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Resumen

Resumen en espanol

Este estudio aborda el modelado de series temporales con variables composicionales, es decir, variables
multidimensionales positivas cuyas partes suman una constante y mediante una transformacién se
pueden ver como valores en el espacio simplex. Se presenta el marco tedrico del analisis composicional,
con énfasis en las transformaciones que permiten proyectar los datos al espacio euclidiano. Se estudia
el modelo compositional C-VARIMA como una extensién del modelo VARIMA clésico, adaptado para
mantener la estructura composicional a lo largo del tiempo. Se realiza un estudio de simulacién para
evaluar el desempeno del modelo y, posteriormente, se aplica a un conjunto de datos reales. Los
resultados evidencian la eficacia del modelo para capturar la dependencia temporal y preservar la
coherencia composicional en series temporales multivariantes.

English abstract

This study addresses the modeling of time series with compositional variables, in other words, positive
multivariate variables whose components sum to a constant and that, through a suitable transformation,
can be viewed as values in the simplex space. The theoretical framework of compositional analysis is
presented, with emphasis on the transformations that allow projecting the data into Euclidean space.
The compositional C-VARIMA model is studied as an extension of the classical VARIMA model,
adapted to preserve the compositional structure over time. A simulation study is carried out to evaluate
the performance of the model and it is subsequently applied to a real data set. The results show the
effectiveness of the model in capturing temporal dependence and preserving compositional coherence
in multivariate time series.



Conceptos Basicos

Datos Composicionales

Los datos se consideran como composicionales cuando sus elementos son no negativos y suman una
unidad, o en general a una constante fija para todos los elementos. Desde una perspectiva matematica,
los datos composicionales pueden ser visualizados como puntos en el espacio simplex. Ejemplos de este
tipo de datos incluyen probabilidades, proporciones y porcentajes. De igual forma, Aitchison (1986)
[6] define un conjunto de datos composicionales en un espacio real de D dimensiones de la siguiente
manera;

D
SP ={X =[z,,79, ., xp] ERP 12, >0, i =1,2,..., D; le =1} (1)
im1

Karl Pearson (1897) [33], advirtié6 sobre un problema fundamental al analizar datos compositivos
con métodos tradicionales de la Estadistica Multivariada: la dificultad de interpretar las correlaciones
entre componentes cuyos valores estan restringidos por una suma constante, lo que puede inducir
correlaciones espurias. En particular, Pearson destacdé que al trabajar con cocientes que comparten
elementos comunes, las correlaciones resultantes pueden carecer de una base légica o tedrica. A pesar
de la importancia de esta observacién, su advertencia fue ignorada durante décadas, lo que llevé a una
subestimacion del problema en muchos analisis posteriores.

Fred Chayes (1960) [17], evidenci6é cémo la interpretacién convencional de las correlaciones entre los
componentes de una misma composicién generaba correlaciones negativas artificiales. A pesar de este
hallazgo, la comunidad analitica continué aplicando métodos estadisticos clasicos, ignorando la res-
triccién de suma fija inherente a los datos composicionales, lo que inevitablemente distorsionaba sus
resultados.

El verdadero punto de inflexién en esta disciplina llegé en la década de 1980, en gran parte gracias a
John Aitchison [4]. En 1982, su influyente articulo presentado a la Royal Statistical Society desmenuzé
los desafios que surgian al analizar datos que, por naturaleza, residen en el simplex (es decir, donde
sus partes suman una constante).

El ejemplo més bésico de datos composicionales involucra sblo dos componentes, lo que significa que
la restriccién de suma unitaria obliga a que el segundo componente sea simplemente uno menos el
primer componente. Esta situacién es similar a la que se presenta en las probabilidades de un evento
binario. Cox y Snell (1989) [19] abordan este caso utilizando la transformacién logit o logistica de la
probabilidad, lo que facilita la aplicacién de modelos de regresién a las probabilidades transformadas
mediante logit.
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Principios Fundamentales de Datos Composicionales

Invariancia de Escala

Los vectores de componentes positivas que son proporcionales reflejan la misma composicion.

Si una composicién se multiplica por una constante, por ejemplo, al convertir partes por unidad a
porcentajes, la informaciéon que se comunica permanece completamente equivalente. Por ende, los
vectores de componentes positivas que son proporcionales constituyen una clase de equivalencia. Asi,
es conveniente seleccionar un representante de dicha clase para simplificar tanto el andlisis como la
interpretacién. La forma convencional de realizar esta seleccion es normalizar el vector de tal manera
que sus componentes sumen a una constante dada s, que puede ser 1, 100, 1000, 105 o cualquier
otra constante positiva. Esta elecciéon se formaliza a través de la operacién de clausura. Para x =
(24, 29,...,Zp), un vector con D componentes positivas, su clausura se define como...

RI RT RI
D ! ) D2 PR DD (2)

YT 2 T D1 Ti

Los componentes del vector cerrado se conocen como partes, en relacién con un total k. El conjunto
de vectores con D componentes positivas que suman una constante k forma el simplex de D partes,
que se denota como SP. Las composiciones equivalentes a x se representan como CX.

Cx =

Coherencia Subcomposicional

Los analisis que implican un subconjunto de partes no deben depender de otras partes no incluidas.

Una subcomposicién se define como un subconjunto de componentes o partes de una composicién.
El anélisis de una subcomposicién requiere que los resultados no sean contradictorios con aquellos
obtenidos de la composicién completa. El principio de coherencia puede sintetizarse en dos criterios:
(a) el principio de invariancia de escala debe aplicarse a cualquiera de las posibles subcomposiciones,
lo cual implica la preservacién de las proporciones de las partes; (b) cuando se utiliza una distancia o
divergencia para comparar composiciones, esta debe ser mayor o igual a la que se obtiene al comparar
las subcomposiciones correspondientes (dominancia subcomposicional).

La dominancia subcomposicional requiere una métrica para medir distancias entre composiciones y
subcomposiciones que siga la regla de proyeccion: las distancias deben reducirse al proyectar. Sur-
ge la pregunta de si puede emplearse la distancia euclidiana ordinaria entre vectores reales. Este
planteamiento no es valido, ya que ambos principios, el de invariancia de escala y el de dominancia
subcomposicional, se verian comprometidos. Claramente, si se multiplican dos vectores con componen-
tes positivas por una constante positiva c, la distancia euclidiana entre ellos aumenta en un factor c,
infringiendo asi el principio de invariancia de escala. Asimismo, la dominancia subcomposicional es
violada por la distancia euclidiana ordinaria entre vectores composicionales.

Invariancia por Permutacién

Las conclusiones de un andlisis composicional no deberian depender del orden de las partes.

Por ejemplo, en composiciones geoquimicas, a menudo se ordenan las partes alfabéticamente. Un caso
tipico es la distribucién de tamanos de grano en un sedimento: las particulas se clasifican, tras un
tamizado, en categorias de tamano. En un andlisis composicional, la informacién relativa al orden de
las diferentes clases no tiene relevancia.
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Geometria de Aitchison

El desarrollo de los conceptos sugeridos por Aitchison (1986) [6] ha conducido a la geometria Aitchison
del simplex. Esta geometria, siendo euclidiana, requiere definiciones especificas y una métrica particular.
Consideremos las composiciones x,y € SP. La perturbacién de x con y se define como la composicién

x®@y = C(z1y1,ToYs, -, TpYp) (3)

y la potenciacién de x por un nimero real « se define como la composicién

aOx=C(z%, z%, ..., %), (4)

Es f4cil demostrar que paran = C(1,1, ..., 1) se cumple que x®n = x. Asi, la composicién con todas las
partes iguales es el elemento neutro de la perturbacion. La perturbacion y la potenciacién, definidas en
SP | satisfacen los requisitos para operaciones de un espacio vectorial. Sin embargo, la principal ventaja
de la perturbacion es que, ademas de satisfacer los principios del anélisis composicional, generalmente
tiene una interpretacion en el campo analizado.

El cambio de unidades en algunas o todas las partes de una composicién también puede verse como
una perturbacién. Ejemplos tipicos se encuentran en quimica, cuando las concentraciones en partes por
millén (ppm) de peso se cambian a concentraciones molares (Buccianti y Pawlowsky-Glahn, 2005) [16].
Esto se realiza multiplicando cada componente por el inverso del peso molar. Cerrar la composicién
resultante puede ser innecesario en muchos casos. Aun asi, conserva su cardcter composicional.

La invariancia de escala requerida para un analisis composicional conduce al uso de razones entre
partes, de modo que se cancelen las constantes de escala. Ademads, estas razones se interpretan en
una escala relativa, y tomar sus logaritmos es entonces una eleccién natural. El andlisis de CoDa
(Datos composicionales) se basa esencialmente en el anélisis estadistico de log-ratios entre partes. Los
log-ratios mas simples son aquellos que comparan dos partes.

Los log-ratios son ttiles en el analisis, pero deben ser invariantes de escala,

l‘ .
In (’) . (5)
L
Frecuentemente, algunas preguntas pueden ser respondidas analizando un log-contraste apropiado, el

cual generaliza el caso anterior al considerar una combinacién lineal de logaritmos de las partes con
coeficientes que suman cero:

D D
Z a,In(zy), con Z a;, = 0. (6)
k=1 k=1

La eleccién del log-contraste depende del problema planteado y de la interpretacion de la composicién.
Nétese que el log-ratio en (5) es un caso particular de (6), al tomar a; = 1, a; = —1y a5, = 0 para
k+£1i,7.

Representaciones adecuadas y completas de una composicion utilizando un conjunto de log-contrastes
fueron propuestas en la década de 1980 (Aitchison, 1986) [6], de modo que toda la informacién de la
composicion se invierte en el conjunto de log-ratios.

Ademss, el siguiente producto interno, con su norma y distancia asociadas, puede ser utilizado para
obtener una estructura de espacio de Hilbert finita (de D — 1 dimensiones) (Billheimer et al., 2001;
Pawlowsky-Glahn y Egozcue, 2001) [12] [31] :
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El producto interno de Aitchison se define para dos composiciones x,y € 8 como

- Eon ) (2)

i=1 j=1 Yj

Este producto interno induce una estructura de espacio vectorial euclideo sobre el simplex SP. A partir
de él, se puede construir una norma y una distancia en el simplex:

[x[Z = (x.%)0,  da(x,¥) = [xOyl, (8)

El producto interno, la norma y la distancia Aitchison cumplen los principios del anélisis composicio-
nal y, por lo tanto, son herramientas para un andlisis composicional libre de inconsistencias. Junto
con la perturbacién y la potenciacién, proporcionan una estructura euclidiana al simplex, llamada
geometria simplicial Aitchison. Esto sugiere explotar las propiedades bien conocidas de los espacios eu-
clidianos para analizar composiciones: base ortonormal, representacién de coordenadas (ortonormales),
proyecciones ortogonales, definiciones de angulos, elipses, etc.

Finalmente, usamos Ap, , para denotar la familia de todas las matrices reales D x D. Si x € SP y
A € Ap, p, definimos el producto A © = como

D D
Aoz=C (ij”, ...,szm> : (9)
j=1

j=1
Por lo tanto, la funcién * — A ©  es un endomorfismo del espacio vectorial (S, ®,®). Ademas,
cualquier endomorfismo de SP puede escribirse de esta forma. La matriz asociada con el endomorfismo
identidad es la bien conocida matriz de centrado G, = I, — D~ 1J, de orden D x D, donde I, es la
matriz identidad D x D (con unos en la diagonal principal y ceros en las demés entradas) y J, = 11},
es la matriz de unos de dimensién D x D.

Transformacién alr

Una primera eleccién de estas representaciones fue la transformacién de log-ratio aditivo (alr). Si x es
una composicién en el simplex de D partes Sp, se define como

alr,(x) = In (gﬁ’ 961#17 Lyt . $D1> (10)
Ip Tp Ip Tp

donde el logaritmo natural In se aplica componente a componente. En consecuencia, el componente
i es el simple log-ratio alr,(x) = In (%) . La transformacion alr se invierte facilmente para obtener
la composicion original a partir de los D — 1 componentes alr y también reduce la perturbacién y la
potenciaciéon a operaciones ordinarias en el espacio real de D — 1 dimensiones:

alr((cOx) @ (BOY)) = a-alr(x) + - alr(y), (11)

para cualquier par de vectores composicionales (x,y) y cualesquiera constantes reales a y (. Sin
embargo, el alr tiene la desventaja de no ser invariante bajo la permutacién de componentes, lo que
puede causar fallos en algunos procedimientos estadisticos.
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Transformacion clr

Aitchison (1986) [6] introdujo la transformacioén log-ratio centrada (clr), que representa una composi-
cién de D-partes utilizando D coeficientes clr. Se define como

=cCcirlxr)=1n xl ‘Tz :L.D
v = criz) =1 <gm<x>’gm<z>7 ’gm<x>) (12)

donde gm(zx) es la media geométrica de las componentes

b 1/D
gm(z) = (Hm) ; (13)

los D coeficientes clr;(z) = In (gnfzw)) son log-contrastes. A partir de clr(x), se recupera la composicién

x con la transformacién inversa de clr:

z = clr " (v) = Cexp(v), (14)

donde la funcién exponencial se aplica componente a componente a v = clr(x). De manera similar a

la transformacién alr, la perturbacién y la potenciacion en S, corresponden a la suma y el producto
s 1% y p D p y el p

en el espacio real RP:

cdr((a0z)® (BOY)) = a-cr(x)+ 8- clr(y). (15)

La desventaja de la transformacién clr es que utiliza D coeficientes, que suman cero, para representar
una composicién que solo tiene D—1 componentes libres, la dimensién de SP. Ademas, los componentes
clr cambian al trabajar con una subcomposicién.

Transformacion ilr

Un paso importante para utilizar estos conceptos es construir bases ortonormales y sus correspondientes
coordenadas. Una base ortonormal de S es un conjunto de composiciones ey, e,, ...,ep ; tal que
(e;,€;)o = 0 para i # j, y [le;|, = 1. Para una base fija, las coordenadas de una composicién se
obtienen mediante la funcion

X' = ilT(X) = (<X’ e1>a7 <X7 e2>a e <Xa eD—1>a)a (16)
con la inversa,
D—1
x=ilr '(x*) = @mj@ej (17)
j=1

La construccién de coordenadas ortonormales se ha denominado transformacion log-ratio isométrica

(ilr) (Egozcue et al. 2003) porque las coordenadas z; = ilr;(x) son contrastes logaritmicos e isométricos:

ilr((a..x)® (B...y)) = a-ilr(x) + 8- ilr(y), (18)
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Dada una base ortonormal especifica, utilizada a modo de ejemplo y propuesta por Egozcue et al.[20],la
transformacién inversa clr ' a un conjunto de vectores ortonormales definidos en un subespacio de RP
con suma cero. Cada vector base estd formado por ¢ valores iguales, un valor negativo en la posicién
1+ 1, y ceros en las posiciones restantes.Esta construccion corresponde a una de las multiples bases
posibles que pueden emplearse en la transformaciéon ILR. En términos exponenciales:

= Los primeros ¢ componentes son exp ( ﬁ),

i
i1 )

» Los componentes restantes son exp(0) = 1.

= El componente i 4+ 1 es exp (—

Después de aplicar la exponenciacién, los vectores se normalizan dividiendo cada componente por
la suma total, asegurando asi que la composicién resultante pertenezca al simplex. Este conjunto
de composiciones forma una base ortonormal bajo el producto interno de Aitchison, preservando la
estructura geométrica propia del espacio composicional.

Los componentes de la transformacién y = ilr(x), calculados con respecto a una base ortonormal del
simplex, se definen como:

yi:M_Z In 9(@1, s 2) , parai=1,2...,D—1,
i+1 Tiv1

donde g(xq, ..., x;) representa la media geométrica de los primeros i componentes de la composicién x.
Estas coordenadas son log-ratios disenados para capturar relaciones relativas entre partes, lo cual es
una propiedad clave en el analisis composicional.

(19)

Ventajas y Desventajas de las Transformaciones

Cuadro 1: Resumen de las transformaciones

Transformaciones

Ventajas

Desventajas

alr (Logaritmo de razones
aditivo): La transformacion
se basa en el logaritmo de ra-
zones, incorporando una tni-
ca variable de referencia en
el denominador. alr,(x) =

In(2r Zr=1 Tel Tp
zp’ xp ? xp ' xp

Transforma las operaciones de
perturbacion y potenciacion
en el simplex a operaciones
equivalentes de adiciéon y mul-
tiplicaciéon por un escalar en el
espacio euclidiano

No es isométrica. La transforma-
cién alr no preserva la distancia de
Aitchison; la distancia euclidiana
en las coordenadas alr no coincide
con la del simplex.

No es simétrica respecto al denomi-
nador. La componente usada en el
denominador queda como referen-
cia, de modo que el resultado de-
pende de cudl parte se elija y no se
cumple la invariancia por permuta-
cién.

(continuacion)
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Cuadro 1: Resumen de las transformaciones (continuacion)

clr  (Logaritmo centrado):
transformaciéon  isométrica
que se fundamenta en el
logaritmo de razones en fun-
cién de la media geométrica
de las variables. clr(z) =
(2 e )

gm(x)’ gm(x)’ "7 gm(w)

Evita la selecciéon de una pro-
porcién variable y facilita la
interpretacion de las variables
transformadas, permitiendo el
analisis en funciéon de las va-
riables originales.

Los datos transformados muestran
incoherencia subcomposicional, lo
que da lugar a una matriz de da-
tos singular, lo que dificulta la uti-
lizacién de técnicas robustas para
datos en esas coordenadas.

ilr (Logaritmo isométrico):
transformacién  isométrica
que se apoya en la eleccion
de wuna base ortonormal
€1,€9,...,€p_; dentro del
hiperplano definido por las
coordenadas transformadas
de e;,i = 1,2,...,D — 1 .
ilr(x) = ((x,€;),,

Mantiene todas las propieda-
des favorables de la transfor-
macién y se adhiere a todos
los principios del anélisis com-
posicional.

Las correlaciones entre sus coorde-
nadas no pueden interpretarse di-
rectamente en términos de las va-
riables composicionales originales.
Esto se debe a que la relacién entre
las partes y las coordenadas ilr es
no lineal, lo que dificulta la traza-
bilidad conceptual de estas depen-
dencias en el espacio original del

simplex.

Distribuciones Composicionales

Durante mucho tiempo, la distribucién de Dirichlet fue la tnica opcién analiticamente tratable pa-
ra modelar este tipo de datos. Sin embargo, esta distribucién presenta una limitaciéon fundamental:
asume independencia subcomposicional completa. Esto significa que, bajo cualquier particiéon de la
composicion, las subcomposiciones resultantes deben ser mutuamente independientes, lo cual rara vez
se cumple en contextos empiricos. Esta restriccién impide modelar estructuras de dependencia realistas
entre componentes, haciendo que su aplicabilidad sea limitada en muchas situaciones précticas.

Distribucion Logistica Normal

La distribucién logistica-normal fue definida por Aitchison y Shen (1980) [3] y estudiada en profundidad
por Aitchison (1986) [6]. Posteriormente, Mateu-Figueras y Pawlowsky-Glahn (2008) [32] la reformulan
en el marco de la geometria de Aitchison, interpretdandola como una distribuciéon normal en el simplex
mediante coordenadas log-ratio isométricas (ilr). Se dice que un vector aleatorio Y de dimensién D
sigue una distribucién logistica-normal LN (u,Y), o alternativamente una distribucién normal en el
espacio SP, si cualquier vector de coordenadas de razén logaritmica tiene una distribucién normal
conjunta de D — 1 dimensiones. Esta definicién puede adaptarse a una respuesta CoDa utilizando las
coordenadas ALR, de la siguiente manera:

Yl B~ LN (1, X) <= alr(y)|p, X~ N(u, X), (20)

donde 1 es un vector de dimensién D — 1 y ¥ es una matriz de covarianza de tamaio (D —1) x (D —
1). Aunque aqui se utiliza la parametrizacién basada en las coordenadas ALR, una caracterizacién
equivalente puede obtenerse empleando coordenadas ilr.
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Distribucion de Dirichlet

La distribucién de Dirichlet fue introducida por Connor y Mosimann (1969) [18] y es una generalizacién
de la conocida distribucién Beta. Un vector aleatorio Y de dimensién D tiene una distribuciéon de
Dirichlet D(«) si su funcién de densidad de probabilidad es:

1 = ag—1
plyle) = =— [l va" (21)
(o 11
donde o = (ay, ..., ap) es el vector de pardmetros de forma para cada categoria («,; > 0 para todo d),

D . . . , N
> u—1Ya =1,y B(a) es la funcién multinomial Beta, que actiia como constante de normalizacién. La
funcién multinomial Beta se define como:

I, ey

Blo)= - (57 0]

(22)

D . . ez N . s .
donde oy = > | oy es el parametro de precisién. La distribucién Beta es un caso particular cuando
D = 2. Ademas, cada variable marginalmente sigue una distribucién Beta con o = oy v 5 = oy — oy
Si' Y ~ D(a), los valores esperados, varianzas y covarianzas son:

Qg

(67 a0y —
Blyp) =22, Var(y,) - 4% %) T2+ 1)

, 23
Qg aglag+1) (23)

Cov(yd7yk) =

Comparativa de la Distribucién Logistica Normal y Dirichlet

Como senala Aitchison (1986, pp. 126-129) [6], las distribuciones logistica-normal y de Dirichlet son
distintas y no coinciden exactamente para ningin conjunto de parametros. Sin embargo, a través de
la divergencia de Kullback-Leibler (KL), que mide cudnto se desvia una aproximacién g del objetivo
p, se puede aproximar la distribuciéon de Dirichlet mediante la distribucién logistica-normal.

El problema de minimizar KL:

- o) log PO1)
K(p,q)—/s p(yla)l 8yl y) dy, (24)

donde p(y|a) es la funcién de densidad de Dirichlet y ¢(y|u,X) es la densidad logistica-normal, se
resuelve con:

D

uw=F |log ﬂ, ..., log yl)_l} = Elalr(y)], X =Var [log ﬂ, ..., log Yp1| _ Varlalr(y)]. (25)
Yp Yp YD Yp

La solucién, expresada en términos de las funciones digamma (1)) y trigamma (), es:

pa = P(ag) —Y(ap), Xgq=v"(ag) +¥'(ap), Xg=—V(ap), d#k (26)

'La funcién digamma () es la derivada del logaritmo de la funcién gamma, es decir, 1 (z) = d% InT'(x). Su derivada,

llamada funcién trigamma, se denota (1) () y representa la segunda derivada logaritmica de I'(z). Véase Abramowitz
y Stegun (1972) [1].



Modelado de Series Temporales
Composicionales

Contexto Histérico y Problematica

Las series temporales multivariantes de proporciones, o composiciones, surgen en muchas areas de
aplicacién. Estas series se caracterizan por D componentes no negativas x4, ..., T p;, que suman a una
constante en cada tiempo t. Sin pérdida de generalidad, se puede suponer que la constante en cuestién
es 1. Es habitual referirse a la serie x, : t = 1, ...,n, donde z, = (21, ..., p;), como una Serie Temporal
Composicional o CTS por sus siglas en inglés. Los z, son elementos del simplex S”. Este tipo de
datos aparece con frecuencia en disciplinas tan dispares como biologia, demografia, ecologia, economia,
geologia y politica. Aunque una CTS constituye una serie temporal multivariante, las técnicas estandar,
como las utilizadas en los modelos de media mévil autoregresiva integrada multivariante (VARIMA,
por sus siglas en inglés), no son aplicables debido a la restriccién de la suma constante (Barcelé-Vidal
et al. 2007) [8].

Histéricamente, la modelizacién de CTS se ha basado casi exclusivamente en el enfoque de transfor-
macién, que consiste en la aplicacién de una transformacién inicial para romper la restriccién de la
suma unitaria, seguida del uso de técnicas estdndar para modelar la serie temporal transformada. Asi,
se habilita la posibilidad de modelizaciéon VARIMA. En este contexto, una de las transformaciones
més frecuentemente empleadas ha sido la transformacién log-ratio aditiva (alr). Esta transformacién
depende de la eleccién del componente utilizado como denominador comin en los log-ratios, por lo
que existen tantas transformaciones alr posibles como partes, D, de los datos composicionales.

El enfoque de modelizacién basado en VARIMA para series temporales composicionales transformadas
con alr ha sido empleado por Brunsdon (1987) [14], Smith y Brunsdon (1989) [39], y Brunsdon y
Smith (1998) [15]. Ravishanker et al. (2001) [36] generalizaron el enfoque de Brunsdon y Smith (1998)
[15] a una extensién de los modelos VARMA incorporando covariables. Aplicaciones recientes de este
enfoque se encuentran en Mills (2009, 2010) [29] [28]. La mayoria de estas contribuciones concluyen
que las predicciones son invariante a la eleccion del componente utilizado en el denominador comiin
de la transformacion alr. Esto es cierto si, como en las publicaciones citadas, sélo se contemplan
modelos VARIMA completos, es decir, aquellos que incluyen todas las variables relevantes y posibles
interacciones.

Estos modelos buscan capturar toda la dindmica estructural y estacional de las series de tiem-
po,proporcionando una representaciéon mas completa de los datos. Se contempla la posibilidad de
simplificacion post-estimacién utilizando modelos restringidos, los cuales se construyen imponiendo
restricciones especificas sobre los parametros del modelo completo, como la eliminacién de términos
insignificantes o la fijacién de ciertos coeficientes a valores predefinidos. Esta simplificacién tiene
como objetivo reducir el riesgo de sobreajuste y facilitar la interpretacién, manteniendo un nivel
aceptable de capacidad predictiva y explicativa. Otras contribuciones al andlisis de CTS usando la

10
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transformacién alr son Silva (1996) [37] y Silva y Smith (2001) [38], quienes emplean un enfoque de
modelizacién en el espacio de estados para la serie temporal transformada.

La transformacién log-ratio centrada (o simétrica) (clr) fue utilizada por Quintana y West (1988) [35]
para analizar datos de CTS mediante un modelo de regresién dinamica . Estos autores manejaron las
singularidades de las matrices de covarianzas asociadas a la serie temporal transformada clr(z,) = z,
ignorando la restriccién de la suma cero sobre los z,. Modelaron la serie z, asumiendo la no singularidad
de las matrices de covarianzas e imponiendo a posteriori la restriccién de la suma cero sobre el modelo
estimado.

El modelado directo de la serie transformada mediante clr presenta serias dificultades técnicas debido
a la singularidad inherente de las matrices de covarianzas. Las estrategias propuestas en la literatura
para sortear este problema suelen ser, en general, poco compatibles con la estructura composicional, ya
que a menudo ignoran la restriccién de suma cero o tratan las matrices de covarianzas como si fueran
no singulares. Bergman (2008) [10] utilizé la transformacion log-ratio isométrica (ilr) para ajustar
un modelo VAR a series temporales composicionales mensuales de la Encuesta de Fuerza Laboral de
Suecia. La transformacién ilr depende de la base ortonormal de S? elegida en su definicién. Bergman
(2008) [10] empled solo modelos completos para los datos transformados con ilr, es decir, aquellos que
incluyen todas las variables relevantes y posibles interacciones, de modo que las predicciones de los
modelos finales no dependen de la base ortonormal utilizada en la transformacién ilr.

Por otra parte, Bhaumik et al. (2003) [11] utilizaron la conocida transformacién Box-Cox aplicada a
los cocientes de los componentes de una CTS como alternativa a la transformacion alr.

T; A_
<‘TD) ! siA#£0

. (N) -2/
Ip
10g<mi), siA=0

Zp

Estos trabajos proponen modelar la dindmica temporal de composiciones trabajando en una repre-
sentacion de cocientes y aplicando una transformacion Box—Cox antes del ajuste. Sobre las variables
transformadas se emplean modelos lineales dinamicos, incorporando una clase amplia de distribucio-
nes para los errores mediante mezclas de escalas de normales multivariadas [34]. La familia Box—Cox
resulta atractiva porque contiene a la transformacién logaritmica como caso particular (y, por tanto,
puede recuperar el enfoque ALR); sin embargo, introduce pardmetros adicionales que deben estimarse.
Al igual que ocurre con ALR, este procedimiento depende de la parte seleccionada como denominador
en la construcciéon de los cocientes.

Otra via, conocida como enfoque basado en datos, parte directamente de la distribucién inherente a los
datos originales. Se trata de un método mas intuitivo y, por lo general, méas sencillo de interpretar. Para
datos composicionales, la distribuciéon mas adecuada es la de Dirichlet. Aunque su marcada estructura
de dependencia interna llevd a descartarla en contextos en los que se asumia independencia entre
componentes Aitchison (1986) [6], ha demostrado ser muy valiosa cuando se emplea como distribucién
condicional.

En el caso de las series temporales composicionales, Grunwald et al. (1993) [21] plantean un enfoque
que respeta directamente las restricciones del simplex al introducir un estado latente x, que gobierna el
comportamiento de la composicién observada y,. En particular, se asume que y, sigue una distribucién
Dirichlet condicionada a x,, mientras que x, evoluciona en el tiempo con una dependencia Markoviana
de primer orden, de modo que su distribucién en ¢ depende esencialmente de x,_;; esta transicién
puede describirse mediante una Dirichlet o una Dirichlet generalizada. En esta linea, Connor (1969) [18]
amplia el planteamiento al proponer una generalizacién capaz de capturar estructuras de dependencia
mas flexibles entre los componentes, mitigando la rigidez de la Dirichlet estandar en la forma en que
induce asociacion entre las partes.
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Ceros en Series de Tiempo Composicionales

La presencia de componentes exactamente nulos en series composicionales x, representa una limitacién
fundamental para la aplicacién directa de las transformaciones log-ratio convencionales, tales como la
log-ratio aditiva (alr), la log-ratio centrada (clr) y la log-ratio isométrica (ilr). Para sortear esta inde-
terminacién, la literatura ha propuesto histéricamente la sustitucién de ceros por constantes positivas
pequeiias (e.g., Bell et al., 1986 [9] ; siguiendo el marco de Aitchison, 1986 [6]; y Martin-Fernandez
et al., 2003 [25] ). Sin embargo, este procedimiento, si bien practico, introduce un sesgo potencial
significativo y compromete la robustez de los estimadores, especialmente en escenarios de escasez de
datos o alta frecuencia de ceros.

Como respuesta a esta problemética, se han explorado alternativas metodoldgicas. Una de ellas es
la transformacién hiperesférica (Nolan y Smith, 1995 [30]; Wang et al., 2007 [42] ), que utiliza la
funcién arcocoseno para proyectar los datos sobre una hipersfera, eludiendo asi la dependencia de los
logaritmos.

Modelos C-VARIMA: Teoria y Supuestos

Supuestos del Modelos C-VARIMA

Al analizar datos con modelos C-VARIMA para series de tiempo composicionales, es crucial que se
cumplan ciertos supuestos para asegurar la validez, estacionariedad e interpretabilidad de los resultados.
Estas condiciones son una adaptacién de los requisitos de los modelos VARIMA euclidianos, pero estan
formuladas dentro del marco de la geometria composicional [Egozcue et al., 2003] [20].

1. Naturaleza de los Datos Composicionales:

La base para cualquier andlisis composicional es la correcta caracterizacién de los datos de entrada:

» Valores Estrictamente Positivos: Cada componente de las observaciones de la serie de tiempo X,
debe ser estrictamente positiva (x;,7 > 0 para todo i,t). Esta condicién es fundamental para que
las transformaciones log-ratio (ilr, clr) y las operaciones composicionales (como la perturbacién
y el escalado) estén matemdticamente bien definidas, Aitchison (1986) [6] .

= Suma Constante: La suma de las componentes de cada observacion composicional debe ser una
constante predefinida (comdinmente 1, si se trata de proporciones o porcentajes). Esto asegu-
ra que los datos residan en el espacio simplex S, que es el dominio natural para los datos
composicionales, Aitchison (1986) [6].

2. Estacionariedad:

En el contexto composicional, se dice que una serie temporal {X,},.7, con X, € SP para todo ¢, es un
proceso C-estacionario si mantiene constantes a lo largo del tiempo tanto su media composicional como
su estructura de dependencia de segundo orden, formulada en términos de covarianzas composicionales.

En particular, la media composicional (o C-media) se define como

§ = Eo[Xy] = C(exp(E[ln X}])), (28)

donde In X, denota el vector de logaritmos componente a componente, E[ln X,] es la esperanza clasica
aplicada componente a componente, exp(-) se aplica nuevamente componente a componente y C(+) es
el operador de closure que normaliza el vector resultante para que sus componentes sumen 1.
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Decimos que la serie {X,} es C-estacionaria si esta media composicional

§=Lt¢ [Xt] (29)

permanece constante para todo t, y si ademads la estructura de dependencia de segundo orden puede
describirse mediante covarianzas composicionales que sélo dependen del desfase (lag) entre observacio-
nes, y no del tiempo absoluto. La C-media £ actiia como un “centro de gravedad’’ bajo la geometria
del simplex y refleja el equilibrio relativo de las partes composicionales en el tiempo.

= Autocovarianza composicional invariante en el tiempo:
La funcién de autocovarianza composicional se define como:

Do (h) = E [(cle(X,,,,) — clr(€)) (clr(X,) —clr(€)) '] , (30)

y depende tnicamente del rezago h, no del tiempo absoluto ¢t. Esto implica que las relaciones de
dependencia entre las partes de la composicion son estables a lo largo del tiempo.

s Autocorrelacion composicional: La correspondiente funcién de autocorrelacién composicional esté
dada por:

’YC,z’j(h)

WC,ii(O)’Yc,jj(()) -
2,]=

Re(h) =

donde v, ”(h) representa la covarianza composicional entre las partes ¢ y j con rezago h.

La propiedad de C-estacionariedad garantiza que el comportamiento conjunto y proporcional de las
partes de la composicién no varfa con el tiempo. Ademds, si {X,} es C-estacionario, entonces cualquier
transformacién lineal vilida al espacio real (como clr, ilr o alr) genera un proceso estacionario en el
sentido clasico.

3. Invertibilidad:

La invertibilidad hace referencia a la posibilidad de representar el modelo como un VAR de orden
infinito, lo cual resulta crucial tanto para su estimacién como para su interpretacién:

= Raices del Polinomio de Medias Mdviles Fuera del Circulo Unitario: Al igual que en el caso de la
estacionariedad, para que el componente de medias méviles del modelo C-VARMA transformado
al espacio simplex sea invertible, es necesario que todas las raices del polinomio caracteristico se
ubiquen fuera del circulo unitario

4. Propiedades del Término de Error (Ruido Blanco Composicional):

En el marco composicional, se denomina ruido blanco composicional a un proceso {W,} que cumple
propiedades especificas de primer y segundo orden en el simplex. Este tipo de proceso se denota como:

{Wi} ~WNe(1, C), (32)

donde 1, = (%, e %) es la media composicional uniforme y C es la matriz de covarianza en el rezago
cero.

Las propiedades fundamentales que debe cumplir son:
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» Media composicional uniforme:

Eq[W,] = 1,. (33)

donde 1, = (%, e %) representa una composiciéon uniforme de D partes. Esta media refleja que todas

las partes de la composicion tienen igual peso relativo.
Esta propiedad indica que las innovaciones, en promedio, no favorecen a ninguna parte especifica de
la composicién, manteniendo una distribucién proporcional equilibrada y simétrica en el simplex.

= Autocovarianza nula para rezagos no nulos:

I'c(0)=C, Tx(h)=0p,p paratodo h #0. (34)

Esto asegura que no existe correlacién serial entre errores en diferentes momentos del tiempo.

» C-estacionariedad del proceso de error:
Un proceso de ruido blanco composicional es, por definicién, C-estacionario, ya que man-
tiene constante su media composicional y su estructura de autocovarianza cumple con las condi-
ciones de invarianza en el tiempo.

= Normalidad composicional:
Si las transformaciones del proceso {W,}, como {Y,} = alr(W,) o {U,} = clr(W,), son indepen-
dientes e idénticamente distribuidas segiin una normal multivariada, entonces {W,} se denomina
ruido blanco composicional gaussiano. En tal caso, las transformaciones {Z,} = ilr(W,) siguen
una distribucién normal degenerada, lo cual respeta las restricciones del simplex.

Modelos C-VARIMA

Sea {z; : t = 0,+1,+2,...} una serie temporal composicional formada por variables aleatorias de la
forma x, = (z1;,...,2p;)! definida en SP (es decir, un proceso). Las propiedades de segundo orden
de {z,} estdn especificadas por los vectores de C-media, & = Eo{z,} = (&1,.,&p)", la media
composicional en el tiempo t, denotada como &,, es el vector de medias de las D componentes de la
serie de tiempo composicional x, y matrices de C-autocovarianza.

Lo(t+h,t) = Eclr(x,,p) — clr(§p)(clr(x,) —clr(§))" = [Co it + b, t) 7] (35)

Es importante notar que, en el contexto composicional, dado un proceso temporal composicional {x,},
no tiene sentido analizar ninguna de las partes individuales {x;,} como una serie temporal univariante.
Sin embargo, en algunos casos uno podria estar interesado en analizar el comportamiento relativo de
dos partes i y j (i # j), 0, en general, de una serie temporal subcomposicional {x¢}, donde S simboliza
un subconjunto de dos o méas de las partes 1, ..., D de x,.

Cuando se aplican las transformaciones clr, alr,, y ilry, a un proceso composicional {x,}, inducen
los procesos {z,}, {y;} vy {u,}, respectivamente. El primero, {z,}, definido en R”, est4 restringido al
hiperplano V porque z/ 1, = 0. Los otros dos procesos estan definidos en R~ pero {y,} depende
del denominador utilizado en la transformacién alry, , y {u,} depende de la matriz V utilizada en la
transformacion ilry,. Denotamos por piy,, py, v py, los vectores de medias de {z,}, {y,} v {u:},
respectivamente, y por I',;(t + h,t), I'y-(t + h,t) y Ty (¢t + b, t) las matrices de autocovarianza de estos
procesos. Observa que jiz, = clr(§;) y, por definicién, 'y (t + h,t) = To(t + h, ).
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Modelo C-VAR(p)

Describe la dindmica de la composicién actual X, en funcién de sus propias composiciones pasadas y
las de las demas variables composicionales en el sistema.

(Xt S f) © ((PC,I © (Xtﬂ © f)) ©-0 ((I)C,p © (thp © f)) = Wt (36)

Forma con operador de rezago composicional:

‘I)C(LC)(Xt © f) =W, (37)

Donde:

» X, € 8P es el vector composicional en el tiempo .

s £ € 8P es el centro composicional.

= &, ; son matrices de coeficientes composicionales de tamafio D x D, para i = 1,...,p.

= Oo(Le) = Ip© (P O Le) © -0 (Pe,, © L) es un polinomio matricial en el operador de
rezago composicional L, y I es la matriz de identidad composicional.

= W, € 8P es un ruido blanco composicional (WNC).

Modelo C-VMA(q)

Describe la composicién actual X, como una funcién de un término constante y errores pasados del
proceso:

Xt ©f= Wt © (@C,l © Wtfl) SRS (@C,q © Wtfq) (38)

Forma con operador de rezago composicional:

X, ©&6=0c(Lc)W, (39)

donde:

» X, € 8P es el vector composicional en el tiempo .

s £ € 8P es el centro composicional.

» O ; son matrices de coeficientes composicionales, j = 1,...,¢. -O¢(Lg) = [p©(0c 1 0La) OO
(@quQL%) es un polinomio matricial composicional y I, es la matriz de identidad composicional.

= W, € 8P es un ruido blanco composicional (WNC).

» O ; son matrices de coeficientes composicionales, j = 1,...,q.

Modelo C-VARMA (p,q)

Este modelo combina las caracteristicas autorregresivas y de medias méviles en el espacio simplex. Es
una combinacién de los dos modelos anteriores.

(X, 000 (2c,0(X,,08)=W,8)> (0.,0W, ) (40)

i—1 =1
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(Aqui la suma se refiere a la aplicacién de forma iterativa de la operacién, es decir : A Be C =
(AeB)eC.

Forma con operador de rezago:

Co(Le)(X©8) = Oc(Lo)W, (41)

donde:

s X, € 8 es el vector composicional en el tiempo t.

» £ € 8P es el centro composicional.

= & ; son matrices de coeficientes composicionales de tamano D x D, para i = 1,...,p.

= O ; son matrices de coeficientes composicionales, j =1,...,¢.

= W, € 8P es un ruido blanco composicional (WNC).

O (Le) v Oc (L) son los polinomios matriciales composicionales definidos anteriormente para
C-VAR(p) y C-VMA(q), respectivamente.

Modelo C-VARIMA (p,d,q)

Extiende el C-VARMA para datos no estacionarios incluyendo diferenciacién composicional.

Po(Lo)(1— L)X, 08) = O0(Lo)W, (42)

donde:

= X, € 8P es el vector composicional en el tiempo .

s £ € 8P es el centro composicional.

» O ; son matrices de coeficientes composicionales de tamano D x D, para i = 1,...,p.

. 90,;‘ son matrices de coeficientes composicionales, j =1,...,¢.

= W, € 8§ es un ruido blanco composicional (WNC).

» & (Le) ¥y ©¢(Le) son los polinomios matriciales composicionales definidos anteriormente para
C-VAR(p) y C-VMA(q), respectivamente.

» (1— L)% indica aplicar d veces la diferencia composicional: X, © X, ;.Este operador transforma
una serie no estacionaria en una estacionaria en el espacio simplex.



Estudio de Simulacion

Introduccién

El objetivo de este capitulo es llevar a cabo la simulacién de una serie de tiempo en el contexto
de datos composicionales. Para ello, se genera un conjunto de observaciones dentro del espacio del
simplex utilizando la distribucién Dirichlet, que garantiza que la suma de los componentes de cada
vector de datos sea igual a uno. Esta caracteristica es fundamental en el analisis composicional, donde
las proporciones relativas y no los valores absolutos son de interés.

La distribucién Dirichlet depende por un vector de pardmetros o, cuya configuracién tiene un impacto
directo en la forma y dispersién de los datos generados. Dependiendo de los valores asignados de «, es
posible obtener diferentes estructuras de dispersion dentro del simplex, como se observa en la Figura
1:

(0.5,0.5,0.5) o (1,1,1)  (5,5,5)

z

@ (0.3,0.2,0.5) « (0.5,1,5)  (5,8,3)

z z
A
po = oo
X Y X Y X Y

Figura 1: Comportamiento de los datos en una distribucién Dirichlet con diferentes valores de Alpha

= Si « es un vector, son todos sus componentes > 1, la distribucién tiende a concentrarse en el
centro del simplex. Los vectores generados presentan una alta mezcla entre componentes, lo que
da lugar a datos mas balanceados y agrupados.

= Si « es un vector, son todos sus componentes = 1, la distribucién se vuelve uniforme. En este caso,
todas las combinaciones posibles de proporciones tienen la misma probabilidad de ocurrencia, lo
que permite observar una dispersién homogénea dentro del espacio.

17
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= En cambio, cuando el vector de @ < 1, la distribucién se concentra en los vértices del simplex.
Los datos tienden a ser extremos, mostrando combinaciones en las que uno o dos componentes
predominan sobre el resto.

Cuando los parametros a de una distribucién Dirichlet son distintos entre si, el comportamiento de los
datos reflejard una asignacién desigual de probabilidades entre los componentes. Si todos los valores
son menores que 1, aunque diferentes, los datos tienden a ubicarse cerca de los vértices del simplex,
lo que indica combinaciones extremas en las que un componente domina, pero no siempre el mismo.
Esta configuracién genera alta variabilidad y una distribucién asimétrica. En cambio, si todos los «
son mayores que 1 pero distintos, la distribucién favorece composiciones mas balanceadas, aunque no
completamente uniformes: algunos componentes tienden a tener mayor presencia debido a los valores
mas altos de «a. Finalmente, si la distribucién combina valores mayores y menores que 1, se obtiene
un comportamiento mixto. LLos componentes con o > 1 tienden a ser estables y con proporciones
moderadas, mientras que los que tienen o < 1 muestran mayor variabilidad y extremidad. Esto da lugar
a composiciones con mezcla parcial, donde algunos elementos destacan por su presencia consistente y
otros por su comportamiento mas disperso o extremo.

Generacion de Datos

Con el objetivo de evaluar el desemperio de los modelos aplicables al anélisis de series de tiempo compo-
sicionales, se procedi6 a la generaciéon de datos simulados controlando distintos factores estructurales.
Los datos generados representan composiciones de tres partes (dimensién composicional D = 3) a
lo largo de T' = 100 unidades temporales, replicadas en n...s = 100 series independientes. Para ga-
rantizar la reproducibilidad del experimento, se fij6 una semilla aleatoria mediante (seed = 100 +

i).

Especificacién del Modelo

Las series generadas siguen una estructura autorregresiva con posibles componentes de media mévil
en el espacio composicional. El modelo base se expresa como

Do(Lo) (1= Lo) (X, ©€) = Oc(Le) W, (43)
donde:
= X, € SP representa la composicién observada en el tiempo t (simplex de dimensién 3, con
componentes X, Y y Z).

= ¢ es el centro composicional alrededor del cual se describe la dindmica; en este estudio se fija
como la composicién uniforme

§=10= (%%v%) €8P
= L es el operador de rezago en algebra composicional.

» & (Lyo) v Oc(Le) son polinomios composicionales en L. que recogen, respectivamente, los
efectos autorregresivos y de media mévil; en la aplicacién considerada se trabaja con polinomios
de orden 1 (modelos C-VAR(1), C-VMA(1) y C-VARMA(1,1)).

s d es el orden de diferenciaciéon composicional (en este estudio se fija d = 0).
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s {W,} es un proceso de ruido blanco composicional en el simplex. En la simulacién se especifica
de forma paramétrica mediante composiciones independientes

W, ~ Dirichlet(ayy, ), ay = (1,1,1), t=1,...,T,

de modo que

Parametros de simulacién

Los valores utilizados para simular las series son los siguientes:

Numero de series: n = 100; se generan 100 trayectorias independientes por escenario.

series

Horizonte temporal: 7' = 100; cada serie contiene 100 observaciones posteriores al periodo de
burn-in.

Dimensién composicional: D = 3; cada vector composicional tiene tres componentes (X,Y, Z)
que representan partes de un total unitario.

W, ~ Dirichlet(1,1,1),
con media igual al centro composicional £ = (1/3,1/3,1/3).

Modelo dindmico base: segin el escenario, la estructura temporal corresponde a un modelo C-
VAR(1), C-VMA(1) o C-VARMA(1,1) composicional, con matrices de coeficientes autorregresivos
y de media movil diagonales.

Escenarios de simulacién

Con el objetivo de evaluar el impacto conjunto de la dindmica temporal y de la estructura de dispersién

composicional, se consideran nueve escenarios experimentales que combinan:

1. Tres niveles de concentraciéon de las series X,, representados mediante un pardmetro de forma

X € {(0.5,0.5,0.5), (1,1,1), (5,5,5)},

que generan, respectivamente, composiciones mas dispersas, de dispersion intermedia y mas con-
centradas alrededor del centro composicional. En la implementacién computacional, estos niveles
se inducen sobre las trayectorias de X, mediante una transformacién de potencia composicional,
manteniendo inalterado el proceso de ruido composicional {W, }.

2. Tres estructuras dindmicas:

= Modelos C-VAR(1), controlados por una matriz diagonal de coeficientes autorregresivos
®, = diag(0.8, 0.5, 0.2),
= Modelos C-VMA(1), con matriz diagonal de coeficientes de media mévil

o" = diag(0.8, 0.5, 0.2),
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= Modelos C-VARMA(1,1), que combinan la matriz autorregresiva anterior con una matriz
de media movil alternativa

0¥ = diag(0.2, 0.5, 0.8).

La combinacién de estos dos factores da lugar a los nueve escenarios resumidos en el Cuadro~2, don-
de se indica el nivel de concentracién composicional asociado a a* y los valores de los pardmetros
autorregresivos ® y de media mévil © para cada caso.

Cuadro 2: Escenarios considerados para la simulacién de series de tiempo composicionales. La columna

a” representa el nivel de concentracién de las trayectorias de X,, mientras que ® y © recogen los

coeficientes diagonales de los términos autorregresivos y de media mévil, respectivamente.

Escenario aX (0] ©

(0.5,0.5,0.5) (0.8,0.5,0.2) (0,0,0)

(0.5,0.5,0.5) (0,0,0) (0.8,0.5,0.2)

(0.5,0.5,0.5) (0.8,0.5,0.2) (0.2,0.5,0.8)
(1,1,1) (0.8,0.5,0.2) (0,0,0)
(1,1,1) (0,0,0) (0.8,0.5,0.2)
(1,1,1) (0.8,0.5,0.2) (0.2,0.5,0.8)
(5,5,5) (0.8,0.5,0.2) (0,0,0)
(5,5,5) (0,0,0) (0.8,0.5,0.2)
(5,5,5) (0.8,0.5,0.2) (0.2,0.5,0.8)

En consecuencia, los escenarios 1, 4 y 7 corresponden a modelos C-VAR(1) puros, los escenarios 2, 5 y
8 a modelos C-VMA(1), y los escenarios 3, 6 y 9 a modelos C-VARMA(1,1), manteniendo siempre el
mismo proceso de innovaciones {W,} ~ Dirichlet(1,1, 1) y variando tinicamente la estructura dindmica
y el nivel de concentracién composicional de las series simuladas X,.

Transformaciones Composicionales

El anélisis de datos composicionales ha dado lugar al desarrollo de un conjunto especifico de herra-
mientas y técnicas estadisticas que permiten tratar adecuadamente este tipo particular de datos. Estas
composiciones, que representan proporciones o partes de un todo, requieren métodos analiticos dis-
tintos a los utilizados en estadistica clasica, debido a la restriccién inherente de la suma constante.
Aplicar técnicas convencionales directamente sobre datos composicionales puede conducir a resultados
erréneos o interpretaciones inadecuadas, ya que no se respetan las propiedades geométricas del espacio
simplex en el que residen estos datos.
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Para sortear estas limitaciones, se han propuesto diversas transformaciones que permiten mapear los
datos composicionales desde el espacio simplex a un espacio euclideo, en el cual las herramientas esta-
disticas tradicionales pueden aplicarse de forma valida. Entre estas transformaciones se encuentran la
transformacién log-ratio centrada (clr), la log-ratio aditiva (alr) y la log-ratio isométrica (ilr). La
transformacién ilr es una de las mas utilizadas por sus propiedades geométricas deseables y su capa-
cidad para preservar la distancia euclidea en el espacio transformado. Por otro lado, la transformacién
alr resulta especialmente til en contextos donde se desea comparar cada componente con una parte
de referencia fija, facilitando su interpretacién en ciertos analisis.

En este capitulo se aplicaron dos transformaciones: la log-ratio isométrica (ilr) y la log-ratio aditiva
(alr), ambas implementadas mediante las funciones ilr() y alr() del paquete compositions en
R. La transformacién ilr proyecta los datos composicionales en un espacio euclideo de dimension
D —1, donde D representa el nimero de componentes de la composicién, eliminando la redundancia y
respetando la estructura geométrica del simplex. Las nuevas coordenadas generadas son ortogonales,
lo que permite aplicar herramientas estadisticas multivariantes de forma rigurosa y coherente.

La transformacién alr, en cambio, transforma las composiciones usando log-ratios respecto a una parte
de referencia (usualmente la tltima componente), generando coordenadas interpretables como relacio-
nes directas con dicha parte. Esta transformacién es 1til en casos donde una parte de la composicién
actiia como denominador natural o base de comparacion.

No se empled la transformacién log-ratio centrada (clr) debido a que esta genera un conjunto de
coordenadas que presentan una dependencia lineal intrinseca: la suma de todas las coordenadas trans-
formadas es siempre cero. Esto implica que los datos clr no pertenecen a un subespacio euclideo
completo, y por tanto, no pueden ser utilizados directamente en modelos estadisticos multivariantes
convencionales, como modelos ¢-VAR o C-VARMA. Ademsds, en el contexto de series de tiempo, esta
dependencia contamina las estructuras de autocorrelaciéon y covarianza entre componentes, lo cual
dificulta la especificacion, interpretacién y estimacién de modelos dindmicos validos.

El uso conjunto de las transformaciones ilr y alr en este estudio permitié comparar sus efectos en el
modelado de series de tiempo composicionales simuladas, destacando las ventajas practicas y analiticas
de cada una en funcién del tipo de andlisis, la interpretabilidad de los resultados y las propiedades
geométricas preservadas.

Escenarios

Con el objetivo de evaluar el comportamiento dindmico de series de tiempo composicionales bajo di-
ferentes condiciones de dependencia temporal y variabilidad composicional, se disen6é un estudio de
simulacion que combina procesos autorregresivos @, de medias moéviles © y mixtos ® y © con innovacio-
nes provenientes de una distribucién Dirichlet. En total, se definieron nueve escenarios experimentales,
variando tanto los parametros de autocorrelacién como la concentracién de la distribucién Dirichlet.
Esto permite observar el impacto conjunto de la dindmica temporal y la estructura composicional en
el rendimiento de distintos modelos estadisticos aplicados a transformaciones log-ratio.

Cada escenario explora una combinacién especifica de intensidad de correlaciéon temporal (baja, me-
dia y alta) y estructura de dispersién composicional (alta, media y baja concentracién), replicando
condiciones realistas que podrian encontrarse en datos composicionales.

Escenario 1

Este escenario simula composiciones altamente dispersas, generadas a partir de una distribucién Diri-
chlet con pardmetros bajos o = (0.5,0.5,0.5), lo que produce una fuerte variabilidad entre componentes.
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A esta variabilidad se le incorpora una dindmica temporal autoregresiva (C-VAR) de orden 1, con dis-
tintos niveles de autocorrelaciéon para cada componente: 0.8, 0.5 y 0.2.

Cuadro 3: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con o =
(0.5,0.5,0.5) y estructura C-VAR(1) con coeficientes & = 0.2, 0.5 y 0.8.

& =02 ® =05 ® =028
Componente ILR ALR ILR ALR ILR ALR
X 0.347334 0.347334 0.341191 0.341191 0.339508 0.339508
Y 0.345888 0.345888 0.340257 0.340257 0.335651 0.335651
Z 0.354964 0.354964 0.348135 0.348135 0.345376 0.345376

Cuadro 4: AIC por transformacién, distribucién Dirichlet con o = (0.5,0.5,0.5) y estructura C-VAR(1)
con coeficientes & = 0.2, 0.5 y 0.8.

Transformacion ® =02 & =05 & =0.8

ILR -3.34 -4.49 -5.33

ALR -2.24 -3.39 -4.23

De acuerdo con el Cuadro 3, los valores de RMSE por componente (X, Y, Z) muestran una disminucién
sistemdtica a medida que aumenta ® (por ejemplo, para X: 0.347334 — 0.341191 — 0.339508), lo cual
sugiere que, en este diseflo, una mayor persistencia temporal permite una reconstruccién/prediccién
mas precisa de las componentes composicionales. Ademas, la componente Z presenta consistentemente
los RMSE mas altos, indicando que es la fraccién mas dificil de recuperar bajo esta configuracion.

Un resultado relevante es que los RMSE reportados para ILR y ALR son idénticos en todas las com-
ponentes y niveles de ® (Cuadro 3), lo que indica que la precisién predictiva en el simplex se mantiene
al cambiar la parametrizacién log-ratio en este escenario. Sin embargo, al comparar el ajuste con pe-
nalizacién por complejidad mediante AIC (Cuadro 4), ILR es sistemdticamente preferido, al mostrar
valores més bajos en los tres casos (—3.34, —4.49, —5.33) frente a ALR (—2.24, —3.39, —4.23). En con-
junto, esto implica que, aunque ambas transformaciones ofrecen un desempeno predictivo equivalente
(RMSE), ILR logra un mejor equilibrio entre ajuste y simplicidad del modelo, especialmente cuando
la dependencia temporal aumenta (AIC més favorable al pasar de ® = 0.2 a ® = 0.8).
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Escenario 2

Se mantiene la distribucién Dirichlet o« = (0.5,0.5,0.5), con alta dispersién composicional, pero se
reemplaza la dependencia autoregresiva por un proceso de medias méviles (C-VMA) de orden 1. Los
coeficientes © para las componentes son 0.8, 0.5 y 0.2.

Cuadro 5: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con o =
(0.5,0.5,0.5) y estructura C-VMA(1) con coeficientes © = 0.2, 0.5 y 0.8.

0 =02 ©=05 0 =038
Componente ILR ALR ILR ALR ILR ALR
X 0.348021 0.348021 0.343211 0.343178 0.340386  0.340388
Y 0.349964  0.349964 0.343950 0.343962 0.343537 0.343546
Z 0.349316  0.349316 0.346734 0.346753 0.345764 0.345757

Cuadro 6: AIC por transformacién, distribucién Dirichlet con o = (0.5,0.5,0.5) y estructura C-VMA(1)
con coeficientes © = 0.2, 0.5 y 0.8.

Transformacion © =02 © =05 O =0.8

ILR -3.32 -4.19 -4.62

ALR -2.22 -3.09 -3.53

Segtun el Cuadro 5, los RMSE por componente tienden a disminuir conforme aumenta ©, reflejando
que una mayor contribucién del término MA favorece la capacidad del modelo para capturar la es-
tructura temporal en el simplex. Por ejemplo, para X el error baja de 0.348021 a 0.343211 y luego a
0.340386; para Z la reduccién también es sostenida (0.349316 — 0.346734 — 0.345764). En cuanto a
la dificultad por componente, con ® = 0.2 la mayor discrepancia se observa en Y (0.349964), mientras
que al aumentar © la componente Z pasa a concentrar los RMSE mas elevados, sugiriendo que su
reconstruccién sigue siendo relativamente més exigente cuando la dependencia de tipo MA es mas
intensa.

Al comparar transformaciones, los RMSE de ILR} y ALR son practicamente iguales en todos los casos
(las diferencias aparecen sélo a nivel de la cuarta o quinta cifra decimal), por lo que, en términos
predictivos, el desempefio es esencialmente equivalente bajo esta estructura C-VMA(1) (Cuadro 5).
No obstante, el AIC del Cuadro 6 favorece de manera consistente a ILR, con valores méas bajos para
© =10.2,0.5,0.8 (—3.32,—4.19, —4.62) frente a ALR (—2.22,—3.09, —3.53). En conjunto, este escenario
confirma el mismo patrén: ILR ofrece un mejor compromiso entre ajuste y complejidad, aun cuando
el error predictivo (RMSE) sea practicamente indistinguible respecto a ALR.
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Escenario 3

Este escenario combina dindmicas autoregresivas y de medias méviles, formando un proceso C-
VARMA(1,1) con pardmetros ®= (0.8,0.5,0.2) y © = (0.2,0.5,0.8), aplicados a composiciones
generadas desde una distribucién Dirichlet o« = (0.5,0.5,0.5). Permite observar cémo interactiian la
memoria y el ruido en composiciones dispersas.

Cuadro 7: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con o =
(0.5,0.5,0.5) y estructura C-VARMA(1,1) con coeficientes © = 0.8 —® = 0.2, © = 05— ® = 0.5
yO=02—o=038.

0=08-?=02 ©O=05-P=05 ©©=02—-P=038

Componente ILR ALR ILR ALR ILR ALR
X 0.343253  0.342839 0.339871 0.339848 0.338404 0.338382
Y 0.341895 0.342317 0.341272 0.341305 0.339191 0.339232
7 0.341637 0.341623 0.340438 0.340432 0.340624 0.340598

Cuadro 8: AIC por transformacién, distribucién Dirichlet con o = (0.5,0.5,0.5) y estructura C-
VARMA(1,1) con coeficientes © = 0.8 —® =0.2,0=05—-P =05y © =02—P =0.8.

Transformacion ©@ =08 —-® =02 O0=05—-®=05 ©6=02—d=0.8

ILR -5.17 -5.92 -9.71

ALR -4.07 -4.42 -4.61

De acuerdo con el Cuadro 7, los RMSE tienden a reducirse al pasar desde la combinacién con menor
persistencia autorregresiva hacia la de mayor ®. En particular, la componente X muestra una caida
clara del error (=~ 0.3433 — 0.3399 — 0.3384), y la componente Y también mejora de forma sostenida
(~ 0.3419 — 0.3413 — 0.3392), lo cual sugiere que, en este escenario, el incremento en la dependencia
de tipo AR aporta una ganancia neta en precisién aun cuando © disminuya. Para Z, el error disminuye
de la primera a la segunda combinacién (a~ 0.3416 — 0.3404) y luego presenta un leve repunte en la
tercera (=~ 0.3406), aunque se mantiene por debajo del caso © = 0.8,® = 0.2; esto indica que la
respuesta de Z es algo més sensible al balance entre los términos AR y MA.

En cuanto a la comparacién entre transformaciones, los RMSE de ILR y ALR son muy similares en las
tres combinaciones (diferencias sélo en cifras decimales finales), por lo que el desempeiio predictivo es
esencialmente equivalente (Cuadro 7). Sin embargo, el criterio AIC del Cuadro 8 favorece de manera
consistente a ILR, con valores mas bajos para © = 0.8, =0.2, 0 =0.5, ¢ =05y 0 =02, =0.8
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(—5.17,—5.52,—5.71) frente a ALR (—4.07,—4.42, —4.61). En consecuencia, aunque ambas transforma-
ciones alcanzan practicamente el mismo nivel de error (RMSE), ILR proporciona un ajuste global mas
favorable bajo penalizacion por complejidad, especialmente en la configuracién con mayor persistencia
autorregresiva (& = 0.8).

Escenario 4

La distribucién Dirichlet se fija en @ = (1,1,1), lo que corresponde a una dispersién composicional
media. Se mantiene una estructura autoregresiva C-VAR(1) con coeficientes (0.8,0.5,0.2), permitiendo
comparar los efectos del cambio en la concentracion de la composicién frente al Escenario 1.

Cuadro 9: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con « = (1,1, 1)
y estructura C-VAR(1) con coeficientes & = 0.2, 0.5 y 0.8.

® =02 ® =05 ® =038
Componente ILR ALR ILR ALR ILR ALR
X 0.384613 0.384613 0.368069 0.368069 0.357556 0.357556
Y 0.376392  0.376392 0.359688 0.359688 0.350051 0.350051
Z 0.381517 0.381517 0.368236 0.368236 0.361980 0.361980

Cuadro 10: AIC por transformacion, distribucién Dirichlet con o = (1,1,1) y estructura C-VAR(1)
con coeficientes & = 0.2, 0.5 y 0.8.

Transformacion ® =02 @& =05 & =0.8

ILR -0.6 -1.75 -2.58

ALR 0.5 -0.65 -1.48

Con base en el Cuadro 9, los RMSE por componente (X,Y,Z) presentan una disminucién clara
a medida que aumenta ®, lo que sugiere que una mayor persistencia autorregresiva contribuye a
estabilizar la trayectoria y mejorar la precisién del ajuste/prediccién en el simplex. Por ejemplo, para
X el RMSE baja de 0.384613 a 0.368069 y luego a 0.357556; para Y de 0.376392 a 0.359688 y a
0.350051; y para Z de 0.381517 a 0.368236 y a 0.361980. Ademads, en la mayoria de los casos la
componente X exhibe los mayores errores, indicando que, bajo esta configuracién, resulta la parte més
dificil de reconstruir con precision.

Al comparar estos resultados con los escenarios anteriores (con o = (0.5,0.5,0.5)), se observa que los
RMSE del presente escenario son més elevados en general (Cuadro 9), evidenciando que el cambio en
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la estructura de variabilidad composicional inducida por la Dirichlet también impacta el desempefio
del modelado dindmico, aun manteniendo la misma estructura C-VAR(1). En cuanto a las transforma-
ciones, nuevamente se aprecia que ILR y ALR producen RMSE idénticos en cada componente y nivel
de @, lo que indica equivalencia practica en precisién predictiva bajo este escenario.

No obstante, el AIC del Cuadro 10 favorece sistematicamente a ILR, con valores m&s bajos
(—0.6,—1.75,—2.58) frente a ALR (0.5,—0.65,—1.48) para ® = 0.2,0.5,0.8, respectivamente. En
conjunto, el Escenario 4 reafirma el patrén observado: aunque ILR y ALR muestran precisién
comparable (RMSE), ILR ofrece un mejor desempenio global al considerar el criterio de informacién,
especialmente cuando la dependencia temporal aumenta.

Escenario 5

Con la misma distribucién Dirichlet o = (1,1, 1), este escenario implementa un modelo C-VMA(1) con
coeficientes (0.8,0.5,0.2). Analiza cémo las fluctuaciones de corto plazo afectan composiciones mds
equilibradas en comparaciéon con el Escenario 2.

Cuadro 11: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con o = (1,1, 1)
y estructura C-VMA(1) con coeficientes © = 0.2, 0.5 y 0.8.

0 =02 © =05 0 =038
Componente ILR ALR ILR ALR ILR ALR
X 0.380640 0.380640 0.369610 0.369612 0.363295 0.362984
Y 0.377645 0.377645 0.369348 0.369353 0.370654 0.370793
Z 0.387118 0.387118 0.371822 0.371820 0.365652 0.365888

Cuadro 12: AIC por transformacién, distribucién Dirichlet con @ = (1,1,1) y estructura C-VMA(1)
con coeficientes © = 0.2, 0.5 y 0.8.

Transformacién © =02 © =05 ©=0.8

ILR -0.55 -1.42 -1.86

ALR 0.55 -0.32 -0.76

Conforme al Cuadro 11, los RMSE por componente muestran, en general, una reduccién cuando ©
aumenta, lo cual indica que una estructura MA maés intensa contribuye a capturar mejor la dependencia
temporal y a disminuir el error de estimacién/prediccién en el simplex. En particular, la componente
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X mejora de forma sostenida (0.380640 — 0.369610 — 0.363295), mientras que Z también presenta
un descenso marcado (0.387118 — 0.371822 — 0.365652). En cambio, para Y la disminucién no es
estrictamente mondtona: cae de 0.377645 a 0.369348 cuando O pasa a 0.5, pero aumenta ligeramente
en © = 0.8 (0.370654), sugiriendo una sensibilidad diferencial de esta componente frente a incrementos
altos del efecto MA.

En cuanto a la comparacién entre transformaciones, los RMSE de ILR y ALR son practicamente
idénticos en todos los niveles de O, con diferencias tinicamente en los tltimos decimales (Cuadro 11).
Esto reafirma que, desde el punto de vista de precision (RMSE), el rendimiento es esencialmente
equivalente al cambiar la parametrizaciéon log-ratio. Sin embargo, el criterio AIC del Cuadro 12 fa-
vorece sistematicamente a ILR: para © = 0.2,0.5,0.8 se obtienen —0.55, —1.42, —1.86, frente a ALR
con 0.55,—0.32,—0.76. Por tanto, aunque ambas transformaciones entregan errores comparables, ILR,
mantiene un mejor desempeno global al considerar el balance entre ajuste y complejidad del modelo
bajo la dindmica C-VMA(1).

Escenario 6

Este escenario considera una distribucién Dirichlet (1,1,1) junto con una estructura C-VARMA(1,1)
con pardmetros ® = (0.8,0.5,0.2) y © = (0.2,0.5,0.8). Representa una situacién intermedia tanto en
complejidad temporal como en dispersion composicional.

Cuadro 13: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con o = (1,1, 1
y estructura C-VARMA (1,1) con coeficientes © =0.8—® =0.2,0 =0.5—-P> =05y 0 =0.2—d = 0.8.

0=08—-?=02 O6©=05—-P=05 ©O6=02—-9=0.8

Componente ILR ALR ILR ALR ILR ALR
X 0.357649 0.357979 0.350357 0.350409 0.348071 0.348046
Y 0.371843 0.371760 0.370316 0.370327 0.369458 0.369398
Z 0.355584  0.355444 0.352597 0.352501 0.347496 0.347545
Cuadro 14: AIC por transformacién, distribucion Dirichlet con @ = (1,1,1) y estructura C-

VARMA(1,1) con coeficientes © =08 -9 =0.2,0=05—-P =05y 0 =02—P =0.8.

Transformacion ©@ =08 —-® =02 O0=05—-®=05 ©6=02—®=0.8

ILR -2.38 -2.74 -2.93

ALR -1.28 -1.64 -1.83
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De acuerdo con el Cuadro 13, los RMSE tienden a disminuir al pasar hacia configuraciones con mayor
persistencia autorregresiva ®, aun cuando O se reduzca. En particular, la componente X mejora de
manera sostenida (0.357649 — 0.350357 — 0.348071), y la componente Y también presenta una
reduccién progresiva (0.371843 — 0.370316 — 0.369458). Para Z, el error es menor en la tercera
combinacién (O = 0.2, = 0.8), al pasar de 0.355584 a 0.352597 y luego a 0.347496, lo que sugiere
que, en este escenario, el incremento de ® aporta una ganancia clara en precision para todas las
componentes.

Al comparar transformaciones, los resultados de ILR y ALR son muy similares en términos de RM-
SE, con diferencias pequeiias en los Gltimos decimales (Cuadro 13), por lo que la precisiéon predictiva
se mantiene practicamente inalterada al cambiar la parametrizacién log-ratio. Sin embargo, el AIC
del Cuadro 14 favorece consistentemente a ILR, con valores mas bajos en las tres combinaciones
(—2.38,—2.74,—2.93) frente a ALR (—1.28,—1.64,—1.83). En conjunto, este escenario confirma que,
aunque el desempeno predictivo (RMSE) entre transformaciones es casi equivalente, ILR ofrece un me-
jor balance global entre ajuste y complejidad, especialmente en la combinacién con mayor dependencia
AR (® =0.8).

Escenario 7

Aqui se modelan composiciones con baja dispersién, generadas desde una distribuciéon Dirichlet o =
(5,5,5). Se aplica un proceso C-VAR(1) con coeficientes (0.8,0.5,0.2). Este disefio permite observar
cémo la homogeneidad composicional modula los efectos de la autocorrelacién en series de tiempo.

Cuadro 15: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con a = (5,5, 5)
y estructura C-VAR(1) con coeficientes & = 0.2, 0.5 y 0.8.

®=0.2 ® =05 ¢ =0.8
Componente ILR ALR ILR ALR ILR ALR
X 0.522103 0.522102 0.505824 0.505824 0.483532 0.483531
Y 0.485132  0.485132 0.475796 0.475796 0.467401 0.467404
Z 0.488645 0.488645 0.466301 0.466301 0.448524 0.448522

Cuadro 16: AIC por transformacién, distribucién Dirichlet con a = (5,5,5) y estructura C-VAR(1)
con coeficientes & = 0.2, 0.5 y 0.8.

Transformacion ® =02 & =05 & =0.8

ILR 5.84 4.68 3.85

ALR 6.94 5.78 4.95
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Segin el Cuadro 15, los RMSE por componente presentan una disminucién marcada al incrementar
®, evidenciando que una mayor persistencia autorregresiva contribuye a mejorar la precisiéon del ajus-
te/prediccién. Por ejemplo, para X el error baja de 0.522103 a 0.505824 y luego a 0.483532; para
Y desciende de 0.485132 a 0.475796 y a 0.467401; y para Z se reduce de 0.488645 a 0.466301 y a
0.448524. En términos comparativos, X muestra consistentemente los RMSE mas altos, sugiriendo
que esta componente continda siendo la méas dificil de reconstruir bajo la estructura C-VAR(1)} y esta
configuracion de variabilidad composicional.

Un aspecto importante de este escenario es que los RMSE son maés elevados que en los escenarios con
a=1(0.5,0.5,0.5) y @ = (1,1,1) (Cuadro 15), lo que indica que, aun con una Dirichlet més concentrada,
el error global aumenta bajo esta calibracién del experimento (posiblemente por la menor amplitud
efectiva de variacién y la forma en que el error se estd midiendo por componente). En cuanto a la
comparacion entre transformaciones, ILR y ALR producen RMSE practicamente idénticos para cada
componente y nivel de ¢, manteniéndose la equivalencia en precisién predictiva.

Sin embargo, el criterio AIC del Cuadro 16 favorece de forma consistente a ILR, con valores inferiores
en los tres niveles de ®: 5.84, 4.68, 3.85 frente a 6.94, 5.78, 4.95 para ALR. Ademas, el AIC mejora
(disminuye) conforme aumenta ®, reforzando que una mayor dependencia temporal facilita un ajuste
mas eficiente del modelo. En conjunto, el Escenario 7 confirma que, aunque el desempeno predictivo
entre ILR y ALR es muy similar en términos de RMSE, ILR mantiene ventaja al considerar criterios
de informacién.

Escenario 8

Bajo la misma distribucién Dirichlet o = (5,5, 5), se implementa un modelo C-VMA (1) con coeficientes
(0.8,0.5,0.2). Representa un entorno con perturbaciones breves aplicadas sobre composiciones estables
y poco variables.

Cuadro 17: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con a = (5,5, 5)
y estructura C-VMA(1) con coeficientes © = 0.2, 0.5 y 0.8.

0 =0.2 ©=0.5 ©=0.38
Componente ILR ALR ILR ALR ILR ALR
X 0.508688 0.508688 0.495047 0.495200 0.491102 0.490888
Y 0.508390 0.508390 0.488898 0.488774 0.469367 0.469978

Z 0.482718 0.482718 0.468612 0.468394 0.457941 0.457933
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Cuadro 18: AIC por transformacién, distribucién Dirichlet con o = (5,5,5) y estructura C-VMA(1)
con coeficientes © = 0.2, 0.5 y 0.8.

Transformacion © =02 © =05 © =0.8

ILR 5.93 5.04 4.61

ALR 7.03 6.14 5.70

Los resultados del Cuadro 17 evidencian que, al incrementar ©, el RMSE tiende a disminuir en las
tres componentes, lo que sugiere que una dependencia MA mé&s marcada ayuda a capturar mejor
la dindmica temporal y reduce el error. Este patrén es especialmente notorio en Y (0.508390 —
0.488898 — 0.469367) y en Z (0.482718 — 0.468612 — 0.457941), mientras que en X la reduccién
es mds suave (0.508688 — 0.495047 — 0.491102), manteniéndose como la componente con mayor
dificultad relativa en buena parte de los casos.

Respecto a la eleccién de transformacion, ILR y ALR generan errores muy similares y las diferencias
observadas son pequeiias (Cuadro 17). De hecho, en © = 0.8 se aprecia un leve intercambio: ALR
resulta ligeramente menor en X y Z, mientras que ILR es apenas menor en Y, sin que esto implique
cambios sustantivos en el desempeno predictivo.

En contraste, al evaluar el ajuste penalizado por complejidad mediante AIC (Cuadro 18), se man-
tiene una preferencia clara por ILR, con valores consistentemente mas bajos para © = 0.2,0.5,0.8
(5.93, 5.04, 4.61) frente a ALR (7.03, 6.14, 5.70). Asimismo, el AIC mejora al aumentar O, lo que re-
fuerza la idea de que una mayor dependencia MA se traduce en modelos més eficientes en términos de
ajuste global.

Escenario 9

Finalmente, se simulan composiciones con baja dispersién composicional « = (5,5,5), bajo un modelo
ARMA(1,1) con pardmetros ® = (0.8,0.5,0.2) y © =(0.2,0.5,0.8). Este escenario refleja una dindmica
compleja en condiciones composicionales altamente homogéneas.

Cuadro 19: Medidas de error RMSE por componente (X, Y, Z), distribucién Dirichlet con a = (5,5, 5
y estructura C-VARMA (1,1) con coeficientes © =0.8—® =0.2,0 =05—-P> =05y 0 =0.2—d = 0.8.

0=08—-?=02 ©=05—-P=05 ©6=02—-9=08

Componente ILR ALR ILR ALR ILR ALR
X 0.462786 0.463182 0.467962 0.467595 0.468831 0.469085
Y 0.444210 0.443500 0.433767 0.434693 0.434485 0.434853

Z 0.489331 0.489176 0.485013 0.484263 0.478125 0.477636
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Cuadro 20: AIC por transformacién, distribucién Dirichlet con a = (5,5,5) y estructura C-
VARMA(1,1) con coeficientes © =08 —® =0.2,0=05—P> =05y © =02—P =0.8.

Transformacion ©@ =08 —-® =02 O0=05—-®=05 ©6=02—d=0.8

ILR 4.08 3.7 3.51

ALR 5.18 4.8 4.60

De acuerdo con el Cuadro 19, el patrén de error no es completamente uniforme entre componen-
tes: mientras que Z mejora de forma clara al desplazarse hacia mayor persistencia autorregresiva
(0.489331 — 0.485013 — 0.478125 en ILR), la componente X muestra un leve incremento del RMSE
al pasar de (0.8,0.2) hacia (0.2,0.8) (0.462786 — 0.467962 — 0.468831 en ILR). Para Y, el error dis-
minuye notablemente en la combinacién intermedia (6, ®) = (0.5,0.5) (0.444210 — 0.433767) y luego
presenta un aumento marginal en (0.2,0.8) (0.434485), lo que sugiere que, para esta componente, el
equilibrio entre términos AR y MA puede resultar mas favorable que un predominio marcado de ®.

Al comparar transformaciones, ILR y ALR exhiben RMSE muy cercanos en las tres combinaciones
(Cuadro 19), sin diferencias que cambien la lectura sustantiva del desempeno predictivo. No obstante,
el criterio AIC del Cuadro 20 favorece consistentemente a ILR, con valores inferiores en todos los
casos (4.08, 3.70, 3.51) frente a ALR (5.18, 4.80, 4.60). Ademads, el AIC mejora al avanzar hacia mayor
®, lo que respalda que, en términos de ajuste penalizado, la configuraciéon con mayor persistencia
autorregresiva resulta més eficiente bajo esta estructura C-VARMA(1,1).

Resultados clave

En conjunto, los nueve escenarios muestran que el incremento de la dependencia temporal tiende a
mejorar el desempeno: tanto en estructuras C-VAR(1) como C-VMA(1), al aumentar ® o © se observa,
en general, una reduccién del RMSE y una mejora del AIC (Cuadros 3-6, 9-12 y 15-18). En los
escenarios mixtos C-VARMA(1,1) (Cuadros 7-8, 13-14 y 19-20), el desempefio suele ser competitivo y
frecuentemente superior al de los modelos puros; en particular, las combinaciones con mayor ® tienden
a presentar mejores criterios de informacién, aunque el efecto en RMSE puede variar por componente
(como se aprecia en el Escenario 9 para X y Y).

Respecto a la estructura de dispersion composicional inducida por la Dirichlet, se observa un cambio
sistemdtico en los niveles de error: al pasar de o = (0.5,0.5,0.5) a a = (1,1,1) y luego a a = (5,5, 5),
los RMSE reportados tienden a ser mayores en los escenarios con « més alto (por ejemplo, los escena-
rios 7-9 exhiben RMSE claramente superiores a 1-3), lo que indica que la variabilidad composicional
asociada a cada configuracién de « influye de manera directa en la dificultad del ajuste y la prediccion.
Paralelamente, el AIC también refleja este patrén: los escenarios con a = (0.5,0.5,0.5) presentan valo-
res més favorables (més bajos) que los escenarios con o = (1,1,1), y estos a su vez son més favorables
que los de a = (5,5, 5).

Finalmente, al comparar ILR y ALR, se mantiene una regularidad importante: los RMSE son idénticos
o practicamente indistinguibles en todos los escenarios y configuraciones, lo que sugiere que la precisiéon
predictiva en el simplex es robusta a la eleccion de la transformacién bajo este diseno de simulacién.
Sin embargo, el AIC favorece de manera consistente a ILR en los nueve escenarios, indicando un mejor
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balance entre calidad de ajuste y complejidad del modelo. En sintesis, los resultados apoyan que (i)
mayor dependencia temporal suele mejorar el desempeno, (ii) las estructuras C-VARMA tienden a
ofrecer ventajas frente a modelos puramente AR o MA, y (iii) aunque ILR y ALR rinden de forma
muy similar en RMSE, ILR es preferible cuando se prioriza el ajuste penalizado (AIC).



Estudio de Caso Real

Analisis Exploratorio

Este apartado presenta un andlisis descriptivo de la estructura de la Formacion Bruta de Capital Fijo
(FBCF) en Espaifia durante el periodo 1850-2023. Para ello, se utilizan las series histéricas elaboradas
por Prados de la Escosura (2017), que permiten examinar la evolucién de los principales componentes
de la inversién: viviendas, maquinaria y equipos, equipos de transporte y otras construcciones.

Dado que estos datos representan partes de un todo es decir, proporciones que componen el 100 % de
la inversion total en cada ano se adopta un enfoque basado en el anélisis de datos composicionales
(CoDa). Esta metodologia resulta especialmente adecuada para este tipo de informacion, ya que evita
errores comunes derivados de aplicar técnicas estadisticas tradicionales a datos con restriccién de suma
constante, como las correlaciones espurias.

Cada observacién anual puede interpretarse como una composicién C, de D = 4 partes, que describen
cémo se distribuye la inversion fija bruta en ese afio. El vector composicional para un ano t se expresa
como:

4
C, = (14, Cat, €31, C44) ,  donde Zcit =1L (44)

=1

Caracteristicas de los datos

= Periodicidad: Datos con frecuencia anual.
= Cobertura temporal: Desde 1850 hasta 2023.

= Componentes: Viviendas, maquinaria y equipos, equipos de transporte y otras construcciones,
expresados como porcentajes que suman 100 % cada afio.

= Formato composicional: Cada observacién es una composicion cerrada adecuada para analisis
CoDa.

= Calidad y completitud: La serie histérica no presenta datos faltantes ni inconsistencias docu-
mentadas, lo que garantiza un anélisis continuo y fiable.

= Fuente de los datos:
Prados de la Escosura, Leandro (2017). La economia espariola en perspectiva histérica. Fundacién
Rafael del Pino.
Archivo Excel: Hoja “Cuadro 8”. Disponible en: https://frdelpino.es/investigacion/economia-
espanola/economia-espanola-en-perspectiva- historica/
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Descarga directa: Hoja “Cuadro 8” https://frdelpino.es/investigacion/wp-content/uploads/2025/01/
Contabilidad_ Nacional Historica_ de Espana_ 1850-2023_ frdp.01.2025.xIsx

El objetivo central es obtener prondsticos para una serie de tiempo de naturaleza composicional. Su
analisis estadistico requiere técnicas especializadas que respeten su estructura inherente. Para ello, se
ha utilizado el enfoque VARIMA (Vector Autoregressive Integrated Moving Average), el cual permite
modelar dindmicas multivariantes.

Equipo de transporte

Maquinaria y equipo

Otras construcciones

Viviendas

1850 1900 1950 2000

Figura 2: Evolucién temporal de viviendas, maquinaria y equipos,equipos de transporte y otras cons-
trucciones

El procedimiento de pronéstico se ha realizado separando el conjunto de datos original en dos subcon-
juntos: uno de entrenamiento y otro de prueba. Esta segmentacién es crucial para garantizar la validez
del proceso de evaluacién del modelo. Una vez definidos los subconjuntos, se aplican las transforma-
ciones necesarias para adecuar los datos composicionales al analisis multivariado. En primer lugar, los
datos originales son convertidos en una serie temporal a través de la funcion ts() de R, establecien-
do como punto de inicio el afio 1850 y una frecuencia anual (frequency = 1). Esta transformacién
es util para visualizar la evolucion temporal general del conjunto completo de datos, aunque no es
adecuada para el andlisis estadistico directo debido a la estructura composicional. Por ello, el siguiente
paso consiste en aplicar la transformacién ilr (isometric log-ratio), que convierte las composiciones en
coordenadas euclidianas sin perder informacién relativa.

La Figura 2 muestra la evolucién temporal de la composiciéon de la Formacién Bruta de Capital Fijo
(FBCF) en Espana desde 1850 hasta la actualidad, desagregada en cuatro componentes principales:
viviendas, otras construcciones, maquinaria y equipo, y equipo de transporte. Se observa que el com-
ponente de viviendas presenta una tendencia general decreciente en su participacion relativa desde
mediados del siglo XIX, con algunos repuntes en las iltimas décadas.

El componente de otras construcciones ha mantenido una participacién relativamente estable, aun-
que con una ligera tendencia descendente en los ultimos anos. En contraste, la participacién de ma-
quinaria y equipo muestra un crecimiento sostenido a lo largo del tiempo, reflejando un proceso
de industrializacién y modernizaciéon de la economia. Por su parte, el equipo de transporte experi-
menta una alta volatilidad, especialmente durante las primeras décadas del siglo XX, y se estabiliza
posteriormente en niveles intermedios.


 https://frdelpino.es/investigacion/wp-content/uploads/2025/01/Contabilidad_Nacional_Historica_de_Espana_1850-2023_frdp.01.2025.xlsx
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Figura 3: Evolucién temporal de la transformacion ilr

La Figura 3 presenta la evolucién temporal de las coordenadas obtenidas tras aplicar la transformacién
isométrica log-ratio (ilr) al conjunto de entrenamiento. Cada una de las series representadas (V1,
V2 y V3) corresponde a una combinacién ortogonal de los componentes composicionales originales,
proyectada en un espacio euclideo. Estas nuevas variables no tienen una interpretacién directa en
términos econémicos individuales, pero permiten modelar las relaciones relativas entre los componentes
respetando la estructura composicional de los datos.

Se observan dinamicas diferenciadas en cada coordenada ilr, lo que sugiere patrones subyacentes com-
plejos en la evoluciéon relativa de los componentes de la FBCF. En particular, destacan ciertos cambios
bruscos en las coordenadas V1 y V3, especialmente alrededor de los anos 1936-1940 y 1950, posi-
blemente asociados a eventos histéricos relevantes que afectaron la estructura de inversién del pafis.
Estas series transformadas constituyen la base para el ajuste del modelo VARIMA, ya que presentan
propiedades estadisticas mas adecuadas para este tipo de modelado multivariado.

Ajuste del Modelo y Validacion Estadistica

Una vez transformada la serie composicional mediante log-ratios isométricos (ilr), el siguiente paso en
el analisis es la identificacién del modelo de series temporales multivariado adecuado para describir la
dinamica de las coordenadas transformadas. Para ello, se sigue el procedimiento clésico en el analisis de
series de tiempo, adaptado al contexto multivariado, comenzando por el estudio de la estacionariedad
de las series transformadas.

En esta etapa, se aplica la prueba de raiz unitaria Dickey-Fuller (ADF) a cada una de las coordenadas
resultantes de la transformacion ilr. Esta prueba permite determinar si las series presentan una raiz
unitaria, es decir, si son no estacionarias en nivel. La estacionariedad es una condicién fundamental
para aplicar modelos VARIMA, ya que garantiza que las propiedades estadisticas de las series como la
media y la varianza sean constantes a lo largo del tiempo. En caso de que alguna coordenada no sea
estacionaria, se procedera a su diferenciaciéon hasta alcanzar la estacionariedad.

El Cuadro 21 presenta los resultados de la prueba de raiz unitaria Dickey-Fuller (ADF) aplicada a las
tres coordenadas resultantes de la transformacion ilr. Esta prueba permite evaluar la estacionariedad
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de cada serie mediante el contraste de hipdtesis nula de presencia de raiz unitaria (no estacionariedad).
Como se puede observar, las dos primeras coordenadas presentan valores-p superiores al umbral del
5%, por lo que no se rechaza la hipétesis nula y, en consecuencia, se concluye que estas series no son
estacionarias. En cambio, la tercera coordenada muestra un valor-p de 0.01, lo que indica evidencia
estadistica suficiente para rechazar la hipétesis nula y considerar esta serie como estacionaria.

Cuadro 21: Resultados del Test ADF

Statistic P_value Stationary

-3.374 0.0613 No
-2.173 0.5043 No
-4.076 0.0100 Si

Dado que la estacionariedad es una condicién fundamental para ajustar modelos VARIMA, se procede-
ra a diferenciar aquellas coordenadas que no cumplen con este requisito. Este proceso de diferenciacion
transformara las series no estacionarias en series estacionarias en primera diferencia, garantizando asi
que todas las coordenadas cumplan con los supuestos del modelo. Una vez realizadas las transfor-
maciones necesarias, se continuard con la identificacién y estimacién del modelo VARIMA sobre las
coordenadas estacionarias.

Cuadro 22: Resultados del Test ADF

Statistic P_ value Stationary

-4.427 0.01 Si
-6.760 0.01 Si
-8.024 0.01 Si

Autocorrelaciéon de las variables transformadas:

La Figura 4 muestra las funciones de autocorrelacién (ACF) y autocorrelacién parcial (PACF) de las
tres coordenadas V1, V2 y V3 obtenidas tras aplicar la transformacién isométrica log-ratio (ilr) a la
serie composicional y, posteriormente, la diferenciaciéon con el objetivo de favorecer la estacionariedad.

En la primera coordenada (V1) no se aprecia una sefial dominante concentrada exclusivamente en el
rezago 1; méas bien, los primeros rezagos presentan valores relativamente pequenos alrededor de cero.
Sin embargo, destaca un pico negativo aislado alrededor del rezago 10-11, visible en la ACF y acom-
panado por una senal también apreciable en la PACF. Este patron puede interpretarse como indicio
de dependencia a un horizonte mas largo, compatible con un comportamiento recurrente o con algin
tipo de periodicidad de media frecuencia. Aun asi, al tratarse de una sefial puntual, su lectura debe
realizarse con cautela, ya que en muestras finitas (y especialmente tras diferenciar) pueden aparecer
picos aislados por variabilidad muestral. Por ello, mas que fijar directamente un rezago autorregresivo
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especifico, resulta preferible considerarlo como una guia para incluir en el conjunto de modelos can-
didatos especificaciones capaces de capturar dependencia a ese horizonte, verificando su pertinencia
en etapas posteriores mediante criterios de informacién y diagnésticos de residuos. Para la segunda
coordenada (V2), el comportamiento es relativamente estable en los primeros rezagos, sin una estruc-
tura claramente persistente de corto plazo. En general, la ACF oscila alrededor de cero y la PACF
no exhibe un corte nitido en rezagos bajos que permita concluir de forma inequivoca una dinamica
AR(1) simple. Por su parte, la tercera coordenada (V3) presenta el patréon mds distintivo. En la ACF
se observan varios rezagos cortos (aproximadamente entre 1y 3) con autocorrelaciones negativas que
sobrepasan las bandas de significancia, y la PACF refuerza esta evidencia al mostrar picos negativos
pronunciados también en los primeros rezagos.

En conjunto, estos resultados respaldan la necesidad de considerar una estructura VARIMA que in-
corpore distintos niveles de memoria temporal para cada componente transformada. La primera com-
ponente podria requerir un rezago largo , mientras que la segunda puede ser representada por una
estructura mas parsimoniosa , y la tercera justificaria un rezago intermedio. Asi, una especificacion ini-
cial con orden autorregresivo maximo igual a 10 permite capturar toda la dinamica relevante detectada
en las funciones ACF y PACF, siendo recomendable posteriormente contrastar diferentes configuracio-
nes mediante criterios de informacién como el AIC o BIC.

Vi V2 V3
1.0

1.0

o et gt __I_'r_rf!_'_l_'_'_'_'_'__f_'_'_-_

0 5 10 15 20 O 5 10 15 20 O 10 15 20

Figura 4: ACF y PACF de la variables transformadas

Para determinar la estructura éptima del modelo, se aplicé a la serie transformada la funcién VARMA ()
del paquete MTS en R, la cual implementa un procedimiento de biusqueda automética basado en
el criterio de informacién de Akaike (AIC). Esta funcién evalia diferentes combinaciones posibles de
6rdenes (p,d, q), donde p representa el orden autorregresivo, d el orden de diferenciacién y ¢ el orden
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del promedio mévil, seleccionando aquella configuraciéon que minimiza el AIC y, por tanto, garantiza
un equilibrio adecuado entre calidad del ajuste y complejidad del modelo. Como resultado, se identificd
inicialmente un modelo VARIMA(1,1,0) como éptimo bajo este criterio.

No obstante, al evaluar los residuos del modelo mediante las funciones de autocorrelacion (ACF) y
autocorrelacién parcial (PACF), se evidencié la presencia de autocorrelacion significativa, lo cual viola
uno de los supuestos fundamentales del modelo: la independencia de los errores. Ante esta limitacién,
se decidié ampliar el analisis considerando modelos con mayor niimero de retardos autorregresivos.
Se evaluaron modelos con hasta 10 rezagos, seleccionando finalmente el modelo VARIMA(10,1,0), el
cual no solo logré reducir el AIC, sino que también cumplié con los supuestos de independencia en los
residuos, ofreciendo un ajuste mas robusto y consistente con la estructura temporal de las componentes
transformadas.

Estimaciones del Modelo

El modelo VARIMA (10,1,0) fue ajustado sobre las coordenadas ilr diferenciadas. La expresion final del
modelo estimado es:

10

Az, = p+ Z Az, ; +e, (45)
i=1

con:

0,00097 —0,1418  0,0897  0,0138 0,0773 —0,0005 —0,0051
p=100281 | @ =101247 00125 00079 | P2=[0,0809 —0,0959 —0,0586

—0,00043 —0,2235 —0,0233 —0,3641 0,3958 —0,2488 —0,2332

0,0352 —0,0508 0,0085 0,0653 —0,0051 0,0576
3= 10,1772 —0,1742 0,0107 | P4= | 0,0687 —0,1951 0,0108

0,2949 0,0981 —0,4962 —0,8617 0,3390 —0,1808

0,1123 —0,0679  0,0439 0,0349  0,1438 —0,0215

5= 10,1362 0,006 —0,0402| Ps=|0,1223 —0,2257 0,0248

0,1402 —0,1209 —0,2591 —0,1418 —0,1304 —0,0466
—0,0377  0,0404 —0,0022 —0,1214 0,0527  0,0008
®;=|_0,0532 0,0073 —0,0009| Ps=|-0,1828 0,0743 —0,0737

—0,2853 —0,7584 —0,0351 0,0170  0,2965 —0,0717
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—0,0587 —0,0000 —0,0075 —0,3869  0,0913  0,0170
Py = 10,0365 —0,1871 —0,0233| Pi0= [-0,1452 —0,0360 —0,0145
0,3979 —0,5850 0,0065 —0,0092 —0,0039 —0,1066

0,0067  0,0033 —0,0012
¥=10,0033 00112 —0,0001

—0,0012 —0,0001 0,1026

Varios coeficientes del modelo resultaron estadisticamente significativos, destacandose algunos términos
autorregresivos diagonales como <I><1110> = —0,3869 y efectos cruzados como CI)E;? = —0,8617, lo que

evidencia una fuerte interdependencia entre las componentes de la serie transformada.

El ajuste global del modelo se respalda en los siguientes valores de los criterios de informacion:

AIC = —10,788, BIC = —9,023

Estos valores indican un adecuado balance entre calidad de ajuste y parquedad del modelo.

La estimacién del modelo VARIMA(10,1,0) ha capturado de forma eficaz la estructura temporal sub-
yacente en las coordenadas composicionales ilr diferenciadas. En anélisis posteriores, se procedera a la
transformacién inversa ilr para interpretar las predicciones en el espacio composicional original.

En el Cuadro 23 se presentan los resultados de la prueba de normalidad de Shapiro—-Wilk aplicada a
las tres variables del modelo. Para las variables 1 y 3 se obtienen valores p inferiores a 0.05, por lo que
se rechaza la hipétesis nula de normalidad en esas componentes. En cambio, para la variable 2 el valor
p = 0.1180 es mayor que 0.05, de modo que no se rechaza la normalidad segin esta prueba.

No obstante, es importante destacar que en modelos multivariantes como el C-VARIMA, el supuesto
de normalidad no es estrictamente necesario para que el modelo sea valido. Aunque la normalidad
puede facilitar algunas inferencias, muchos procedimientos de estimacién y diagnoéstico son robustos
frente a desviaciones de este supuesto.

Cuadro 23: Resultados de la prueba de normalidad Shapiro-Wilk

Variable Estadistico p_ value
1 0.9197432 0.0000002
2 0.9857572 0.1180248

3 0.9415195 0.0000057
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Autocorrelacion de los residuos:

Vi V2 V3
1.00

0.75
0.50

acf

0.25

0.00 1 -I_ I I_I -

Figura 5: ACF y PACF de los residuos

Una vez estimado el modelo VARIMA(10,1,0) sobre las componentes transformadas mediante la trans-
formacién isométrica log-ratio (ilr), se procede a evaluar la validez del ajuste a través del andlisis de
los residuos. La Figura 5 presenta las funciones de autocorrelacién (ACF) y autocorrelacién parcial
(PACF) de los residuos correspondientes a las tres componentes del modelo.

En términos generales, se observa que, para las tres series residuales (V1, V2 y V3), las autocorrelacio-
nes estimadas se encuentran dentro de los limites de confianza del 95 % para la mayoria de los rezagos,
lo cual es indicativo de que los residuos se comportan de manera aproximada a ruido blanco. Especi-
ficamente, en la componente V1, la ACF muestra una caida abrupta después del primer rezago, sin
picos significativos posteriores, mientras que la PACF se mantiene dentro de los limites, sin evidencia
de autocorrelacion directa. Este comportamiento sugiere que no persiste estructura serial relevante no
capturada por el modelo para esta componente.

En la componente V2 se aprecia un patrén similar: las funciones ACF y PACF no presentan valores
significativos mas alla del rezago cero, lo que indica que la dindmica temporal de esta variable fue
adecuadamente modelada y no se detectan residuos autocorrelados sistematicos. Finalmente, en la
componente V3, si bien se identifica un pequefio incremento en los residuos a partir del rezago 15 en la
ACF, dicho valor no excede el umbral de significancia estadistica, por lo que no compromete la validez
global del modelo. La PACF correspondiente a esta componente tampoco revela valores significativos,
lo cual refuerza la hipdtesis de que los residuos son esencialmente aleatorios.

En conjunto, estos resultados respaldan la idoneidad del modelo VARIMA(10,1,0) propuesto, en tanto
que los residuos no presentan evidencia de autocorrelacién serial remanente. Este comportamiento
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es fundamental para asumir la validez de las inferencias obtenidas del modelo, dado que la ausencia
de estructura temporal en los residuos garantiza que la informacién dindmica de las series ha sido
capturada de forma adecuada mediante los términos autorregresivos y la diferenciacién aplicada.

Predicciones

En esta seccién se presentan las predicciones generadas por el modelo C-VARIMA(10,1,0), estimado
previamente sobre la serie composicional transformada. A partir de las estimaciones obtenidas, se reali-
zan pronodsticos multivariados que permiten evaluar la capacidad del modelo para replicar la dinamica
observada en los datos.

En la visualizaciéon se muestran las trayectorias de prediccién junto con los valores reales de la serie,
lo que permite apreciar de manera general el ajuste del modelo a lo largo del tiempo.

0.4
0.2
0.0

Equipo de transporte

0.4
0.2
0.0

0.4
< _*  Otras construcciones
0.2

0.0

Magquinaria y equipo

0.4
0.2

0.0 1850 1900 1950 2000

Viviendas

= Histérico = = Valor pronosticado =— Valor real

Figura 6: Evolucién temporal y predicciones de la variables: Equipo de transporte, Maquinaria y equipo,
Otras construcciones y Viviendas

Para una mejor evaluacion visual del desempefio reciente del modelo, se presenta un segundo grafi-
co centrado tnicamente en los ltimos 20 valores observados, donde se puede distinguir con mayor
claridad la proximidad entre las predicciones y los datos reales. Esta visualizacién detallada permite
constatar que el modelo logra capturar adecuadamente la estructura temporal de las componentes
composicionales, manteniendo un comportamiento coherente en el corto plazo.
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Figura 7: Evolucién temporal y predicciones de la variables: Equipo de transporte, Maquinaria y equipo,
Otras construcciones y Viviendas (Las tltimas 20 observaciones)

El modelo C-VARIMA(10,1,0) muestra un desempefio razonable en la prediccién. Tanto el MAE (Error
Absoluto Medio) como el RMSE (Raiz del Error Cuadratico Medio) son bajos, lo que indica precisién
en las predicciones absolutas. El MAE mide el promedio de las diferencias absolutas entre valores
observados y predichos, mientras que el RMSE penaliza de manera més severa los errores grandes, re-
flejando asi la presencia o ausencia de errores extremos en las predicciones. Ademaés, el MAPE (Error
Porcentual Absoluto Medio), que permite interpretar el error en términos relativos o porcentuales,
también se mantiene en niveles aceptables. En general, un MAPE menor al 10 % se considera exce-
lente, entre 10 % y 20 % bueno, y entre 20 % y 50 % aceptable. Estos valores bajos en las métricas de
error respaldan la eleccién del modelo como una herramienta adecuada para representar y predecir la
dindmica temporal de los datos composicionales analizados.

Cuadro 24: Resultados de métricas para evaluar la precision de
modelo

MAE RMSE MAPE

0.034 0.0371  15.16




Conclusion

Los resultados obtenidos a partir del estudio de simulacién y la aplicaciéon empirica permiten extraer
conclusiones significativas en cuanto al comportamiento y desempenio de los modelos composicionales
de series temporales, particularmente el modelo C-VARIMA bajo transformaciones log-ratio.

En el estudio de simulacion, se evaluaron nueve escenarios que combinaban distintas configuraciones
de autocorrelacion y niveles de concentracién de la distribucién Dirichlet. A lo largo de todos los esce-
narios, se observé que tanto la transformacién log-ratio isométrica (ilr) como la aditiva (alr) arrojaron
resultados muy similares en términos de error cuadriatico medio (RMSE), lo que indica una capaci-
dad comparable para predecir la dindmica de los datos composicionales. No obstante, el andlisis del
criterio de informacién de Akaike (AIC) revel6 una ventaja sistemética a favor de la transformacion
ilr, al presentar valores consistentemente mas bajos, lo cual implica una mejor parsimonia en el ajuste
del modelo. Esto, sumado a sus propiedades geométricas como la ortogonalidad de las coordenadas y
la preservacion de distancias euclideas refuerza la idoneidad de la transformacién ilr para contextos
multivariantes composicionales.

En el caso préctico, aplicado a la serie histérica de la Formacién Bruta de Capital Fijo (FBCF) en
Espania (1850-2023), el modelo C-VARIMA(10,1,0) ajustado sobre coordenadas ilr permitié capturar
adecuadamente la evoluciéon temporal conjunta de los componentes composicionales. La estructura
de autocorrelacion observada en la ACF y PACF justificé el uso de un modelo autorregresivo de
primer orden, mientras que las pruebas ADF confirmaron la necesidad de diferenciacién para alcanzar
la estacionariedad. A pesar de que los residuos no cumplieron el supuesto estricto de normalidad, el
modelo mostré un desempeno predictivo razonable, confirmado visualmente mediante la cercania entre
las trayectorias observadas y las predichas, y cuantitativamente a través de métricas como RMSE, MAE
y MAPE.

En conjunto, tanto la simulacién como la aplicacion empirica validan la capacidad del modelo C-
VARIMA transformado con coordenadas ilr para modelar y predecir con eficacia datos composicionales
temporales, respetando su estructura inherente.
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Cdédigo de R

HHBBHHHHHH R R R R R R
## 0. LIBRERIAS

HEHBHHAFHEHBHH AR BHHAHHEHBEHAFHEH B SR AFHEHBSH AR B H RS R H RS H B 7Y
library (MCMCpack)

library(compositions)

library (MTS)

library(dplyr)

library(tidyr)

library(tibble)

B S S
## 1. FUNCION DE SIMULACION:

## C-VARMA(p,q) con innovaciones W_t ~ Dirichlet(1,1,1)
SR R

varima_dirichlet_sim <- function(model, n,
alpha_w = c(1, 1, 1), # RUIDO BLANCO W_t (FIJO)
n.start = 100,
seed = NULL) {
if (!is.null(seed)) set.seed(seed)
if (!is.list(model)) stop("'model' must be a list")

# Determinar k, p y q a partir de ar/ma
if (!is.null(model$ar)) {
k <- nrow(model$ar([, , 11)
p <~ dim(model$ar) [3]
} else {
k <- nrow(model$mal, , 1])
p<-0
}
if (lis.null(model$ma)) {
q <- dim(model$ma) [3]
} else {
q<-0
}
d <- if ('is.null(model$order)) model$order[2] else O

total n <- n + n.start
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}

45

# W_t ~ Dirichlet(alpha_w) => ruido blanco composicional
innov <- t(MCMCpack::rdirichlet(total_n, alpha_w)) # matriz k x total_n

# Serie X_t
X <- matrix(0, nrow = k, ncol = total_n)
epsilon <- innov # para parte MA

# Estado inicial: partimos de la primera innovacién
X[, 1] <- dinnov[, 1]

for (t in (max(p, q) + 1):total_n) {
AR_part <- rep(0, k)
MA_part <- rep(0, k)

if (p > 0) {
for (lag in 1:p) {
AR_part <- AR_part + model$ar[, , lagl %*% X[, t - lag]
}
}
if (g > 0) {
for (lag in 1:q) {
MA_part <- MA_part + model$mal, , lag] %*J) epsilon[, t - lag]
}
}

X_temp <- AR_part + MA_part + innov[, t]
X[, t] <- X_temp / sum(X_temp) # cierre composicional

}

# Diferenciacién inversa si d > 0 (aqui d = 0)
if (d > 0) {
for (i in 1:k) {
dif <- diffinv(X[i, ], differences = d)
X[i, 1 <= dif[(d + 1):length(dif)]
}
}

# Serie final: filas = tiempo, columnas = componentes
ts(t (X[, (n.start + 1):(n.start + n)]))

HHAHHHEHGH SRS HH R B R B HER GRS RS R B R HEHE RSB GRS R BB SR GRS RS R HRHRHEH
## 2. POTENCIA COMPOSICIONAL PARA ESCENARIOS "alpha™X"

## x -> C(x"r): cambia la concentracién de X_t

T bs s e s n s e s S e S S S e S e e e e T e f s e

ajustar_concentracion <- function(X_mat, r) {

}

# X_mat: matriz T x D con composiciones (filas suman 1)
X_pow <- X_mat’r
X_pow / rowSums (X_pow)
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HHHBHHHHHHH R R R R R R
## 3. AJUSTE VARMA(p,q) EN ILR Y ALR + METRICAS

#it (RMSE, MAE, ME, AIC, BIC)

H#HH R R R R R R R

ajustar_y_metricas <- function(series_list, n_obs = 10,
p_order, q_order) {
resultados <- list()
n_series <- length(series_list)

for (i in seq_len(n_series)) {
serie_i <- series_list[[i]]
n_total <- nrow(serie_i)

X_train <- serie_i[1:(n_total - n_obs), ]
X_test <- serie_i[(n_total - n_obs + 1):n_total, ]

##h —————mm— - TLR —--—------
ilr_train <- ilr(X_train)
model_ilr <- tryCatch(
VARMA(ilr_train, p = p_order, q = q_order),
error = function(e) NULL

if ('is.null(model_ilr)) {
pred_ilr <- VARMApred(model_ilr, h = n_obs)$pred
pred_ilr_simplex <- ilrInv(pred_ilr)
err_ilr <- X_test - pred_ilr_simplex

RMSE_ILR <- apply(err_ilr~2, 2, function(x) sqrt(mean(x)))
MAE_ILR <- apply(abs(err_ilr), 2, mean)
ME_ILR <- apply(err_ilr, 2, mean)

AIC_ILR <- model_ilr$aic
BIC_ILR <- model_ilr$bic
} else {

RMSE_ILR <- rep(NA, 3)
MAE_ILR <- rep(NA, 3)
ME_ILR <- rep(NA, 3)
AIC_ILR <- NA

BIC_ILR <- NA

## - ALR -————————-

alr_train <- alr(X_train)

model_alr <- tryCatch(
VARMA (alr_train, p = p_order, q = q_order),
error = function(e) NULL

if ('is.null(model_alr)) {
pred_alr <- VARMApred(model_alr, h = n_obs)$pred



pred_alr_simplex <- alrInv(pred_alr)
err_alr <- X_test - pred_alr_simplex

RMSE_ALR <- apply(err_alr~2, 2, function(x) sqrt(mean(x)))
MAE_ALR <- apply(abs(err_alr), 2, mean)
ME_ALR <- apply(err_alr, 2, mean)

AIC_ALR <- model_alr$aic
BIC_ALR <- model_alr$bic
} else {
RMSE_ALR <- rep(NA, 3)
MAE_ALR <- rep(NA, 3)
ME_ALR  <- rep(NA, 3)
ATC_ALR <- NA
BIC_ALR <- NA
}

componentes <- colnames(serie_i)

for (j in seq_along(componentes)) {
resultados[[length(resultados) + 1]] <- tibble(

serie_id =1,
componente = componentes[j],
RMSE_ILR = RMSE_ILR[j],
MAE_ILR = MAE_ILR[j],
ME_ILR = ME_ILR[j],
AIC_ILR = AIC_ILR,
BIC_ILR = BIC_ILR,
RMSE_ALR = RMSE_ALR[j],
MAE_ALR = MAE_ALR[j],
ME_ALR = ME_ALR[j],
AIC_ALR = AIC_ALR,
BIC_ALR = BIC_ALR

)
}
}

bind_rows(resultados)

}

HESHHBHFHHAFH BB HHAFH RS HF B H B RBGHH R RS R R HR R
## 4. DEFINICION DE LOS 9 ESCENARIOS

## - alpha™X (0.5, 1, 5) ~ (0.5,0.5,0.5), (1,1,1), (5,5,5)
#it - & y 0 diagonales
## - Tipo de modelo: C-VAR(1), C-VMA(1), C-VARMA(1,1)

HEFHHBHFHHAFH BB HRAFH B F B H R R RS HH B R AR RS H RS

escenarios <- tibble(
escenario =1:9,
alphaX_label = rep(c("(0.5,0.5,0.5)", "(1,1,1)", "(5,5,5)"), each = 3),
alphaX_r rep(c(0.5, 1, 5), each = 3),
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# & solo para documentar

phi = list(
c(0.8, 0.5, 0.2), # Esc 1
c(0.0, 0.0, 0.0), # Esc 2
c(0.8, 0.5, 0.2), # Esc 3
c(0.8, 0.5, 0.2), # Esc 4
c(0.0, 0.0, 0.0), # Esc b
c(0.8, 0.5, 0.2), # Esc 6
c(0.8, 0.5, 0.2), # Esc 7
c(0.0, 0.0, 0.0), # Esc 8
c(0.8, 0.5, 0.2) # Esc 9

),

# 0 (diag) por escenario

theta = list(
c(0.0, 0.0, 0.0), # Esc 1: C-VAR(1)
c(0.8, 0.5, 0.2), # Esc 2: C-VMA(1)
c(0.2, 0.5, 0.8), # Esc 3: C-VARMA(1,1)
c(0.0, 0.0, 0.0), # Esc 4: C-VAR(1)
c(0.8, 0.5, 0.2), # Esc 5: C-VMA(1)
c(0.2, 0.5, 0.8), # Esc 6: C-VARMA(1,1)
c(0.0, 0.0, 0.0), # Esc 7: C-VAR(1)
c(0.8, 0.5, 0.2), # Esc 8: C-VMA(1)
c(0.2, 0.5, 0.8) # Esc 9: C-VARMA(1,1)

)

) %>h
mutate (

tipo_modelo = case_when(
escenario %in% c(1, 4, 7) ~ "C-VAR(1)",
escenario %in% c(2, 5, 8) ~ "C-VMA(1)",
escenario %in% c(3, 6, 9) ~ "C-VARMA(1,1)"
),
phi_str = sapply(phi, function(v) paste0("(", paste(v, collapse
theta_str
)

||’ Il)’ II)II))’
sapply(theta, function(v) pasteO("(", paste(v, collapse =", "), ")"))

HESHH B R H R R R R
## 5. SIMULACION COMPLETA PARA LOS 9 ESCENARIOS

## - En C-VAR(1): = coef_grid, =0

## - En C-VMA(1): = coef_grid, =0

## - En C-VARMA(1,1):

## (, )= (0.2, 0.8, (0.5, 0.5), (0.8, 0.2)

HESHH R R

# Parametros globales

n_sim <- 100 # nimero de series por escenario

T <- 100 # longitud de cada serie

k <- 3 # nimero de componentes

n_burn <- 100 # burn-in

n_obs <- 10 # horizonte de prediccién

alpha_w <- c(1, 1, 1) # RUIDO BLANCO W_t FIJO: Dirichlet(1,1,1)



# Rejilla de coeficientes a evaluar
coef_grid <- ¢(0.8, 0.5, 0.2)

resultados_todos <- list()

for (row in seq_len(unrow(escenarios))) {

esc <- escenarios$escenario[row]
tipo_mod <- escenarios$tipo_modelo [row]
r_val <- escenarios$alphaX_r[row]

# Parte MA: solo existe en C-VMA(1) y C-VARMA(1,1)
tiene_MA <- tipo_mod %inJ c("C-VMA(1)", "C-VARMA(1,1)")
g_order <- if (tiene_MA) 1 else O

## —---- bucle sobre los valores del coeficiente ( o / combinaciones) —----
for (coef in coef_grid) {

# Definir y que realmente se usan en este escenario
if (tipo_mod == "C-VAR(1)") {
# varia, =0
phi_used <- coef
theta_used <- 0
} else if (tipo_mod == "C-VMA(1)") {
# varia, =0
phi_used <- 0
theta_used <- coef
} else if (tipo_mod == "C-VARMA(1,1)") {
# Aqui imponemos las 3 combinaciones:

#0=0.8-9%=0.2
#080=0.5-¢=0.5
#0=0.2-¢=0.8
if (coef == 0.8) {

phi_used <- 0.2
theta_used <- 0.8
} else if (coef == 0.5) {

phi_used <- 0.5
theta_used <- 0.5

} else if (coef == 0.2) {
phi_used <- 0.8

theta_used <- 0.2
} else {
stop("coef_grid debe ser 0.8, 0.5 o 0.2 para C-VARMA(1,1).")

## --——- parte AR ———

if (tipo_mod %in% c("C-VAR(1)", "C-VARMA(1,1)")) {
ar_matrix <- array(0, dim = c(k, k, 1))
diag(ar_matrix[, , 1]) <- phi_used # mismo para X, Y, Z
p_order <- 1

} else {
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ar_matrix <- NULL
p_order <- 0

}

## —-—--- parte MA ---—-
if (tiene_MA) {
ma_matrix <- array(0, dim = c(k, k, 1))

diag(ma_matrix[, , 1]) <- theta_used # mismo para X, Y, Z
} else {
ma_matrix <- NULL
}
## —-—-—- definir lista 'model' para la simulacién ----
model <- list(
ar = ar_matrix,
ma = ma_matrix,
order = c(p_order, 0, q_order) # (p, d, q) cond =0
)

## 1) Simular series base con ruido fijo
series_base <- lapply(seq_len(n_sim), function(i) {
X_i <- varima_dirichlet_sim(
model = model,
n =T,
alpha_w = alpha_w,
n.start = n_burn,

seed = 1000 * esc + 10 * i + round(100 * coef)
)
colnames(X_i) <- c("X", "y", "z")
X i

)

## 2) Ajustar concentracidén de X_t segun alpha”X (potencia r)
series_r <- lapply(series_base, function(X_mat) {
ajustar_concentracion(X_mat, r = r_val)

)

## 3) Ajustar modelos ILR/ALR con VARMA(p,q) coherente
tabla_metricas <- ajustar_y_metricas(series_r,
n_obs = n_obs,
p_order = p_order,
g_order = q_order) %>

mutate (
escenario = esc,
tipo_modelo = tipo_mod,
alphaX_label = escenarios$alphaX_label [row],
alphaX_r = r_val,
phi = phi_used,
theta = theta_used,
# Etiquetas de texto simples con los valores usados
phi_str = paste0(" (", phi_used, ")"),

theta_str = paste0(" (", theta_used, ")")
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resultados_todos[[length(resultados_todos) + 1]] <- tabla_metricas
}
}

# Tabla detallada con TODAS las simulaciones y métricas
tabla_resultados_raw <- bind_rows(resultados_todos)

HESHHHR R AR AR R R R
## 6. TABLA RESUMEN: PROMEDIOS POR ESCENARIO, , Y COMPONENTE
HHHBHHHHHHHH R R R R R

tabla_resumen <- tabla_resultados_raw %>%

group_by (
escenario, tipo_modelo,
alphaX_label, alphaX_r,
theta, phi, # <- 'y ya vienen numéricos
phi_str, theta_str,
componente

) h>%

summarise (
RMSE_ILR = mean(RMSE_ILR, na.rm = TRUE),
MAE_ILR = mean(MAE_ILR, na.rm = TRUE),
ME_ILR = mean(ME_ILR, na.rm = TRUE),
AIC_ILR = mean(AIC_ILR, na.rm = TRUE),
BIC_ILR = mean(BIC_ILR, na.rm = TRUE),

RMSE_ALR = mean(RMSE_ALR, na.rm = TRUE),
MAE_ALR = mean(MAE_ALR, na.rm = TRUE),
ME_ALR = mean(ME_ALR, na.rm = TRUE),
AIC_ALR = mean(AIC_ALR, na.rm = TRUE),
BIC_ALR = mean(BIC_ALR, na.rm = TRUE),
.groups = "drop"

)

# Versién "limpia" para exportar a Excel
tabla_resumen_excel <- tabla_resumen %>%
select(

escenario, tipo_modelo,

alphaX_label, alphaX_r,

theta, phi,

phi_str, theta_str,

componente,

RMSE_ILR, RMSE_ALR, AIC_ILR, AIC_ALR
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