian diferenzas (0.72 fronte a 0.71).

Os resultados obtidos reafirman o bo comportamento que amosa a metodolox́ıa Prophet sobre a
serie da demanda global, mostrando un impacto positivo da eliminación dos outliers nunha escala
similar á presenciada nos modelos ARIMA.

A contiuación, procederase do mesmo xeito para cada un dos grupos de clientes cos que se está a
traballar por separado.

Modelo para o Clúster 1

Os clientes dos sectores de retail, transporte e electrónica tan só presentaban tres variables exóxe-
nas no axuste de Box-Jenkins: un at́ıpico na semana do 25/12/2023, e dúas variables para capturar o
efecto do Black Friday durante a propia semana do evento e a posterior. Procedeuse daquela á selec-
ción automática dos hiperparámetros do axuste inclúındo estas varibles dummy e os correspondentes
festivos. O modelo óptimo presentou un RMSE= 13.65 na fase de validación.
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Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 16.19 14.90

RMSE 19.19 17.43

MAPE 18.53% 17.57%

MASE 0.72 0.71

Cadro 4.31: Comparativa do rendemento preditivo (Prophet) na serie global: Impacto da eliminación
de outliers.

Tras axustar o modelo resultante, avaliáronse as predicións sobre a mostra do 2025, mostrándose
os respectivos resultados no Cadro 4.32. Aśı, comparando as métricas coas acadadas no axuste da serie
orixinal, a mellora resulta considerablemente positiva, diminúındose todas as medidas calculadas case
no 50%. En particular, o erro absoluto medio cometido é inferior aos 5 env́ıos semanais, sendo este un
gran resultado.

Ademais, en termos do MASE pásase dun 0.62 cometido na serie orixinal a un 0.30 sobre a serie
depurada. Porén, a nivel porcentual, áında que se reduce drásticamente o valor, o erro cometido segue
representando unha propoción considerable do volume de env́ıos (20.24%).

Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 9.46 4.50

RMSE 10.87 5.72

MAPE 40.44% 20.24%

MASE 0.62 0.30

Cadro 4.32: Comparativa do rendemento preditivo do modelo Prophet na serie do clúster 1: Impacto
da eliminación de outliers.

Aśı, a diferencia do observado no axuste ARIMA, o impacto da eliminación dos at́ıpicos na serie
de demanda do clúster 1 resulta certamente positivo no modelo Prophet. En especial, cómpre sinalar o
valor acadado para o MASE, sendo neste caso de 0.30. Isto demostra a gran mellora do Prophet fronte
ao preditor näıve, captando correctamente a cáıda na demanda semanal apreciada na serie.

Modelo para o Clúster 2

Para os clientes do clúster 2 (paqueteŕıa e froita) non resultaba significativa ningunha das variables
dummy que modelaban o impacto da peak season sobre a serie temporal da demanda. Porén, iden-
tificábanse tres at́ıpicos: 31/01/2022, 25/12/2023 e 23/12/2024. Tras inclúır estas tres variables no
modelo, aplicouse o algoritmo de selección automática de hiperparámetros, acadando o modelo óptimo
un RMSE= 8.13.
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Os resultados dos erros cometidos polas predicións do modelo resultante amósanse no Cadro 4.33.
A comparativa das métricas obtidas na serie orixinal fronte aos correspondentes valores na serie sen
at́ıpicos mostran unha mellora lixeira: redúcese o erro absoluto medio de env́ıos semanais (baixa de
9.61 a 8.46), supoñendo unha diminución dun 2% no MAPE, sendo o erro cometido inferior ao 20%.
Consecuentemente, tamén se aprecia unha redución considerable do MASE, redućındose do 0.66 na
serie orixinal a 0.59 neste caso.

Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 9.61 8.46

RMSE 10.70 9.57

MAPE 21.34% 19.21%

MASE 0.66 0.59

Cadro 4.33: Comparativa do rendemento preditivo do modelo Prophet na serie do clúster 2: Impacto
da eliminación de outliers.

En conclusión, o impacto da eliminación dos at́ıpicos resultou positivo nos sectores de paqueteŕıa
e froita, mais sendo dita mellora moito menor ca no clúster anterior. Aśı e todo, o comportamento
aseméllase bastante ao observado para este clúster na metodolox́ıa de Box-Jenkins.

Modelo para o Clúster 3

Finalmente, procedese ao estudo da serie dos clientes de alimentación e industria. No axuste corres-
pondente ARIMA tan só resultaba significativo a variable dummy que modelaba o at́ıpico detectado
mediante o algoritmo na semana do 02/05/2022.

Tras configurar o modelo coa estacionalidade multiplicativa e a correspondente variable exóxena,
aplicouse o algoritmo de selección automática de hiperparámetros. O modelo óptimo seleccionado
presentou un RMSE = 6.75 na fase de validación.

Unha vez axustado o modelo, calculáronse as predicións sobre a mostra de test, comparando os
resultados co valor da serie real. Aśı, o Cadro 4.34 permite contrastar as métricas calculadas sobre
a serie orixinal fronte as acadadas co axuste na serie depurada de at́ıpicos. Á vista dos resultados,
a eliminación dos at́ıpicos presentou un impacto positivo sobre a calidade preditiva dos modelos. O
erro absoluto medio é inferior aos 7 env́ıos semanais, representando un erro porcentual de case o 36%.
Adicionalmente, o MASE diminúese minimamente de 0.97 na serie orixinal a 0.91 neste caso.

A pesar de que os resultados conseguidos para os clientes de alimentación e industria non resulten
tan positivos coma os dos outros clústeres, en comparación aos acadados mediante a metodolox́ıa clásica
(Cadro 4.29), estes resultan considerablemente mellores en termos do MASE. Aśı, a gran volatilidade
observada no volume semanal durante o primeiro trimestre do 2025 resulta case imposible de capturar
por parte dos modelos, derivando en predicións que apenas melloran aos correspondentes preditores
näıve.

Non obstante, en relación ao impacto dos outliers, a metodolox́ıa Prophet amosou unha mellora ao
aplicarse sobre a serie depurada, contrastando co comportamento no ARIMA.

Na seguinte sección levarase a cabo unha comparación dos resultados obtidos neste caṕıtulo, con-
trastando o rendemento da metodolox́ıa clásica (Box-Jenkins) fronte aos modelos Prophet.
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Métrica Serie Orixinal Serie Sen At́ıpicos

MAE 7.34 6.76

RMSE 9.50 8.81

MAPE 35.84% 35.99%

MASE 0.97 0.91

Cadro 4.34: Comparativa do rendemento preditivo do modelo Prophet na serie do clúster 3: Impacto
da eliminación de outliers.

4.5. Comparación: ARIMA vs Prophet

Os resultados conseguidos ao longo do presente caṕıtulo amosaron rendementos dispares dos mo-
delos nas distintas series de demanda. O obxectivo desta sección é comparar as distintas metodolox́ıas
e interpretar o seu rendemento en cada caso.

Modelo Global. Na serie de demanda global, a aproximación ARIMA(0, 1, 1) axustada presenta
mellores resultados. En particular, o modelo de Box-Jenkins erra en menos de 8 env́ıos semanais en
termos absolutos, mentres que Prophet presenta un MAE = 16.19. Á vista das gráficas das predicións
(Figuras 4.4 e 4.18), o modelo Prophet non é capaz de anticipar a cáıda estrutural da demanda que se
produce durante o último trimestre da mostra de test.

Clúster 1. Na serie orixinal dos clientes de retail, transporte e electrónica a metodolox́ıa de Box-
Jenkins presenta maior precisión. O MAE cometido molo ARIMA(0, 1, 1) axustado reduce á metade o
valor da métrica no Prophet. Observando a gráfica das predicións deste último modelo (Figura 4.20), o
Prophet presenta nesgo positivo de predición, sobreestimando de forma sistemática o nivel de demanda.
A causa reside na propia estrutura do modelo, que captura a elevada tendencia da serie na mostra de
adestramento.

Clúster 2. No estudo da demanda dos sectores de paqueteŕıa e froita, unha vez máis a metodolox́ıa
ARIMA amosa maior calidade preditiva. Aśı, o erro cometido en erros porcentuais resulta inferior ao
8%, fronte ao 21% que comete Prophet. Visualizando as gráficas das predicións (Figuras 4.12 e 4.22),
o Prophet volve sobreestimar o nivel de demanda semanal, especialmente a partir do mes de maio da
mostra de test.

Clúster 3. A serie de demanda dos clientes do clúster 3 (alimentación e industria) amosaba unha
alta volatilidade durante o primeiro trimestre. Estes picos de demanda afectaron ao rendemento do
ARIMA(2, 1, 0) axustado, que non foi capaz de capturar a magnitude das oscilacións (Figura 4.17).
Por conseguinte, a metodolox́ıa de Box-Jenkins infrapredeciu o volume de pedidos semanais durante
o primeiro trimestre. En particular, o axuste non mellora a considerar o volume da última semana
observada como predición, presentando un MASE = 1.42.

Pola contra, Prophet si era capaz de detectar os picos de demanda (Figura 4.24). Porén, ante a
cáıda da serie a partir do segundo trimestre, o modelo tende á sobrepredición. Aśı e todo, a pesar dos
malos resultados en termos porcentuais (MAPE = 35.84%), Prophet consegue mellorar ao preditor
näıve estacional. Este feito reflicte o gran cambio que sofre a serie de demanda no devandito clúster.
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Impacto de outliers. En relación a análise de sensibilidade, os modelos amosan comportamentos
certamente distintos. Mentres que o ARIMA apenas mellora a súa precisión tras eliminar os outliers,
Prophet consegue reducir os erros de predición ao axustarse sobre a serie depurada. Especialmente
salientables os resultados no clúster 1, onde a eliminación de outliers reduce á metade as métricas do
erro.

En vista dos resultados obtidos, especialmente nas series con alta volatilidade ou presenza de
outliers, faise evidente a necesidade de explorar modelos alternativos ou h́ıbridos que combinen a ro-
bustez fronte a cambios abruptos con capacidade de capturar tendencias estruturais, co fin de mellorar
a precisión das predicións no contexto complexo do transporte de mercadoŕıas.

No seguinte caṕıtulo profundizarase nas conclusións do proxecto, e exporanse posibles variantes de
estudo que se podeŕıan aplicar ao problema da previsión de demanda no sector do transporte.



Caṕıtulo 5

Conclusións e liñas futuras

Neste último caṕıtulo preséntanse as conclusións xerais derivadas da investigación, sintetizando os
achados obtidos durante a modelización da demanda de transporte internacional. Aśı mesmo, propóñen-
se novas v́ıas de investigación e melloras metodolóxicas que podeŕıan dar continuidade a este traballo.

5.1. Conclusións

O obxectivo principal deste Traballo Fin de Máster foi desenvolver un sistema de previsión de
demanda fiable para optimizar a planificación lox́ıstica de Trucksters. Trala análise exploratoria, o
preprocesado de datos e a comparativa entre metodolox́ıas clásicas (ARIMA) e baseadas en modelos
aditivos (Prophet) sobre series segmentadas (clústeres), extráense as seguintes conclusións:

Eficacia da segmentación de clientes

A decisión estratéxica de dividir a carteira de clientes en clústeres baseados no comportamen-
to (transporte/retail/electrónica, paqueteŕıa/froita e alimentación/industria) resultou fundamental. O
estudo da serie global pode funcionar como unha primeira aproximación da carga prevista nas vindei-
ras semanas, pero a segmentación dos clientes resulta fundamental para optimizar planificación nas
distintas rutas.

A análise confirmou que cada grupo de clientes posúe dinámicas estocásticas diferenciadas, aśı como
diferente sensibilidade a eventos especiais e festivos (peak season).

Superioridade de ARIMA en series con cambio de tendencia

Para a serie global e os clústeres 1 e 2, a metodolox́ıa clásica (ARIMA) demostrou un rendemento
superior, tanto en termos absolutos (MAE) coma relativos (MAPE). En efecto, observouse que os mo-
delos Prophet tenden a sobreestimar sistematicamente a demanda cando a serie sofre unha contracción
estrutural ao final da mostra. A inercia da tendencia aprendida durante a fase de adestramento (etapa
de crecemento da empresa) impediu a Prophet adaptarse de forma correcta á estratexia de mercado
adaptada por Trucksters durante o ano 2025. Pola contra, os modelos ARIMA, grazas á súa estru-
tura de diferenciación e memoria a curto prazo, axustáronse mellor a este novo escenario. No clúster
1, por exemplo, o ARIMA logrou reducir o erro absoluto medio á metade con respecto a Prophet,
consolidándose como a ferramenta máis robusta para sectores estables.
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Utilidade de Prophet en escenarios de alta volatilidade

O clúster 3 (alimentación e industria) representou o maior desaf́ıo de modelización debido á súa
heterocedasticidade e picos abruptos. Neste escenario, o modelo ARIMA fracasou na súa tentativa
de superar un preditor básico (MASE = 1.42), demostrando a rixidez dos modelos lineais ante series
moi irregulares. Pola contra, Prophet logrou superar a barreira de utilidade preditiva (MASE < 1),
grazas á súa flexibilidade para modelar cambios de punto de inflexión e á xestión da estacionalidade
multiplicativa. Aı́nda que o seu erro porcentual segue sendo elevado (MAPE > 35%), demostrou ser
a alternativa máis viable cando o comportamento do cliente carece de inercia clara.

O impacto cŕıtico dos at́ıpicos

A análise de sensibilidade revelou que a xestión de outliers é determinante, pero o seu impacto vaŕıa
segundo o modelo. Mentres que a metodolox́ıa de Box-Jenkins resultou máis ŕıxida ante a limpeza de
datos, Prophet beneficiouse enormemente da depuración da serie, especialmente no clúster 1, onde a
eliminación de at́ıpicos reduciu o erro á metade. Isto suxire que Prophet é unha ferramenta potente
cando se dispón dun coñecemento de dominio que permita limpar ou parametrizar correctamente as
anomaĺıas históricas.

Asimetŕıa do risco na predición: Sobrestimación vs. Subestimación

Máis aló das métricas estat́ısticas puras (RMSE ou MAPE), a avaliación dos modelos debe conside-
rar o impacto operativo dos erros nun contexto de negocio real. No sector do transporte internacional,
as consecuencias de errar na predición non son simétricas:

O risco da subestimación: Cando o modelo infrapred́ı a demanda (como ocorreu co ARIMA no
clúster 3), a empresa enfróntase a unha rotura de servizo. A falta de capacidade para cubrir
os env́ıos comprometidos pode derivar en penalizacións contractuais e, o máis cŕıtico, nun dano
irreparable á relación co cliente e á reputación de Trucksters.

O custo da sobrestimación: Pola contra, a tendencia á sobrepredición observada fundamentalmen-
te no Prophet (clústeres 1 e 2) implica un custo económico directo por recursos ociosos (camións
ou condutores parados). Non obstante, este escenario garante o nivel de servizo e protexe a
relación comercial.

Baixo esta óptica, áında que os modelos ARIMA foron estatisticamente máis precisos en sectores
estables, o nesgo positivo de Prophet podeŕıa considerarse “máis seguro” estratexicamente en escenarios
de incerteza, ao priorizar a cobertura do servizo fronte á eficiencia de custos inmediata. Ademais
deste feito, outra das vantaxes da metodolox́ıa consist́ıa na construción de intervalos de confianza
sen a necesidade de asuncións de normalidade nos residuos, aportando información adicional sobre a
demanda prevista.

Limitacións pola lonxitude da serie histórica

Finalmente, cómpre sinalar unha limitación técnica relevante que condicionou o rendemento dos
modelos baseados en compoñentes. Tal e como se indicaba ao iniciarse este estudo (Sección 1.2),
a base de datos dispoñible abrangue o peŕıodo 2022-2025, o que supón apenas tres anos completos
de historia para o adestramento. Aśı, esta lonxitude resulta insuficiente para que algoritmos como
Prophet desenvolvan todo o seu potencial. Para estimar con robustez compoñentes complexas, como
a estacionalidade anual ou os cambios de tendencia a longo prazo, estes modelos benef́ıcianse de
series máis extensas que permitan distinguir patróns ćıclicos recorrentes de anomaĺıas puntuais. En
consecuencia, a escaseza de datos históricos explica parte das dificultades atopadas para modelar a
estacionalidade nos clústeres máis irregulares e reforza a idea de que os modelos mellorarán as súas
prestacións a medida que a empresa acumule máis histórico de operacións.
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En resumo, conclúese que non existe un “modelo único” óptimo para toda a operativa de Trucksters,
nin en termos estat́ısticos nin de negocio. A solución ideal pasa por un enfoque h́ıbrido e estratéxico:
empregar modelos ARIMA para os fluxos de carga consolidados e estables (clústeres 1 e 2) onde se
busca a máxima eficiencia, e reservar aproximacións tipo Prophet para os segmentos máis volátiles ou
industriais (clúster 3), asumindo o seu nesgo positivo como unha marxe de seguridade operativa ante
a incerteza.

5.2. Liñas futuras de estudo

Dada a complexidade inherente á predición de demanda no sector lox́ıstico, ábrense diversas v́ıas
para profundar nesta investigación e mellorar a precisión dos modelos actuais.

En relación á complexidade dos axustes, unha das limitacións dos modelos empregados durante o
traballo é que non consideran o estado de saturación do mercado europeo de transporte. Unha liña de
mellora inmediata seŕıa incorporar a información de datos externos en tempo real, especificamente o
Barómetro de Transporte de Timocom (2025). Como se explicou na Sección 1.1, esta fonte proporciona
o ratio diaria entre ofertas de carga e espazo de camións dispoñible en Europa. A incorporación desta
métrica como regresor exóxeno permitiŕıa ao modelo anticipar picos de demanda non estacionais e
axustar as predicións baseándose na lei da oferta e a demanda a nivel continental, máis aló da carteira
propia de Trucksters.

Por outra banda, áında que este traballo abordou a previsión de demanda, a dinámica comercial
depende intrinsecamente do prezo. Unha evolución natural do proxecto seŕıa incorporar a informa-
ción dos prezos de venda (cliente) e de compra (provedor). Non obstante, dado que o prezo futuro
é unha incógnita necesaria para predicir a demanda futura proponse o uso de procesos autorregresivos
vectoriales (VAR), que son unha xeralización dos procesos autorregresivos univariantes (AR). Esta
aproximación permitiŕıa predicir ambas variables de forma conxunta, capturando a elasticidade prezo-
demanda e, o máis importante, permitindo á empresa optimizar non só o volume de env́ıos, senón a
marxe comercial esperada (diferenza entre prezo de cliente e custo de provedor).

Por último, ante a alta volatilidade na serie do clúster 3, podeŕıase explorar o uso de modelos
máis complexos como as Redes Neuronais, en especial as redes LSTMN (Long-shot-term memory
neutral networks) (véxase Fernández Casal et al., 2024). Este tipo de metodolox́ıas amosa mellores
resultados á hora de captar estruturas moi complexas, pagando o prezo de resultar modelos moito
menos interpretables (caixas negras).
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Apéndice A

Variables de interese

Este apéndice detalla a natureza funcional e estat́ıstica das variables contidas na base de datos
orixinal empregada neste proxecto. Para facilitar a súa comprensión, as variables agrupáronse segundo
a dimensión da operativa lox́ıstica que representan.

Identificación e Temporalidade

id trucksters: Identificador único e ineqúıvoco asignado a cada pedido no sistema de xestión
da empresa.

route start date: Marca temporal que rexistra o inicio do env́ıo (data e hora). Esta variable
constitúe o eixo cronolóxico fundamental para a construción das series temporais deste traballo.

lane zipcode clean: Variable sintética que identifica a ruta espećıfica mediante a combinación
de cliente, nodo de orixe e nodo de destino.

Xeograf́ıa e Operativa

direction: Clasificación do fluxo de transporte en catro categoŕıas:

• Exportación: Env́ıo con orixe en España e destino internacional.

• Importación: Env́ıo con orixe internacional e destino España.

• Cabotaxe nacional : Traxectos realizados integramente dentro do territorio español.

• Cabotaxe internacional : Env́ıos entre dous páıses estranxeiros.

origin country / destination country: Páıses de carga e descarga, respectivamente.

origin zipcode / destination zipcode: Códigos postais que delimitan con precisión os puntos
xeográficos da operativa.

loaded km: Distancia percorrida polo veh́ıculo transportando a mercadoŕıa. É a métrica base
para o cálculo da eficiencia e dos prezos unitarios.

empty km: Distancia percorrida sen carga (traxectos de posicionamento).
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Dimensión Económica e Contractual

client name complete: Razón social do cliente que solicita o servizo.

contract: Variable categórica que define a modalidade comercial:

• Fix (Primario): Clientes con contratos de longa duración e volumes de carga pactados. Adoi-
tan presentar prezos máis estables e independentes das flutuacións inmediatas do mercado.

• Spot (Secundario): Clientes puntuais sen compromiso de volume. Os prezos destes servizos
son máis elevados e volátiles, xa que se axustan á dinámica de oferta e demanda no momento
da contratación.

sector: Sector industrial do cliente. A base de datos comprende 7 categoŕıas: alimentación,
electrónica, froita, industria, paqueteŕıa, transporte e retail. Os rexistros de transporte corres-
ponden a outras empresas lox́ısticas que, ante picos de demanda ou falta de flota, subcontratan
os seus servizos a Trucksters.

client price: Importe total en euros facturado ao cliente polo env́ıo.

po price loaded / po price empty: Custos operativos pagos ao provedor (colaborador exter-
no) polos quilómetros percorridos con carga e sen ela, respectivamente.



Apéndice B

Calendario de festividades e eventos

especiais

A actividade lox́ıstica internacional está estreitamente vinculada ao calendario laboral dos páıses
onde opera a rede de Trucksters (principalmente España, Francia, Alemaña, Bélxica e Polonia). Este
apéndice detalla a selección de festividades empregadas na modelización, a súa orixe e o procedemento
técnico para a súa integración nos modelos.

Selección de datas

As festividades foron seleccionadas en base á súa relevancia para o transporte por estrada na Unión
Europea, considerando tanto o peche de centros lox́ısticos como as restricións á circulación de veh́ıculos
pesados. As datas consideradas no presente proxecto foron aportadas polo responsable da empresa,
sendo estas as festividades que se teñen en conta en Trucksters á hora de organizar a estrutura lox́ıstica.

As datas consideradas como “cŕıticas” pola súa influencia na demanda son:

Ciclo de Ano Novo: 1 de xaneiro e vésperas.

Semana Santa: Datas variables segundo o calendario lunar (marzo/abril).

Dı́a do Traballador: 1 de maio.

Dı́a da Vitoria en Europa: 8 de maio (especialmente relevante en rutas con Francia e Ale-
maña).

Ascensión e Asunción: Datas variables e 15 de agosto, respectivamente.

Tódolos Santos: 1 de novembro e a súa véspera (31 de outubro).

Ponte da Constitución e Inmaculada: 6 e 8 de decembro (con forte impacto en toda a rede
lox́ıstica peninsular).

Ciclo de Nadal: 25 de decembro e d́ıas posteriores.

Adaptación á escala semanal

Dado que o presente traballo emprega datos agrupados semanalmente, a inclusión destas festivi-
dades require unha adaptación técnica previa. Ao non poder asignar o impacto a un d́ıa exacto, as
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110 APÉNDICE B. CALENDARIO DE FESTIVIDADES E EVENTOS ESPECIAIS

festividades trasládanse ao d́ıa luns da semana na que acontecen (d́ıa de referencia da serie).

Cómpre sinalar que as festividades que caen sempre na mesma semana do ano tenden a ser absor-
bidas pola compoñente estacional do modelo. Polo tanto, o esforzo de modelización mediante variables
exóxenas centrouse naquelas festividades móbiles (como a Semana Santa) ou eventos comerciais de
grande impacto como o Black Friday.
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