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Resumen

Resumen en español

Este estudio aborda el modelado de series temporales con variables composicionales, es decir, variables
multidimensionales positivas cuyas partes suman una constante y mediante una transformación se
pueden ver como valores en el espacio símplex. Se presenta el marco teórico del análisis composicional,
con énfasis en las transformaciones que permiten proyectar los datos al espacio euclidiano. Se estudia
el modelo compositional C-VARIMA como una extensión del modelo VARIMA clásico, adaptado para
mantener la estructura composicional a lo largo del tiempo. Se realiza un estudio de simulación para
evaluar el desempeño del modelo y, posteriormente, se aplica a un conjunto de datos reales. Los
resultados evidencian la eficacia del modelo para capturar la dependencia temporal y preservar la
coherencia composicional en series temporales multivariantes.

English abstract

This study addresses the modeling of time series with compositional variables, in other words, positive
multivariate variables whose components sum to a constant and that, through a suitable transformation,
can be viewed as values in the símplex space. The theoretical framework of compositional analysis is
presented, with emphasis on the transformations that allow projecting the data into Euclidean space.
The compositional C-VARIMA model is studied as an extension of the classical VARIMA model,
adapted to preserve the compositional structure over time. A simulation study is carried out to evaluate
the performance of the model and it is subsequently applied to a real data set. The results show the
effectiveness of the model in capturing temporal dependence and preserving compositional coherence
in multivariate time series.
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Conceptos Básicos

Datos Composicionales

Los datos se consideran como composicionales cuando sus elementos son no negativos y suman una
unidad, o en general a una constante fija para todos los elementos. Desde una perspectiva matemática,
los datos composicionales pueden ser visualizados como puntos en el espacio símplex. Ejemplos de este
tipo de datos incluyen probabilidades, proporciones y porcentajes. De igual forma, Aitchison (1986)
[6] define un conjunto de datos composicionales en un espacio real de D dimensiones de la siguiente
manera:

𝑆𝐷 = {𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝐷] ∈ ℝ𝐷 ∶ 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, ..., 𝐷;
𝐷

∑
𝑖=1

𝑥𝑖 = 1} (1)

Karl Pearson (1897) [33], advirtió sobre un problema fundamental al analizar datos compositivos
con métodos tradicionales de la Estadística Multivariada: la dificultad de interpretar las correlaciones
entre componentes cuyos valores están restringidos por una suma constante, lo que puede inducir
correlaciones espurias. En particular, Pearson destacó que al trabajar con cocientes que comparten
elementos comunes, las correlaciones resultantes pueden carecer de una base lógica o teórica. A pesar
de la importancia de esta observación, su advertencia fue ignorada durante décadas, lo que llevó a una
subestimación del problema en muchos análisis posteriores.

Fred Chayes (1960) [17], evidenció cómo la interpretación convencional de las correlaciones entre los
componentes de una misma composición generaba correlaciones negativas artificiales. A pesar de este
hallazgo, la comunidad analítica continuó aplicando métodos estadísticos clásicos, ignorando la res-
tricción de suma fija inherente a los datos composicionales, lo que inevitablemente distorsionaba sus
resultados.

El verdadero punto de inflexión en esta disciplina llegó en la década de 1980, en gran parte gracias a
John Aitchison [4]. En 1982, su influyente artículo presentado a la Royal Statistical Society desmenuzó
los desafíos que surgían al analizar datos que, por naturaleza, residen en el símplex (es decir, donde
sus partes suman una constante).

El ejemplo más básico de datos composicionales involucra sólo dos componentes, lo que significa que
la restricción de suma unitaria obliga a que el segundo componente sea simplemente uno menos el
primer componente. Esta situación es similar a la que se presenta en las probabilidades de un evento
binario. Cox y Snell (1989) [19] abordan este caso utilizando la transformación logit o logística de la
probabilidad, lo que facilita la aplicación de modelos de regresión a las probabilidades transformadas
mediante logit.

2



PRINCIPIOS FUNDAMENTALES DE DATOS COMPOSICIONALES 3

Principios Fundamentales de Datos Composicionales

Invariancia de Escala

Los vectores de componentes positivas que son proporcionales reflejan la misma composición.

Si una composición se multiplica por una constante, por ejemplo, al convertir partes por unidad a
porcentajes, la información que se comunica permanece completamente equivalente. Por ende, los
vectores de componentes positivas que son proporcionales constituyen una clase de equivalencia. Así,
es conveniente seleccionar un representante de dicha clase para simplificar tanto el análisis como la
interpretación. La forma convencional de realizar esta selección es normalizar el vector de tal manera
que sus componentes sumen a una constante dada 𝜅, que puede ser 1, 100, 1000, 106 o cualquier
otra constante positiva. Esta elección se formaliza a través de la operación de clausura. Para x =
(𝑥1, 𝑥2, ..., 𝑥𝐷), un vector con 𝐷 componentes positivas, su clausura se define como…

𝐶x = ( 𝜅𝑥1
∑𝐷

𝑖=1 𝑥𝑖
, 𝜅𝑥2

∑𝐷
𝑖=1 𝑥𝑖

, … , 𝜅𝑥𝐷
∑𝐷

𝑖=1 𝑥𝑖
) (2)

Los componentes del vector cerrado se conocen como partes, en relación con un total 𝑘. El conjunto
de vectores con 𝐷 componentes positivas que suman una constante 𝑘 forma el símplex de 𝐷 partes,
que se denota como 𝑆𝐷. Las composiciones equivalentes a x se representan como 𝐶x.

Coherencia Subcomposicional

Los análisis que implican un subconjunto de partes no deben depender de otras partes no incluidas.

Una subcomposición se define como un subconjunto de componentes o partes de una composición.
El análisis de una subcomposición requiere que los resultados no sean contradictorios con aquellos
obtenidos de la composición completa. El principio de coherencia puede sintetizarse en dos criterios:
(a) el principio de invariancia de escala debe aplicarse a cualquiera de las posibles subcomposiciones,
lo cual implica la preservación de las proporciones de las partes; (b) cuando se utiliza una distancia o
divergencia para comparar composiciones, esta debe ser mayor o igual a la que se obtiene al comparar
las subcomposiciones correspondientes (dominancia subcomposicional).

La dominancia subcomposicional requiere una métrica para medir distancias entre composiciones y
subcomposiciones que siga la regla de proyección: las distancias deben reducirse al proyectar. Sur-
ge la pregunta de si puede emplearse la distancia euclidiana ordinaria entre vectores reales. Este
planteamiento no es válido, ya que ambos principios, el de invariancia de escala y el de dominancia
subcomposicional, se verían comprometidos. Claramente, si se multiplican dos vectores con componen-
tes positivas por una constante positiva 𝑐, la distancia euclidiana entre ellos aumenta en un factor 𝑐,
infringiendo así el principio de invariancia de escala. Asimismo, la dominancia subcomposicional es
violada por la distancia euclidiana ordinaria entre vectores composicionales.

Invariancia por Permutación

Las conclusiones de un análisis composicional no deberían depender del orden de las partes.

Por ejemplo, en composiciones geoquímicas, a menudo se ordenan las partes alfabéticamente. Un caso
típico es la distribución de tamaños de grano en un sedimento: las partículas se clasifican, tras un
tamizado, en categorías de tamaño. En un análisis composicional, la información relativa al orden de
las diferentes clases no tiene relevancia.



4 CONCEPTOS BÁSICOS

Geometría de Aitchison

El desarrollo de los conceptos sugeridos por Aitchison (1986) [6] ha conducido a la geometría Aitchison
del símplex. Esta geometría, siendo euclidiana, requiere definiciones específicas y una métrica particular.
Consideremos las composiciones x, y ∈ 𝑆𝐷. La perturbación de x con y se define como la composición

x ⊕ y = 𝐶(𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝐷𝑦𝐷) (3)

y la potenciación de 𝑥 por un número real 𝛼 se define como la composición

𝛼 ⊙ x = 𝐶(𝑥𝛼1 , 𝑥𝛼2 , … , 𝑥𝛼𝐷). (4)

Es fácil demostrar que para n = 𝐶(1, 1, … , 1) se cumple que x⊕n = 𝑥. Así, la composición con todas las
partes iguales es el elemento neutro de la perturbación. La perturbación y la potenciación, definidas en
𝑆𝐷, satisfacen los requisitos para operaciones de un espacio vectorial. Sin embargo, la principal ventaja
de la perturbación es que, además de satisfacer los principios del análisis composicional, generalmente
tiene una interpretación en el campo analizado.
El cambio de unidades en algunas o todas las partes de una composición también puede verse como
una perturbación. Ejemplos típicos se encuentran en química, cuando las concentraciones en partes por
millón (ppm) de peso se cambian a concentraciones molares (Buccianti y Pawlowsky-Glahn, 2005) [16].
Esto se realiza multiplicando cada componente por el inverso del peso molar. Cerrar la composición
resultante puede ser innecesario en muchos casos. Aun así, conserva su carácter composicional.
La invariancia de escala requerida para un análisis composicional conduce al uso de razones entre
partes, de modo que se cancelen las constantes de escala. Además, estas razones se interpretan en
una escala relativa, y tomar sus logaritmos es entonces una elección natural. El análisis de CoDa
(Datos composicionales) se basa esencialmente en el análisis estadístico de log-ratios entre partes. Los
log-ratios más simples son aquellos que comparan dos partes.
Los log-ratios son útiles en el análisis, pero deben ser invariantes de escala,

ln( 𝑥𝑖
𝑥𝑗

) . (5)

Frecuentemente, algunas preguntas pueden ser respondidas analizando un log-contraste apropiado, el
cual generaliza el caso anterior al considerar una combinación lineal de logaritmos de las partes con
coeficientes que suman cero:

𝐷
∑
𝑘=1

𝑎𝑘 ln(𝑥𝑘), con
𝐷

∑
𝑘=1

𝑎𝑘 = 0. (6)

La elección del log-contraste depende del problema planteado y de la interpretación de la composición.
Nótese que el log-ratio en (5) es un caso particular de (6), al tomar 𝑎𝑖 = 1, 𝑎𝑗 = −1 y 𝑎𝑘 = 0 para
𝑘 ≠ 𝑖, 𝑗.
Representaciones adecuadas y completas de una composición utilizando un conjunto de log-contrastes
fueron propuestas en la década de 1980 (Aitchison, 1986) [6], de modo que toda la información de la
composición se invierte en el conjunto de log-ratios.
Además, el siguiente producto interno, con su norma y distancia asociadas, puede ser utilizado para
obtener una estructura de espacio de Hilbert finita (de 𝐷 − 1 dimensiones) (Billheimer et al., 2001;
Pawlowsky-Glahn y Egozcue, 2001) [12] [31] :
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El producto interno de Aitchison se define para dos composiciones x, y ∈ 𝒮𝐷 como

⟨x, y⟩𝑎 = 1
2𝐷

𝐷
∑
𝑖=1

𝐷
∑
𝑗=1

ln( 𝑥𝑖
𝑥𝑗

) ln( 𝑦𝑖
𝑦𝑗

) (7)

Este producto interno induce una estructura de espacio vectorial euclídeo sobre el símplex 𝒮𝐷. A partir
de él, se puede construir una norma y una distancia en el símplex:

‖x‖2
𝑎 = ⟨x, x⟩𝑎, 𝑑𝑎(x, y) = ‖x ⊖ y‖𝑎 (8)

El producto interno, la norma y la distancia Aitchison cumplen los principios del análisis composicio-
nal y, por lo tanto, son herramientas para un análisis composicional libre de inconsistencias. Junto
con la perturbación y la potenciación, proporcionan una estructura euclidiana al símplex, llamada
geometría simplicial Aitchison. Esto sugiere explotar las propiedades bien conocidas de los espacios eu-
clidianos para analizar composiciones: base ortonormal, representación de coordenadas (ortonormales),
proyecciones ortogonales, definiciones de ángulos, elipses, etc.

Finalmente, usamos 𝐴𝐷×𝐷 para denotar la familia de todas las matrices reales 𝐷 × 𝐷. Si 𝑥 ∈ 𝑆𝐷 y
𝐴 ∈ 𝐴𝐷×𝐷, definimos el producto 𝐴 ⊙ 𝑥 como

𝐴 ⊙ 𝑥 = 𝐶 (
𝐷

∏
𝑗=1

𝑥𝑎1𝑗
𝑗 , ...,

𝐷
∏
𝑗=1

𝑥𝑎𝐷𝑗
𝑗 ) . (9)

Por lo tanto, la función 𝑥 → 𝐴 ⊙ 𝑥 es un endomorfismo del espacio vectorial (𝑆𝐷, ⊕, ⊙). Además,
cualquier endomorfismo de 𝑆𝐷 puede escribirse de esta forma. La matriz asociada con el endomorfismo
identidad es la bien conocida matriz de centrado 𝐺𝐷 = 𝐼𝐷 − 𝐷−1𝐽𝐷 de orden 𝐷 × 𝐷, donde 𝐼𝐷 es la
matriz identidad 𝐷×𝐷 (con unos en la diagonal principal y ceros en las demás entradas) y 𝐽𝐷 = 1𝐷1T

𝐷
es la matriz de unos de dimensión 𝐷 × 𝐷.

Transformación alr

Una primera elección de estas representaciones fue la transformación de log-ratio aditivo (alr). Si 𝑥 es
una composición en el símplex de D partes 𝑆𝐷, se define como

𝑎𝑙𝑟𝑘(x) = ln( 𝑥1
𝑥𝐷

, 𝑥𝑘−1
𝑥𝐷

, 𝑥𝑘+1
𝑥𝐷

, … , 𝑥𝐷−1
𝑥𝐷

) (10)

donde el logaritmo natural ln se aplica componente a componente. En consecuencia, el componente
𝑖 es el simple log-ratio 𝑎𝑙𝑟𝑘(x) = ln ( 𝑥𝑘

𝑥𝐷
) . La transformación alr se invierte fácilmente para obtener

la composición original a partir de los 𝐷 − 1 componentes alr y también reduce la perturbación y la
potenciación a operaciones ordinarias en el espacio real de 𝐷 − 1 dimensiones:

𝑎𝑙𝑟((𝛼 ⊙ x) ⊕ (𝛽 ⊙ y)) = 𝛼 ⋅ 𝑎𝑙𝑟(x) + 𝛽 ⋅ 𝑎𝑙𝑟(y), (11)

para cualquier par de vectores composicionales (x, y) y cualesquiera constantes reales 𝛼 y 𝛽. Sin
embargo, el alr tiene la desventaja de no ser invariante bajo la permutación de componentes, lo que
puede causar fallos en algunos procedimientos estadísticos.
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Transformación clr

Aitchison (1986) [6] introdujo la transformación log-ratio centrada (clr), que representa una composi-
ción de D-partes utilizando 𝐷 coeficientes clr. Se define como

𝑣 = 𝑐𝑙𝑟(𝑥) = ln( 𝑥1
𝑔𝑚(𝑥) , 𝑥2

𝑔𝑚(𝑥) , … , 𝑥𝐷
𝑔𝑚(𝑥)) (12)

donde 𝑔𝑚(𝑥) es la media geométrica de las componentes

𝑔𝑚(𝑥) = (
𝐷

∏
𝑖=1

𝑥𝑖)
1/𝐷

, (13)

los 𝐷 coeficientes 𝑐𝑙𝑟𝑖(𝑥) = ln ( 𝑥𝑖
𝑔𝑚(𝑥) ) son log-contrastes. A partir de 𝑐𝑙𝑟(𝑥), se recupera la composición

𝑥 con la transformación inversa de clr:

𝑥 = 𝑐𝑙𝑟−1(𝑣) = 𝐶 exp(𝑣), (14)

donde la función exponencial se aplica componente a componente a 𝑣 = 𝑐𝑙𝑟(𝑥). De manera similar a
la transformación alr, la perturbación y la potenciación en 𝑆𝐷 corresponden a la suma y el producto
en el espacio real 𝑅𝐷:

𝑐𝑙𝑟((𝛼 ⊙ 𝑥) ⊕ (𝛽 ⊙ 𝑦)) = 𝛼 ⋅ 𝑐𝑙𝑟(𝑥) + 𝛽 ⋅ 𝑐𝑙𝑟(𝑦). (15)

La desventaja de la transformación clr es que utiliza 𝐷 coeficientes, que suman cero, para representar
una composición que solo tiene 𝐷−1 componentes libres, la dimensión de 𝑆𝐷. Además, los componentes
clr cambian al trabajar con una subcomposición.

Transformación ilr

Un paso importante para utilizar estos conceptos es construir bases ortonormales y sus correspondientes
coordenadas. Una base ortonormal de 𝑆𝐷 es un conjunto de composiciones 𝑒1, 𝑒2, … , 𝑒𝐷−1 tal que
⟨𝑒𝑖, 𝑒𝑗⟩𝑎 = 0 para 𝑖 ≠ 𝑗, y ‖𝑒𝑖‖𝑎 = 1. Para una base fija, las coordenadas de una composición se
obtienen mediante la función

x∗ = 𝑖𝑙𝑟(x) = (⟨x, e1⟩𝑎, ⟨x, e2⟩𝑎 … , ⟨x, e𝐷−1⟩𝑎), (16)

con la inversa,

x = 𝑖𝑙𝑟−1(x∗) =
𝐷−1
⨁
𝑗=1

𝑥∗
𝑗 ⊙ e𝑗 (17)

La construcción de coordenadas ortonormales se ha denominado transformación log-ratio isométrica
(ilr) (Egozcue et al. 2003) porque las coordenadas 𝑥∗

𝑗 = 𝑖𝑙𝑟𝑗(x) son contrastes logarítmicos e isométricos:

𝑖𝑙𝑟((𝛼 … x) ⊕ (𝛽 … y)) = 𝛼 ⋅ 𝑖𝑙𝑟(x) + 𝛽 ⋅ 𝑖𝑙𝑟(y), (18)
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Dada una base ortonormal específica, utilizada a modo de ejemplo y propuesta por Egozcue et al.[20],la
transformación inversa clr−1 a un conjunto de vectores ortonormales definidos en un subespacio de ℝ𝐷

con suma cero. Cada vector base está formado por 𝑖 valores iguales, un valor negativo en la posición
𝑖 + 1, y ceros en las posiciones restantes.Esta construcción corresponde a una de las múltiples bases
posibles que pueden emplearse en la transformación ILR. En términos exponenciales:

Los primeros 𝑖 componentes son exp(√ 1
𝑖(𝑖+1) ),

El componente 𝑖 + 1 es exp(−√ 𝑖
𝑖+1 ),

Los componentes restantes son exp(0) = 1.

Después de aplicar la exponenciación, los vectores se normalizan dividiendo cada componente por
la suma total, asegurando así que la composición resultante pertenezca al símplex. Este conjunto
de composiciones forma una base ortonormal bajo el producto interno de Aitchison, preservando la
estructura geométrica propia del espacio composicional.

Los componentes de la transformación y = ilr(x), calculados con respecto a una base ortonormal del
símplex, se definen como:

𝑦𝑖 = √ 𝑖
𝑖 + 1 ln(𝑔(𝑥1, … , 𝑥𝑖)

𝑥𝑖+1
) , para 𝑖 = 1, 2, … , 𝐷 − 1, (19)

donde 𝑔(𝑥1, … , 𝑥𝑖) representa la media geométrica de los primeros 𝑖 componentes de la composición x.
Estas coordenadas son log-ratios diseñados para capturar relaciones relativas entre partes, lo cual es
una propiedad clave en el análisis composicional.

Ventajas y Desventajas de las Transformaciones

Cuadro 1: Resumen de las transformaciones
Transformaciones Ventajas Desventajas
alr (Logaritmo de razones
aditivo): La transformación
se basa en el logaritmo de ra-
zones, incorporando una úni-
ca variable de referencia en
el denominador. 𝑎𝑙𝑟𝑘(x) =
ln ( 𝑥1

𝑥𝐷
, 𝑥𝑘−1

𝑥𝐷
, 𝑥𝑘+1

𝑥𝐷
, … , 𝑥𝐷−1

𝑥𝐷
)

Transforma las operaciones de
perturbación y potenciación
en el símplex a operaciones
equivalentes de adición y mul-
tiplicación por un escalar en el
espacio euclidiano

No es isométrica. La transforma-
ción alr no preserva la distancia de
Aitchison; la distancia euclidiana
en las coordenadas alr no coincide
con la del símplex.
No es simétrica respecto al denomi-
nador. La componente usada en el
denominador queda como referen-
cia, de modo que el resultado de-
pende de cuál parte se elija y no se
cumple la invariancia por permuta-
ción.

(continuación)
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Cuadro 1: Resumen de las transformaciones (continuación)

clr (Logaritmo centrado):
transformación isométrica
que se fundamenta en el
logaritmo de razones en fun-
ción de la media geométrica
de las variables. 𝑐𝑙𝑟(𝑥) =
ln ( 𝑥1

𝑔𝑚(𝑥) ,
𝑥2

𝑔𝑚(𝑥) , … , 𝑥𝐷
𝑔𝑚(𝑥) )

Evita la selección de una pro-
porción variable y facilita la
interpretación de las variables
transformadas, permitiendo el
análisis en función de las va-
riables originales.

Los datos transformados muestran
incoherencia subcomposicional, lo
que da lugar a una matriz de da-
tos singular, lo que dificulta la uti-
lización de técnicas robustas para
datos en esas coordenadas.

ilr (Logaritmo isométrico):
transformación isométrica
que se apoya en la elección
de una base ortonormal
𝑒1, 𝑒2, … , 𝑒𝐷−1 dentro del
hiperplano definido por las
coordenadas transformadas
de 𝑒1, 𝑖 = 1, 2, … , 𝐷 − 1 .
𝑖𝑙𝑟(x) = (⟨x, e𝑖⟩𝑎,

Mantiene todas las propieda-
des favorables de la transfor-
mación y se adhiere a todos
los principios del análisis com-
posicional.

Las correlaciones entre sus coorde-
nadas no pueden interpretarse di-
rectamente en términos de las va-
riables composicionales originales.
Esto se debe a que la relación entre
las partes y las coordenadas ilr es
no lineal, lo que dificulta la traza-
bilidad conceptual de estas depen-
dencias en el espacio original del
símplex.

Distribuciones Composicionales

Durante mucho tiempo, la distribución de Dirichlet fue la única opción analíticamente tratable pa-
ra modelar este tipo de datos. Sin embargo, esta distribución presenta una limitación fundamental:
asume independencia subcomposicional completa. Esto significa que, bajo cualquier partición de la
composición, las subcomposiciones resultantes deben ser mutuamente independientes, lo cual rara vez
se cumple en contextos empíricos. Esta restricción impide modelar estructuras de dependencia realistas
entre componentes, haciendo que su aplicabilidad sea limitada en muchas situaciones prácticas.

Distribución Logística Normal

La distribución logística-normal fue definida por Aitchison y Shen (1980) [3] y estudiada en profundidad
por Aitchison (1986) [6]. Posteriormente, Mateu-Figueras y Pawlowsky-Glahn (2008) [32] la reformulan
en el marco de la geometría de Aitchison, interpretándola como una distribución normal en el símplex
mediante coordenadas log-ratio isométricas (ilr). Se dice que un vector aleatorio 𝑌 de dimensión 𝐷
sigue una distribución logística-normal ℒ𝒩(𝜇, Σ), o alternativamente una distribución normal en el
espacio 𝑆𝐷, si cualquier vector de coordenadas de razón logarítmica tiene una distribución normal
conjunta de 𝐷 − 1 dimensiones. Esta definición puede adaptarse a una respuesta CoDa utilizando las
coordenadas ALR, de la siguiente manera:

y|𝜇, Σ ∼ ℒ𝒩(𝜇, Σ) ⟺ 𝑎𝑙𝑟(y)|𝜇, Σ ∼ 𝒩(𝜇, Σ), (20)

donde 𝜇 es un vector de dimensión 𝐷 − 1 y Σ es una matriz de covarianza de tamaño (𝐷 − 1) × (𝐷 −
1). Aunque aquí se utiliza la parametrización basada en las coordenadas ALR, una caracterización
equivalente puede obtenerse empleando coordenadas ilr.
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Distribución de Dirichlet

La distribución de Dirichlet fue introducida por Connor y Mosimann (1969) [18] y es una generalización
de la conocida distribución Beta. Un vector aleatorio Y de dimensión 𝐷 tiene una distribución de
Dirichlet 𝐷(𝛼) si su función de densidad de probabilidad es:

𝑝(y|𝛼) = 1
𝐵(𝛼)

𝐷
∏
𝑑=1

𝑦𝛼𝑑−1
𝑑 , (21)

donde 𝛼 = (𝛼1, … , 𝛼𝐷) es el vector de parámetros de forma para cada categoría (𝛼𝑑 > 0 para todo 𝑑),
∑𝐷

𝑑=1 𝑦𝑑 = 1, y 𝐵(𝛼) es la función multinomial Beta, que actúa como constante de normalización. La
función multinomial Beta se define como:

𝐵(𝛼) = ∏𝐷
𝑑=1 Γ(𝛼𝑑)

Γ (∑𝐷
𝑑=1 𝛼𝑑)

, (22)

donde 𝛼0 = ∑𝐷
𝑑=1 𝛼𝑑 es el parámetro de precisión. La distribución Beta es un caso particular cuando

𝐷 = 2. Además, cada variable marginalmente sigue una distribución Beta con 𝛼 = 𝛼𝑑 y 𝛽 = 𝛼0 − 𝛼𝑑.
Si Y ∼ 𝐷(𝛼), los valores esperados, varianzas y covarianzas son:

𝐸(𝑦𝑑) = 𝛼𝑑
𝛼0

, 𝑉 𝑎𝑟(𝑦𝑑) = 𝛼𝑑(𝛼0 − 𝛼𝑑)
𝛼2

0(𝛼0 + 1) , 𝐶𝑜𝑣(𝑦𝑑, 𝑦𝑘) = − 𝛼𝑑𝛼𝑘
𝛼2

0(𝛼0 + 1) . (23)

Comparativa de la Distribución Logística Normal y Dirichlet

Como señala Aitchison (1986, pp. 126-129) [6], las distribuciones logística-normal y de Dirichlet son
distintas y no coinciden exactamente para ningún conjunto de parámetros. Sin embargo, a través de
la divergencia de Kullback-Leibler (KL), que mide cuánto se desvía una aproximación 𝑞 del objetivo
𝑝, se puede aproximar la distribución de Dirichlet mediante la distribución logística-normal.

El problema de minimizar KL:

𝐾(𝑝, 𝑞) = ∫
𝑆𝐷

𝑝(y|𝛼) log 𝑝(y|𝛼)
𝑞(y|𝜇, Σ) 𝑑y, (24)

donde 𝑝(y|𝛼) es la función de densidad de Dirichlet y 𝑞(y|𝜇, Σ) es la densidad logística-normal, se
resuelve con:

𝜇 = 𝐸 [log 𝑦1
𝑦𝐷

, … , log 𝑦𝐷−1
𝑦𝐷

] = 𝐸[𝑎𝑙𝑟(y)], Σ = 𝑉 𝑎𝑟 [log 𝑦1
𝑦𝐷

, … , log 𝑦𝐷−1
𝑦𝐷

] = 𝑉 𝑎𝑟[𝑎𝑙𝑟(y)]. (25)

La solución, expresada en términos de las funciones digamma (𝜓) y trigamma (𝜓′)1, es:

𝜇𝑑 = 𝜓(𝛼𝑑) − 𝜓(𝛼𝐷), Σ𝑑𝑑 = 𝜓′(𝛼𝑑) + 𝜓′(𝛼𝐷), Σ𝑑𝑘 = −𝜓′(𝛼𝐷), 𝑑 ≠ 𝑘. (26)

1La función digamma 𝜓(𝑥) es la derivada del logaritmo de la función gamma, es decir, 𝜓(𝑥) = 𝑑
𝑑𝑥 ln Γ(𝑥). Su derivada,

llamada función trigamma, se denota 𝜓(1)(𝑥) y representa la segunda derivada logarítmica de Γ(𝑥). Véase Abramowitz
y Stegun (1972) [1].



Modelado de Series Temporales
Composicionales

Contexto Histórico y Problemática

Las series temporales multivariantes de proporciones, o composiciones, surgen en muchas áreas de
aplicación. Estas series se caracterizan por 𝐷 componentes no negativas 𝑥1𝑡, ..., 𝑥𝐷𝑡, que suman a una
constante en cada tiempo 𝑡. Sin pérdida de generalidad, se puede suponer que la constante en cuestión
es 1. Es habitual referirse a la serie 𝑥𝑡 ∶ 𝑡 = 1, ..., 𝑛, donde 𝑥𝑡 = (𝑥1𝑡, ..., 𝑥𝐷𝑡), como una Serie Temporal
Composicional o CTS por sus siglas en inglés. Los 𝑥𝑡 son elementos del símplex 𝑆𝐷. Este tipo de
datos aparece con frecuencia en disciplinas tan dispares como biología, demografía, ecología, economía,
geología y política. Aunque una CTS constituye una serie temporal multivariante, las técnicas estándar,
como las utilizadas en los modelos de media móvil autoregresiva integrada multivariante (VARIMA,
por sus siglas en inglés), no son aplicables debido a la restricción de la suma constante (Barceló-Vidal
et al. 2007) [8].

Históricamente, la modelización de CTS se ha basado casi exclusivamente en el enfoque de transfor-
mación, que consiste en la aplicación de una transformación inicial para romper la restricción de la
suma unitaria, seguida del uso de técnicas estándar para modelar la serie temporal transformada. Así,
se habilita la posibilidad de modelización VARIMA. En este contexto, una de las transformaciones
más frecuentemente empleadas ha sido la transformación log-ratio aditiva (alr). Esta transformación
depende de la elección del componente utilizado como denominador común en los log-ratios, por lo
que existen tantas transformaciones alr posibles como partes, D, de los datos composicionales.

El enfoque de modelización basado en VARIMA para series temporales composicionales transformadas
con alr ha sido empleado por Brunsdon (1987) [14], Smith y Brunsdon (1989) [39], y Brunsdon y
Smith (1998) [15]. Ravishanker et al. (2001) [36] generalizaron el enfoque de Brunsdon y Smith (1998)
[15] a una extensión de los modelos VARMA incorporando covariables. Aplicaciones recientes de este
enfoque se encuentran en Mills (2009, 2010) [29] [28]. La mayoría de estas contribuciones concluyen
que las predicciones son invariante a la elección del componente utilizado en el denominador común
de la transformación alr. Esto es cierto si, como en las publicaciones citadas, sólo se contemplan
modelos VARIMA completos, es decir, aquellos que incluyen todas las variables relevantes y posibles
interacciones.

Estos modelos buscan capturar toda la dinámica estructural y estacional de las series de tiem-
po,proporcionando una representación más completa de los datos. Se contempla la posibilidad de
simplificación post-estimación utilizando modelos restringidos, los cuales se construyen imponiendo
restricciones específicas sobre los parámetros del modelo completo, como la eliminación de términos
insignificantes o la fijación de ciertos coeficientes a valores predefinidos. Esta simplificación tiene
como objetivo reducir el riesgo de sobreajuste y facilitar la interpretación, manteniendo un nivel
aceptable de capacidad predictiva y explicativa. Otras contribuciones al análisis de CTS usando la

10
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transformación alr son Silva (1996) [37] y Silva y Smith (2001) [38], quienes emplean un enfoque de
modelización en el espacio de estados para la serie temporal transformada.
La transformación log-ratio centrada (o simétrica) (clr) fue utilizada por Quintana y West (1988) [35]
para analizar datos de CTS mediante un modelo de regresión dinámica . Estos autores manejaron las
singularidades de las matrices de covarianzas asociadas a la serie temporal transformada 𝑐𝑙𝑟(𝑥𝑡) = 𝑧𝑡
ignorando la restricción de la suma cero sobre los 𝑧𝑡. Modelaron la serie 𝑧𝑡 asumiendo la no singularidad
de las matrices de covarianzas e imponiendo a posteriori la restricción de la suma cero sobre el modelo
estimado.
El modelado directo de la serie transformada mediante clr presenta serias dificultades técnicas debido
a la singularidad inherente de las matrices de covarianzas. Las estrategias propuestas en la literatura
para sortear este problema suelen ser, en general, poco compatibles con la estructura composicional, ya
que a menudo ignoran la restricción de suma cero o tratan las matrices de covarianzas como si fueran
no singulares. Bergman (2008) [10] utilizó la transformación log-ratio isométrica (ilr) para ajustar
un modelo VAR a series temporales composicionales mensuales de la Encuesta de Fuerza Laboral de
Suecia. La transformación ilr depende de la base ortonormal de 𝑆𝐷 elegida en su definición. Bergman
(2008) [10] empleó solo modelos completos para los datos transformados con ilr, es decir, aquellos que
incluyen todas las variables relevantes y posibles interacciones, de modo que las predicciones de los
modelos finales no dependen de la base ortonormal utilizada en la transformación ilr.
Por otra parte, Bhaumik et al. (2003) [11] utilizaron la conocida transformación Box-Cox aplicada a
los cocientes de los componentes de una CTS como alternativa a la transformación alr.

( 𝑥𝑖
𝑥𝐷

)
(𝜆)

=

⎧{{
⎨{{⎩

( 𝑥𝑖
𝑥𝐷

)𝜆 − 1
𝜆 , si 𝜆 ≠ 0

log ( 𝑥𝑖
𝑥𝐷

) , si 𝜆 = 0

(27)

Estos trabajos proponen modelar la dinámica temporal de composiciones trabajando en una repre-
sentación de cocientes y aplicando una transformación Box–Cox antes del ajuste. Sobre las variables
transformadas se emplean modelos lineales dinámicos, incorporando una clase amplia de distribucio-
nes para los errores mediante mezclas de escalas de normales multivariadas [34]. La familia Box–Cox
resulta atractiva porque contiene a la transformación logarítmica como caso particular (y, por tanto,
puede recuperar el enfoque ALR); sin embargo, introduce parámetros adicionales que deben estimarse.
Al igual que ocurre con ALR, este procedimiento depende de la parte seleccionada como denominador
en la construcción de los cocientes.
Otra vía, conocida como enfoque basado en datos, parte directamente de la distribución inherente a los
datos originales. Se trata de un método más intuitivo y, por lo general, más sencillo de interpretar. Para
datos composicionales, la distribución más adecuada es la de Dirichlet. Aunque su marcada estructura
de dependencia interna llevó a descartarla en contextos en los que se asumía independencia entre
componentes Aitchison (1986) [6], ha demostrado ser muy valiosa cuando se emplea como distribución
condicional.
En el caso de las series temporales composicionales, Grunwald et al. (1993) [21] plantean un enfoque
que respeta directamente las restricciones del símplex al introducir un estado latente x𝑡 que gobierna el
comportamiento de la composición observada y𝑡. En particular, se asume que y𝑡 sigue una distribución
Dirichlet condicionada a x𝑡, mientras que x𝑡 evoluciona en el tiempo con una dependencia Markoviana
de primer orden, de modo que su distribución en 𝑡 depende esencialmente de x𝑡−1; esta transición
puede describirse mediante una Dirichlet o una Dirichlet generalizada. En esta línea, Connor (1969) [18]
amplía el planteamiento al proponer una generalización capaz de capturar estructuras de dependencia
más flexibles entre los componentes, mitigando la rigidez de la Dirichlet estándar en la forma en que
induce asociación entre las partes.
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Ceros en Series de Tiempo Composicionales

La presencia de componentes exactamente nulos en series composicionales 𝑥𝑡 representa una limitación
fundamental para la aplicación directa de las transformaciones log-ratio convencionales, tales como la
log-ratio aditiva (alr), la log-ratio centrada (clr) y la log-ratio isométrica (ilr). Para sortear esta inde-
terminación, la literatura ha propuesto históricamente la sustitución de ceros por constantes positivas
pequeñas (e.g., Bell et al., 1986 [9] ; siguiendo el marco de Aitchison, 1986 [6]; y Martín-Fernández
et al., 2003 [25] ). Sin embargo, este procedimiento, si bien práctico, introduce un sesgo potencial
significativo y compromete la robustez de los estimadores, especialmente en escenarios de escasez de
datos o alta frecuencia de ceros.

Como respuesta a esta problemática, se han explorado alternativas metodológicas. Una de ellas es
la transformación hiperesférica (Nolan y Smith, 1995 [30]; Wang et al., 2007 [42] ), que utiliza la
función arcocoseno para proyectar los datos sobre una hipersfera, eludiendo así la dependencia de los
logaritmos.

Modelos C-VARIMA: Teoría y Supuestos

Supuestos del Modelos C-VARIMA

Al analizar datos con modelos C-VARIMA para series de tiempo composicionales, es crucial que se
cumplan ciertos supuestos para asegurar la validez, estacionariedad e interpretabilidad de los resultados.
Estas condiciones son una adaptación de los requisitos de los modelos VARIMA euclidianos, pero están
formuladas dentro del marco de la geometría composicional [Egozcue et al., 2003] [20].

1. Naturaleza de los Datos Composicionales:
La base para cualquier análisis composicional es la correcta caracterización de los datos de entrada:

Valores Estrictamente Positivos: Cada componente de las observaciones de la serie de tiempo 𝑋𝑡
debe ser estrictamente positiva (𝑥𝑡, 𝑖 > 0 para todo 𝑖,𝑡). Esta condición es fundamental para que
las transformaciones log-ratio (ilr, clr) y las operaciones composicionales (como la perturbación
y el escalado) estén matemáticamente bien definidas, Aitchison (1986) [6] .

Suma Constante: La suma de las componentes de cada observación composicional debe ser una
constante predefinida (comúnmente 1, si se trata de proporciones o porcentajes). Esto asegu-
ra que los datos residan en el espacio símplex 𝑆𝐷, que es el dominio natural para los datos
composicionales, Aitchison (1986) [6].

2. Estacionariedad:
En el contexto composicional, se dice que una serie temporal {𝑋𝑡}𝑡∈ℤ, con 𝑋𝑡 ∈ 𝑆𝐷 para todo 𝑡, es un
proceso C-estacionario si mantiene constantes a lo largo del tiempo tanto su media composicional como
su estructura de dependencia de segundo orden, formulada en términos de covarianzas composicionales.

En particular, la media composicional (o C-media) se define como

𝜉 = 𝔼𝐶 [𝑋𝑡] = 𝒞( exp(𝔼[ln𝑋𝑡])), (28)

donde ln𝑋𝑡 denota el vector de logaritmos componente a componente, 𝔼[ln𝑋𝑡] es la esperanza clásica
aplicada componente a componente, exp(⋅) se aplica nuevamente componente a componente y 𝒞(⋅) es
el operador de closure que normaliza el vector resultante para que sus componentes sumen 1.
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Decimos que la serie {𝑋𝑡} es C-estacionaria si esta media composicional

𝜉 = 𝔼𝐶 [X𝑡] (29)

permanece constante para todo 𝑡, y si además la estructura de dependencia de segundo orden puede
describirse mediante covarianzas composicionales que sólo dependen del desfase (lag) entre observacio-
nes, y no del tiempo absoluto. La C-media 𝜉 actúa como un “centro de gravedad’ ’ bajo la geometría
del símplex y refleja el equilibrio relativo de las partes composicionales en el tiempo.

Autocovarianza composicional invariante en el tiempo:
La función de autocovarianza composicional se define como:

Γ𝐶(ℎ) = 𝔼 [(clr(X𝑡+ℎ) − clr(𝜉)) (clr(X𝑡) − clr(𝜉))⊤] , (30)

y depende únicamente del rezago ℎ, no del tiempo absoluto 𝑡. Esto implica que las relaciones de
dependencia entre las partes de la composición son estables a lo largo del tiempo.

Autocorrelación composicional: La correspondiente función de autocorrelación composicional está
dada por:

𝑅𝐶(ℎ) = ⎡⎢
⎣

𝛾𝐶,𝑖𝑗(ℎ)
√𝛾𝐶,𝑖𝑖(0)𝛾𝐶,𝑗𝑗(0)

⎤⎥
⎦

𝐷

𝑖,𝑗=1

, (31)

donde 𝛾𝐶,𝑖𝑗(ℎ) representa la covarianza composicional entre las partes 𝑖 y 𝑗 con rezago ℎ.
La propiedad de C-estacionariedad garantiza que el comportamiento conjunto y proporcional de las
partes de la composición no varía con el tiempo. Además, si {X𝑡} es C-estacionario, entonces cualquier
transformación lineal válida al espacio real (como clr, ilr o alr) genera un proceso estacionario en el
sentido clásico.
3. Invertibilidad:
La invertibilidad hace referencia a la posibilidad de representar el modelo como un VAR de orden
infinito, lo cual resulta crucial tanto para su estimación como para su interpretación:

Raíces del Polinomio de Medias Móviles Fuera del Círculo Unitario: Al igual que en el caso de la
estacionariedad, para que el componente de medias móviles del modelo C-VARMA transformado
al espacio símplex sea invertible, es necesario que todas las raíces del polinomio característico se
ubiquen fuera del círculo unitario

4. Propiedades del Término de Error (Ruido Blanco Composicional):
En el marco composicional, se denomina ruido blanco composicional a un proceso {W𝑡} que cumple
propiedades específicas de primer y segundo orden en el símplex. Este tipo de proceso se denota como:

{W𝑡} ∼ 𝑊𝑁𝐶(1𝐶 , C), (32)

donde 1𝐶 = ( 1
𝐷 , … , 1

𝐷 ) es la media composicional uniforme y C es la matriz de covarianza en el rezago
cero.
Las propiedades fundamentales que debe cumplir son:
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Media composicional uniforme:

𝔼𝐶 [W𝑡] = 1𝐶 . (33)

donde 1𝐶 = ( 1
𝐷 , … , 1

𝐷 ) representa una composición uniforme de 𝐷 partes. Esta media refleja que todas
las partes de la composición tienen igual peso relativo.
Esta propiedad indica que las innovaciones, en promedio, no favorecen a ninguna parte específica de
la composición, manteniendo una distribución proporcional equilibrada y simétrica en el símplex.

Autocovarianza nula para rezagos no nulos:

Γ𝐶(0) = C, Γ𝐶(ℎ) = 0𝐷×𝐷 para todo ℎ ≠ 0. (34)

Esto asegura que no existe correlación serial entre errores en diferentes momentos del tiempo.

C-estacionariedad del proceso de error:
Un proceso de ruido blanco composicional es, por definición, C-estacionario, ya que man-
tiene constante su media composicional y su estructura de autocovarianza cumple con las condi-
ciones de invarianza en el tiempo.

Normalidad composicional:
Si las transformaciones del proceso {W𝑡}, como {Y𝑡} = alr(W𝑡) o {U𝑡} = clr(W𝑡), son indepen-
dientes e idénticamente distribuidas según una normal multivariada, entonces {W𝑡} se denomina
ruido blanco composicional gaussiano. En tal caso, las transformaciones {Z𝑡} = ilr(W𝑡) siguen
una distribución normal degenerada, lo cual respeta las restricciones del símplex.

Modelos C-VARIMA

Sea {𝑥𝑡 ∶ 𝑡 = 0, ±1, ±2, ...} una serie temporal composicional formada por variables aleatorias de la
forma 𝑥𝑡 = (𝑥1𝑡, ..., 𝑥𝐷𝑡)⊤ definida en 𝑆𝐷 (es decir, un proceso). Las propiedades de segundo orden
de {𝑥𝑡} están especificadas por los vectores de C-media, 𝜉𝑡 = 𝐸𝐶{𝑥𝑡} = (𝜉𝑡1, ..., 𝜉𝑡𝐷)⊤, la media
composicional en el tiempo t, denotada como 𝜉𝑡, es el vector de medias de las D componentes de la
serie de tiempo composicional 𝑥𝑡 y matrices de C-autocovarianza.

Γ𝐶(𝑡 + ℎ, 𝑡) = 𝐸(𝑐𝑙𝑟(x𝑡+ℎ) − 𝑐𝑙𝑟(𝜉𝑡+ℎ))(𝑐𝑙𝑟(x𝑡) − 𝑐𝑙𝑟(𝜉𝑡))⊤ = [Γ𝐶,𝑖𝑗(𝑡 + ℎ, 𝑡)𝐷
𝑖,𝑗=1] (35)

Es importante notar que, en el contexto composicional, dado un proceso temporal composicional {x𝑡},
no tiene sentido analizar ninguna de las partes individuales {𝑥𝑖𝑡} como una serie temporal univariante.
Sin embargo, en algunos casos uno podría estar interesado en analizar el comportamiento relativo de
dos partes 𝑖 y 𝑗 (𝑖 ≠ 𝑗), o, en general, de una serie temporal subcomposicional {x𝑆}, donde 𝑆 simboliza
un subconjunto de dos o más de las partes 1, … , 𝐷 de x𝑡.
Cuando se aplican las transformaciones 𝑐𝑙𝑟, 𝑎𝑙𝑟𝑘 y 𝑖𝑙𝑟𝑉 a un proceso composicional {x𝑡}, inducen
los procesos {z𝑡}, {y𝑡} y {u𝑡}, respectivamente. El primero, {z𝑡}, definido en ℝ𝐷, está restringido al
hiperplano 𝑉 porque z⊤

𝑡 1𝐷 = 0. Los otros dos procesos están definidos en ℝ𝐷−1, pero {y𝑡} depende
del denominador utilizado en la transformación 𝑎𝑙𝑟𝑘 , y {u𝑡} depende de la matriz 𝑉 utilizada en la
transformación 𝑖𝑙𝑟𝑉 . Denotamos por 𝜇𝑍,𝑡, 𝜇𝑌 ,𝑡 y 𝜇𝑈,𝑡 los vectores de medias de {z𝑡}, {y𝑡} y {u𝑡},
respectivamente, y por Γ𝑍(𝑡 + ℎ, 𝑡), Γ𝑌 (𝑡 + ℎ, 𝑡) y Γ𝑈(𝑡 + ℎ, 𝑡) las matrices de autocovarianza de estos
procesos. Observa que 𝜇𝑍,𝑡 = 𝑐𝑙𝑟(𝜉𝑡) y, por definición, Γ𝑍(𝑡 + ℎ, 𝑡) = Γ𝐶(𝑡 + ℎ, 𝑡).
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Modelo C-VAR(p)

Describe la dinámica de la composición actual X𝑡 en función de sus propias composiciones pasadas y
las de las demás variables composicionales en el sistema.

(X𝑡 ⊖ 𝜉) ⊖ (Φ𝐶,1 ⊙ (X𝑡−1 ⊖ 𝜉)) ⊖ ⋯ ⊖ (Φ𝐶,𝑝 ⊙ (X𝑡−𝑝 ⊖ 𝜉)) = W𝑡 (36)

Forma con operador de rezago composicional:

Φ𝐶(𝐿𝐶)(X𝑡 ⊖ 𝜉) = W𝑡 (37)

Donde:

X𝑡 ∈ 𝒮𝐷 es el vector composicional en el tiempo 𝑡.
𝜉 ∈ 𝒮𝐷 es el centro composicional.
Φ𝐶,𝑖 son matrices de coeficientes composicionales de tamaño 𝐷 × 𝐷, para 𝑖 = 1, … , 𝑝.
Φ𝐶(𝐿𝐶) = 𝐼𝐷 ⊖ (Φ𝐶,1 ⊙ 𝐿𝐶) ⊖ ⋯ ⊖ (Φ𝐶,𝑝 ⊙ 𝐿𝑝

𝐶) es un polinomio matricial en el operador de
rezago composicional 𝐿𝐶 y 𝐼𝐷 es la matriz de identidad composicional.
W𝑡 ∈ 𝒮𝐷 es un ruido blanco composicional (WNC).

Modelo C-VMA(q)

Describe la composición actual X𝑡 como una función de un término constante y errores pasados del
proceso:

X𝑡 ⊖ 𝜉 = W𝑡 ⊖ (Θ𝐶,1 ⊙ W𝑡−1) ⊖ ⋯ ⊖ (Θ𝐶,𝑞 ⊙ W𝑡−𝑞) (38)

Forma con operador de rezago composicional:

X𝑡 ⊖ 𝜉 = Θ𝐶(𝐿𝐶)W𝑡 (39)

donde:

X𝑡 ∈ 𝒮𝐷 es el vector composicional en el tiempo 𝑡.
𝜉 ∈ 𝒮𝐷 es el centro composicional.
Θ𝐶,𝑗 son matrices de coeficientes composicionales, 𝑗 = 1, … , 𝑞. -Θ𝐶(𝐿𝐶) = 𝐼𝐷⊖(Θ𝐶,1 ⊙𝐿𝐶)⊖⋯⊖
(Θ𝐶,𝑞⊙𝐿𝑞

𝐶) es un polinomio matricial composicional y 𝐼𝐷 es la matriz de identidad composicional.
W𝑡 ∈ 𝒮𝐷 es un ruido blanco composicional (WNC).
Θ𝐶,𝑗 son matrices de coeficientes composicionales, 𝑗 = 1, … , 𝑞.

Modelo C-VARMA(p,q)

Este modelo combina las características autorregresivas y de medias móviles en el espacio símplex. Es
una combinación de los dos modelos anteriores.

(X𝑡 ⊖ 𝜉) ⊖
𝑝

∑
𝑖=1

(Φ𝐶,𝑖 ⊙ (X𝑡−𝑖 ⊖ 𝜉)) = W𝑡 ⊖
𝑞

∑
𝑗=1

(Θ𝐶,𝑗 ⊙ W𝑡−𝑗) (40)
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(Aquí la suma se refiere a la aplicación de forma iterativa de la operación, es decir : 𝐴 ⊖ 𝐵 ⊖ 𝐶 =
(𝐴 ⊖ 𝐵) ⊖ 𝐶.

Forma con operador de rezago:

Φ𝐶(𝐿𝐶)(X𝑡 ⊖ 𝜉) = Θ𝐶(𝐿𝐶)W𝑡 (41)

donde:

X𝑡 ∈ 𝒮𝐷 es el vector composicional en el tiempo 𝑡.
𝜉 ∈ 𝒮𝐷 es el centro composicional.
Φ𝐶,𝑖 son matrices de coeficientes composicionales de tamaño 𝐷 × 𝐷, para 𝑖 = 1, … , 𝑝.
Θ𝐶,𝑗 son matrices de coeficientes composicionales, 𝑗 = 1, … , 𝑞.
W𝑡 ∈ 𝒮𝐷 es un ruido blanco composicional (WNC).
Φ𝐶(𝐿𝐶) y Θ𝐶(𝐿𝐶) son los polinomios matriciales composicionales definidos anteriormente para
C-VAR(p) y C-VMA(q), respectivamente.

Modelo C-VARIMA(p,d,q)

Extiende el C-VARMA para datos no estacionarios incluyendo diferenciación composicional.

Φ𝐶(𝐿𝐶)(1 − 𝐿𝐶)𝑑(X𝑡 ⊖ 𝜉) = Θ𝐶(𝐿𝐶)W𝑡 (42)

donde:

X𝑡 ∈ 𝒮𝐷 es el vector composicional en el tiempo 𝑡.
𝜉 ∈ 𝒮𝐷 es el centro composicional.
Φ𝐶,𝑖 son matrices de coeficientes composicionales de tamaño 𝐷 × 𝐷, para 𝑖 = 1, … , 𝑝.
Θ𝐶,𝑗 son matrices de coeficientes composicionales, 𝑗 = 1, … , 𝑞.
W𝑡 ∈ 𝒮𝐷 es un ruido blanco composicional (WNC).
Φ𝐶(𝐿𝐶) y Θ𝐶(𝐿𝐶) son los polinomios matriciales composicionales definidos anteriormente para
C-VAR(p) y C-VMA(q), respectivamente.
(1−𝐿𝐶)𝑑 indica aplicar 𝑑 veces la diferencia composicional: X𝑡 ⊖X𝑡−1.Este operador transforma
una serie no estacionaria en una estacionaria en el espacio símplex.



Estudio de Simulación

Introducción

El objetivo de este capítulo es llevar a cabo la simulación de una serie de tiempo en el contexto
de datos composicionales. Para ello, se genera un conjunto de observaciones dentro del espacio del
símplex utilizando la distribución Dirichlet, que garantiza que la suma de los componentes de cada
vector de datos sea igual a uno. Esta característica es fundamental en el análisis composicional, donde
las proporciones relativas y no los valores absolutos son de interés.
La distribución Dirichlet depende por un vector de parámetros 𝛼3, cuya configuración tiene un impacto
directo en la forma y dispersión de los datos generados. Dependiendo de los valores asignados de 𝛼, es
posible obtener diferentes estructuras de dispersión dentro del símplex, como se observa en la Figura
1:

X Y

Z

α (0.5,0.5,0.5)

X Y

Z

α (1,1,1)

X Y

Z

α (5,5,5)

X Y

Z

α (0.3,0.2,0.5)

X Y

Z

α (0.5,1,5)

X Y

Z

α (5,8,3)

Figura 1: Comportamiento de los datos en una distribución Dirichlet con diferentes valores de Alpha

Si 𝛼 es un vector, son todos sus componentes > 1, la distribución tiende a concentrarse en el
centro del símplex. Los vectores generados presentan una alta mezcla entre componentes, lo que
da lugar a datos más balanceados y agrupados.

Si 𝛼 es un vector, son todos sus componentes = 1, la distribución se vuelve uniforme. En este caso,
todas las combinaciones posibles de proporciones tienen la misma probabilidad de ocurrencia, lo
que permite observar una dispersión homogénea dentro del espacio.

17
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En cambio, cuando el vector de 𝛼 < 1, la distribución se concentra en los vértices del símplex.
Los datos tienden a ser extremos, mostrando combinaciones en las que uno o dos componentes
predominan sobre el resto.

Cuando los parámetros 𝛼 de una distribución Dirichlet son distintos entre sí, el comportamiento de los
datos reflejará una asignación desigual de probabilidades entre los componentes. Si todos los valores
son menores que 1, aunque diferentes, los datos tienden a ubicarse cerca de los vértices del símplex,
lo que indica combinaciones extremas en las que un componente domina, pero no siempre el mismo.
Esta configuración genera alta variabilidad y una distribución asimétrica. En cambio, si todos los 𝛼
son mayores que 1 pero distintos, la distribución favorece composiciones más balanceadas, aunque no
completamente uniformes: algunos componentes tienden a tener mayor presencia debido a los valores
más altos de 𝛼. Finalmente, si la distribución combina valores mayores y menores que 1, se obtiene
un comportamiento mixto. Los componentes con 𝛼 > 1 tienden a ser estables y con proporciones
moderadas, mientras que los que tienen 𝛼 < 1 muestran mayor variabilidad y extremidad. Esto da lugar
a composiciones con mezcla parcial, donde algunos elementos destacan por su presencia consistente y
otros por su comportamiento más disperso o extremo.

Generación de Datos

Con el objetivo de evaluar el desempeño de los modelos aplicables al análisis de series de tiempo compo-
sicionales, se procedió a la generación de datos simulados controlando distintos factores estructurales.
Los datos generados representan composiciones de tres partes (dimensión composicional 𝐷 = 3) a
lo largo de 𝑇 = 100 unidades temporales, replicadas en 𝑛series = 100 series independientes. Para ga-
rantizar la reproducibilidad del experimento, se fijó una semilla aleatoria mediante (seed = 100 +
i).

Especificación del Modelo

Las series generadas siguen una estructura autorregresiva con posibles componentes de media móvil
en el espacio composicional. El modelo base se expresa como

Φ𝐶(𝐿𝐶) (1 − 𝐿𝐶)𝑑(𝑋𝑡 ⊖ 𝜉) = Θ𝐶(𝐿𝐶) 𝑊𝑡, (43)

donde:

𝑋𝑡 ∈ 𝕊𝐷 representa la composición observada en el tiempo 𝑡 (símplex de dimensión 3, con
componentes 𝑋, 𝑌 y 𝑍).

𝜉 es el centro composicional alrededor del cual se describe la dinámica; en este estudio se fija
como la composición uniforme

𝜉 = 1𝐶 = ( 1
3 , 1

3 , 1
3 ) ∈ 𝕊𝐷.

𝐿𝐶 es el operador de rezago en álgebra composicional.

Φ𝐶(𝐿𝐶) y Θ𝐶(𝐿𝐶) son polinomios composicionales en 𝐿𝐶 que recogen, respectivamente, los
efectos autorregresivos y de media móvil; en la aplicación considerada se trabaja con polinomios
de orden 1 (modelos C-VAR(1), C-VMA(1) y C-VARMA(1,1)).

𝑑 es el orden de diferenciación composicional (en este estudio se fija 𝑑 = 0).
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{𝑊𝑡} es un proceso de ruido blanco composicional en el símplex. En la simulación se especifica
de forma paramétrica mediante composiciones independientes

𝑊𝑡 ∼ Dirichlet(𝛼𝑊 ), 𝛼𝑊 = (1, 1, 1), 𝑡 = 1, … , 𝑇 ,

de modo que
𝔼[𝑊𝑡] = ( 1

3 , 1
3 , 1

3 ) = 𝜉,

Parámetros de simulación

Los valores utilizados para simular las series son los siguientes:

Número de series: 𝑛series = 100; se generan 100 trayectorias independientes por escenario.

Horizonte temporal: 𝑇 = 100; cada serie contiene 100 observaciones posteriores al periodo de
burn-in.

Dimensión composicional: 𝐷 = 3; cada vector composicional tiene tres componentes (𝑋, 𝑌 , 𝑍)
que representan partes de un total unitario.

𝑊𝑡 ∼ Dirichlet(1, 1, 1),
con media igual al centro composicional 𝜉 = (1/3, 1/3, 1/3).

Modelo dinámico base: según el escenario, la estructura temporal corresponde a un modelo C-
VAR(1), C-VMA(1) o C-VARMA(1,1) composicional, con matrices de coeficientes autorregresivos
y de media móvil diagonales.

Escenarios de simulación

Con el objetivo de evaluar el impacto conjunto de la dinámica temporal y de la estructura de dispersión
composicional, se consideran nueve escenarios experimentales que combinan:

1. Tres niveles de concentración de las series 𝑋𝑡, representados mediante un parámetro de forma

𝛼𝑋 ∈ {(0.5, 0.5, 0.5), (1, 1, 1), (5, 5, 5)},

que generan, respectivamente, composiciones más dispersas, de dispersión intermedia y más con-
centradas alrededor del centro composicional. En la implementación computacional, estos niveles
se inducen sobre las trayectorias de 𝑋𝑡 mediante una transformación de potencia composicional,
manteniendo inalterado el proceso de ruido composicional {𝑊𝑡}.

2. Tres estructuras dinámicas:

Modelos C-VAR(1), controlados por una matriz diagonal de coeficientes autorregresivos

Φ1 = diag(0.8, 0.5, 0.2),

Modelos C-VMA(1), con matriz diagonal de coeficientes de media móvil

Θ(1)
1 = diag(0.8, 0.5, 0.2),
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Modelos C-VARMA(1,1), que combinan la matriz autorregresiva anterior con una matriz
de media móvil alternativa

Θ(2)
1 = diag(0.2, 0.5, 0.8).

La combinación de estos dos factores da lugar a los nueve escenarios resumidos en el Cuadro~2, don-
de se indica el nivel de concentración composicional asociado a 𝛼𝑋 y los valores de los parámetros
autorregresivos Φ y de media móvil Θ para cada caso.

Cuadro 2: Escenarios considerados para la simulación de series de tiempo composicionales. La columna
𝛼𝑋 representa el nivel de concentración de las trayectorias de 𝑋𝑡, mientras que Φ y Θ recogen los
coeficientes diagonales de los términos autorregresivos y de media móvil, respectivamente.

Escenario 𝛼𝑋 Φ Θ

1 (0.5, 0.5, 0.5) (0.8, 0.5, 0.2) (0, 0, 0)

2 (0.5, 0.5, 0.5) (0, 0, 0) (0.8, 0.5, 0.2)

3 (0.5, 0.5, 0.5) (0.8, 0.5, 0.2) (0.2, 0.5, 0.8)

4 (1, 1, 1) (0.8, 0.5, 0.2) (0, 0, 0)

5 (1, 1, 1) (0, 0, 0) (0.8, 0.5, 0.2)

6 (1, 1, 1) (0.8, 0.5, 0.2) (0.2, 0.5, 0.8)

7 (5, 5, 5) (0.8, 0.5, 0.2) (0, 0, 0)

8 (5, 5, 5) (0, 0, 0) (0.8, 0.5, 0.2)

9 (5, 5, 5) (0.8, 0.5, 0.2) (0.2, 0.5, 0.8)

En consecuencia, los escenarios 1, 4 y 7 corresponden a modelos C-VAR(1) puros, los escenarios 2, 5 y
8 a modelos C-VMA(1), y los escenarios 3, 6 y 9 a modelos C-VARMA(1,1), manteniendo siempre el
mismo proceso de innovaciones {𝑊𝑡} ∼ Dirichlet(1, 1, 1) y variando únicamente la estructura dinámica
y el nivel de concentración composicional de las series simuladas 𝑋𝑡.

Transformaciones Composicionales

El análisis de datos composicionales ha dado lugar al desarrollo de un conjunto específico de herra-
mientas y técnicas estadísticas que permiten tratar adecuadamente este tipo particular de datos. Estas
composiciones, que representan proporciones o partes de un todo, requieren métodos analíticos dis-
tintos a los utilizados en estadística clásica, debido a la restricción inherente de la suma constante.
Aplicar técnicas convencionales directamente sobre datos composicionales puede conducir a resultados
erróneos o interpretaciones inadecuadas, ya que no se respetan las propiedades geométricas del espacio
símplex en el que residen estos datos.
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Para sortear estas limitaciones, se han propuesto diversas transformaciones que permiten mapear los
datos composicionales desde el espacio símplex a un espacio euclídeo, en el cual las herramientas esta-
dísticas tradicionales pueden aplicarse de forma válida. Entre estas transformaciones se encuentran la
transformación log-ratio centrada (clr), la log-ratio aditiva (alr) y la log-ratio isométrica (ilr). La
transformación ilr es una de las más utilizadas por sus propiedades geométricas deseables y su capa-
cidad para preservar la distancia euclídea en el espacio transformado. Por otro lado, la transformación
alr resulta especialmente útil en contextos donde se desea comparar cada componente con una parte
de referencia fija, facilitando su interpretación en ciertos análisis.

En este capítulo se aplicaron dos transformaciones: la log-ratio isométrica (ilr) y la log-ratio aditiva
(alr), ambas implementadas mediante las funciones ilr() y alr() del paquete compositions en
R. La transformación ilr proyecta los datos composicionales en un espacio euclídeo de dimensión
𝐷 − 1, donde 𝐷 representa el número de componentes de la composición, eliminando la redundancia y
respetando la estructura geométrica del símplex. Las nuevas coordenadas generadas son ortogonales,
lo que permite aplicar herramientas estadísticas multivariantes de forma rigurosa y coherente.

La transformación alr, en cambio, transforma las composiciones usando log-ratios respecto a una parte
de referencia (usualmente la última componente), generando coordenadas interpretables como relacio-
nes directas con dicha parte. Esta transformación es útil en casos donde una parte de la composición
actúa como denominador natural o base de comparación.

No se empleó la transformación log-ratio centrada (clr) debido a que esta genera un conjunto de
coordenadas que presentan una dependencia lineal intrínseca: la suma de todas las coordenadas trans-
formadas es siempre cero. Esto implica que los datos clr no pertenecen a un subespacio euclídeo
completo, y por tanto, no pueden ser utilizados directamente en modelos estadísticos multivariantes
convencionales, como modelos c-VAR o C-VARMA. Además, en el contexto de series de tiempo, esta
dependencia contamina las estructuras de autocorrelación y covarianza entre componentes, lo cual
dificulta la especificación, interpretación y estimación de modelos dinámicos válidos.

El uso conjunto de las transformaciones ilr y alr en este estudio permitió comparar sus efectos en el
modelado de series de tiempo composicionales simuladas, destacando las ventajas prácticas y analíticas
de cada una en función del tipo de análisis, la interpretabilidad de los resultados y las propiedades
geométricas preservadas.

Escenarios

Con el objetivo de evaluar el comportamiento dinámico de series de tiempo composicionales bajo di-
ferentes condiciones de dependencia temporal y variabilidad composicional, se diseñó un estudio de
simulación que combina procesos autorregresivos Φ, de medias móviles Θ y mixtos Φ y Θ con innovacio-
nes provenientes de una distribución Dirichlet. En total, se definieron nueve escenarios experimentales,
variando tanto los parámetros de autocorrelación como la concentración de la distribución Dirichlet.
Esto permite observar el impacto conjunto de la dinámica temporal y la estructura composicional en
el rendimiento de distintos modelos estadísticos aplicados a transformaciones log-ratio.

Cada escenario explora una combinación específica de intensidad de correlación temporal (baja, me-
dia y alta) y estructura de dispersión composicional (alta, media y baja concentración), replicando
condiciones realistas que podrían encontrarse en datos composicionales.

Escenario 1

Este escenario simula composiciones altamente dispersas, generadas a partir de una distribución Diri-
chlet con parámetros bajos 𝛼 = (0.5, 0.5, 0.5), lo que produce una fuerte variabilidad entre componentes.
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A esta variabilidad se le incorpora una dinámica temporal autoregresiva (C-VAR) de orden 1, con dis-
tintos niveles de autocorrelación para cada componente: 0.8, 0.5 y 0.2.

Cuadro 3: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 =
(0.5, 0.5, 0.5) y estructura C-VAR(1) con coeficientes Φ = 0.2, 0.5 y 0.8.

Φ = 0.2 Φ = 0.5 Φ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.347334 0.347334 0.341191 0.341191 0.339508 0.339508

Y 0.345888 0.345888 0.340257 0.340257 0.335651 0.335651

Z 0.354964 0.354964 0.348135 0.348135 0.345376 0.345376

Cuadro 4: AIC por transformación, distribución Dirichlet con 𝛼 = (0.5, 0.5, 0.5) y estructura C-VAR(1)
con coeficientes Φ = 0.2, 0.5 y 0.8.

Transformación Φ = 0.2 Φ = 0.5 Φ = 0.8

ILR -3.34 -4.49 -5.33

ALR -2.24 -3.39 -4.23

De acuerdo con el Cuadro 3, los valores de RMSE por componente (𝑋, 𝑌 , 𝑍) muestran una disminución
sistemática a medida que aumenta Φ (por ejemplo, para 𝑋: 0.347334 → 0.341191 → 0.339508), lo cual
sugiere que, en este diseño, una mayor persistencia temporal permite una reconstrucción/predicción
más precisa de las componentes composicionales. Además, la componente 𝑍 presenta consistentemente
los RMSE más altos, indicando que es la fracción más difícil de recuperar bajo esta configuración.

Un resultado relevante es que los RMSE reportados para ILR y ALR son idénticos en todas las com-
ponentes y niveles de Φ (Cuadro 3), lo que indica que la precisión predictiva en el símplex se mantiene
al cambiar la parametrización log-ratio en este escenario. Sin embargo, al comparar el ajuste con pe-
nalización por complejidad mediante AIC (Cuadro 4), ILR es sistemáticamente preferido, al mostrar
valores más bajos en los tres casos (−3.34, −4.49, −5.33) frente a ALR (−2.24, −3.39, −4.23). En con-
junto, esto implica que, aunque ambas transformaciones ofrecen un desempeño predictivo equivalente
(RMSE), ILR logra un mejor equilibrio entre ajuste y simplicidad del modelo, especialmente cuando
la dependencia temporal aumenta (AIC más favorable al pasar de Φ = 0.2 a Φ = 0.8).
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Escenario 2

Se mantiene la distribución Dirichlet 𝛼 = (0.5, 0.5, 0.5), con alta dispersión composicional, pero se
reemplaza la dependencia autoregresiva por un proceso de medias móviles (C-VMA) de orden 1. Los
coeficientes Θ para las componentes son 0.8, 0.5 y 0.2.

Cuadro 5: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 =
(0.5, 0.5, 0.5) y estructura C-VMA(1) con coeficientes Θ = 0.2, 0.5 y 0.8.

Θ = 0.2 Θ = 0.5 Θ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.348021 0.348021 0.343211 0.343178 0.340386 0.340388

Y 0.349964 0.349964 0.343950 0.343962 0.343537 0.343546

Z 0.349316 0.349316 0.346734 0.346753 0.345764 0.345757

Cuadro 6: AIC por transformación, distribución Dirichlet con 𝛼 = (0.5, 0.5, 0.5) y estructura C-VMA(1)
con coeficientes Θ = 0.2, 0.5 y 0.8.

Transformación Θ = 0.2 Θ = 0.5 Θ = 0.8

ILR -3.32 -4.19 -4.62

ALR -2.22 -3.09 -3.53

Según el Cuadro 5, los RMSE por componente tienden a disminuir conforme aumenta Θ, reflejando
que una mayor contribución del término MA favorece la capacidad del modelo para capturar la es-
tructura temporal en el símplex. Por ejemplo, para 𝑋 el error baja de 0.348021 a 0.343211 y luego a
0.340386; para 𝑍 la reducción también es sostenida (0.349316 → 0.346734 → 0.345764). En cuanto a
la dificultad por componente, con Θ = 0.2 la mayor discrepancia se observa en 𝑌 (0.349964), mientras
que al aumentar Θ la componente 𝑍 pasa a concentrar los RMSE más elevados, sugiriendo que su
reconstrucción sigue siendo relativamente más exigente cuando la dependencia de tipo MA es más
intensa.
Al comparar transformaciones, los RMSE de ILR} y ALR son prácticamente iguales en todos los casos
(las diferencias aparecen sólo a nivel de la cuarta o quinta cifra decimal), por lo que, en términos
predictivos, el desempeño es esencialmente equivalente bajo esta estructura C-VMA(1) (Cuadro 5).
No obstante, el AIC del Cuadro 6 favorece de manera consistente a ILR, con valores más bajos para
Θ = 0.2, 0.5, 0.8 (−3.32, −4.19, −4.62) frente a ALR (−2.22, −3.09, −3.53). En conjunto, este escenario
confirma el mismo patrón: ILR ofrece un mejor compromiso entre ajuste y complejidad, aun cuando
el error predictivo (RMSE) sea prácticamente indistinguible respecto a ALR.
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Escenario 3

Este escenario combina dinámicas autoregresivas y de medias móviles, formando un proceso C-
VARMA(1,1) con parámetros Φ= (0.8, 0.5, 0.2) y Θ = (0.2, 0.5, 0.8), aplicados a composiciones
generadas desde una distribución Dirichlet 𝛼 = (0.5, 0.5, 0.5). Permite observar cómo interactúan la
memoria y el ruido en composiciones dispersas.

Cuadro 7: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 =
(0.5, 0.5, 0.5) y estructura C-VARMA(1,1) con coeficientes Θ = 0.8 − Φ = 0.2, Θ = 0.5 − Φ = 0.5
y Θ = 0.2 − Φ = 0.8.

Θ = 0.8 − Φ = 0.2 Θ = 0.5 − Φ = 0.5 Θ = 0.2 − Φ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.343253 0.342839 0.339871 0.339848 0.338404 0.338382

Y 0.341895 0.342317 0.341272 0.341305 0.339191 0.339232

Z 0.341637 0.341623 0.340438 0.340432 0.340624 0.340598

Cuadro 8: AIC por transformación, distribución Dirichlet con 𝛼 = (0.5, 0.5, 0.5) y estructura C-
VARMA(1,1) con coeficientes Θ = 0.8 − Φ = 0.2, Θ = 0.5 − Φ = 0.5 y Θ = 0.2 − Φ = 0.8.

Transformación Θ = 0.8 − Φ = 0.2 Θ = 0.5 − Φ = 0.5 Θ = 0.2 − Φ = 0.8

ILR -5.17 -5.52 -5.71

ALR -4.07 -4.42 -4.61

De acuerdo con el Cuadro 7, los RMSE tienden a reducirse al pasar desde la combinación con menor
persistencia autorregresiva hacia la de mayor Φ. En particular, la componente 𝑋 muestra una caída
clara del error (≈ 0.3433 → 0.3399 → 0.3384), y la componente 𝑌 también mejora de forma sostenida
(≈ 0.3419 → 0.3413 → 0.3392), lo cual sugiere que, en este escenario, el incremento en la dependencia
de tipo AR aporta una ganancia neta en precisión aun cuando Θ disminuya. Para 𝑍, el error disminuye
de la primera a la segunda combinación (≈ 0.3416 → 0.3404) y luego presenta un leve repunte en la
tercera (≈ 0.3406), aunque se mantiene por debajo del caso Θ = 0.8, Φ = 0.2; esto indica que la
respuesta de 𝑍 es algo más sensible al balance entre los términos AR y MA.

En cuanto a la comparación entre transformaciones, los RMSE de ILR y ALR son muy similares en las
tres combinaciones (diferencias sólo en cifras decimales finales), por lo que el desempeño predictivo es
esencialmente equivalente (Cuadro 7). Sin embargo, el criterio AIC del Cuadro 8 favorece de manera
consistente a ILR, con valores más bajos para Θ = 0.8, Φ = 0.2, Θ = 0.5, Φ = 0.5 y Θ = 0.2, Φ = 0.8
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(−5.17, −5.52, −5.71) frente a ALR (−4.07, −4.42, −4.61). En consecuencia, aunque ambas transforma-
ciones alcanzan prácticamente el mismo nivel de error (RMSE), ILR proporciona un ajuste global más
favorable bajo penalización por complejidad, especialmente en la configuración con mayor persistencia
autorregresiva (Φ = 0.8).

Escenario 4

La distribución Dirichlet se fija en 𝛼 = (1, 1, 1), lo que corresponde a una dispersión composicional
media. Se mantiene una estructura autoregresiva C-VAR(1) con coeficientes (0.8, 0.5, 0.2), permitiendo
comparar los efectos del cambio en la concentración de la composición frente al Escenario 1.

Cuadro 9: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 = (1, 1, 1)
y estructura C-VAR(1) con coeficientes Φ = 0.2, 0.5 y 0.8.

Φ = 0.2 Φ = 0.5 Φ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.384613 0.384613 0.368069 0.368069 0.357556 0.357556

Y 0.376392 0.376392 0.359688 0.359688 0.350051 0.350051

Z 0.381517 0.381517 0.368236 0.368236 0.361980 0.361980

Cuadro 10: AIC por transformación, distribución Dirichlet con 𝛼 = (1, 1, 1) y estructura C-VAR(1)
con coeficientes Φ = 0.2, 0.5 y 0.8.

Transformación Φ = 0.2 Φ = 0.5 Φ = 0.8

ILR -0.6 -1.75 -2.58

ALR 0.5 -0.65 -1.48

Con base en el Cuadro 9, los RMSE por componente (𝑋, 𝑌 , 𝑍) presentan una disminución clara
a medida que aumenta Φ, lo que sugiere que una mayor persistencia autorregresiva contribuye a
estabilizar la trayectoria y mejorar la precisión del ajuste/predicción en el símplex. Por ejemplo, para
𝑋 el RMSE baja de 0.384613 a 0.368069 y luego a 0.357556; para 𝑌 de 0.376392 a 0.359688 y a
0.350051; y para 𝑍 de 0.381517 a 0.368236 y a 0.361980. Además, en la mayoría de los casos la
componente 𝑋 exhibe los mayores errores, indicando que, bajo esta configuración, resulta la parte más
difícil de reconstruir con precisión.
Al comparar estos resultados con los escenarios anteriores (con 𝛼 = (0.5, 0.5, 0.5)), se observa que los
RMSE del presente escenario son más elevados en general (Cuadro 9), evidenciando que el cambio en



26 ESTUDIO DE SIMULACIÓN

la estructura de variabilidad composicional inducida por la Dirichlet también impacta el desempeño
del modelado dinámico, aun manteniendo la misma estructura C-VAR(1). En cuanto a las transforma-
ciones, nuevamente se aprecia que ILR y ALR producen RMSE idénticos en cada componente y nivel
de Φ, lo que indica equivalencia práctica en precisión predictiva bajo este escenario.

No obstante, el AIC del Cuadro 10 favorece sistemáticamente a ILR, con valores más bajos
(−0.6, −1.75, −2.58) frente a ALR (0.5, −0.65, −1.48) para Φ = 0.2, 0.5, 0.8, respectivamente. En
conjunto, el Escenario 4 reafirma el patrón observado: aunque ILR y ALR muestran precisión
comparable (RMSE), ILR ofrece un mejor desempeño global al considerar el criterio de información,
especialmente cuando la dependencia temporal aumenta.

Escenario 5

Con la misma distribución Dirichlet 𝛼 = (1, 1, 1), este escenario implementa un modelo C-VMA(1) con
coeficientes (0.8, 0.5, 0.2). Analiza cómo las fluctuaciones de corto plazo afectan composiciones más
equilibradas en comparación con el Escenario 2.

Cuadro 11: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 = (1, 1, 1)
y estructura C-VMA(1) con coeficientes Θ = 0.2, 0.5 y 0.8.

Θ = 0.2 Θ = 0.5 Θ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.380640 0.380640 0.369610 0.369612 0.363295 0.362984

Y 0.377645 0.377645 0.369348 0.369353 0.370654 0.370793

Z 0.387118 0.387118 0.371822 0.371820 0.365652 0.365888

Cuadro 12: AIC por transformación, distribución Dirichlet con 𝛼 = (1, 1, 1) y estructura C-VMA(1)
con coeficientes Θ = 0.2, 0.5 y 0.8.

Transformación Θ = 0.2 Θ = 0.5 Θ = 0.8

ILR -0.55 -1.42 -1.86

ALR 0.55 -0.32 -0.76

Conforme al Cuadro 11, los RMSE por componente muestran, en general, una reducción cuando Θ
aumenta, lo cual indica que una estructura MA más intensa contribuye a capturar mejor la dependencia
temporal y a disminuir el error de estimación/predicción en el símplex. En particular, la componente
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𝑋 mejora de forma sostenida (0.380640 → 0.369610 → 0.363295), mientras que 𝑍 también presenta
un descenso marcado (0.387118 → 0.371822 → 0.365652). En cambio, para 𝑌 la disminución no es
estrictamente monótona: cae de 0.377645 a 0.369348 cuando Θ pasa a 0.5, pero aumenta ligeramente
en Θ = 0.8 (0.370654), sugiriendo una sensibilidad diferencial de esta componente frente a incrementos
altos del efecto MA.

En cuanto a la comparación entre transformaciones, los RMSE de ILR y ALR son prácticamente
idénticos en todos los niveles de Θ, con diferencias únicamente en los últimos decimales (Cuadro 11).
Esto reafirma que, desde el punto de vista de precisión (RMSE), el rendimiento es esencialmente
equivalente al cambiar la parametrización log-ratio. Sin embargo, el criterio AIC del Cuadro 12 fa-
vorece sistemáticamente a ILR: para Θ = 0.2, 0.5, 0.8 se obtienen −0.55, −1.42, −1.86, frente a ALR
con 0.55, −0.32, −0.76. Por tanto, aunque ambas transformaciones entregan errores comparables, ILR
mantiene un mejor desempeño global al considerar el balance entre ajuste y complejidad del modelo
bajo la dinámica C-VMA(1).

Escenario 6

Este escenario considera una distribución Dirichlet (1, 1, 1) junto con una estructura C-VARMA(1,1)
con parámetros Φ = (0.8, 0.5, 0.2) y Θ = (0.2, 0.5, 0.8). Representa una situación intermedia tanto en
complejidad temporal como en dispersión composicional.

Cuadro 13: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 = (1, 1, 1)
y estructura C-VARMA(1,1) con coeficientes Θ = 0.8−Φ = 0.2, Θ = 0.5−Φ = 0.5 y Θ = 0.2−Φ = 0.8.

Θ = 0.8 − Φ = 0.2 Θ = 0.5 − Φ = 0.5 Θ = 0.2 − Φ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.357649 0.357979 0.350357 0.350409 0.348071 0.348046

Y 0.371843 0.371760 0.370316 0.370327 0.369458 0.369398

Z 0.355584 0.355444 0.352597 0.352501 0.347496 0.347545

Cuadro 14: AIC por transformación, distribución Dirichlet con 𝛼 = (1, 1, 1) y estructura C-
VARMA(1,1) con coeficientes Θ = 0.8 − Φ = 0.2, Θ = 0.5 − Φ = 0.5 y Θ = 0.2 − Φ = 0.8.

Transformación Θ = 0.8 − Φ = 0.2 Θ = 0.5 − Φ = 0.5 Θ = 0.2 − Φ = 0.8

ILR -2.38 -2.74 -2.93

ALR -1.28 -1.64 -1.83
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De acuerdo con el Cuadro 13, los RMSE tienden a disminuir al pasar hacia configuraciones con mayor
persistencia autorregresiva Φ, aun cuando Θ se reduzca. En particular, la componente 𝑋 mejora de
manera sostenida (0.357649 → 0.350357 → 0.348071), y la componente 𝑌 también presenta una
reducción progresiva (0.371843 → 0.370316 → 0.369458). Para 𝑍, el error es menor en la tercera
combinación (Θ = 0.2, Φ = 0.8), al pasar de 0.355584 a 0.352597 y luego a 0.347496, lo que sugiere
que, en este escenario, el incremento de Φ aporta una ganancia clara en precisión para todas las
componentes.

Al comparar transformaciones, los resultados de ILR y ALR son muy similares en términos de RM-
SE, con diferencias pequeñas en los últimos decimales (Cuadro 13), por lo que la precisión predictiva
se mantiene prácticamente inalterada al cambiar la parametrización log-ratio. Sin embargo, el AIC
del Cuadro 14 favorece consistentemente a ILR, con valores más bajos en las tres combinaciones
(−2.38, −2.74, −2.93) frente a ALR (−1.28, −1.64, −1.83). En conjunto, este escenario confirma que,
aunque el desempeño predictivo (RMSE) entre transformaciones es casi equivalente, ILR ofrece un me-
jor balance global entre ajuste y complejidad, especialmente en la combinación con mayor dependencia
AR (Φ = 0.8).

Escenario 7

Aquí se modelan composiciones con baja dispersión, generadas desde una distribución Dirichlet 𝛼 =
(5, 5, 5). Se aplica un proceso C-VAR(1) con coeficientes (0.8, 0.5, 0.2). Este diseño permite observar
cómo la homogeneidad composicional modula los efectos de la autocorrelación en series de tiempo.

Cuadro 15: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 = (5, 5, 5)
y estructura C-VAR(1) con coeficientes Φ = 0.2, 0.5 y 0.8.

Φ = 0.2 Φ = 0.5 Φ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.522103 0.522102 0.505824 0.505824 0.483532 0.483531

Y 0.485132 0.485132 0.475796 0.475796 0.467401 0.467404

Z 0.488645 0.488645 0.466301 0.466301 0.448524 0.448522

Cuadro 16: AIC por transformación, distribución Dirichlet con 𝛼 = (5, 5, 5) y estructura C-VAR(1)
con coeficientes Φ = 0.2, 0.5 y 0.8.

Transformación Φ = 0.2 Φ = 0.5 Φ = 0.8

ILR 5.84 4.68 3.85

ALR 6.94 5.78 4.95
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Según el Cuadro 15, los RMSE por componente presentan una disminución marcada al incrementar
Φ, evidenciando que una mayor persistencia autorregresiva contribuye a mejorar la precisión del ajus-
te/predicción. Por ejemplo, para 𝑋 el error baja de 0.522103 a 0.505824 y luego a 0.483532; para
𝑌 desciende de 0.485132 a 0.475796 y a 0.467401; y para 𝑍 se reduce de 0.488645 a 0.466301 y a
0.448524. En términos comparativos, 𝑋 muestra consistentemente los RMSE más altos, sugiriendo
que esta componente continúa siendo la más difícil de reconstruir bajo la estructura C-VAR(1)} y esta
configuración de variabilidad composicional.

Un aspecto importante de este escenario es que los RMSE son más elevados que en los escenarios con
𝛼 = (0.5, 0.5, 0.5) y 𝛼 = (1, 1, 1) (Cuadro 15), lo que indica que, aun con una Dirichlet más concentrada,
el error global aumenta bajo esta calibración del experimento (posiblemente por la menor amplitud
efectiva de variación y la forma en que el error se está midiendo por componente). En cuanto a la
comparación entre transformaciones, ILR y ALR producen RMSE prácticamente idénticos para cada
componente y nivel de Φ, manteniéndose la equivalencia en precisión predictiva.

Sin embargo, el criterio AIC del Cuadro 16 favorece de forma consistente a ILR, con valores inferiores
en los tres niveles de Φ: 5.84, 4.68, 3.85 frente a 6.94, 5.78, 4.95 para ALR. Además, el AIC mejora
(disminuye) conforme aumenta Φ, reforzando que una mayor dependencia temporal facilita un ajuste
más eficiente del modelo. En conjunto, el Escenario 7 confirma que, aunque el desempeño predictivo
entre ILR y ALR es muy similar en términos de RMSE, ILR mantiene ventaja al considerar criterios
de información.

Escenario 8

Bajo la misma distribución Dirichlet 𝛼 = (5, 5, 5), se implementa un modelo C-VMA(1) con coeficientes
(0.8, 0.5, 0.2). Representa un entorno con perturbaciones breves aplicadas sobre composiciones estables
y poco variables.

Cuadro 17: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 = (5, 5, 5)
y estructura C-VMA(1) con coeficientes Θ = 0.2, 0.5 y 0.8.

Θ = 0.2 Θ = 0.5 Θ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.508688 0.508688 0.495047 0.495200 0.491102 0.490888

Y 0.508390 0.508390 0.488898 0.488774 0.469367 0.469978

Z 0.482718 0.482718 0.468612 0.468394 0.457941 0.457933
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Cuadro 18: AIC por transformación, distribución Dirichlet con 𝛼 = (5, 5, 5) y estructura C-VMA(1)
con coeficientes Θ = 0.2, 0.5 y 0.8.

Transformación Θ = 0.2 Θ = 0.5 Θ = 0.8

ILR 5.93 5.04 4.61

ALR 7.03 6.14 5.70

Los resultados del Cuadro 17 evidencian que, al incrementar Θ, el RMSE tiende a disminuir en las
tres componentes, lo que sugiere que una dependencia MA más marcada ayuda a capturar mejor
la dinámica temporal y reduce el error. Este patrón es especialmente notorio en 𝑌 (0.508390 →
0.488898 → 0.469367) y en 𝑍 (0.482718 → 0.468612 → 0.457941), mientras que en 𝑋 la reducción
es más suave (0.508688 → 0.495047 → 0.491102), manteniéndose como la componente con mayor
dificultad relativa en buena parte de los casos.
Respecto a la elección de transformación, ILR y ALR generan errores muy similares y las diferencias
observadas son pequeñas (Cuadro 17). De hecho, en Θ = 0.8 se aprecia un leve intercambio: ALR
resulta ligeramente menor en 𝑋 y 𝑍, mientras que ILR es apenas menor en 𝑌 , sin que esto implique
cambios sustantivos en el desempeño predictivo.
En contraste, al evaluar el ajuste penalizado por complejidad mediante AIC (Cuadro 18), se man-
tiene una preferencia clara por ILR, con valores consistentemente más bajos para Θ = 0.2, 0.5, 0.8
(5.93, 5.04, 4.61) frente a ALR (7.03, 6.14, 5.70). Asimismo, el AIC mejora al aumentar Θ, lo que re-
fuerza la idea de que una mayor dependencia MA se traduce en modelos más eficientes en términos de
ajuste global.

Escenario 9

Finalmente, se simulan composiciones con baja dispersión composicional 𝛼 = (5, 5, 5), bajo un modelo
ARMA(1,1) con parámetros Φ = (0.8, 0.5, 0.2) y Θ =(0.2, 0.5, 0.8). Este escenario refleja una dinámica
compleja en condiciones composicionales altamente homogéneas.

Cuadro 19: Medidas de error RMSE por componente (X, Y, Z), distribución Dirichlet con 𝛼 = (5, 5, 5)
y estructura C-VARMA(1,1) con coeficientes Θ = 0.8−Φ = 0.2, Θ = 0.5−Φ = 0.5 y Θ = 0.2−Φ = 0.8.

Θ = 0.8 − Φ = 0.2 Θ = 0.5 − Φ = 0.5 Θ = 0.2 − Φ = 0.8

Componente ILR ALR ILR ALR ILR ALR

X 0.462786 0.463182 0.467962 0.467595 0.468831 0.469085

Y 0.444210 0.443500 0.433767 0.434693 0.434485 0.434853

Z 0.489331 0.489176 0.485013 0.484263 0.478125 0.477636
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Cuadro 20: AIC por transformación, distribución Dirichlet con 𝛼 = (5, 5, 5) y estructura C-
VARMA(1,1) con coeficientes Θ = 0.8 − Φ = 0.2, Θ = 0.5 − Φ = 0.5 y Θ = 0.2 − Φ = 0.8.

Transformación Θ = 0.8 − Φ = 0.2 Θ = 0.5 − Φ = 0.5 Θ = 0.2 − Φ = 0.8

ILR 4.08 3.7 3.51

ALR 5.18 4.8 4.60

De acuerdo con el Cuadro 19, el patrón de error no es completamente uniforme entre componen-
tes: mientras que 𝑍 mejora de forma clara al desplazarse hacia mayor persistencia autorregresiva
(0.489331 → 0.485013 → 0.478125 en ILR), la componente 𝑋 muestra un leve incremento del RMSE
al pasar de (0.8, 0.2) hacia (0.2, 0.8) (0.462786 → 0.467962 → 0.468831 en ILR). Para 𝑌 , el error dis-
minuye notablemente en la combinación intermedia (Θ, Φ) = (0.5, 0.5) (0.444210 → 0.433767) y luego
presenta un aumento marginal en (0.2, 0.8) (0.434485), lo que sugiere que, para esta componente, el
equilibrio entre términos AR y MA puede resultar más favorable que un predominio marcado de Φ.

Al comparar transformaciones, ILR y ALR exhiben RMSE muy cercanos en las tres combinaciones
(Cuadro 19), sin diferencias que cambien la lectura sustantiva del desempeño predictivo. No obstante,
el criterio AIC del Cuadro 20 favorece consistentemente a ILR, con valores inferiores en todos los
casos (4.08, 3.70, 3.51) frente a ALR (5.18, 4.80, 4.60). Además, el AIC mejora al avanzar hacia mayor
Φ, lo que respalda que, en términos de ajuste penalizado, la configuración con mayor persistencia
autorregresiva resulta más eficiente bajo esta estructura C-VARMA(1,1).

Resultados clave

En conjunto, los nueve escenarios muestran que el incremento de la dependencia temporal tiende a
mejorar el desempeño: tanto en estructuras C-VAR(1) como C-VMA(1), al aumentar Φ o Θ se observa,
en general, una reducción del RMSE y una mejora del AIC (Cuadros 3-6, 9-12 y 15-18). En los
escenarios mixtos C-VARMA(1,1) (Cuadros 7-8, 13-14 y 19-20), el desempeño suele ser competitivo y
frecuentemente superior al de los modelos puros; en particular, las combinaciones con mayor Φ tienden
a presentar mejores criterios de información, aunque el efecto en RMSE puede variar por componente
(como se aprecia en el Escenario 9 para 𝑋 y 𝑌 ).

Respecto a la estructura de dispersión composicional inducida por la Dirichlet, se observa un cambio
sistemático en los niveles de error: al pasar de 𝛼 = (0.5, 0.5, 0.5) a 𝛼 = (1, 1, 1) y luego a 𝛼 = (5, 5, 5),
los RMSE reportados tienden a ser mayores en los escenarios con 𝛼 más alto (por ejemplo, los escena-
rios 7-9 exhiben RMSE claramente superiores a 1-3), lo que indica que la variabilidad composicional
asociada a cada configuración de 𝛼 influye de manera directa en la dificultad del ajuste y la predicción.
Paralelamente, el AIC también refleja este patrón: los escenarios con 𝛼 = (0.5, 0.5, 0.5) presentan valo-
res más favorables (más bajos) que los escenarios con 𝛼 = (1, 1, 1), y estos a su vez son más favorables
que los de 𝛼 = (5, 5, 5).
Finalmente, al comparar ILR y ALR, se mantiene una regularidad importante: los RMSE son idénticos
o prácticamente indistinguibles en todos los escenarios y configuraciones, lo que sugiere que la precisión
predictiva en el símplex es robusta a la elección de la transformación bajo este diseño de simulación.
Sin embargo, el AIC favorece de manera consistente a ILR en los nueve escenarios, indicando un mejor
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balance entre calidad de ajuste y complejidad del modelo. En síntesis, los resultados apoyan que (i)
mayor dependencia temporal suele mejorar el desempeño, (ii) las estructuras C-VARMA tienden a
ofrecer ventajas frente a modelos puramente AR o MA, y (iii) aunque ILR y ALR rinden de forma
muy similar en RMSE, ILR es preferible cuando se prioriza el ajuste penalizado (AIC).



Estudio de Caso Real

Análisis Exploratorio

Este apartado presenta un análisis descriptivo de la estructura de la Formación Bruta de Capital Fijo
(FBCF) en España durante el periodo 1850–2023. Para ello, se utilizan las series históricas elaboradas
por Prados de la Escosura (2017), que permiten examinar la evolución de los principales componentes
de la inversión: viviendas, maquinaria y equipos, equipos de transporte y otras construcciones.

Dado que estos datos representan partes de un todo es decir, proporciones que componen el 100% de
la inversión total en cada año se adopta un enfoque basado en el análisis de datos composicionales
(CoDa). Esta metodología resulta especialmente adecuada para este tipo de información, ya que evita
errores comunes derivados de aplicar técnicas estadísticas tradicionales a datos con restricción de suma
constante, como las correlaciones espurias.

Cada observación anual puede interpretarse como una composición C𝑡 de 𝐷 = 4 partes, que describen
cómo se distribuye la inversión fija bruta en ese año. El vector composicional para un año 𝑡 se expresa
como:

C𝑡 = (𝑐1𝑡, 𝑐2𝑡, 𝑐3𝑡, 𝑐4𝑡) , donde
4

∑
𝑖=1

𝑐𝑖𝑡 = 1. (44)

Características de los datos

Periodicidad: Datos con frecuencia anual.

Cobertura temporal: Desde 1850 hasta 2023.

Componentes: Viviendas, maquinaria y equipos, equipos de transporte y otras construcciones,
expresados como porcentajes que suman 100 % cada año.

Formato composicional: Cada observación es una composición cerrada adecuada para análisis
CoDa.

Calidad y completitud: La serie histórica no presenta datos faltantes ni inconsistencias docu-
mentadas, lo que garantiza un análisis continuo y fiable.

Fuente de los datos:
Prados de la Escosura, Leandro (2017). La economía española en perspectiva histórica. Fundación
Rafael del Pino.
Archivo Excel: Hoja “Cuadro 8”. Disponible en: https://frdelpino.es/investigacion/economia-
espanola/economia-espanola-en-perspectiva-historica/
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Descarga directa: Hoja “Cuadro 8” https://frdelpino.es/investigacion/wp-content/uploads/2025/01/
Contabilidad_Nacional_Historica_de_Espana_1850-2023_frdp.01.2025.xlsx

El objetivo central es obtener pronósticos para una serie de tiempo de naturaleza composicional. Su
análisis estadístico requiere técnicas especializadas que respeten su estructura inherente. Para ello, se
ha utilizado el enfoque VARIMA (Vector Autoregressive Integrated Moving Average), el cual permite
modelar dinámicas multivariantes.

Viviendas

Otras construcciones

Maquinaria y equipo

Equipo de transporte

1850 1900 1950 2000

0.0
0.1
0.2
0.3

0.1
0.2
0.3
0.4

0.2

0.3

0.4

0.2
0.3
0.4
0.5

Figura 2: Evolución temporal de viviendas, maquinaria y equipos,equipos de transporte y otras cons-
trucciones

El procedimiento de pronóstico se ha realizado separando el conjunto de datos original en dos subcon-
juntos: uno de entrenamiento y otro de prueba. Esta segmentación es crucial para garantizar la validez
del proceso de evaluación del modelo. Una vez definidos los subconjuntos, se aplican las transforma-
ciones necesarias para adecuar los datos composicionales al análisis multivariado. En primer lugar, los
datos originales son convertidos en una serie temporal a través de la función ts() de R, establecien-
do como punto de inicio el año 1850 y una frecuencia anual (frequency = 1). Esta transformación
es útil para visualizar la evolución temporal general del conjunto completo de datos, aunque no es
adecuada para el análisis estadístico directo debido a la estructura composicional. Por ello, el siguiente
paso consiste en aplicar la transformación ilr (isometric log-ratio), que convierte las composiciones en
coordenadas euclidianas sin perder información relativa.

La Figura 2 muestra la evolución temporal de la composición de la Formación Bruta de Capital Fijo
(FBCF) en España desde 1850 hasta la actualidad, desagregada en cuatro componentes principales:
viviendas, otras construcciones, maquinaria y equipo, y equipo de transporte. Se observa que el com-
ponente de viviendas presenta una tendencia general decreciente en su participación relativa desde
mediados del siglo XIX, con algunos repuntes en las últimas décadas.

El componente de otras construcciones ha mantenido una participación relativamente estable, aun-
que con una ligera tendencia descendente en los últimos años. En contraste, la participación de ma-
quinaria y equipo muestra un crecimiento sostenido a lo largo del tiempo, reflejando un proceso
de industrialización y modernización de la economía. Por su parte, el equipo de transporte experi-
menta una alta volatilidad, especialmente durante las primeras décadas del siglo XX, y se estabiliza
posteriormente en niveles intermedios.

 https://frdelpino.es/investigacion/wp-content/uploads/2025/01/Contabilidad_Nacional_Historica_de_Espana_1850-2023_frdp.01.2025.xlsx
 https://frdelpino.es/investigacion/wp-content/uploads/2025/01/Contabilidad_Nacional_Historica_de_Espana_1850-2023_frdp.01.2025.xlsx
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Figura 3: Evolución temporal de la transformación ilr

La Figura 3 presenta la evolución temporal de las coordenadas obtenidas tras aplicar la transformación
isométrica log-ratio (ilr) al conjunto de entrenamiento. Cada una de las series representadas (V1,
V2 y V3) corresponde a una combinación ortogonal de los componentes composicionales originales,
proyectada en un espacio euclídeo. Estas nuevas variables no tienen una interpretación directa en
términos económicos individuales, pero permiten modelar las relaciones relativas entre los componentes
respetando la estructura composicional de los datos.
Se observan dinámicas diferenciadas en cada coordenada ilr, lo que sugiere patrones subyacentes com-
plejos en la evolución relativa de los componentes de la FBCF. En particular, destacan ciertos cambios
bruscos en las coordenadas V1 y V3, especialmente alrededor de los años 1936–1940 y 1950, posi-
blemente asociados a eventos históricos relevantes que afectaron la estructura de inversión del país.
Estas series transformadas constituyen la base para el ajuste del modelo VARIMA, ya que presentan
propiedades estadísticas más adecuadas para este tipo de modelado multivariado.

Ajuste del Modelo y Validación Estadística

Una vez transformada la serie composicional mediante log-ratios isométricos (ilr), el siguiente paso en
el análisis es la identificación del modelo de series temporales multivariado adecuado para describir la
dinámica de las coordenadas transformadas. Para ello, se sigue el procedimiento clásico en el análisis de
series de tiempo, adaptado al contexto multivariado, comenzando por el estudio de la estacionariedad
de las series transformadas.
En esta etapa, se aplica la prueba de raíz unitaria Dickey-Fuller (ADF) a cada una de las coordenadas
resultantes de la transformación ilr. Esta prueba permite determinar si las series presentan una raíz
unitaria, es decir, si son no estacionarias en nivel. La estacionariedad es una condición fundamental
para aplicar modelos VARIMA, ya que garantiza que las propiedades estadísticas de las series como la
media y la varianza sean constantes a lo largo del tiempo. En caso de que alguna coordenada no sea
estacionaria, se procederá a su diferenciación hasta alcanzar la estacionariedad.
El Cuadro 21 presenta los resultados de la prueba de raíz unitaria Dickey-Fuller (ADF) aplicada a las
tres coordenadas resultantes de la transformación ilr. Esta prueba permite evaluar la estacionariedad
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de cada serie mediante el contraste de hipótesis nula de presencia de raíz unitaria (no estacionariedad).
Como se puede observar, las dos primeras coordenadas presentan valores-p superiores al umbral del
5%, por lo que no se rechaza la hipótesis nula y, en consecuencia, se concluye que estas series no son
estacionarias. En cambio, la tercera coordenada muestra un valor-p de 0.01, lo que indica evidencia
estadística suficiente para rechazar la hipótesis nula y considerar esta serie como estacionaria.

Cuadro 21: Resultados del Test ADF

Statistic P_value Stationary

-3.374 0.0613 No

-2.173 0.5043 No

-4.076 0.0100 Sí

Dado que la estacionariedad es una condición fundamental para ajustar modelos VARIMA, se procede-
rá a diferenciar aquellas coordenadas que no cumplen con este requisito. Este proceso de diferenciación
transformará las series no estacionarias en series estacionarias en primera diferencia, garantizando así
que todas las coordenadas cumplan con los supuestos del modelo. Una vez realizadas las transfor-
maciones necesarias, se continuará con la identificación y estimación del modelo VARIMA sobre las
coordenadas estacionarias.

Cuadro 22: Resultados del Test ADF

Statistic P_value Stationary

-4.427 0.01 Sí

-6.760 0.01 Sí

-8.024 0.01 Sí

Autocorrelación de las variables transformadas:

La Figura 4 muestra las funciones de autocorrelación (ACF) y autocorrelación parcial (PACF) de las
tres coordenadas 𝑉 1, 𝑉 2 y 𝑉 3 obtenidas tras aplicar la transformación isométrica log-ratio (ilr) a la
serie composicional y, posteriormente, la diferenciación con el objetivo de favorecer la estacionariedad.

En la primera coordenada (V1) no se aprecia una señal dominante concentrada exclusivamente en el
rezago 1; más bien, los primeros rezagos presentan valores relativamente pequeños alrededor de cero.
Sin embargo, destaca un pico negativo aislado alrededor del rezago 10–11, visible en la ACF y acom-
pañado por una señal también apreciable en la PACF. Este patrón puede interpretarse como indicio
de dependencia a un horizonte más largo, compatible con un comportamiento recurrente o con algún
tipo de periodicidad de media frecuencia. Aun así, al tratarse de una señal puntual, su lectura debe
realizarse con cautela, ya que en muestras finitas (y especialmente tras diferenciar) pueden aparecer
picos aislados por variabilidad muestral. Por ello, más que fijar directamente un rezago autorregresivo
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específico, resulta preferible considerarlo como una guía para incluir en el conjunto de modelos can-
didatos especificaciones capaces de capturar dependencia a ese horizonte, verificando su pertinencia
en etapas posteriores mediante criterios de información y diagnósticos de residuos. Para la segunda
coordenada (V2), el comportamiento es relativamente estable en los primeros rezagos, sin una estruc-
tura claramente persistente de corto plazo. En general, la ACF oscila alrededor de cero y la PACF
no exhibe un corte nítido en rezagos bajos que permita concluir de forma inequívoca una dinámica
AR(1) simple. Por su parte, la tercera coordenada (V3) presenta el patrón más distintivo. En la ACF
se observan varios rezagos cortos (aproximadamente entre 1 y 3) con autocorrelaciones negativas que
sobrepasan las bandas de significancia, y la PACF refuerza esta evidencia al mostrar picos negativos
pronunciados también en los primeros rezagos.

En conjunto, estos resultados respaldan la necesidad de considerar una estructura VARIMA que in-
corpore distintos niveles de memoria temporal para cada componente transformada. La primera com-
ponente podría requerir un rezago largo , mientras que la segunda puede ser representada por una
estructura más parsimoniosa , y la tercera justificaría un rezago intermedio. Así, una especificación ini-
cial con orden autorregresivo máximo igual a 10 permite capturar toda la dinámica relevante detectada
en las funciones ACF y PACF, siendo recomendable posteriormente contrastar diferentes configuracio-
nes mediante criterios de información como el AIC o BIC.

V1 V2 V3
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pacf
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Figura 4: ACF y PACF de la variables transformadas

Para determinar la estructura óptima del modelo, se aplicó a la serie transformada la función VARMA()
del paquete MTS en R, la cual implementa un procedimiento de búsqueda automática basado en
el criterio de información de Akaike (AIC). Esta función evalúa diferentes combinaciones posibles de
órdenes (𝑝, 𝑑, 𝑞), donde 𝑝 representa el orden autorregresivo, 𝑑 el orden de diferenciación y 𝑞 el orden
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del promedio móvil, seleccionando aquella configuración que minimiza el AIC y, por tanto, garantiza
un equilibrio adecuado entre calidad del ajuste y complejidad del modelo. Como resultado, se identificó
inicialmente un modelo VARIMA(1,1,0) como óptimo bajo este criterio.

No obstante, al evaluar los residuos del modelo mediante las funciones de autocorrelación (ACF) y
autocorrelación parcial (PACF), se evidenció la presencia de autocorrelación significativa, lo cual viola
uno de los supuestos fundamentales del modelo: la independencia de los errores. Ante esta limitación,
se decidió ampliar el análisis considerando modelos con mayor número de retardos autorregresivos.
Se evaluaron modelos con hasta 10 rezagos, seleccionando finalmente el modelo VARIMA(10,1,0), el
cual no solo logró reducir el AIC, sino que también cumplió con los supuestos de independencia en los
residuos, ofreciendo un ajuste más robusto y consistente con la estructura temporal de las componentes
transformadas.

Estimaciones del Modelo

El modelo VARIMA(10,1,0) fue ajustado sobre las coordenadas ilr diferenciadas. La expresión final del
modelo estimado es:

Δz𝑡 = 𝜇 +
10

∑
𝑖=1

Φ𝑖Δz𝑡−𝑖 + 𝜀𝑡 (45)

con:

𝜇 =

⎡
⎢
⎢
⎢
⎢
⎣

0,00097

0,02281

−0,00043

⎤
⎥
⎥
⎥
⎥
⎦

Φ1 =

⎡
⎢
⎢
⎢
⎢
⎣

−0,1418 0,0897 0,0138

0,1247 0,0125 0,0079

−0,2235 −0,0233 −0,3641

⎤
⎥
⎥
⎥
⎥
⎦

Φ2 =

⎡
⎢
⎢
⎢
⎢
⎣

0,0773 −0,0005 −0,0051

0,0809 −0,0959 −0,0586

0,3958 −0,2488 −0,2332

⎤
⎥
⎥
⎥
⎥
⎦

Φ3 =

⎡
⎢
⎢
⎢
⎢
⎣

0,0352 −0,0508 0,0085

0,1772 −0,1742 0,0107

0,2949 0,0981 −0,4962

⎤
⎥
⎥
⎥
⎥
⎦

Φ4 =

⎡
⎢
⎢
⎢
⎢
⎣

0,0653 −0,0051 0,0576

0,0687 −0,1951 0,0108

−0,8617 0,3390 −0,1808

⎤
⎥
⎥
⎥
⎥
⎦

Φ5 =

⎡
⎢
⎢
⎢
⎢
⎣

0,1123 −0,0679 0,0439

0,1362 0,0096 −0,0402

0,1402 −0,1209 −0,2591

⎤
⎥
⎥
⎥
⎥
⎦

Φ6 =

⎡
⎢
⎢
⎢
⎢
⎣

0,0349 0,1438 −0,0215

0,1223 −0,2257 0,0248

−0,1418 −0,1304 −0,0466

⎤
⎥
⎥
⎥
⎥
⎦

Φ7 =

⎡
⎢
⎢
⎢
⎢
⎣

−0,0377 0,0404 −0,0022

−0,0532 0,0073 −0,0009

−0,2853 −0,7584 −0,0351

⎤
⎥
⎥
⎥
⎥
⎦

Φ8 =

⎡
⎢
⎢
⎢
⎢
⎣

−0,1214 0,0527 0,0008

−0,1828 0,0743 −0,0737

0,0170 0,2965 −0,0717

⎤
⎥
⎥
⎥
⎥
⎦
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Φ9 =

⎡
⎢
⎢
⎢
⎢
⎣

−0,0587 −0,0900 −0,0075

−0,0365 −0,1871 −0,0233

0,3979 −0,5850 0,0065

⎤
⎥
⎥
⎥
⎥
⎦

Φ10 =

⎡
⎢
⎢
⎢
⎢
⎣

−0,3869 0,0913 0,0170

−0,1452 −0,0360 −0,0145

−0,0092 −0,0039 −0,1066

⎤
⎥
⎥
⎥
⎥
⎦

Σ =

⎡
⎢
⎢
⎢
⎢
⎣

0,0067 0,0033 −0,0012

0,0033 0,0112 −0,0001

−0,0012 −0,0001 0,1026

⎤
⎥
⎥
⎥
⎥
⎦

Varios coeficientes del modelo resultaron estadísticamente significativos, destacándose algunos términos
autorregresivos diagonales como Φ(10)

11 = −0,3869 y efectos cruzados como Φ(4)
31 = −0,8617, lo que

evidencia una fuerte interdependencia entre las componentes de la serie transformada.

El ajuste global del modelo se respalda en los siguientes valores de los criterios de información:

AIC = −10,788, BIC = −9,023

Estos valores indican un adecuado balance entre calidad de ajuste y parquedad del modelo.

La estimación del modelo VARIMA(10,1,0) ha capturado de forma eficaz la estructura temporal sub-
yacente en las coordenadas composicionales ilr diferenciadas. En análisis posteriores, se procederá a la
transformación inversa ilr−1 para interpretar las predicciones en el espacio composicional original.

En el Cuadro 23 se presentan los resultados de la prueba de normalidad de Shapiro–Wilk aplicada a
las tres variables del modelo. Para las variables 1 y 3 se obtienen valores 𝑝 inferiores a 0.05, por lo que
se rechaza la hipótesis nula de normalidad en esas componentes. En cambio, para la variable 2 el valor
𝑝 = 0.1180 es mayor que 0.05, de modo que no se rechaza la normalidad según esta prueba.

No obstante, es importante destacar que en modelos multivariantes como el C-VARIMA, el supuesto
de normalidad no es estrictamente necesario para que el modelo sea válido. Aunque la normalidad
puede facilitar algunas inferencias, muchos procedimientos de estimación y diagnóstico son robustos
frente a desviaciones de este supuesto.

Cuadro 23: Resultados de la prueba de normalidad Shapiro-Wilk

Variable Estadistico p_value

1 0.9197432 0.0000002

2 0.9857572 0.1180248

3 0.9415195 0.0000057
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Autocorrelación de los residuos:

V1 V2 V3

acf

pacf

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figura 5: ACF y PACF de los residuos

Una vez estimado el modelo VARIMA(10,1,0) sobre las componentes transformadas mediante la trans-
formación isométrica log-ratio (ilr), se procede a evaluar la validez del ajuste a través del análisis de
los residuos. La Figura 5 presenta las funciones de autocorrelación (ACF) y autocorrelación parcial
(PACF) de los residuos correspondientes a las tres componentes del modelo.
En términos generales, se observa que, para las tres series residuales (V1, V2 y V3), las autocorrelacio-
nes estimadas se encuentran dentro de los límites de confianza del 95% para la mayoría de los rezagos,
lo cual es indicativo de que los residuos se comportan de manera aproximada a ruido blanco. Especí-
ficamente, en la componente V1, la ACF muestra una caída abrupta después del primer rezago, sin
picos significativos posteriores, mientras que la PACF se mantiene dentro de los límites, sin evidencia
de autocorrelación directa. Este comportamiento sugiere que no persiste estructura serial relevante no
capturada por el modelo para esta componente.
En la componente V2 se aprecia un patrón similar: las funciones ACF y PACF no presentan valores
significativos más allá del rezago cero, lo que indica que la dinámica temporal de esta variable fue
adecuadamente modelada y no se detectan residuos autocorrelados sistemáticos. Finalmente, en la
componente V3, si bien se identifica un pequeño incremento en los residuos a partir del rezago 15 en la
ACF, dicho valor no excede el umbral de significancia estadística, por lo que no compromete la validez
global del modelo. La PACF correspondiente a esta componente tampoco revela valores significativos,
lo cual refuerza la hipótesis de que los residuos son esencialmente aleatorios.
En conjunto, estos resultados respaldan la idoneidad del modelo VARIMA(10,1,0) propuesto, en tanto
que los residuos no presentan evidencia de autocorrelación serial remanente. Este comportamiento
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es fundamental para asumir la validez de las inferencias obtenidas del modelo, dado que la ausencia
de estructura temporal en los residuos garantiza que la información dinámica de las series ha sido
capturada de forma adecuada mediante los términos autorregresivos y la diferenciación aplicada.

Predicciones

En esta sección se presentan las predicciones generadas por el modelo C-VARIMA(10,1,0), estimado
previamente sobre la serie composicional transformada. A partir de las estimaciones obtenidas, se reali-
zan pronósticos multivariados que permiten evaluar la capacidad del modelo para replicar la dinámica
observada en los datos.

En la visualización se muestran las trayectorias de predicción junto con los valores reales de la serie,
lo que permite apreciar de manera general el ajuste del modelo a lo largo del tiempo.

Equipo de transporte

Maquinaria y equipo

Otras construcciones

Viviendas

1850 1900 1950 2000

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

Histórico Valor pronosticado Valor real 

Figura 6: Evolución temporal y predicciones de la variables: Equipo de transporte, Maquinaria y equipo,
Otras construcciones y Viviendas

Para una mejor evaluación visual del desempeño reciente del modelo, se presenta un segundo gráfi-
co centrado únicamente en los últimos 20 valores observados, donde se puede distinguir con mayor
claridad la proximidad entre las predicciones y los datos reales. Esta visualización detallada permite
constatar que el modelo logra capturar adecuadamente la estructura temporal de las componentes
composicionales, manteniendo un comportamiento coherente en el corto plazo.
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Equipo de transporte

Maquinaria y equipo

Otras construcciones
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Figura 7: Evolución temporal y predicciones de la variables: Equipo de transporte, Maquinaria y equipo,
Otras construcciones y Viviendas (Las últimas 20 observaciones)

El modelo C-VARIMA(10,1,0) muestra un desempeño razonable en la predicción. Tanto el MAE (Error
Absoluto Medio) como el RMSE (Raíz del Error Cuadrático Medio) son bajos, lo que indica precisión
en las predicciones absolutas. El MAE mide el promedio de las diferencias absolutas entre valores
observados y predichos, mientras que el RMSE penaliza de manera más severa los errores grandes, re-
flejando así la presencia o ausencia de errores extremos en las predicciones. Además, el MAPE (Error
Porcentual Absoluto Medio), que permite interpretar el error en términos relativos o porcentuales,
también se mantiene en niveles aceptables. En general, un MAPE menor al 10% se considera exce-
lente, entre 10% y 20% bueno, y entre 20% y 50% aceptable. Estos valores bajos en las métricas de
error respaldan la elección del modelo como una herramienta adecuada para representar y predecir la
dinámica temporal de los datos composicionales analizados.

Cuadro 24: Resultados de métricas para evaluar la precisión de
modelo

MAE RMSE MAPE

0.034 0.0371 15.16



Conclusión

Los resultados obtenidos a partir del estudio de simulación y la aplicación empírica permiten extraer
conclusiones significativas en cuanto al comportamiento y desempeño de los modelos composicionales
de series temporales, particularmente el modelo C-VARIMA bajo transformaciones log-ratio.

En el estudio de simulación, se evaluaron nueve escenarios que combinaban distintas configuraciones
de autocorrelación y niveles de concentración de la distribución Dirichlet. A lo largo de todos los esce-
narios, se observó que tanto la transformación log-ratio isométrica (ilr) como la aditiva (alr) arrojaron
resultados muy similares en términos de error cuadrático medio (RMSE), lo que indica una capaci-
dad comparable para predecir la dinámica de los datos composicionales. No obstante, el análisis del
criterio de información de Akaike (AIC) reveló una ventaja sistemática a favor de la transformación
ilr, al presentar valores consistentemente más bajos, lo cual implica una mejor parsimonia en el ajuste
del modelo. Esto, sumado a sus propiedades geométricas como la ortogonalidad de las coordenadas y
la preservación de distancias euclídeas refuerza la idoneidad de la transformación ilr para contextos
multivariantes composicionales.

En el caso práctico, aplicado a la serie histórica de la Formación Bruta de Capital Fijo (FBCF) en
España (1850–2023), el modelo C-VARIMA(10,1,0) ajustado sobre coordenadas ilr permitió capturar
adecuadamente la evolución temporal conjunta de los componentes composicionales. La estructura
de autocorrelación observada en la ACF y PACF justificó el uso de un modelo autorregresivo de
primer orden, mientras que las pruebas ADF confirmaron la necesidad de diferenciación para alcanzar
la estacionariedad. A pesar de que los residuos no cumplieron el supuesto estricto de normalidad, el
modelo mostró un desempeño predictivo razonable, confirmado visualmente mediante la cercanía entre
las trayectorias observadas y las predichas, y cuantitativamente a través de métricas como RMSE, MAE
y MAPE.

En conjunto, tanto la simulación como la aplicación empírica validan la capacidad del modelo C-
VARIMA transformado con coordenadas ilr para modelar y predecir con eficacia datos composicionales
temporales, respetando su estructura inherente.
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Código de R

############################################################
## 0. LIBRERÍAS
############################################################
library(MCMCpack)
library(compositions)
library(MTS)
library(dplyr)
library(tidyr)
library(tibble)

############################################################
## 1. FUNCIÓN DE SIMULACIÓN:
## C-VARMA(p,q) con innovaciones W_t ~ Dirichlet(1,1,1)
############################################################

varima_dirichlet_sim <- function(model, n,
alpha_w = c(1, 1, 1), # RUIDO BLANCO W_t (FIJO)
n.start = 100,
seed = NULL) {

if (!is.null(seed)) set.seed(seed)
if (!is.list(model)) stop("'model' must be a list")

# Determinar k, p y q a partir de ar/ma
if (!is.null(model$ar)) {
k <- nrow(model$ar[, , 1])
p <- dim(model$ar)[3]

} else {
k <- nrow(model$ma[, , 1])
p <- 0

}
if (!is.null(model$ma)) {
q <- dim(model$ma)[3]

} else {
q <- 0

}
d <- if (!is.null(model$order)) model$order[2] else 0

total_n <- n + n.start

44
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# W_t ~ Dirichlet(alpha_w) => ruido blanco composicional
innov <- t(MCMCpack::rdirichlet(total_n, alpha_w)) # matriz k x total_n

# Serie X_t
X <- matrix(0, nrow = k, ncol = total_n)
epsilon <- innov # para parte MA

# Estado inicial: partimos de la primera innovación
X[, 1] <- innov[, 1]

for (t in (max(p, q) + 1):total_n) {
AR_part <- rep(0, k)
MA_part <- rep(0, k)

if (p > 0) {
for (lag in 1:p) {
AR_part <- AR_part + model$ar[, , lag] %*% X[, t - lag]

}
}
if (q > 0) {
for (lag in 1:q) {
MA_part <- MA_part + model$ma[, , lag] %*% epsilon[, t - lag]

}
}

X_temp <- AR_part + MA_part + innov[, t]
X[, t] <- X_temp / sum(X_temp) # cierre composicional

}

# Diferenciación inversa si d > 0 (aquí d = 0)
if (d > 0) {
for (i in 1:k) {
dif <- diffinv(X[i, ], differences = d)
X[i, ] <- dif[(d + 1):length(dif)]

}
}

# Serie final: filas = tiempo, columnas = componentes
ts(t(X[, (n.start + 1):(n.start + n)]))

}

############################################################
## 2. POTENCIA COMPOSICIONAL PARA ESCENARIOS "alpha^X"
## x -> C(x^r): cambia la concentración de X_t
############################################################

ajustar_concentracion <- function(X_mat, r) {
# X_mat: matriz T x D con composiciones (filas suman 1)
X_pow <- X_mat^r
X_pow / rowSums(X_pow)

}
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############################################################
## 3. AJUSTE VARMA(p,q) EN ILR Y ALR + MÉTRICAS
## (RMSE, MAE, ME, AIC, BIC)
############################################################

ajustar_y_metricas <- function(series_list, n_obs = 10,
p_order, q_order) {

resultados <- list()
n_series <- length(series_list)

for (i in seq_len(n_series)) {
serie_i <- series_list[[i]]
n_total <- nrow(serie_i)

X_train <- serie_i[1:(n_total - n_obs), ]
X_test <- serie_i[(n_total - n_obs + 1):n_total, ]

## ---------- ILR ----------
ilr_train <- ilr(X_train)
model_ilr <- tryCatch(
VARMA(ilr_train, p = p_order, q = q_order),
error = function(e) NULL

)

if (!is.null(model_ilr)) {
pred_ilr <- VARMApred(model_ilr, h = n_obs)$pred
pred_ilr_símplex <- ilrInv(pred_ilr)
err_ilr <- X_test - pred_ilr_símplex

RMSE_ILR <- apply(err_ilr^2, 2, function(x) sqrt(mean(x)))
MAE_ILR <- apply(abs(err_ilr), 2, mean)
ME_ILR <- apply(err_ilr, 2, mean)

AIC_ILR <- model_ilr$aic
BIC_ILR <- model_ilr$bic

} else {
RMSE_ILR <- rep(NA, 3)
MAE_ILR <- rep(NA, 3)
ME_ILR <- rep(NA, 3)
AIC_ILR <- NA
BIC_ILR <- NA

}

## ---------- ALR ----------
alr_train <- alr(X_train)
model_alr <- tryCatch(
VARMA(alr_train, p = p_order, q = q_order),
error = function(e) NULL

)

if (!is.null(model_alr)) {
pred_alr <- VARMApred(model_alr, h = n_obs)$pred
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pred_alr_símplex <- alrInv(pred_alr)
err_alr <- X_test - pred_alr_símplex

RMSE_ALR <- apply(err_alr^2, 2, function(x) sqrt(mean(x)))
MAE_ALR <- apply(abs(err_alr), 2, mean)
ME_ALR <- apply(err_alr, 2, mean)

AIC_ALR <- model_alr$aic
BIC_ALR <- model_alr$bic

} else {
RMSE_ALR <- rep(NA, 3)
MAE_ALR <- rep(NA, 3)
ME_ALR <- rep(NA, 3)
AIC_ALR <- NA
BIC_ALR <- NA

}

componentes <- colnames(serie_i)

for (j in seq_along(componentes)) {
resultados[[length(resultados) + 1]] <- tibble(
serie_id = i,
componente = componentes[j],
RMSE_ILR = RMSE_ILR[j],
MAE_ILR = MAE_ILR[j],
ME_ILR = ME_ILR[j],
AIC_ILR = AIC_ILR,
BIC_ILR = BIC_ILR,
RMSE_ALR = RMSE_ALR[j],
MAE_ALR = MAE_ALR[j],
ME_ALR = ME_ALR[j],
AIC_ALR = AIC_ALR,
BIC_ALR = BIC_ALR

)
}

}

bind_rows(resultados)
}

############################################################
## 4. DEFINICIÓN DE LOS 9 ESCENARIOS
## - alpha^X (0.5, 1, 5) ~ (0.5,0.5,0.5), (1,1,1), (5,5,5)
## - Φ y Θ diagonales
## - Tipo de modelo: C-VAR(1), C-VMA(1), C-VARMA(1,1)
############################################################

escenarios <- tibble(
escenario = 1:9,
alphaX_label = rep(c("(0.5,0.5,0.5)", "(1,1,1)", "(5,5,5)"), each = 3),
alphaX_r = rep(c(0.5, 1, 5), each = 3),
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# Φ solo para documentar
phi = list(
c(0.8, 0.5, 0.2), # Esc 1
c(0.0, 0.0, 0.0), # Esc 2
c(0.8, 0.5, 0.2), # Esc 3
c(0.8, 0.5, 0.2), # Esc 4
c(0.0, 0.0, 0.0), # Esc 5
c(0.8, 0.5, 0.2), # Esc 6
c(0.8, 0.5, 0.2), # Esc 7
c(0.0, 0.0, 0.0), # Esc 8
c(0.8, 0.5, 0.2) # Esc 9

),

# Θ (diag) por escenario
theta = list(
c(0.0, 0.0, 0.0), # Esc 1: C-VAR(1)
c(0.8, 0.5, 0.2), # Esc 2: C-VMA(1)
c(0.2, 0.5, 0.8), # Esc 3: C-VARMA(1,1)
c(0.0, 0.0, 0.0), # Esc 4: C-VAR(1)
c(0.8, 0.5, 0.2), # Esc 5: C-VMA(1)
c(0.2, 0.5, 0.8), # Esc 6: C-VARMA(1,1)
c(0.0, 0.0, 0.0), # Esc 7: C-VAR(1)
c(0.8, 0.5, 0.2), # Esc 8: C-VMA(1)
c(0.2, 0.5, 0.8) # Esc 9: C-VARMA(1,1)

)
) %>%
mutate(
tipo_modelo = case_when(
escenario %in% c(1, 4, 7) ~ "C-VAR(1)",
escenario %in% c(2, 5, 8) ~ "C-VMA(1)",
escenario %in% c(3, 6, 9) ~ "C-VARMA(1,1)"

),
phi_str = sapply(phi, function(v) paste0("(", paste(v, collapse = ", "), ")")),
theta_str = sapply(theta, function(v) paste0("(", paste(v, collapse = ", "), ")"))

)

############################################################
## 5. SIMULACIÓN COMPLETA PARA LOS 9 ESCENARIOS
## - En C-VAR(1): � = coef_grid, � = 0
## - En C-VMA(1): � = coef_grid, � = 0
## - En C-VARMA(1,1):
## (�, �) = (0.2, 0.8), (0.5, 0.5), (0.8, 0.2)
############################################################

# Parámetros globales
n_sim <- 100 # número de series por escenario
T <- 100 # longitud de cada serie
k <- 3 # número de componentes
n_burn <- 100 # burn-in
n_obs <- 10 # horizonte de predicción
alpha_w <- c(1, 1, 1) # RUIDO BLANCO W_t FIJO: Dirichlet(1,1,1)
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# Rejilla de coeficientes a evaluar
coef_grid <- c(0.8, 0.5, 0.2)

resultados_todos <- list()

for (row in seq_len(nrow(escenarios))) {

esc <- escenarios$escenario[row]
tipo_mod <- escenarios$tipo_modelo[row]
r_val <- escenarios$alphaX_r[row]

# Parte MA: solo existe en C-VMA(1) y C-VARMA(1,1)
tiene_MA <- tipo_mod %in% c("C-VMA(1)", "C-VARMA(1,1)")
q_order <- if (tiene_MA) 1 else 0

## ---- bucle sobre los valores del coeficiente (� o � / combinaciones) ----
for (coef in coef_grid) {

# Definir � y � que realmente se usan en este escenario
if (tipo_mod == "C-VAR(1)") {
# � varía, � = 0
phi_used <- coef
theta_used <- 0

} else if (tipo_mod == "C-VMA(1)") {
# � varía, � = 0
phi_used <- 0
theta_used <- coef

} else if (tipo_mod == "C-VARMA(1,1)") {
# Aquí imponemos las 3 combinaciones:
# Θ = 0.8 − Φ = 0.2
# Θ = 0.5 − Φ = 0.5
# Θ = 0.2 − Φ = 0.8
if (coef == 0.8) {
phi_used <- 0.2
theta_used <- 0.8

} else if (coef == 0.5) {
phi_used <- 0.5
theta_used <- 0.5

} else if (coef == 0.2) {
phi_used <- 0.8
theta_used <- 0.2

} else {
stop("coef_grid debe ser 0.8, 0.5 o 0.2 para C-VARMA(1,1).")

}
}

## ---- parte AR ----
if (tipo_mod %in% c("C-VAR(1)", "C-VARMA(1,1)")) {
ar_matrix <- array(0, dim = c(k, k, 1))
diag(ar_matrix[, , 1]) <- phi_used # mismo � para X, Y, Z
p_order <- 1

} else {
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ar_matrix <- NULL
p_order <- 0

}

## ---- parte MA ----
if (tiene_MA) {
ma_matrix <- array(0, dim = c(k, k, 1))
diag(ma_matrix[, , 1]) <- theta_used # mismo � para X, Y, Z

} else {
ma_matrix <- NULL

}

## ---- definir lista 'model' para la simulación ----
model <- list(
ar = ar_matrix,
ma = ma_matrix,
order = c(p_order, 0, q_order) # (p, d, q) con d = 0

)

## 1) Simular series base con ruido fijo
series_base <- lapply(seq_len(n_sim), function(i) {
X_i <- varima_dirichlet_sim(
model = model,
n = T,
alpha_w = alpha_w,
n.start = n_burn,
seed = 1000 * esc + 10 * i + round(100 * coef)

)
colnames(X_i) <- c("X", "Y", "Z")
X_i

})

## 2) Ajustar concentración de X_t según alpha^X (potencia r)
series_r <- lapply(series_base, function(X_mat) {
ajustar_concentracion(X_mat, r = r_val)

})

## 3) Ajustar modelos ILR/ALR con VARMA(p,q) coherente
tabla_metricas <- ajustar_y_metricas(series_r,

n_obs = n_obs,
p_order = p_order,
q_order = q_order) %>%

mutate(
escenario = esc,
tipo_modelo = tipo_mod,
alphaX_label = escenarios$alphaX_label[row],
alphaX_r = r_val,
phi = phi_used,
theta = theta_used,
# Etiquetas de texto simples con los valores usados
phi_str = paste0("(", phi_used, ")"),
theta_str = paste0("(", theta_used, ")")
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)

resultados_todos[[length(resultados_todos) + 1]] <- tabla_metricas
}

}

# Tabla detallada con TODAS las simulaciones y métricas
tabla_resultados_raw <- bind_rows(resultados_todos)

############################################################
## 6. TABLA RESUMEN: PROMEDIOS POR ESCENARIO, �, � Y COMPONENTE
############################################################

tabla_resumen <- tabla_resultados_raw %>%
group_by(
escenario, tipo_modelo,
alphaX_label, alphaX_r,
theta, phi, # <- � y � ya vienen numéricos
phi_str, theta_str,
componente

) %>%
summarise(
RMSE_ILR = mean(RMSE_ILR, na.rm = TRUE),
MAE_ILR = mean(MAE_ILR, na.rm = TRUE),
ME_ILR = mean(ME_ILR, na.rm = TRUE),
AIC_ILR = mean(AIC_ILR, na.rm = TRUE),
BIC_ILR = mean(BIC_ILR, na.rm = TRUE),

RMSE_ALR = mean(RMSE_ALR, na.rm = TRUE),
MAE_ALR = mean(MAE_ALR, na.rm = TRUE),
ME_ALR = mean(ME_ALR, na.rm = TRUE),
AIC_ALR = mean(AIC_ALR, na.rm = TRUE),
BIC_ALR = mean(BIC_ALR, na.rm = TRUE),
.groups = "drop"

)

# Versión "limpia" para exportar a Excel
tabla_resumen_excel <- tabla_resumen %>%
select(
escenario, tipo_modelo,
alphaX_label, alphaX_r,
theta, phi,
phi_str, theta_str,
componente,
RMSE_ILR, RMSE_ALR, AIC_ILR, AIC_ALR

)
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