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Abstract

This work presents new proposals for nonparametric ANCOVA models in regression contexts where the
predictor variable, the response variable or both are of a circular nature. Testing tools for assessing
equality and parallelism of the regression curves in those scenarios are provided. In addition, the
problem of determining the significance of the predictor variable in regression settings with circular
variables is analyzed, and new approaches for assessing the significance of the covariate are also given.
The performance of the proposed methods is analyzed in an extensive simulation study, in which the
calibration and power of the tests are investigated. To conclude, the novel techniques are applied to
real data.

Resumo en galego

Neste traballo preséntanse propostas de modelos ANCOVA non paramétricos nos contextos de regresión
onde a variable explicativa, a resposta, ou ambas teñen natureza circular. Proporciónanse ferramentas
para contrastar a igualdade e o paralelismo das curvas de regresión en ditos escenarios. Ademais, tamén
se analiza o problema de determinar a significación da variable explicativa no marco da regresión con
variables circulares, e apórtanse propostas de test de significación. Estes métodos anaĺızanse mediante
un estudo de simulación exhaustivo, nos que se investiga o calibrado e a potencia dos test. Por último,
as novas técnicas son aplicadas a datos reais.

Resumen en español

En este trabajo se presentan propuestas de modelos ANCOVA no paramétricos en contextos de re-
gresión donde la variable explicativa, la respuesta o ambas tienen naturaleza circular. Se proporcionan
herramientas para contrastar la igualdad y el paralelismo de las curvas de regresión en dichos escenar-
ios. Además, se analiza también el problema de determinar la significación de la variable explicativa
en el marco de la regresión con variables circulares, y se aportan propuestas de test de significación.
Estos métodos son analizados mediante un estudio de simulación exhaustivo, en los que se investiga el
calibrado y la potencia de los test. Por último, las nuevas técnicas son aplicadas a datos reales.

xi
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Preface

Circular statistics is a branch of statistics which involves angles and directions as observations. One
may think that this kind of data can be treated with regular statistical techniques, but hideous mistakes
would be made when doing so. A simple example to see what can go wrong can be found in the sample
mean. Consider an experiment where the interest lies on studying the direction in which a group of
sandhoppers move in the sand from a given starting point, where 0o represents the north direction.
If it was observed that three sandhoppers moved in directions 3o, 355o and 5o, respectively, one can
trivially say that the animals move north. However, the mean of those angles is 121o, which would
mean that the sandhoppers move in the south-west direction. This toy example gives an idea of why
different methods must be applied to circular data.

Classical theory on circular statistics has been around for decades, but its usage in practice has
been limited because of the lack of accurate circular observations. Advances on technology have
made it possible to precisely record these type of data, increasing the interest of circular statistics in
recent years. Consequently, in the last decade many advances on the circular statistics field have been
achieved, including nonparametric methods for this kind of observations, specifically for regression.

In the context of regression, when the data belongs to different groups it is useful to determine
the existence of differences on the regression functions for each group. This can be done through an
ANCVOA model. The primary objective of this project is to come up with nonparametric ANCOVA
models for regression with circular variables (predictors, responses or both). In addition, the problem of
determining the significance of the predictor variable in a circular regression model is also approached.

The distribution of the manuscript is as follows: Chapter 1 gives a review on ANCOVA focusing on
nonparametric alternatives. Chapter 2 presents some background on circular data, including the most
widely used parametric models for density and regression. Chapter 3 is devoted to the introduction of
the nonparametric proposals of significance tests and analysis of covariance models. Chapter 4 contains
a simulation study which analyzes the proposals given in this MSc Thesis. Moreover Chapter 5 gives
an illustration of the new methods with real data. Lastly, Chapter 6 contains the principal conclusions
of the project, as well as some possible extensions.

xiii
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Chapter 1

A review on nonparametric
ANCOVA

Regression models are meant to investigate the relationship of dependence between a response variable
and an explanatory variable. Once this relationship is modeled, the regression analysis can be used to
predict future values of the response given the predictor. However, an interesting problem arises when
wondering if the predictor variable actually has any effect on the responses.

On the other hand, different kinds of regression models emerge when considering a discrete covariate
in addition to the predictor variable, dividing the sample between several groups. Such models are
known as ANalysis of COVAriance models (ANCOVA), and can be thought as an extension of the
one-way ANalysis Of VAriance (ANOVA) when a continuous covariate is included.

Inference with regression models is usually done under a parametric (generally linear) perspective,
and methods for testing the signification of the predictor variable or for assessing the differences of
the regression curves between several groups can be easily obtained under the linear regression model.
However, more flexible models can be considered by using nonparametric regression. Bowman and
Azzalini (1997) derived a nonparametric significance test to investigate the effect of the predictor on
the response variable. In addition, Young and Bowman (1995) proposed an analysis of covariance
model where the regression function does not take any specific parametric form.

In this chapter, some background on parametric and nonparametric regression models will be
presented. Section 1.1 focuses on the linear setting, and a significance test, as well as tests for the
ANOVA and ANCOVA models are reviewed. Section 2 is devoted to the nonparametric context. First,
a brief introduction to kernel methods for regression will be provided. Afterwards, the nonparametric
no-effect test and ANCOVA models will be studied and illustrated with real data examples. A brief
simulation study investigating calibration and power of the tests will also be included.

1.1 The linear regression model

Regression models are used to represent the dependence of a response variable (Y ) regarding one or
several explanatory variables (X). The regression function is usually defined as

m(x) = E(Y |X = x),

the expected value of Y when X takes the specific value x. Assuming a linear regression function m is
a simple and commonly used hypothesis. Under this assumption, and having p explanatory variables
X1, X2, ..., Xp, the regression function is written as

m(x) = γ + β1X1 + β2X2 + ...+ βpXp,

1



2 CHAPTER 1. A REVIEW ON NONPARAMETRIC ANCOVA

where γ, β1, ..., βp are real-valued regression parameters. Given the observations (X1, Y1), ..., (Xn, Yn),
where Xj = (Xj1, Xj2, ..., Xjp)

′, j = 1, ..., n, with n being the sample size, the linear regression model
can be expressed as

Yj = γ + β1Xj1 + β2Xj2 + ...+ βpXjp + εj , (1.1)

where εj is the random error and E(ε|X = x) = 0. It is usually assumed that the errors εj are
independent with distribution N(0, σ).

In the rest of the section, for simplicity, only one continuous predictor variable, X, will be con-
sidered, although ideas could be easily extended to the multivariate case. Then, the resulting model
is

Yj = γ + βXj + εj , j ∈ {1, ..., n}, γ, β ∈ R. (1.2)

In order to fit model (1.2), the parameters can be estimated through the least squares method, obtaining
the estimates

γ̂ = Ȳ − SXY
S2
X

X̄ and β̂ =
SXY
S2
X

, (1.3)

where SXY is the sample covariance between X and Y , S2
X is the sample variance of the explanatory

variable and X̄ and Ȳ are, respectively, the sample mean of the predictors and the responses. Faraway
(2004) and Sheather (2009) give a complete review of linear regression models, including inference
methods on the parameters.

A discrete explanatory variable taking I attributes can also be added to the regression model (1.2).
Then, every observation belongs to one of the I groups, with ni being the number of observations in
each group and n =

∑I
i=1 ni the total sample size. Therefore, the regression model can be formulated

as
Yij = γi + βiXij + εij , i ∈ {1, ..., I}, j ∈ {1, ..., ni}. (1.4)

In this section a significance test (also known as no-effect test) for model (1.2) will be surveyed. In
addition, the concepts of ANOVA and ANCOVA will be studied. In the ANOVA model, the test of
equality of means will be presented, while in the ANCOVA context three different tests will be shown:
two equality tests (one for the model without interaction and one for the model with interaction)
and a parallelism test. A more detailed discussion on ANOVA and ANCOVA models, among other
topics, can be found in Maxwell and Delaney (2003, Chapters 3 and 9). All the tests will be shown in
practice using classical data given in Fisher (1936) and collected by Anderson (1935). The dataset is
called iris and it is available in package datasets (R Core Team, 2018). It contains, among other
information, the sepal length and width (measured in centimeters) for 50 flowers from each of 3 species
of iris: Iris setosa, versicolor, and virginica.

1.1.1 Significance test

In many situations, after having fitted a linear model of the type (1.2), it could be unclear if the
predictor variable is actually significant or, if on the contrary, the regression function is just a horizontal
line. In the later case, the regression would not give any relevant information about the response
variable. In order to ascertain this, a significance test can be carried out with the following hypotheses:

H0 : Yj = γ + εj , ∀ j ∈ {1, ..., n}
H1 : Yj = γ + βXj + εj , β 6= 0, ∀ j ∈ {1, ..., n}.

This test is also called no-effect test since under the null hypothesis the predictor variable has no effect
on the responses. Note that in the case of only one predictor variable this test is equivalent to contrast
the null hypothesis β = 0. A suitable test statistic is

RSS0 −RSS
RSS/(n− 2)

∼ F1,n−2,
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where Fn,m denotes the F -Snedecor distribution with n and m degrees of freedom and the residual
sums of squares under H0 and H1 are, respectively,

RSS0 =

ni∑
j=1

(Yij − γ̂)2 and RSS =

ni∑
j=1

(Yij − γ̂ − β̂Xj)
2.

In RSS0, the estimator of γ is the sample mean of the responses, Ȳ , while in RSS the estimators γ̂
and β̂ correspond to the ones obtained by the least squares method presented in (1.3). The number of
degrees of freedom under H0 is (n− 1), since only the mean value of the responses is being estimated.
Under H1, two parameters are being estimated, hence the number of degrees of freedom is (n − 2).
Therefore, the numerator of the statistic has a total of 1 degree of freedom.

To illustrate the previous method, the test is now applied to the iris data. The left image in
Figure 1.1 shows a scatter plot of the response variable, sepal width, over the predictor variable, sepal
length, with the estimation of the regression function under both hypotheses. The linear model was
fitted and the obtained estimation of the line’s slope was −0.061, while the intercept estimation was
3.418. On the other hand, under the null hypothesis the value of the responses does not depend on
the sepal length, and the expectation of the sepal width is estimated as the sample mean, which is
3.057. After applying the test, the obtained p-value was 0.1519, therefore there is no evidence to
reject the null hypothesis of no effect of the predictor for the usual significance levels (0.10, 0.05 and
0.01). However, when focusing on the different types of iris, it seems noticeable that differences arise
between the three classes. The right panel in Figure 1.1 displays boxplots for the variable sepal width
corresponding to each type of iris, indicating that the mean value in each group could be different.

(a) (b)

Figure 1.1: (a) Scatter plot of sepal width over sepal length with the estimated regression lines under
H0 (dashed line) and under H1 (whole line). (b) Boxplots for the sepal width data over the type of
iris.



4 CHAPTER 1. A REVIEW ON NONPARAMETRIC ANCOVA

1.1.2 ANOVA model. Test for the equality of means

Consider the model in (1.4) with βi = 0 ∀ i ∈ {1, ..., I}, which means there is not a continuous predictor
but there is a discrete one. Such model is known as ANOVA and it compares the mean values of the
response variable across the I groups. The ANOVA model is then expressed as

Yij = γi + εij , i ∈ {1, ..., I}, j ∈ {1, ..., ni},

where γi is the mean value of each group. The parameters can be estimated as the local means for
each group:

γ̂i = Ȳi• =
1

ni

nI∑
j=1

Yij , ∀i ∈ {1, ..., I}.

The primary goal of the ANOVA model is to test the equality of means and the F test can be used
for this aim. The hypotheses are

H0 : γ1 = ... = γI ,

H1 : γi 6= γk, for some i, k ∈ {1, ..., I}.
The test statistic under H0 is∑I

i=1

∑ni

j=1(Ȳi• − Ȳ )2/(I − 1)∑I
i=1

∑ni

j=1(Yij − Ȳi•)2/(n− I)
∼ FI−1,n−I ,

where

Ȳ =
1

n

I∑
i=1

nI∑
j=i

Yij .

As exposed in the previous section, according to Figure 1.1b, one could think that not all three
species have the same mean for the sepal width. In order to study this matter, the F test shown above
is run, obtaining a p-value much lower than .01 and concluding, for this significance level, that the
means for the three species are not the same.

1.1.3 ANCOVA model without interaction. Test of equality

In the previous section it was assumed that there was just a factor variable affecting the response. When
both a continuous and a discrete predictor have an influence on the response, the resulting regression
model is known as ANCOVA. It compares the values of the response variable across several groups in
the presence of a covariate effect. Depending on the formulation, it will be an ANCOVA model with
or without interaction. This section will focus on the model without interaction, which, assuming that
the covariate effect is linear, corresponds to the model in (1.4) with βi = βk ∀ i, k ∈ {1, ..., I}. The
reason why this model is known as a non-interaction model is that the effects of both the discrete
and the continuous variables are being considered, but they are simply summing up to each other, not
interacting with the other.

The parameters γi must be estimated for each group, obtaining estimates γ̂i, i ∈ {1, ..., I}, while

the estimate of the slope, β̂ is the same for all groups. These estimates are obtained using partitioned
regression (see Maxwell and Delaney, 2003, Chapter 9). Now, the interest lies on testing whether the
regression lines are the same for all groups. Thus, the hypotheses considered are

H0 : Yij = γ + βXij + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = γi + βXij + εij , γi 6= γk for some i, k ∈ {1, ..., I}.

The corresponding test statistic is

(RSS0 −RSS)/(I − 1)

RSS/(n− I − 1)
∼ FI−1,n−I−1,
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where the residual sums of squares under the null and the alternative hypotheses are

RSS0 =

I∑
i=1

ni∑
j=1

(Yij − γ̂ − β̂Xij)
2 and RSS =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂Xij)
2.

Under H0 the estimators of the parameters are the ones given in (1.3), whereas under the alternative
hypothesis the estimators are obtained with the partitioned regression technique mentioned above.
The number of degrees of freedom under H0 is (n− 2), as two parameters are being estimated. Under
H1, there are (n− I − 1) degrees of freedom because γi is estimated for each group in this case, so the
number of degrees of freedom in the numerator of the statistic is (I − 1).

The test described above will be now applied to the iris data. Figure 1.2 shows three scatter plots
of sepal width over sepal length. Figure 1.2a shows the regression lines obtained after fitting the model
for all the data, as in H0. Figure 1.2b shows the three regression lines obtained after fitting the non-
interaction model (corresponding to H1), with the same slopes but different intercepts for each group.
The p-value obtained for the test is smaller than 0.001, so the null hypotheses is rejected (for the usual
significance levels), leading to the conclusion that not all the intercepts are equal in the three groups.

(a) (b) (c)

Figure 1.2: Scatter plots of sepal width over sepal length. (a) Regression line obtained after fitting a
simple regression model. (b) Dividing the population in the three classes and fitting the model without
interaction. (c) Dividing the population in the three classes and fitting the model with interaction.

1.1.4 ANCOVA model with interaction. Test of equality

As it was noted before, the non-interaction model assumes that the effects for the continuous and
the discrete predictors do not interact with each other. When this happens, the interaction model,
corresponding to model (1.4), is considered. Thus, assuming interaction between the variables means
that a change on the group will not only modify the intercept but also the slope.

As in the previous case, it is of interest to study the equality of the regression lines. For such test,
the hypotheses are

H0 : Yij = γ + βXij + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = γi + βiXij + εij , γi 6= γk or βi 6= βk for some i, k ∈ {1, ..., I}.

As for the estimation of the parameters, under the null hypothesis the estimates γ̂ and β̂ are obtained
as in (1.3). The estimation under the alternative hypothesis is also simple, since it is only necessary
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to fit I separate regression lines, one for each group, to estimate γi and βi, i ∈ {1, ..., I}. A suitable
test statistic for the test is

(RSS0 −RSS)/(2I − 2)

RSS/(n− 2I)
∼ F2I−2,n−2I ,

where the residual sums of squares are

RSS0 =

I∑
i=1

ni∑
j=1

(Yij − γ̂ − β̂Xij)
2 and RSS =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂iXij)
2.

The degrees of freedom under the alternative hypothesis are (n − 2I), hence, the difference (RSS0 −
RSS) has (2I − 2) degrees of freedom.

Hereafter, the test is applied to the iris data. The null hypothesis is the same as in the previous
test (hence, the fitted model under the null is shown in Figure 1.2a), while the model fitted under the
alternative hypothesis is represented in Figure 1.2c, fitting separate regression models for the different
species. Unlike in the previous section with the non-interaction model, now it is allowed for each
group to have different slopes, as well as different intercepts. The test for the interaction model is
applied, obtaining a p-value smaller than the usual significance levels (.1, .05 and .01), which leads to
the rejection of the null hypothesis: the regression lines are not equal for all three groups.

1.1.5 Test of parallelism

After having reviewed the non-interaction and the interaction model, it is natural to set out the
question of whether there is an interaction between the two predictors. This issue can be explored by
considering a formal test with the following hypotheses:

H0 : Yij = γi + βXij + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = γi + βiXij + εij , βi 6= βk for some i, k ∈ {1, ..., I}.

This test is also known as test of parallelism, since under the null hypothesis the regression lines are
parallel. The corresponding statistic is

(RSS0 −RSS)/(I − 1)

RSS/(n− 2I)
∼ FI−1,n−2I ,

where

RSS0 =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂Xij)
2 and RSS =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂iXij)
2.

The parameters in RSS0 are estimated with partitioned regression (as in Section 1.1.3 under H1) and
in RSS, I separate regression lines are fitted using the estimations in (1.3) for each line. Under H0

there are (n− I − 1) degrees of freedom while under H1 the number of degrees of freedom is (n− 2I).
As a result, (RSS0 −RSS) has (I − 1) degrees of freedom.

Back to the iris data, the existence of interaction can now be determined. The model under the
null hypothesis (without interaction) was represented in Figure 1.2b, while the model in the alternative
hypothesis (with interaction) was represented in Figure 1.2c. The test is applied and yields a critical
value close to zero, and thus rejecting the null hypothesis. Then, it is concluded that the regression
lines do not have the same slope for the three groups, i.e., they are not parallel.

1.2 Nonparametric regression

In many situations the linear assumption described in (1.1) is not correct, since the relation between
the variables is not necessarily linear. A more general model can be expressed as

Yj = m(Xj) + εj , j ∈ {1, ..., n}, (1.5)



1.2. NONPARAMETRIC REGRESSION 7

for any function m not necessarily linear. In the nonparametric context, for simplicity, just one pre-
dictor variable will be employed. The errors εj are independent and N(0, σ). In some cases m can
be a nonlinear parametric function, so nonlinear regression may be used to estimate m. Nevertheless,
assumptions on the parametric shape of m could lead to a misspecification problem. Also, the estima-
tion for the parameters might be difficult, especially when the number of parameters is large. Since
numerical methods are needed for obtaining the estimators, one should also confront the problems
inherent to optimization algorithms, such as starting points selections, tolerance thresholds and/or
convergence.

An alternative route to avoid these difficulties is nonparametric regression, in which the only
assumption needed is for m to be a sufficiently smooth function. Although many estimators have been
proposed, kernel methods are a widely used alternative. Nadaraya (1964) and Watson (1964) proposed
estimating m as

m̂h(x) =

∑n
j=1Kh(Xj − x)Yj∑n
j=1Kh(Xj − x)

,

where Kh(·) = K(·/h)/h, with K being a kernel function (usually a symmetric around zero density)
and h is known as the smoothing parameter. Generally, the standard normal density is used as a
kernel.

For any point x from the support of X, the Nadaraya-Watson estimator is a weighted average
of the responses, where the weights depend on the kernel function, assigning higher weights to the
observations closer to x. On top of this interpretation, the Nadaraya-Watson estimator can also be
thought as the result of fitting horizontal lines locally (in a neighborhood of x of length 2h), assigning
weights to each observation. Fan (1992) extended this concept resulting on the local linear estimator,
which instead of fitting horizontal lines fits straight lines of the form β0 + β1(· − x). Again, each
observation in a neighborhood of x is assigned a weight, given by the function Kh, which depends
on the distance to x. The parameters β0 and β1 are estimated via weighted local least squares. The
local linear estimator is given by β̂0 = m̂h(x) (see Wand and Jones, 1995, Section 5.2). It can be
proven that under some conditions the estimator1 m̂(x) has asymptotically zero bias and variance (see
Wand and Jones, 1995, Section 5.3 and Fan and Gijbels, 1996, Section 3.2). The selection of h is of
great importance, since small values of h lead to less bias, but larger variance, while larger values of
the smoothing parameter give rise to more bias and less variance. In addition, if h → 0 the curve
estimation tends to the interpolation of the data. On the contrary, as h → ∞, m̂ tends to a straight
line, the same one as in least squares linear regression. An optimal value for h in terms of the Mean
Integrated Squared Error (MISE) can be calculated:

hopt =

(
R(K)σ2

µ2
2(K)

∫
[m′′(x)]2fX(x)dx

)1/5

n−1/5, (1.6)

where fX is the density function corresponding to the predictor variable X, R(K) =
∫
K(z)dz and

µ2(K) =
∫
z2K(z)dz. However, an optimal bandwidth cannot be used in practice, since it depends

on the unknown quantities m
′′
(x) and fX(x). Several methods have been proposed in order to obtain

a usable smoothing parameter in practice. Some of the most popular methods are cross-validation
(proposed by Bowman (1984) in the estimation of the density function context), corrected AIC (Hurvich
et al., 1988) and the plug-in bandwidth (Ruppert et al., 1995). As an example of the performance of
the local linear estimator, Figure 1.3 shows simulated data from the model

Yj = 2X3
j + ε, j ∈ {1, ..., 150},

where the εj were drawn from a normal distribution with zero mean and standard deviation .25.
The regression function was estimated with the local linear estimator using different values for the

1The local linear estimator depends on the smoothing parameter h and it is usually denoted as m̂h but, from now
on, in this Master thesis it will be denoted as m̂ for simplicity.
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smoothing parameter. In Figure 1.3a a small value of h was used, obtaining an undersmoothed
estimation of the regression function. On the contrary, in Figure 1.3c a large value of h was selected,
getting a straight line as the estimation of the cubic function. Lastly, in Figure 1.3b the bandwidth
used was the one obtained through the cross-validation method, resulting in the estimation being close
to the actual curve.

(a) Model A (b) Model B (c) Model C

Figure 1.3: Representations of 150 realizations of simulated data from a cubic model along with the true
regression curves (black) and the estimations of the regression function (grey) using a small bandwidth
in (a), the one selected by cross-validation in (b) and a large bandwidth in (c).

The pursued data-driven character of kernel methods makes it difficult to ascertain which features
of the estimation correspond to the underlying regression function and which ones are just sample
noise. As a graphical tool, Chaudhuri and Marron (1999) introduced the SiZer map, which allows to
visualize the regions where the regression (or density) curve is significantly increasing or decreasing over
a range of smoothing parameters. Therefore, the SiZer map can be a useful tool in order to determine
the significance of the predictor variable. Nevertheless, it is important to formally asses the shape
of the curve through hypothesis testing. For such purposes, Bowman and Azzalini (1997, Chapter 5)
introduce a no-effect test in the nonparametric setting, which tries to analyze the significance of the
predictor variable. This is the nonparametric alternative to the proposal in Section 1.1.1.

Additionally, when considering regression model (1.5) a discrete predictor variable may be also
taken into account. In this setting, Young and Bowman (1995) propose an analysis of covariance
model where the covariate effect is assumed only to be smooth. Two tests are considered: a test of
equality, and a test of parallelism. The test of equality tries to analyze whether all groups follow the
same regression function or not, while the test of parallelism tests if the curves are parallel, i.e., if they
have the same shape but are separated by a constant shift.

Details on the three tests (no effect, equality and parallelism) will be presented in the next sections
and illustrated with real data. In addition, a simulation study will be conducted to analyze the
performance of the significance test and the simulation study in the original work of Young and
Bowman (1995) will be partially replicated.

1.2.1 Significance test

When trying to examine the evidence of the response and explanatory variables being related, two
competing models are considered. Thus, for the significance test the next hypotheses statement is
used:

H0 : Yj = γ + εj , ∀ j ∈ {1, ..., n}
H1 : Yj = m(Xj) + εj , m(Xj) 6= γ for some j ∈ {1, ..., n}.
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The errors εj are independent and N(0, σ2) distributed, and also independent from X. Under the null
hypothesis γ is estimated as the sample mean of the responses and under H1 the regression function
is estimated with the local linear estimator. In order to construct the test statistic, Bowman and
Azzalini (1997) proposed the following:

L1 =
RSS0 −RSS

RSS
, (1.7)

with RSS0 being the residual sum of squares under H0 and RSS being the residual sum of squares
under H1:

RSS0 =

n∑
j=1

(Yj − γ̂)2, and RSS =

n∑
j=1

(Yj − m̂(Xj))
2.

The statistic is a ratio between the difference of residual sums of squares and the residual sum of
squares under H1, and because of this the effect of the error variance σ2 is scaled out. Now, the
distribution of L1 under the null hypothesis must be obtained. For such aim it should be noted that
the two residual sums of squares can be expressed in vector-matrix notation:

RSS0 = Y ′(I −L)′(I −L)Y
2

= Y ′(I −L)Y ,

RSS1 = Y ′(I − S)′(I − S)Y ,

with Y being the vector of the responses, L being a n× n matrix with n−1 in all its components and
S being the smoothing matrix, i.e., a n× n matrix composed of known weights. Therefore, L1 can be
rewritten as

L1 =
Y ′BY

Y ′AY

where A = (I − S)′(I − S) and B = I − L −A. Now, the correspondent p-value for the test would
be obtained as

P
(
Y ′BY

Y ′AY
> Obs

)
= P (Y ′(B −ObsA)Y > 0) ,

with Obs being the observed value of the statistic. Note that Y ′(B −ObsA)Y is a quadratic form in
normal variables where the matrix B−ObsA is symmetric. Johnson and Kotz (1972) give a summary
of general results about this type of variables, but they are more easily applied when the normal
variables have zero expectation, which is not the case, since under the null hypothesis E(Yj) = γ.
However, under H0, Y = γ + ε, where γ is a vector containing γ in all its components and ε is the
vector containing all the errors. Thus,

Y ′(B −ObsA)Y = γ′(B −ObsA)γ + ε′(B −ObsA)ε,

and because of the construction of the matrices B and A, the first term of the sum in the previous
equation disappears3. Then,

p = P(ε′(B −A ·Obs)ε > 0).

Now, ε′(B −A ·Obs)ε is a quadratic form in normal variables of the type z′Cz, where E(z) = 0 and
C is an n× n symmetric matrix. Although the results in Johnson and Kotz (1972) allow to calculate
the probability p exactly trough numerical methods, a computational efficient way of obtaining it is
approximating p by replacing the real distribution of ε′(Q − B · Obs)ε by another more convenient
distribution with the same first three moments. Johnson and Kotz (1972, Chapter 29) show that the

2The proof of the identity becomes trivial when noting that L′L = L.
3The proof easily follows from the fact that each row of the matrix S sums 1. Then, it is trivial that Sγ = γ, and

thus γ′Aγ = (γ − Sγ)′(γ − Sγ) = 0. In addition, γ′Lγ = γ′γ leading to γ′Bγ = 0.
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sth cumulant4 of a quadratic form in normal variables z′Cz with E(z) = 0 and C a being symmetric
matrix is given by

νs = 2s−1(s− 1)!tr(V C)s,

where tr denotes de trace operator and V = Cov(z, z). In many problems involving quadratic forms,
a shifted and scaled χ2 distribution (i.e., a distribution aχ2

b + c, where a and c are, respectively, the
shift and scale parameters and b is the number of degrees of freedom) was found to be a very good
approximation (Solomon and Stephens, 1977 and Buckley and Eagleson, 1988). Hence, the first three
moments of ε′(B −A ·Obs)ε are matched to the first three moments of an aχ2

b + c distribution, and
then the parameters a, b and c are calculated as follows,

a = |ν3|/(4ν2), b = (8ν3
2)/ν2

3 , c = ν1 − ab. (1.8)

The p-value of interest can be approximated as (1 − q), where q is the probability lying below the
point −c/a in a χ2 distribution with b degrees of freedom. Note that the parameters a, b, and c are
calculated with the cumulants, which depend on the B and A matrices, and on the observed value of
the statistic. Therefore, these parameters depend on the data.

It is important to remark that for the implementation of the no-effect test it is necessary to select
a smoothing parameter. The outcome of the test is very influenced by the bandwidth, and in practice,
the test is usually carried out over a range of smoothing parameters. Nevertheless, the performance of
the test will be studied in Section 1.2.4 considering several smoothing parameters.

Figure 1.4: Scatter plot of simulated data with the true regression curve (red), the estimated regression
curve through the local-linear estimator (blue, whole line) and the estimated regression function under
the no effect hypothesis (blue, dashed line).

As an illustration, Figure 1.4 shows a representation of simulated data drawn from the model

Yj =
cos(8Xj)

8
+ εj , j ∈ {1, ..., 100},

where the errors εj are drawn from a Normal distribution with zero mean and standard deviation .25
and the predictors Xj are drawn from a U(0, 1) distribution. The true regression curve is represented
in the plot, as well as the local linear estimator and the estimation of the curve under the no effect

4The cumulants of a probability distribution are the Taylor coefficients at the origin of the cumulant generating
function, which is the natural logarithm of the moment generating function. It is known that the first three cumulants
match the first three central moments.
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hypothesis, which corresponds to the mean of the responses. The significance test was applied to the
simulated data over a range of smoothing parameters, and the results are displayed on Figure 1.5. For
the nominal level α = .05, there are evidences to reject the null hypothesis of no effect for the most
part of the bandwidths considered. In addition, the smoothing parameters for which the test does not
reject H0 are implausible in practice, either to small or too large. Therefore, it can be concluded that
the predictor variable is significant.

Figure 1.5: Trace of the significance test applied to the onion data. Dotted vertical line representing
the bandwidth selected by cross-validation. Dashed horizontal line representing the p-value .05.

1.2.2 ANCOVA model. Test of equality

In an ANCOVA regression context, studying whether the regression relationship is the same for all
groups is done trough an equality test. In the nonparametric setting the model is written as

Yij = mi(Xij) + εij , i ∈ {1, ..., I}, j ∈ {1, ..., ni},

for any smooth functions mi and where the errors εij are independent and N(0, σ). The equality test
is carried out with the following hypotheses statement:

H0 : Yij = m(Xij) + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = mi(Xij) + εij , mi(·) 6= mk(·) for some i, k ∈ {1, ..., I}.

Young and Bowman (1995) proposed the following test statistic for the equality test:

L2 =
1

σ̂2

I∑
i=1

ni∑
j=1

[m̂i(Xij)− m̂(Xij)]
2, (1.9)

where m̂ and m̂i are the local linear estimators of m and mi respectively. To estimate the variance in
each group a first-difference approach, proposed by Rice (1984), can be used:

σ̂2
i =

1

2(ni − 1)

ni−1∑
j=1

[Yi[j+1] − Yi[j]]2, (1.10)
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where Yi[j] denotes the value of Y corresponding to Xi[j], with Xi[j] being the jth smallest value of X

in the ith group. Then, the global variance estimator is

σ̂2 =
1

n− I

I∑
i=1

(ni − 1)σ̂2
i .

Bowman and Azzalini (1997) noted that the differences Yi[j+1] − Yi[j] are influenced by the shape of
the underlying regression function, so this variance estimator will be inflated. The authors use an
alternative method proposed by Gasser et al. (1986). They define the so-called pseudo-residuals as

ε̃i[j] =
Xi[j+1] −Xi[j]

Xi[j+1] −Xi[j−1]
Yi[j−1] +

Xi[j] −Xi[j−1]

Xi[j+1] −Xi[j−1]
Yi[j+1] − Yi[j], i ∈ {1, ..., I}, j ∈ {2, ..., ni − 1}.

These pseudo-residuals measure the difference between each Yij and the line joining its two immediate
neighbors, and they can be written as ε̃i[j] = ai[j]Yi[j−1] + bi[j+1]Yi[j+1] − Yi[j], where the expressions
for ai[j] and bi[j] can be directly obtained from the previous formula. Given that

E(ε̃2
i[j]) = (a2

i[j] + b2i[j] + 1)σ2 +O(n−2),

the variance estimator for the ith group is defined as

σ̂2
i =

1

ni − 2

ni−1∑
j=2

1

c2i[j]
ε̃2
i[j], (1.11)

where c2i[j] = a2
i[j] +b2i[j] +1, i ∈ {1, ..., I}, j ∈ {2, ..., ni−1}. Therefore, the global variance is estimated

as

σ̂2 =
1

n− I

I∑
i=1

(ni − 2)σ̂2
i .

In order to obtain the distribution of the test statistic L2 it is important to note that both the
numerator and the denominator can be expressed as quadratic forms in the data. For the ith group,
the vector of fitted values {m̂(Xij)}j∈{1,...,ni} can be written in vector-matrix notation as m̂i = SiYi,
where Yi is the vector with the ni observations of the response variable corresponding to the ith group
and Si is a ni×ni matrix of known weights. The vector with all of the fitted values, denoted by m̂, can
be expressed as m̂ = SdY , where Y denotes the vector with all of the observations from the response
variable and Sd is a n×n block matrix, where each block corresponds to one of the I groups. Under the
null hypothesis, where it is assumed that there is only one curve for all the groups, the vector of fitted
values can be written as m̂ = SY , where S is a different n×n matrix of weights (the one corresponding
to a global fit). Therefore, the numerator of (1.9) can be expressed as Y ′[Sd − S]′[Sd − S]Y . For
simplicity, [Sd − S]′[Sd − S] will be denoted as Q. Furthermore, independently of which one of the
above variance estimators is considered, σ̂2 can be written as σ̂2 = Y ′BY , where B is a n× n block
matrix. If estimator (1.10) is used, the B matrix is composed of I ni × ni blocks of the form
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(2n− 2I)−1



1 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

. . . . . . . . .

−1 2 −1

−1 1



.

On the other hand, if estimator (1.11) is applied, B = A′A, where A is a matrix composed of I ni×ni
blocks, where the ith block is

(n−I)−1/2



0 0 0

ai[2]/ci[2] −1/ci[2] bi[2]/ci[2]

ai[3]/ci[3] −1/ci[3] bi[3]/ci[3]

. . . . . . . . .

. . . . . . . . .

ai[ni−1]/ci[ni−1] −1/ci[ni−1] bi[ni−1]/ci[ni−1]

0 0 0



.

Consequently, a p-value for the test can be obtained as follows:

p = P
(
Y ′QY

Y ′BY
> Obs

)
,

where Obs is the observed value of the test statistic. Unfortunately, calculating the distribution of
this statistic is complicated because, as in the significance test, the expectation of the Y under H0 is
different from zero, so the results in Johnson and Kotz (1972) cannot be applied. However, Young and
Bowman (1995) argue that the distribution of L2 is almost equivalent to the distribution of ε′Qε/ε′Bε.
A clarification on this follows.

In the first place, it is necessary to note that the bias of estimator m̂ at any point x is given by

bias[m̂(x)|X1, ..., Xn] ≈ 1

2
h2m

′′
(x)µ2(K),

while the bias for the estimator m̂i at an arbitrary point x is

bias[m̂i(x)|X1, ..., Xn] ≈ 1

2
h2m

′′

i (x)µ2(K).

Therefore, bias at any point x is controlled principally by the smoothing parameter h and the shape
of the true curve. Then, if the curves are identical or at least have the same shape, both biases will be
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identical if a common smoothing parameter is used (see Bowman and Azzalini, 1997, Section 6.4 for
details). Consequently, when substituting Y by m+ ε in the numerator of L2, the first term,

m′Qm = (Sdm− Sm)′(Sdm− Sm),

disappears asymptotically, since the means of m̂ and m̂i are approximately equal because of the bias
properties shown above. On the other hand, when substituting Y by m + ε, the denominator of L2

can be expressed as
σ̂ = Y ′BY = m′Bm+ ε′Bε.

Because of the construction of the B matrices, the first term is very small relative to the second term,
and it can be ignored. Therefore, the p-value calculation is (almost) equivalent to

p = P
(
ε′Qε

ε′Bε
> Obs

)
= P (ε′(Q−B ·Obs)ε > 0) .

Now, ε′(Q − B · Obs)ε is a quadratic form in normal variables of the type z′Cz, where E(z) = 0
and C is an n × n symmetric matrix. Therefore, the first three cumulants of the distribution can be
calculated as

νs = 2s−1(s− 1)!tr(Q−B ·Obs)s, s = 1, 2, 3.

Finally, as in the no-effect test, the distribution is approximated to a shifted and scaled χ2, where the
parameters are calculated as a function of the cumulants as in equation (1.8).

As an illustration, the nonparametric equality test is applied to the data given in Ratkowsky (1983),
available at R’s package agridat (Wright, 2018). The dataset’s name is ratkowsy.onions and it
contains 84 sets of observations of white Spanish onion yields for different densities at two South
Australian locations: Purnong and Virginia. Figure 1.6a shows a plot of the data, including the
estimation of the regression curve via local linear regression using the cross-validation criterion for
selecting the smoothing parameter. Figure 1.6b shows the same data, now adjusting the regression
curve for each location.

The plots show that the regression functions might be different for each location, so it is necessary
to use the test of equality. The test was applied obtaining a p-value of 3 ·10−4, rejecting the hypothesis
of identical curves for the nominal level α = .05. Since the outcome of the test is influenced by
the smoothing parameter, it is recommended to run the test over a range of smoothing parameters.
Figure 1.7 shows the p-values obtained in the equality test over a sequence of smoothing parameters.
All values lie below .05, which clearly shows that the regression curves are different for this significance
level.
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(a) (b)

Figure 1.6: (a) Scatter plot of onion yield over onion density along with the estimated regression curve.
(b) Same scatter plot as (a) with the data corresponding to Purnong represented in blue and data
corresponding to Virgina represented in red. The estimated regression curves for each group are also
shown.

Figure 1.7: Trace of the equality test applied to the onion data. Dotted vertical line representing the
bandwidth selected with the cross-validation criterion using all the data.
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1.2.3 ANCOVA model. Test of parallelism

There may be cases where the regression curves for each of the groups are not the same but differ of
each other just by constants. This assumption may be analyzed through the test of parallelism. In
this case, the hypotheses considered are

H0 : Yij = γi +m(Xij) + εij , γ1 = 0, ∀ i ∈ {1, ..., I},
H1 : Yij = mi(Xij) + εij , mi(·) 6= mk(·) + γ for some i, k ∈ {1, ..., I} and ∀ γ ∈ R.

In order to fit the model under the null hypothesis, the γi term must be estimated. For this aim, the
model under the null hypothesis can be written in vector-matrix notation:

Y = Dγ +m+ ε, (1.12)

where γ denotes the vector of parameters (γ2, ..., γI)
′ and D is a design matrix consisting on 0s and

1s. If the vector γ was known, an estimate of m could be constructed of the form

m̂ = S(Y −Dγ),

where S is a smoothing matrix. Substituting this expression into (1.12) and after some readjustment,
the next equation is derived:

(In − S)Y = (In − S)Dγ + ε,

with In being the identity matrix of order n. Using the least squares method, the following estimator
is obtained:

γ̂ = [D′(In − S1)′(In − S1)D]−1D′(In − S1)′(In − S1)Y = AY , (1.13)

where S1 is a preliminary smoothing matrix, different from the one used for the estimation of m̂.
Speckman (1988) noted that estimator (1.13) has asymptotically normal distribution with negligible
bias. Since the estimator involves the smoothing matrix S1, it therefore involves a smoothing parameter
h1. Bowman and Azzalini (1997, Section 6.5) recommend exploring several bandwidths, although a
small smoothing parameter should be selected to minimize the bias in the estimation of γ̂. As a simple
guideline they use the smoothing parameter 2R/n, where R is the range of the design points. This
bandwidth restricts the smoothing to approximately eight neighboring observations when the data are
equally spaced (if a normal kernel is used).

Once an estimation of γ is obtained, it can be replaced in (1.12) and, thus, the vector of fitted
values under the null hypothesis is derived as

m̂ = S(Y −Dγ̂),

with S being the smoothing matrix using a given bandwidth for estimation (for example the one given
by the cross-validation criterion). Under the alternative, the vector of fitted values is estimated as

m̂ = SdY ,

where Sd is a block matrix as described in the equality test. The next statistic is then used for the
parallelism test:

L3 =
1

σ̂2

I∑
i=1

ni∑
j=1

[γ̂i + m̂(Xij)− m̂i(Xij)]
2, (1.14)

with σ̂2 being either estimator (1.10) or (1.11). The numerator of this statistic can be expressed as a
quadratic form in the data:

Y ′[DA+ S(In −DA)− Sd]′[DA+ S(In −DA)− Sd]Y ,
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therefore, its structure is of the type Y ′QY and the results used for calculating the p-value in the
previous tests can be applied again to derive an approximate distribution for the statistic under H0,
which is a shifted and scaled χ2 distribution with the parameters obtained as in (1.8). Note that, as in
the equality test, the estimators m̂ and m̂i, i ∈ {1, ..., I} must be obtained using the same smoothing
parameter, so that the bias is canceled out.

The test is now applied to the onion data employed in the previous section. It could be natural
that the shape of the regression curve was the same for the two locations but the yield in one of the
locations was always larger than in the other one. Therefore it is of interest to investigate if the curves
are parallel, for which the parallelism test is used. When selecting the smoothing parameter with the
cross-validation criterion, a p-value of .0277 is obtained for the test, rejecting the null hypothesis for
α = .05. Since the outcome of the test depends on the bandwidth, Figure 1.8 shows the significance
trace of the test over a sequence of smoothing parameters. It is shown that for all values of the
smoothing parameter except for the lowest ones (which are very unrealistic given the sample size), the
p-value is below .05, leading to the rejection of the parallelism hypothesis for this value of α.

Figure 1.8: Trace of the parallelism test applied to the onion data. Dotted vertical line representing
the bandwidth selected with the cross-validation criterion using all the data. Dashed horizontal line
represents α = .05.

1.2.4 Simulation study

Up to the author’s knowledge, there is not a simulation study of the significance test presented in
Section 1.2.1 in the statistical literature. For that reason a brief simulation study of the no-effect
test will be carried out in this section. The performance of the test will be analyzed using several
smoothing parameters in order to study the dependence of the test on the bandwidth. Regarding the
two revisited ANCOVA tests (equality and parallelism), a complete simulation study can be found in
Young and Bowman (1995). Part of this simulation study is redone in the present section.

Signification test

In the following, the power and calibration of the no-effect test will be studied through a brief simulation
study. The computation was done with R’s package sm (Bowman and Azzalini, 2018), where the test
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is implemented. Two models will be considered:

A. Y = 2− βX2 + ε, β = 0, .05, .1

B. Y = β sin(10X) + ε, β = 0, .1, .15

where ε ∼ N(0, σ), and σ takes different values for each model. The first value of β corresponds to the
null hypothesis being true, and when the other values of β are used, the alternative hypothesis holds.
The sample size takes values in {50, 100, 250, 400}. Realizations of data drawn from the models and
the true regression functions are represented in Figure 1.9 for all the values of β.

The test was applied to 500 replications of the simulated data and the percentages of rejection for
the nominal level α = .05 were recorded. The dependence of the test on the smoothing parameter was
investigated by considering different values of the bandwidth: cv, 1

2cv, 2cv, 3cv and 4cv, where cv is
the parameter selected by cross-validation.

Model A Table 1.1 contains results for model A. Under the null hypothesis the test with bandwidth
selected by cross-validation (cv) obtains percentages of rejection much larger than the nominal level
α = .05 (around 9% or 10%, for instance). When considering 1

2cv, the results are close to α, and when
using multiples of cv, the larger the smoothing parameter, the closer the percentages of rejection are
to α. On the other hand, under the alternative hypothesis, the percentages of rejection tend to 1 as
the data size increases, at least when β = .1. However, when using 1

2cv as the smoothing parameter,
the percentages of rejection are not so large as with the other parameters. Note that when using
large bandwidths the estimation of the curve will be oversmoothed, and therefore it will be close to a
straight line, but since this line will not have zero slope, the test can still detect the significance of the
predictor variable. Therefore, even for large bandwidths as 4cv, the percentages of rejection under H1

are still high.

Model B Results for model B are displayed in Table 1.2. Under H0 the percentages of rejection
obtained with the cv bandwidth are much larger than α and, with the largest bandwidths, the percent-
ages of rejection tend to α. Nevertheless, as before, using 1

2cv results close to .05 are obtained. Under
the alternative hypothesis, the largest percentages of rejection are obtained with the cv bandwidth,
and increasing the smoothing parameter has the effect of obtaining smaller percentages of rejection.
This behavior is due to the shape of the regression function under H1, since now when using very
large bandwidths the estimation of the curve will tend to a straight line with zero slope, so with large
bandwidths as 4cv the test is not able to detect the effect of the predictor variable as often as with
other parameters. On the other hand, with a small bandwidth like 1

2cv, the percentages of rejection
are quite high in comparison.

As a general conclusion on the bandwidth, given the simulation’s results, a good choice in practice
would be to use 1

2cv as a bandwidth. With this smoothing parameter the test is well calibrated and
the power of the test is relatively high compared to the results obtained for other bandwidths.
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(a) Model A. β = 0 (b) Model A. β = .05 (c) Model A. β = .1

(d) Model B. β = 0 (e) Model B. β = .1 (f) Model B. β = .15

Figure 1.9: Scatter plots of simulated data drawn from models A (first row) and B (second row) with
n = 100, along with the true regression functions. The standard deviation is σ = .1 in Model A and
σ = .15 in Model B.



20 CHAPTER 1. A REVIEW ON NONPARAMETRIC ANCOVA

T
es

t
of

n
o

eff
ec

t.
M

o
d

el
A

σ
n

1 2
cv

cv
2c
v

3c
v

4
cv

β
=

0
β

=
.0

5
β

=
.1

β
=

0
β

=
.0

5
β

=
.1

β
=

0
β

=
.0

5
β

=
.1

β
=

0
β

=
.0

5
β

=
.1

β
=

0
β

=
.0

5
β

=
.1

.0
5

5
0

.0
6
8

.3
7
4

.9
24

.1
30

.5
2
4

.9
68

.0
76

.5
02

.9
66

.0
56

.4
80

.9
6
4

.0
52

.4
74

.9
6
8

10
0

.0
50

.7
3
8

1
.0

80
.8

3
4

1
.0

50
.8

1
8

1
.0

38
.8

1
2

1
.0

32
.8

1
0

1

25
0

.0
42

.9
7
0

1
.0

84
.9

9
2

1
.0

50
.8

1
8

1
.0

38
.8

1
2

1
.0

32
.8

1
0

1

40
0

.0
64

1
1

.0
9
2

1
1

.0
64

1
1

.0
44

1
1

.0
38

1
1

.1
5
0

.0
56

.1
3
0

.4
1
6

.0
9
2

.1
86

.5
60

.0
66

.1
68

.5
4
8

.0
54

.1
58

.5
26

.0
50

.1
5
6

.5
30

1
0
0

.0
5
6

.2
0
4

.7
4
2

.1
0
2

.3
16

.8
16

.0
62

.2
90

.8
0
8

.0
40

.2
7
0

.8
02

.0
36

.2
6
4

.8
00

2
5
0

.0
4
2

.5
1
2

.9
9
2

.0
7
0

.6
28

1
.0

40
.6

34
1

.0
30

.6
28

.9
9
8

.0
30

.6
28

.9
9
8

4
0
0

.0
5
8

.7
2
4

1
.0

8
6

.8
2
0

1
.0

62
.8

22
1

.0
4
8

.8
22

1
.0

46
.8

2
4

1

T
ab

le
1.

1:
P

er
ce

n
ta

ge
s

of
re

je
ct

io
n

s
(f

o
r
α

=
.0

5
)

fo
r

th
e

n
o
n

p
a
ra

m
et

ri
c

si
g
n

ifi
ca

n
ce

te
st

in
M

o
d

el
A

b
a
se

d
o
n

5
0
0

si
m

u
la

ti
o
n

s.



1.2. NONPARAMETRIC REGRESSION 21

T
es

t
of

n
o

eff
ec

t.
M

o
d

el
B

σ
n

1 2
cv

cv
2c
v

3c
v

4
cv

β
=

0
β

=
.1

β
=
.1

5
β

=
0

β
=
.1

β
=
.1

5
β

=
0

β
=
.1

β
=
.1

5
β

=
0

β
=
.1

β
=
.1

5
β

=
0

β
=
.1

β
=
.1

5

.1
5
0

.0
54

.8
40

.9
82

.1
0
6

.9
32

.9
98

.0
74

.8
46

.9
88

.0
58

.6
4
4

.9
30

.0
56

.4
4
0

.8
24

1
0
0

.0
5
0

.9
9
8

1
.0

92
1

1
.0

74
.9

98
1

.0
56

.9
62

1
.0

5
2

.8
76

1

2
5
0

.0
5
2

1
1

.1
04

1
1

.0
70

1
1

.0
60

1
1

.0
60

1
1

4
0
0

.0
6
2

1
1

.1
06

1
1

.0
88

1
1

.0
74

1
1

.0
72

1
1

.1
5

5
0

.0
4
4

.3
90

.8
3
4

.0
86

.5
98

.9
36

.0
60

.4
26

.8
26

.0
54

.2
44

.6
28

.0
44

.1
6
6

.4
28

1
0
0

.0
5
6

.8
6
2

1
.0

94
.9

20
1

.0
58

.8
38

.9
96

.0
50

.6
2
8

.9
7
0

.0
40

.4
68

.8
7
6

2
5
0

.0
4
2

1
1

.0
86

1
1

.0
84

1
1

.0
60

.9
9
0

1
.0

52
.9

5
4

1

4
0
0

.0
6
0

1
1

.0
96

1
1

.0
76

1
1

.0
58

1
1

.0
54

.9
9
8

1

T
ab

le
1.

2:
P

er
ce

n
ta

ge
s

of
re

je
ct

io
n

s
(f

o
r
α

=
.0

5
)

fo
r

th
e

n
o
n

p
a
ra

m
et

ri
c

si
g
n

ifi
ca

n
ce

te
st

in
M

o
d

el
B

b
a
se

d
o
n

5
0
0

si
m

u
la

ti
o
n

s.



22 CHAPTER 1. A REVIEW ON NONPARAMETRIC ANCOVA

Replication of original simulation study for ANCOVA

In order to study the performance of the nonparametric ANCOVA tests described in this chapter, the
simulation study in Young and Bowman (1995) was replicated using the function sm.ancova from the
sm5 package (Bowman and Azzalini, 2018). Three sets of design points were used for obtaining the
values in the independent variable:

� Both groups equally spaced on the interval (0, 1).

� Both groups identical, as determined by a single random sample from a U(0, 1) distribution.

� Each group determined by a different sample from a U(0, 1) distribution.

The different regression relationships used were

A. Group 1: Y = X. Group 2: Y = βX, β = 1, .9, .8

B. Group 1: Y = 0. Group 2: Y = β sin(2πX), β = 0, .1, .2

C. Group 1: Y = 0. Group 2: Y = β(X2 −X + 0.15), β = 0, .5, 1

When the first value of β is used, the null hypothesis holds, while when considering the other two
values of β, the alternative hypothesis is true.

(a) Model A (b) Model B (c) Model C

Figure 1.10: Representations of simulated data from models A, B and C under the alternative hy-
pothesis of different regression curves (β = .8 in A, β = .2 in B and β = 1 in C), along with the true
regression curves. Number of observations is 30 for each group and σ = .1.

For the test of parallelism another parameter γ = .05 was added to the responses for the second
group, describing the shift between the curves for each group. The number of simulated observations
was 60, with both groups having 30 observations each, as in the original simulation study. The
errors follow a N(0, σ) distribution, with two different values for the standard deviation: .05 and
.1. Simulated data from all three models and the true regression curves under H1 are displayed in
Figure 1.10. The smoothing parameter was obtained through cross-validation and the nominal level
considered was α = .05. Along with the percentages of rejection for the nonparametric tests (NP),
the percentages of rejection for the linear ANCOVA tests (L) were obtained. Results were determined
using 500 simulations for each combination. Results for the test of equality are displayed in Table 1.3
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Test of equality

σ A B C

β = 1 β = .9 β = .8 β = 0 β = .1 β = .2 β = 0 β = .5 β = 1

Equally spaced design

.05 NP .056 .928 1 .052 .956 1 .048 .568 1

L .062 .986 1 .050 .838 1 .038 .020 .004

.1 NP .032 .324 .950 .062 .338 .968 .056 .128 .592

L .052 .484 .972 .058 .328 .840 .080 .044 .038

U(0, 1) design (same for both groups)

.05 NP .050 .912 1 .036 .948 1 .046 .458 .964

L .048 .986 1 .044 .856 1 .044 .074 0.12

.1 NP .052 .366 .910 .042 .368 .978 .038 .182 .506

L .072 .491 .978 .050 .410 .808 .048 .032 .042

U(0, 1) design (different for each group)

.05 NP .048 .970 1 .050 .994 1 .060 .434 .984

L .066 .998 1 .046 .966 1 .048 .246 .038

.1 NP .042 .346 .852 .048 .464 .970 .052 .138 .492

L .056 .540 .976 .052 .528 .982 .050 .030 .036

Table 1.3: Percentages of rejections (for α = .05) for the nonparametric test of equality (NP) and the
linear model test (L) in Models A, B and C based on 500 simulations and with ni = 30, for i = 1, 2.
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Test of parallelism

A B C

σ β = 1 β = .9 β = .8 β = 0 β = .1 β = .2 β = 0 β = .5 β = 1

Equally spaced design

.05 NP .044 .364 .956 .054 .974 1 .048 .628 .994

L .064 .642 .992 .046 .948 1 .050 .020 .002

.1 NP .056 .104 .412 .060 .436 .990 .052 .222 .644

L .058 .202 .608 .054 .460 .938 .058 .054 .016

U(0, 1) design (same for both groups)

.05 NP .042 .360 .932 .048 .972 1 .038 .412 .998

L .044 .590 .984 .068 .960 1 .038 .022 .054

.1 NP .042 .106 .412 .042 .554 .990 .050 .120 .574

L .046 .188 .640 .038 .562 .988 .042 .050 .058

U(0, 1) design (different for each group)

.05 NP .048 .342 .932 .050 .974 1 .048 .526 .994

L .048 .574 .996 .038 .920 1 .044 .024 .012

.1 NP .038 .118 .434 .046 .432 .990 .050 .160 .512

L .044 .192 .646 .050 .572 .988 .064 .064 .034

Table 1.4: Percentages of rejections (for α = .05) for the nonparametric test of parallelism (NP) and
the linear model test (L) in Models A, B and C based on 500 simulations and with ni = 30, for i = 1, 2.



1.2. NONPARAMETRIC REGRESSION 25

and results for the test of parallelism are presented in Table 1.4. A discussion on the results for each
model is given next.

Model A Since the model considered has a linear shape, it is expected that the linear ANCOVA
tests perform better than the nonparametric ones. When testing equality, both the linear and the
nonparametric tests present percentages of rejection close to the nominal level α = .05 under the
null hypothesis. Under H1, percentages of rejection are close to 1 for σ = .05, and the percentages
are lower when the error variance increases. Although the results obtained for the linear and the
nonparametric tests are similar, the linear test always obtains percentages of rejection slightly higher
than the nonparametric test. As noted before, this is an expected behavior of the tests given that the
underlying shape of the curves is linear.

As for the tests of parallelism, both of them obtain percentages of rejection close to .05 under H0.
On the other hand, under both variations of the alternative hypothesis, the percentages of rejection are
lower than in the equality case. Again, the performance of the tests is worse when the error variance
increases, since it is more difficult to capture the differences between the groups. In addition, in this
scenario the linear test also obtains slightly higher percentages of rejection under H1, as in the equality
setting.

Model B Although the parametric assumption is not correct for this model, the parametric tests
(both equality and parallelism) still perform well under H0 (given that under the null hypothesis the
linear assumption is correct), obtaining percentages of rejection oscillating around α = .05. Results
for the nonparametric equality and parallelism tests under the null hypothesis are also close to the
nominal level.

Under the alternative hypotheses (β = .1 and β = .2) results for equality and parallelism are similar:
when σ = .05 the percentages of rejection are close to 1 for the parametric and the nonparametric
tests, and for σ = .1, as expected, the percentages of rejection are lower. However, although in Model
A the parametric tests obtained rather higher results than their nonparametric counterparts under
H1, now both tests obtain similar results, which is at first surprising given that under the alternative
hypothesis one of the regression functions is not linear. The reason why the test for linear still works
well here is that it fits the model with two different lines, so although the shape of the fitted regression
functions is not correct, the test is able to reject H0 when it is false.

Model C Under H0 the nonparametric tests perform well, obtaining results close to α both in the
equality and the parallelism settings. The linear tests also obtain percentages of rejection close to the
nominal level (note that under H0 the regression function is a horizontal line, so the linear assumption
is correct).

However, under H1 one of the underlying regression curves is a quadratic function, far away from
the linear assumption in the parametric tests, and when fitting a linear model, the two fitted regression
lines are similar. Therefore, the parametric tests obtain percentages of rejection close to zero, which
shows that these linear tests are not capable of detecting the differences between the two groups. On
the other hand, the results for the nonparametric tests are close to one when σ = .05. Again, when
increasing the value of σ, the percentages of rejection are lower.

In conclusion, the parametric test is well calibrated but it fails when trying to capture the differences
between the groups. Even when the test is able to detect such differences, the shape of the estimated
regression curve is far from the real model, unsuccessfully modeling the regression function. On the
other hand, the nonparametric test seems to be well calibrated and it is able to reject H0 when it is
false, whichever the shape of the regression function.

5The sm library uses, by default, the variance estimator proposed by Gasser et al. (1986).
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In this section it was assumed that the errors follow a normal distribution with constant variance.
Now, the performance of the equality and parallelism tests when the normality assumption does not
hold will be studied. For this aim, the same models considered in the original simulation study by
Young and Bowman (1995) will be used, as well as the data size. Instead of the normal distribution,
the errors will be drawn from the following distributions:

� Exponential distribution: ε ∼ Exp(λ), λ = 7, 10

� Student’s T distribution: ε ∼ Tk, k = 15, 30

The first distribution is skewed, whereas the second one is heavy tailed. Percentages of rejection are
displayed in Table 1.5 for the test of equality and in Table 1.6 for the test of parallelism. A brief
discussion on them follows.

Exponentially distributed errors Under the null hypothesis both the test of equality and the test
of parallelism obtain some percentages of rejection quite higher than the nominal level α = .05, even
reaching or surpassing .09. On the other hand, under the alternative hypothesis both tests are capable
of detecting the differences between the groups, although the power is not certainly high.

T distributed erros When the errors are drawn from a T distribution, under the null hypothesis
the percentages of rejection are closer to the nominal level than when considering exponential errors,
although some of the results are moderately high compared to α. On the other hand, under the
alternative hypothesis the tests of equality and parallelism are unable to capture the differences between
the groups, leading to very low percentages of rejection (lower than 9% in all cases).

The problem of studying the equality of I regression curves with non-normal or heteroscedastic
errors was approached by Dette and Neumeyer (2001), who also worked with statistic L2 defined in
(1.9). These authors used statistic L2 to construct a bootstrap version of the test, affirming that the
test obtained a good performance under heteroscedasticity and non-normality even for small sample
sizes (ni ∈ {10, 20, 30, 50}, i = 1, 2).
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Tests of equality & parallelism

Exponentially distributed errors

λ A B C

β = 1 β = .9 β = .8 β = 0 β = .1 β = .2 β = 0 β = .5 β = 1

Equally spaced design

Eq 7 .040 .236 .736 .096 .228 .662 .062 .084 .240

10 .090 .474 .943 .062 .414 .906 .068 .132 .430

Par 7 .064 .106 .376 .046 .282 .756 .064 .082 .282

10 .078 .198 .584 .048 .484 .948 .060 .160 .510

U(0, 1) design (same for both groups)

Eq 7 .068 .254 .734 .034 .280 .696 .052 .108 .194

10 .054 .454 .936 .044 .462 .950 .064 .126 .422

Par 7 .066 .118 .324 .056 .274 .754 .044 .094 .246

10 .062 .194 .574 .046 .516 .970 .068 .152 .464

U(0, 1) design (different for each group)

Eq 7 .076 .258 .688 .070 .244 .706 .050 .090 .194

10 .074 .448 .928 .056 .436 .920 .064 .100 .352

Par 7 .042 .114 .284 .056 .312 .798 .050 .082 .222

10 .064 .184 .544 .068 .502 .950 .080 .144 .480

Table 1.5: Percentage of rejections (for α = .05) for the nonparametric tests of equality (Eq) and
parallelism (Par) for Models A, B and C with exponential erros, based on 500 simulations and with
ni = 30, for i = 1, 2.
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Tests of equality & parallelism

T distributed errors

k A B C

β = 1 β = .9 β = .8 β = 0 β = .1 β = .2 β = 0 β = .5 β = 1

Equally spaced design

Eq k = 15 .080 .058 .064 .044 .062 .074 .058 .052 .058

k = 30 .054 .068 .076 .052 .048 .060 .048 .050 .066

Par k = 15 .060 .070 .060 .062 .056 .086 .042 .038 .042

k = 30 .066 .060 .066 .062 .060 .076 .044 .066 .060

U(0, 1) design (same for both groups)

Eq k = 15 .046 .070 .058 .068 .062 .090 .060 .046 .070

k = 30 .050 .050 .072 .034 .052 .056 .058 .062 .064

Par k = 15 .058 .068 .066 .064 .056 .084 .064 .066 .066

k = 30 .064 .068 .048 .070 .060 .066 .028 .076 .054

U(0, 1) design (different for each group)

Eq k = 15 .052 .062 .074 .054 .050 .046 .062 .060 .056

k = 30 .036 .070 .068 .052 .064 .068 .062 .072 .068

Par k = 15 .044 .048 .056 .046 .048 .054 .040 .062 .070

k = 30 .056 .046 .066 .050 .064 .070 .062 .062 .058

Table 1.6: Percentage of rejections (for α = .05) for the nonparametric tests of equality and parallelism
for Models A, B and C with T-distributed errors, based on 500 simulations and with ni = 30, for
i = 1, 2.



Chapter 2

Some background on circular data

Circular data refers to observations that can be represented as points on the circumference of the
unit circle. Once a zero direction and a sense of rotation have been chosen, these observations can be
expressed as angles. Most examples of this type of data come from compass or clock measurements,
such as directions or observations with time or calendar effects. Circular data can be found in many
different fields: biology (orientation of the red wood ants in reaction to different stimuli; Jander (1957)),
geology (cross-beds; SenGupta and Rao (1966) and Mardia (1972)), environmetrics and oceanography
(wind and waves directions; Jona-Lasinio et al. (2012) and Oliveira et al. (2014a)), medicine (sudden
infant death syndrome; Mooney et al. (2003)) or ecology (wildfire occurrences in the Iberian Peninsula;
Ameijeiras-Alonso et al. (2019)).

Due to the periodicity of the data, classical statistical techniques might not be suitable to handle
circular observations, so different methods must be applied to this kind of data. Jammalamadaka and
SenGupta (2001), Pewsey et al. (2013) and Ley and Verdebout (2017) present a detailed review of
circular statistics. Also, Crujeiras (2017) presents a review of different statistical methods for this kind
of data, including nonparametric techniques. Circular data can also be viewed as a particular case of
directional data, defined in a hypersphere of arbitrary dimension (see Mardia and Jupp, 2000). Hence,
methods for spherical data can be adapted to the circle.

This chapter aims also to give some background on circular data: Section 2.1 gives an introduction
to the main population and sample measures for circular data. Section 2.2 reviews the most important
parametric circular distributions. In Section 2.3, parametric regression models for this kind of data
will be presented. Finally, in Section 2.4 parametric ANOVA and ANCOVA models for circular data
are revisited.

2.1 Population and sample measures

The present section will be devoted to the study of different measures of a circular population, such
as location, concentration and dispersion measures, as well as their sample analogues. For that aim it
is necessary to define, first, the concept of a circular density function.

When considering a circular random variable Θ with support in [0, 2π), a function f will be a
circular density if it verifies:

Condition 1. f(θ) ≥ 0 for θ ∈ [0, 2π),

Condition 2. f(θ + 2πk) = f(θ) for θ ∈ [0, 2π) and k ∈ Z,

Condition 3.
∫ 2π

0
f(θ)dθ = 1.

Therefore, the main difference with a linear density function is the addition of Condition 2.

29
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Population measures

Consider the circular variable Θ with density function f . Its first cosine and sine moments are defined,
respectively, as

C = E[cos Θ] =

∫ 2π

0

cos(θ)f(θ)dθ and S = E[sin Θ] =

∫ 2π

0

sin(θ)f(θ)dθ.

The basic circular measure of location is the population mean direction, which is defined as

µ = atan2(S,C),

where atan2(S,C) is an operator returning the angle between the x-axis and the vector from the origin
to (C, S). It is defined as

atan2(a, b) =



arctan(b/a) if a > 0,

arctan(b/a) + π if b ≥ 0, a < 0,

arctan(b/a)− π if b < 0, a < 0,

π/2 if b > 0, a = 0,

−π/2 if b < 0, a = 0,

undefined if b = 0, a = 0.

(2.1)

Note that the mean direction does not always exist, since it is undefined when both S and C are zero,
which means null concentration. An alternative measure of location is the median direction, defined
as any angle Ψ that minimizes

E[π − |π − |Θ−Ψ||],

where | · | denotes the absolute value function. This measure is not necessarily unique, although it is
unique for unimodal distributions.

In the circle, given the nature of the variable’s support, namely [0, 2π), measures of concentration
are more frequently used than measures of dispersion. The fundamental measure of concentration is
the mean resultant length, which is defined as

ρ = (S2 + C2)1/2 ∈ [0, 1].

The mean resultant length always exists and the case when ρ = 0 corresponds to the situation where
µ does not exist.

Although measures of concentration are far more used in the circular context, it is also possible to
define measures of dispersion in the circle. For instance, the population circular variance is defined in
Mardia and Jupp (2000, Chapter 3) as

V = 1− ρ ∈ [0, 1]. (2.2)

Other measures of dispersion can be considered, such as the circular standard deviation

σ = (−2 log(1− V ))1/2 ∈ [0,∞].
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Sample measures

Given a set of circular observations {θ1, ..., θn}, it is possible to apply some statistics to summarize
the data. For unimodal data, it is of interest to calculate the sample mean direction, which can be
obtained as

θ̄ = atan2(S̄, C̄),

where

S̄ =
1

n

n∑
j=1

sin(θj), C̄ =
1

n

n∑
j=1

cos(θj).

Therefore, C̄ and S̄ are the sample analogues of C and S, respectively. Note that the sample mean
direction is not defined when S̄ and C̄ are zero. As for the median direction, its sample counterpart
can be obtained minimizing the dispersion measure

1

n

n∑
j=1

(π − |π − |θj −Ψ||).

It is also possible to define the sample mean resultant length in terms of S̄ and C̄, as

R̄ = (S̄2 + C̄2)1/2.

The sample mean resultant length R̄ equals 1 only when all the data points are located at the same point
on the unit circle. Then, a value close to 1 means that the data are closely congregated around the mean
direction. On the other hand, a value close to 0 does not necessarily indicate that the data are evenly
distributed around the circle. For example, the set of observations {θ1, ..., θn/2, θ1 + π, ..., θn/2 + π},
for even n, has a mean resultant length of R̄ = 0.

Furthermore, the sample measures of dispersion on the circle are easily obtained. The sample
circular variance is defined as

V̄ = 1− R̄,

which is also defined in [0, 1]. In addition, the sample circular standard deviation is obtained as

σ̂ = (−2 log(1− V̄ ))1/2 ∈ [0,∞].

The distance between two points in the circle ω and φ is usually measured by the circular distance

d(ω, φ) = 1− cos(ω − φ). (2.3)

Thus, the measure of dispersion of the sample {θ1, ..., θn} about a direction Ψ is given by

d(Ψ) =
1

n

n∑
j=1

[1− cos(θj −Ψ)],

which is minimized when Ψ = θ̄. Note that then d(θ̄) = 1− R̄ = V̄ .

2.2 Circular models

Many parametric models for circular distributions have been proposed in literature. In this section the
most important circular models will be described, presenting some unimodal (both symmetric1 and
asymmetric) and multimodal models.

1Several kinds of symmetry exist in the circle. When referring to symmetry in the circle in this manuscript, the
reflective symmetry is being considered. A circular density function f is considered to be reflectively symmetric about
Ψ if it satisfies f(θ + Ψ) = f(−θ + Ψ).
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2.2.1 Unimodal models

One of the most important and useful circular distributions is the von Mises, introduced by von Mises
(1918). The von Mises distribution vM(µ, κ), is a symmetric and unimodal distribution determined
by a mean direction µ ∈ [0, 2π) and a concentration parameter κ ≥ 0 with density function

f(θ, µ, κ) =
1

2πI0(κ)
exp(κ cos(θ − µ)), θ ∈ [0, 2π), (2.4)

where Ij(·) denotes the modified Bessel function of the first kind and order j and in this case it is used
as a normalizing constant. The von Mises distribution is the unique continuous circular distribution
for which the sample mean direction, θ̄, is the maximum likelihood estimate of the population mean
direction, µ. For this reason, the von Mises distribution is sometimes known as the circular Normal,
as noted by Gumbel et al. (1953), who studied its properties and remarked its similarities with the
Normal distribution. The spread of the Gaussian distribution is controlled by the standard deviation
σ, while in the case of the von Mises this is controlled by the concentration parameter κ. The larger κ
is, the larger the concentration, hence the lower the spread of the distribution. When the κ→ 0, the
von Mises density function tends to

f(θ) =
1

2π
, θ ∈ [0, 2π),

which corresponds to the density function of the circular uniform distribution. First row in Figure 2.1
shows representations of the von Mises density functions with mean direction µ = π/2 and different
concentration parameters. The density in Figure 2.1a corresponds to the circular uniform distribution.

A simple way of obtaining circular densities is to “wrap” a linear density around the unit circle. If
X is a random variable in R with density function g, then Θ = X(mod 2π) and has density function

f(θ) =

∞∑
k=−∞

g(θ + 2πk).

The most widely used examples of wrapped densities are the wrapped normal and the wrapped Cauchy.
For the wrapped normal, when considering a random variable X ∼ N(ξ, σ) with mean ξ ∈ (−∞,∞)
and variance σ2 > 0, the “wrapping” procedure produces a random circular variable Θ which has
density

f(θ) =
1

(−4π log ρ)−1/2

∞∑
k=−∞

exp

[
(θ − µ+ 2πk)2

4 log ρ

]
,

where ρ = e−σ
2/2 is the concentration and µ = ξ(mod 2π) is the mean direction. Since the density

expression involves an infinite sum, values of f(θ), θ ∈ [0, 2π), must be obtained using numerical
methods. Second row in Figure 2.1 displays the representations of three wrapped normal densities
with common mean direction, µ = π/2, and different values of σ.

The von Mises distribution, the uniform distribution, the wrapped Cauchy and many other im-
portant distributions are just a particular case of a three parameter family of symmetric circular
distributions known as the Jones-Pewsey family (Jones and Pewsey, 2005). The density function of
this family is

f(θ) =
[cosh(κΨ) + sinh(κΨ) cos(θ − µ)]1/Ψ

2πP1/Ψ(cosh(κΨ))
,

where µ is a location parameter, κ ≥ 0 is a concentration parameter, Ψ ∈ (−∞,∞) is a kurtosis
parameter and 2πP1/Ψ is a normalizing constant2.

2P1/Ψ(·) is the associated Legendre function of the first kind of degree 1/Ψ and order zero (Gradshteyn and Ryzhik,
1994).
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Polar representations of von Mises densities (first row) and wrapped normal densities
(second row). Von Mises densities have mean direction µ = π/2 and concentration parameters κ = 0
in (a), κ = 2 in (b) and κ = 10 in (c). Wrapped normal densities have mean direction µ = π/2 and
standard deviation σ = 0.5 in (d), σ = 1 in (e) and σ = 2 in (f).
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Circular distributions can also be obtained by radial projection of bivariate distributions on the
plane. Let the random variable X = (X1, X2)′ follow a bivariate normal idstribution with mean
µ = (µ1, µ2)′ and covariance matrix Σ. The vector U = X

‖X‖ , with U = (U1, U2)′, is the projection

of X onto the unit circle. Then, the variable Θ is defined by taking U1 = cos Θ and U2 = sin Θ, and
it is said to follow a projected normal distribution PN2(µ,Σ) (Small, 1996; Mardia and Jupp, 2000).
Since the general structure of the covariance matrix is

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

the density function of Θ depends on five parameters (µ1, µ2, σ1, σ2, ρ), and its explicit form is com-
plicated. When Σ = I2, with I2 being the identity matrix of order 2, the density function of Θ is
unimodal and symmetric. In addition, if µ1 = µ2 = 0 and Σ = I2, the distribution is uniform on the
circle.

All the distributions presented so far are symmetric (except for some particular cases of the pro-
jected normal distribution with Σ 6= I2), but there are also asymmetric circular models, such as the
Kato-Jones density (Kato and Jones, 2015). Pewsey et al. (2013, Chapter 4) and Ley and Verdebout
(2017, Chapter 2) can be consulted for other distributions.

2.2.2 Multimodal models

In many situations, circular data will have more than one preferred direction, as it happens in Fig-
ure 2.2, where a polar representation of wind direction measurements3 in Santiago de Compostela,
Spain during December, 2017 is displayed (data avaliable in MeteoGalicia4). The representation in-
cludes a rose diagram (a circular alternative to the histrogram). It seems clear that there are two
modes in the data considered, hence, it is not possible to model this example with any of the models
described above, since all of them are unimodal. Some multimodal models are considered in litera-
ture, as the generalized von Mises distribution (Gatto and Jammalamadaka, 2007. In addition, when
considering the projected normal distribution with µ1 = µ2 = 0 and σ1 = σ2, the resulting density is
symmetric and with antipodal modes, i.e., it has two equal modes in opposite directions.

However, with the objective of having a better parameter interpretation, the general approach for
modeling multimodal data is to use finite mixtures of unimodal densities. The mixture density function
is constructed as

f(θ) =

M∑
m=1

pmfm(θ), θ ∈ [0, 2π), pm ≥ 0,

with
∑
m pm = 1 and fm being circular densities. Finite mixtures of von Mises distributions are widely

used and have been studied by many authors (Mardia and Sutton, 1975, Spurr, 1981 or Bartels, 1984).

2.3 Regression for circular data

Circular observations might be accompanied by other measurements, either circular or linear. It may
be of interest to study how both variables interfere with each other from a regression perspective. For
example, exploring the relationship between temperature and wind direction in Vinciguerra Glacier
(Oliveira et al., 2013) or predicting the angles moved by small blue periwinkles after relocation given
the distance moved (Fisher and Lee, 1992; Di Marzio et al., 2012). Depending on the nature of
each variable, three different regression scenarios are possible: circular covariates and linear responses

3The wind direction data are time dependent. Although the models considered in this section are meant for indepen-
dent data, the example is just meant as an illustration.

4MeteoGalicia website: http://www.meteogalicia.gal/observacion/rede/redeIndex.action
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Figure 2.2: Representation in the circle of wind direction data recorded on December 2017 in Santiago
de Compostela, Spain, along with a rose diagram. Data were recorded every two hours.

(circular-linear regression), linear covariates and circular responses (linear-circular regression) and
circular covariates and circular responses (circular-circular regression).

2.3.1 Circular-Linear regression

In the case where the explanatory variable (Θ) has a circular nature and the response variable (Y ) is
linear, the following parametric model5 is usually considered:

Y = β0 + β1 cos Θ + β2 sin Θ + ε, (2.5)

where β0, β1 and β2 are parameters that must be estimated and the ε are supposed to be independent
and identically distributed errors from a normal distribution with mean 0 and constant variance σ2.
This can be considered as a multiple linear model and the parameters can be estimated via least
squares (see Sheather, 2009). Figure 2.3 presents simulated data from this model along with the true
regression curve. The left panel shows a linear representation, where the periodicity can be seen by
joining the extremes of the lines. On the other hand, the right panel displays a circular representation.
It is important to note that model (2.5) is equivalent to the following cosine model

Y = γ0 + γ1 cos(Θ− ω) + ε,

taking γ0 = β0, γ1 =
√
β2

1 + β2
2 and ω = atan2(β2, β1). As for the polynomial regression linear case,

model (2.5) can be extended to include more sine and cosine terms. Its general form is given by

Y = β0 + β1 cos(Θ) + β2 sin(Θ) + β3 cos(2Θ) + β4 sin(2Θ) + ...+ β2k−1 cos(kΘ) + β2k sin(kΘ) + ε.

5Although only one predictor variable will be considered in this work, the model can be extended to include more
covariates.



36 CHAPTER 2. SOME BACKGROUND ON CIRCULAR DATA

(a) (b)

Figure 2.3: Scatter plots of n = 100 sample points generated from model (2.5) with parameters
β0 = 2, β1 = 3/2 and β2 = 3, with the true regression function. (a) Linear representation. (b) Circular
representation.

Other models can be contemplated, for example, Batschelet (1981) proposes a skew-cosine model
to account for regression functions exhibiting skewness by including a fourth parameter and another
cosine term inside the trigonometric functions in model (2.5). The same author discusses an alternative
model capable of describing some departures from sinusoidal oscillations.

2.3.2 Linear-Circular regression

Consider now the case where the response variable Φ is circular, which is quite different from the
previous setting. If the predictor variable is linear, the regression function can be regarded as a curve
on the surface of an infinite cylinder, as it can be seen in Figure 2.4a. The image displays simulated
data from a linear-circular model jointly with the true regression function. The dependence of Φ on the
explanatory variable X can be modeled by ensuring that its mean direction depends on X. Classical
linear-circular regression models are based on the von Mises distribution. Let Φ1, ...,Φn be angular
observations such that each observation follows a von Mises distribution where the mean direction
depends on the predictor, i.e.,

Φj ∼ vM(µ(Xj), κ), j ∈ {1, ..., n},

where κ is constant. One of the earliest linear-circular regression models was proposed by Gould
(1969). This model assumes that the mean direction depends linearly on X:

µ(Xj) = γ + βXj , j ∈ {1, ..., n}, γ ∈ [−π, π), β ∈ R,

where the parameters γ and β are estimated through maximum likelihood. This model is considered to
be implausible in many situations and, in addition, it has been pointed out that problems arise when
fitting the model, since the maximum likelihood estimators for the parameters are not unique. Johnson
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(a) (b)

Figure 2.4: Representation of simulated data in (a) the cylinder and (b) the torus, along with the true
regression functions in red. Data size is 100 in both cases. Circular units are in degrees.

and Wehrly (1978) proposed a regression model which was generalized by Fisher and Lee (1992). The
location model proposed by Fisher and Lee assumes that the µ’s are related to the covariate by means
of a link function g so that

µ(Xj) = γ + g(βXj), j ∈ {1, ..., n}, γ ∈ [−π, π), β ∈ R, (2.6)

where γ and β are parameters that must be estimated. The link function must be chosen in order to
map the real line to the circle, so g should be a monotone function with support (−∞,∞) and range
[−π, π). Since the parameter γ is considered as the origin, the link function should verify g(0) = 0.
One possibility is to choose the link function from a parametric family of links, such as

g(u) = 2 tan−1(sgn(u)|u|λ),

where sgn(·) is the sign function. with λ = 0 corresponding to the logarithmic transformation. Al-
though λ could be estimated from the data as in the estimation of Box-Cox transformations, usually
λ = 1 is taken obtaining:

g(u) = 2 tan−1(u).

Note that the previous models assume that the circular variable takes values in [−π, π) and, if the
support of the variable was [0, 2π), the g functions described before would not verify g(0) = 0, so
the parameter γ would lose its interpretation as the origin. The estimation of the parameters is
done through maximum likelihood using a iteratively reweighted least squares algorithm, although
Presnell et al. (1998) point out some computational problems that arise from this procedure. These
authors present a more flexible model which does not rely on the von Mises assumption, the Projected
Multivariate Linear Model (PMLM). This is a parametric model which assumes that the directions
conditioned on the values of the predictor variables follow a Projected Normal distribution, i.e., the
directions are projections onto the unit circle of a bivariate Normal distribution (see Section 2.2).

Regression models where the parameter dependent on the predictor variable is the concentration
are also plausible. Fisher and Lee (1992) generalized a concentration model originally proposed by
Johnson and Wehrly (1978), in which the concentration parameters are modeled by

κj = h(Xj), j ∈ {1, ..., n},
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where the function h maps R to [0,∞). The most common option is to choose

h(u) = a exp(ωu), a ∈ [0,∞), ω ∈ R. (2.7)

Again, the parameters a and ω must be estimated from the data. Fisher and Lee (1992) also added a
hybrid model, in which both the location and the concentration parameters depend on the predictors.
Such model is a combination of models (2.6) and (2.7), and it is obtained straightforward.

2.3.3 Circular-Circular regression

In the case where both variables are circular, the interpretation of the regression function could be a
curve on the surface of a torus, as shown in Figure 2.4b, where simulated data from a circular-circular
model is displayed. Consider the explanatory variable Θ and the response variable Φ. Jammalamadaka
and SenGupta (2001) use the fact that the functions sin(·) and cos(·) are periodic with period 2π, and
they can be expressed in terms of their Fourier series expansions. Thus, the authors propose fitting
the following general model:

cos(Φj) = γc +

p∑
k=1

(βck cos(kΘj) + ωck sin(kΘj)) + εcj ,

sin(Φj) = γs +

p∑
k=1

(βsk cos(kΘj) + ωsk sin(kΘj)) + εsj ,

where (ε1, ε2) is an error vector with mean (0,0) and whose covariance matrix must be estimated from
the data. This model does not assume any specific distribution for the errors. The estimation of the
parameters is done trough the least squares method. When selecting the degree p of the polynomial,
it is recommended to start with a small value of p and then compute the reduction in the error sum
of squares when using a degree of (p + 1). If the reduction is significantly large, then (p + 1) is
considered and the process is repeated until there is not a significantly reduction (see Jammalamadaka
and SenGupta, 2001, for details).

2.4 ANOVA and ANCOVA for circular regression

In the previous section, parametric regression models with circular variables were reviewed. However,
circular measurements can also be accompanied by discrete covariates, leading to the appearance of
different groups in the data. In such setting, parametric ANOVA and ANCOVA models can also
be considered. This section will briefly review a parametric ANOVA model for circular data and a
parametric ANCOVA model for circular predictors and linear responses. In the linear-circular and
circular-circular regression contexts there are not, up to the author’s knowledge, any parametric AN-
COVA models.

2.4.1 ANOVA for circular variables

In order to compare the mean values of a circular variable across several groups, different techniques
have been studied. The parametric approach introduced by Watson and Williams (1956) and subse-
quently modified by Stephens (1972) will be now revised.

Let {Φij}, i ∈ {1, ..., I}, j ∈ {1, ..., ni} be a sample of a circular variable Φ where each of the
observations belongs to one out of I groups. Assume

Φij = (µi + εij)(mod 2π), µi ∈ [0, 2π) ∀ i ∈ {1, ..., I}, j ∈ {1, ..., ni},
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where the errors εij are generated from a vM(0, κ), κ > 1. The goal is to test the equality of the
circular mean directions, µ1, ..., µI . Hence, the considered hypotheses are

H0 : µ1 = ... = µI ,

H1 : µi 6= µk, for some i, k ∈ {1, ..., I}.

The statistic proposed by Watson and Williams (1953) takes the from

(
∑I
i=1 R̄i − R̄)/(I − 1)∑I
i=1(ni − R̄i)/(n− I)

,

where R̄ is the mean resultant length of the whole sample and R̄i is the mean resultant length of
the observations belonging to the ith group. The above statistic follows an approximate FI−1,n−I
distribution as long as κ is large. The approximation is said to be good when κ ≥ 2. For 1 < κ < 2,
Stephens (1972) improves the approximation by using the statistic(

1 +
3

8κ̂

)
(
∑I
i=1 R̄i − R̄)/(I − 1)∑I
i=1(ni − R̄i)/(n− I)

and using the same F -distribution approximation. Here, κ̂ is the overall maximum likelihood estimate
of κ.

The above test is only valid when the concentration of the errors is larger than 1. In cases where
such condition cannot be satisfied, a large-sample nonparametric test proposed by Watson (1983) may
be employed. For small sample sizes, a bootstrap version of the test was obtained by Fisher and Hall
(1991). These two versions of the test, as well as the test proposed by Watson and Williams (1953)
are implemented in R’s package circular (Agostinelli and Lund, 2017).

2.4.2 ANCOVA for circular-linear regression

In the circular regression context, a discrete predictor may also be added to a regression model.
Regarding the circular-linear setting, Anderson-Cook (1999) considers the full parametric ANCOVA
model derived from (2.5):

Yij = γi + βi cos Θij + ωi sin Θij + εij , i ∈ {1, ..., I}, j ∈ {1, ..., ni}. (2.8)

Since model (2.5) can be regarded as a multiple linear model, a parametric linear ANCOVA may be
used to test the differences between the groups, considering cos Θ and sin Θ as two continue explanatory
variables. The parameters of the full model can be estimated applying the least squares method for
each group. Anderson-Cook (1999) introduces several tests for the ANCOVA model: one of them
can be regarded as the equality test for the interaction model and another one can be thought as
the parallelism test. Both tests will be reviewed and, in order to establish an analogy with the tests
studied in Section 1.1, an equality test for the non-interaction model will be proposed.

Test for the non-interaction model

Recall that in a non interaction model, the effects of the continuous and the discrete predictors sum up
to each other, but do not interact between them. Thus, in a model without interaction the regression
function will have a different intercept for each group, while the other parameters remain equal:

Yij = γi + β cos Θij + ω sin Θij + εij , i ∈ {1, ..., I}, j ∈ {1, ..., ni}.

Therefore, the interest lies on determining if, effectively, each group has a different intercept or if the
regression function is the same for all groups. The hypotheses considered to test the equality of the
curves are

H0 : Yij = γ + β cos Θij + ω sin Θij + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = γi + β cos Θij + ω sin Θij + εij , γi 6= γk for some i, k ∈ {1, ..., I}.
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Following the theory in linear parametric models, it can be derived that the corresponding test statistic
is

(RSS0 −RSS)/(I − 1)

RSS/(n− I − 2)
∈ FI−1,n−I−2, (2.9)

where

RSS0 =

I∑
i=1

ni∑
j=1

(Yij − γ̂ − β̂ cos Θij − ω̂ sin Θij)
2, RSS =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂ cos Θij − ω̂ sin Θij)
2.

In RSS0, the parameters are estimated through the least squares method. On the other hand, the
parameters in RSS are estimated using partitioned regression. The number of degrees of freedom
under the null hypothesis is (n− 3) and under the alternative (n− I − 2). Then, (RSS0 −RSS) has
(I − 1) degrees of freedom.

Test for the interaction model

Analogously to the linear case, in an interaction model the effects of the continuous and discrete
variables interfere with each other resulting in not only different intercepts but different sine and
cosine parameters as well, as in the full model (2.8). As before, it is of interest to test the equality of
the regression functions. For that aim, the hypotheses of the test proposed by Anderson-Cook (1999)
are

H0 : Yij = γ + β cos Θij + ω sin Θij + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = γi + βi cos Θij + ωi sin Θij + εij , γi 6= γk, βi 6= βk or ωi 6= ωk for some i, k ∈ {1, ..., I}.

Now, the test statistic is
(RSS0 −RSS)/(3I − 3)

RSS/(n− 3I)
∈ F3I−3,n−3I , (2.10)

where

RSS0 =

I∑
i=1

ni∑
j=1

(Yij − γ̂ − β̂ cos Θij − ω̂ sin Θij)
2, RSS =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂i cos Θij − ω̂i sin Θij)
2.

Here, under H1 there are (n− 3I) degrees of freedom, since 3I parameters are being estimated. Thus,
the number of degrees of freedom in (RSS0 −RSS) is (3I − 3).

Test of parallelism

Anderson-Cook (1999) proposes a test to determine if the regression curves are parallel, against the
alternative hypothesis of different regression curves, in the full model (2.8). As in the linear case, this
can be regarded as a test to ascertain the existence of interaction. Consequently, the next hypotheses
statement is used:

H0 : Yij = γi + β cos Θij + ω sin Θij + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = γi + βi cos Θij + ωi sin Θij + εij , βi 6= βk or ωi 6= ωk for some i, k ∈ {1, ..., I}.

A reasonable statistic here is

(RSS0 −RSS)/(2I − 2)

RSS/(n− 3I)
∈ F2I−2,n−3I , (2.11)

where

RSS0 =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂ cos Θij − ω̂ sin Θij)
2, RSS =

I∑
i=1

ni∑
j=1

(Yij − γ̂i − β̂i cos Θij − ω̂i sin Θij)
2.
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The numbers of degrees of freedom on the F statistic are determined by the number of parameters
estimated: (n − 3I) in RSS and (n − I − 2) in RSS0, which makes (2I − 2) degrees of freedom in
(RSS0 −RSS).

Illustration with simulated data

There is not a simulation study in Anderson-Cook analyzing the performance of the tests previously
described. For that reason the three tests (equality for non-interaction and interaction models and
parallelism) will be now analyzed through a brief simulation study, where different scenarios are con-
sidered. In each setting, the percentages of rejection after 1000 replications of the simulated data were
recorded, for a nominal level α = .05. For the three tests, the predictor variables were drawn from the
following distributions:

� Both groups equally spaced on the interval [0, 2π).

� Both groups identical, as determined by a single random sample from a circular uniform distri-
bution.

� Each group determined by a different sample from a circular uniform distribution.

For the non interaction model, consider the following regression relationships:

A. Group 1: Y = 2 cos θ + 2 sin θ + ε. Group 2: Y = γ + 2 cos θ + 2 sin θ + ε, γ = 0, .25, .5

B. Group 1: Y = cos θ + 1
3 sin θ + ε. Group 2: Y = γ + cos θ + 1

3 sin θ + ε, γ = 0, .25, .5

Here, γ = 0 corresponds to H0 being true and H1 holds for the other values of γ. In all cases, the
error ε was drawn from a N(0, σ), where σ = .25, .5. For each group 50 observations were simulated,
making a total of 100 observations. Figure 2.5 displays a linear representation of simulated data from
both models, where σ = .5 and γ = .5. The image includes the true regression curves for each model.

(a) Model A (b) Model B

Figure 2.5: Representations of simulated data from the non-interaction models A and B under the
alternative hypothesis γ = .5 with ε ∼ N(0, .5), along with the true regression curves for each group.
Number of observations is 50 for each group.
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Regarding the test for the interaction model, the contemplated regression relationships were

A. Group 1: Y = sin θ + ε. Group 2: Y = β cos θ + sin θ + ε, β = 0, .25, .5

B. Group 1: Y = ε. Group 2: Y = β cos θ + β sin θ + ε, β = 0, .25, .5

C. Group 1: Y = 2 cos θ + ε. Group 2: Y = 2 cos θ + β sin θ + ε, β = 0, .25, .5

Therefore, when β = 0 is considered, the null hypothesis holds. As in the previous case, ε ∼ N(0, σ),
where σ = .25, .5, and the number of simulated observations in each group is 50. A representation of
the true regression models under the alternative hypotheses (β = .5) with simulated data originated
from such models can be found in Figure 2.6. The same models were considered for the parallelism
test, but in this case a shift parameter was added to the responses of the second group: .2 in Model
A, .05 in Model B and .3 in Model C. Results on the three tests are summarized next.

(a) Model A (b) Model B (c) Model C

Figure 2.6: Representations of simulated data from interaction models A, B and C under the alternative
hypothesis β = .5 with ε N(0, .5), along with the true regression curves for each group. Number of
observations is 50 for each group.

Equality test for the non-interaction model Table 2.1 collects the percentages of rejection for
the equality test in the model without interaction. Results for both models, A and B, are quite similar.
Under the null hypothesis, percentages of rejections vary around the nominal level .05, indicating the
test is well calibrated. When the alternative hypothesis is true, percentages of rejections are large,
specially when γ = .5 is used, with percentages of rejection close to 1. As expected, percentages of
rejections are lower when σ increases.

Equality test for the interaction model Results for the equality test in the interaction model are
displayed on Table 2.2. Under the null hypothesis all percentages of rejection (for models A, B and C)
are close to α = .05. On the other hand, under H1 the percentages of rejection grow when increasing
the differences between the curves (β = .5) and diminish when increasing the standard deviation of
the errors (σ = .5).

Parallelism test Lastly, Table 2.3 summarizes the results of the parallelism test. As before, the test
seems to be well calibrated, since percentages of rejection under H0 are always close to the nominal
level α. As for the alternative hypothesis, the more different the curves are, the larger percentages of
rejection obtained. Naturally, increasing the error variance leads to smaller percentages of rejection.



2.4. ANOVA AND ANCOVA FOR CIRCULAR REGRESSION 43

Figure 2.7a displays three histograms of the statistic values for the different tests considering Model
A (σ = .25) under the null hypothesis. The theoretical F distributions are also represented, and it
is easy to observe that the histograms match the true functions. The Kolmogorov-Smirnoff test was
used to determine if the values of the statistics follow a F distribution under H0, with the parameters
specified before. In all cases, the corresponding p-values were much larger than the usual significance
levels, therefore, there are no evidences to reject the hypothesis of the statistic values following a F
distribution (under H0).

(a) Test for the non-interaction model (b) Test for the interaction model (c) Test of parallelism

Figure 2.7: Histograms for the values of the statistics in the different tests, for the corresponding
Model A (σ = .25) under H0. The density function for the distribution of the corresponding statistics
under the null hypothesis is represented as a black curve.
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Test for the non-interaction model

σ A B

γ = 0 γ = .25 γ = .5 γ = 0 γ = .25 γ = .5

Equally spaced design

.25 .051 .1 1 .056 .999 1

.5 .047 .694 1 .043 .687 .997

Circular uniform design (same for both groups)

.25 .049 1 1 .057 .998 1

.5 .046 .711 .999 .053 .725 .997

Circular uniform design (different for each group)

.25 .057 1 1 .053 1 1

.5 .052 .698 .998 .042 .700 .999

Table 2.1: Percentages of rejections (for α = .05) for the non-interaction test based on 1000 simulations
and with ni = 50 for i = 1, 2.
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Test for the interaction model

σ A B C

β = 0 β = .25 β = .5 β = 0 β = .25 β = .5 β = 0 β = .25 β = .5

Equally spaced design

.25 .050 .842 1 .047 .995 1 .047 .851 1

.5 .053 .283 .843 .047 .502 .993 .045 .281 .857

Circular uniform design (same for both groups)

.25 .046 .824 1 .045 .993 1 .049 .843 1

.5 .053 .277 .850 .050 .551 .986 .039 .277 .838

Circular uniform design (different for each group)

.25 .053 .837 1 .051 .989 1 .050 .837 1

.5 .052 .264 .805 .053 .473 .990 .049 .302 .818

Table 2.2: Percentages of rejections (for α = .05) for the interaction test based on 1000 simulations
and with ni = 50 for i = 1, 2.
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Parallelism test

σ A B C

β = 0 β = .25 β = .5 β = 0 β = .25 β = .5 β = 0 β = .25 β = .5

Equally spaced design

.25 .050 .895 1 .041 .992 1 .044 .882 1

.5 .050 .344 .897 .043 .595 1 .051 .334 .887

Circular uniform design (same for both groups)

.25 0.49 .875 1 .047 .997 1 .049 .876 1

.5 .047 .304 .854 .059 .563 .992 .053 .324 .876

Circular uniform design (different for each group)

.25 .047 .871 1 .053 .996 1 .049 .879 1

.5 .060 .327 .887 .049 .567 .994 .051 .313 .863

Table 2.3: Percentages of rejections (for α = .05) for the parallelism test based on 1000 simulations
and with ni = 50 for i = 1, 2.



Chapter 3

Nonparametric ANCOVA for
circular regression

The regression models for circular predictors and/or circular responses presented in Chapter 2 have
been approached in the statistical literature by a parametric perspective: it is usually assumed that
the data are drawn from a parametric model and its parameters are estimated. However, this approach
may not be the most suitable one in complex settings. Nonparametric models avoid the assumption of a
specific parametric shape for the regression function and provide a flexible alternative. In this chapter,
nonparametric regression models for circular data (both for circular predictors and circular responses)
are reviewed in Section 3.1. In the following sections, the main contributions of this manuscript are
introduced: proposals for no-effect tests for nonparametric circular models are given in Section 3.2 and
Section 3.3 contains proposals for nonparametric ANCOVA models with circular variables.

3.1 Nonparametric regression for circular data

Nonparametric methods in the circular setting were first introduced in the different context of density
estimation by Hall et al. (1987) and Bai et al. (1988) in the spherical case, and by Fisher (1989) in the
circular context. These works adapt the classical kernel density estimator (Parzen, 1962; Rosenblatt,
1956) to the circular (or spherical) case. Hall et al. (1987) give two proposals to estimate a density
function in the sphere making use of the fact that distance in the sphere may be measured by an angle.
These authors also use different kernel functions to those in the linear case. The same approach is used
by Bai et al. (1988) to estimate a density function in a k-dimensional sphere. Furthermore, Fisher
(1989) adapts the classical density estimator for linear data to the circular case by using a quartic
kernel function1.

However, in the regression context most efforts have been concentrated on parametric models, and
the nonparametric proposals are relatively recent. Di Marzio et al. (2009) were the first to extend local
polynomial regression to the circular context, contemplating circular predictors and linear responses.
The authors give the definition of circular kernels and use them to adapt the local polynomial estimator
to the directional case. The asymptotic properties of the kernels and the estimator are also explored.
This subject was also studied by Oliveira et al. (2013), who explore the performance of the estimator
proposed by Di Marzio et al. (2009) through a simulation study. Another alternative for nonparametric
circular-linear regression is to use periodic splines, introduced by Cogburn and Davis (1974) and studied
by Wahba (1990) and Wood (2006). These methods are not thought specifically for circular predictors,
but for any periodic covariate.

The proposal in Di Marzio et al. (2009) for circular covariates adapts the standard theory for local

1A quartic kernel function is of the form K(u) = 15
16

(1− u2)2, for u ∈ [−1, 1].

47
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polynomial regression by using circular kernels and a local trigonometric fit. This approach is not
feasible for circular responses, given that it is not possible to (locally) average over angular variables.
Thus, a different approach is used by Di Marzio et al. (2012), who introduce kernel regression methods
for circular responses, with the support of the predictor variable being either the real line or the circle.
The authors propose estimating the regression function trough the arc-tangent of a ratio between the
locally weighted components of the first sample trigonometric moment of the response variable. This
method avoids the selection of an arbitrary link function, as it happened in the parametric context.

In this section, a review of kernel regression methods both for circular predictors and circular
responses will be given. The regression models and estimators will be presented, and methods for
choosing the smoothing parameter will also be revisited.

3.1.1 Circular-linear regression

Consider a random sample {(Θj , Yj)}nj=1 from (Θ, Y ), a circular and a linear variable respectively.
The relationship between both variables may be described as

Yj = m(Θj) + εj , j ∈ {1, ..., n}, (3.1)

where εj has zero mean and standard deviation σ and Θ has a circular density function f . In the
same way a local linear fit is used in nonparametric estimation with real-valued variables, under these
circumstances Di Marzio et al. (2009) consider a local trigonometric polynomial fit

β0 + β1 sin(· − θ).

The parameters β0 and β1 are estimated via weighted local least squares, where the weights are given
by a circular kernel Kκ. In practice, this kernel is usually taken as a von Mises density (2.4) with mean
direction 0 and concentration parameter κ. For each θ ∈ [0, 2π), the weights given to each observation
Θj , j = 1, ..., n, will depend on the distance to the fixed point θ. Thus, the parameters β0 and β1 are
estimated as

(β̂0, β̂1) = arg min
(a,b)

n∑
j=1

Kκ(θ −Θj)[Yj − (a+ b sin(θ −Θj))]
2.

The circular-linear estimator is given by β̂0 = m̂(θ). The vector of fitted values m̂ can be obtained as
m̂ = SY , where S is a smoothing matrix. Here, κ plays a role analogous to h when considering linear
data, since it controls the degree of smoothing. Large values of κ lead to undersmoothed estimations of
m, tending to the interpolation of the data. In contrast, small values of κ result in a global averaging,
and in a oversmoothed estimation. Under some regularity conditions it can be proven (see Di Marzio et
al., 2009) that for θ ∈ [0, 2π) the conditional asymptotic mean squared error (AMSE) of m̂(θ) equipped
with von Mises kernels is

AMSE[m̂(θ)|Θ1, ...,Θn] =
1

4

[
I1(κ)

κI0(κ)
m

′′
(θ)

]2

+
I0(2κ)

2πI2
0 (κ)

σ2

nf(θ)
,

where f is the density function of the predictor variable Θ and, as before, Ij(·) denotes the modified
Bessel function of the first kind and order j. After some calculations it can be shown that the
concentration parameter which minimizes the AMISE is

κop =

[
4n2π

∫ 2π

0
[m

′′
(θ)]4dθ

∫ 2π

0
[f(θ)]2dθ

σ4

]1/5

.

However, as it happened with (1.6) in the linear case, this optimal global parameter will depend on

the unknown quantities
∫ 2π

0
[m

′′
(θ)]4dθ and

∫ 2π

0
[f(θ)]2dθ. It is then necessary to make use of other
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methods to find an optimal value of κ in practice. The cross-validation method is a simple and well
known alternative. It selects κ as the value that minimizes

CV (κ) =
1

n

n∑
j=1

[Yj − m̂−j(Θj)]
2, (3.2)

where m̂−j is the leave-one-out estimator of the regression function, for j = 1, ..., n. As an example of
the performance of the circular-linear estimator, Figure 3.1 represents the flywheel data, which will be
presented and analyzed in detail in Chapter 5, with the regression function estimated with the method
described above and the smoothing parameter selected by cross-validation.

(a) (b)

Figure 3.1: Scatter plots of the flywheel data with the regression curve estimated with the nonparamet-
ric circular estimator. Smoothing parameter selected by cross-validation. (a) Linear representation.
(b) Circular representation.

For exploratory tasks, the selection of the smoothing parameter can be avoided by the construction
of a CircSiZer (Oliveira et al., 2014a). CircSiZer is a visualization method used both for regression
and density estimation which allows to represent which features of the estimated curve are really
present and are not sampling noise. This tool is a modification of SiZer (Chaudhuri and Marron,
1999) for circular data. For the construction of the CircSiZer map, the estimator m̂ is evaluated also
on the same grid of values of Θ (for the different values of κ). The map (see Figure 3.2) represents
the regions where the slope of the curve is significantly increasing (blue), decreasing (red) or not
significantly different from zero (purple). In this specific case, one can see that the regression function
is significantly increasing from approximately 5π/4 to 7π/4 (for all the bandwidths considered) and
significantly decreasing from π/4 to 5π/6 (approximately).

Di Marzio et al. (2014) consider a generalization of the model (3.1) where the predictor variable
is defined on a hypersphere of arbitrary dimension. The authors present a local linear estimator for
the regression function which, however, does not match the proposal of Di Marzio et al. (2009) in the
particular case of a circular predictor variable. Garćıa-Portugués et al. (2016) use a different approach
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Figure 3.2: CircSiZer map for circular-linear regression applied to 100 realizations of simulated data
from model (2.5) with parameters β0 = 2, β1 = 3/2 and β2 = 3.

for this problem, obtaining a projected local estimator, where the estimator for the regression function
is a weighted average of the response values involving directional kernels. In the particular case of a
circular covariate, the estimator corresponds to the proposal given by Di Marzio et al. (2009).

3.1.2 Regression for circular responses

Consider now the case where the response variable, Φ, is circular and depends on a predictor variable
∆, with ∆ being either circular or linear. Given the sample {(∆1,Φ1), ..., (∆n,Φn)} drawn from (∆,Φ),
the relation between these two variables can be modeled by

Φj = [m(∆j) + εj ](mod2π), j ∈ {1, ..., n}, (3.3)

where εj are random angles with zero mean direction, finite concentration and are independent of the
∆js. In order to obtain an estimator for the regression function m it is necessary to recall the circular
distance d(·, ·) defined in (2.3). Given two circular variables, Θ and Ψ, associated risk of d(Θ,Ψ) is

E[1− cos(Θ−Ψ)].

Then, the risk associated to the distance between the response variable Φ and the function of the
predictor variable m(∆) in (3.3) is given by

E[1− cos(Θ−m(∆))]. (3.4)

Given an angular or scalar value δ, let m1(δ) = E[sin(Φ)|∆ = δ] and m2(δ) = E[cos(Φ)|∆ = δ], and
let gk(δ) = mk(δ)f(δ), k = 1, 2, with f being the density function of ∆. The function that minimizes
the risk (3.4) is

m(δ) = atan2[g1(δ), g2(δ)],

with atan2 defined as in (2.1). Therefore, Di Marzio et al. (2012) propose estimating m as

m̂(δ) = atan2[ĝ1(δ), ĝ2(δ)], (3.5)

where

ĝ1(δ) =
1

n

n∑
i=j

sin(Φj)W (∆j − δ), ĝ2(δ) =
1

n

n∑
j=1

cos(Φj)W (∆j − δ),
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and with W being a local weight function, which is defined on the real line or on the circle, depending
on the nature of ∆.

Di Marzio et al (2012) consider different alternatives for the local weights. For linear covariates,
the first option is to use a linear kernel as a weight function:

W (Xj − x) = Kh(Xj − x) =
1

h
K

(
Xj − x
h

)
,

where K is a linear and symmetric density function and h is the smoothing parameter. This method
corresponds to the circular analogue of the Nadaraya-Watson estimator. The other alternative is to
use local linear weights, given by

W (Xj − x) =
1

n
Kh(Xj − x)

[
n∑
k=1

[Kh(Xk − x)(Xk − x)]− (Xj − x)

n∑
k=1

[Kh(Xk − x)(Xk − x)]

]
,

where ∆ is now replaced by X (scalar variable). This local linear weights function gives higher weights
to those points nearer to x. Then, the method is considered as a circular analogue for the local linear
estimator.

On the other hand, for circular covariates, the first alternative is to use circular kernels as local
weights (as a Nadaraya-Watson type estimator)

W (Θj − θ) = Kκ(Θj − θ),

and the second option is to use the following local linear weights:

W (Θj − θ) =
1

n
Kκ(Θj − θ)

[
n∑
k=1

Kκ(Θk − θ) sin2(Θk − θ)− sin(Θj − θ)
n∑
k=1

Kκ(Θk − θ) sin(Θk − θ)

]
,

where ∆ is now replaced by Θ (circular variable). As in the linear case, this function assigns larger
weights to the points closer to θ. In both cases a smoothing parameter (h or κ) must be chosen. For
each estimator, it is possible to calculate the AMISE and then minimize it with respect to h or κ (for
details see Di Marzio et al., 2012), but the optimal parameter will depend on unknown quantities.
Thus, the smoothing parameter selection is usually done by cross-validation. This method selects the
parameter that minimizes

n∑
j=1

[−(cos(Φj − m̂−j(∆j))],

where m̂−j denotes the nonparametric estimator (and hence depending on h/κ) computed with all the
observations except (∆j ,Φj). The minimization of the above expression is equivalent to minimizing
the sum of angular distances:

n∑
j=1

d(m̂−j(∆j),Φj).

Figure 3.3 shows the periwinkle data given in Fisher and Lee (1992) and Di Marzio et al. (2012) (and
mentioned in Section 3.1) represented on the cylinder and the wind direction data examined in Oliveira
et al. (2014b) represented on the torus. In both cases the regression function was estimated with the
method described above, using both the Nadaraya-Watson type weights and the local linear weights.
The smoothing parameter was selected by cross-validation.
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(a) (b)

Figure 3.3: (a) Representation on the cylinder of the periwinkle data with the Nadaraya-Watson
estimator (red) and the local linear estimator (green). (b) Representation on the torus of the wind
directions data with the Nadaraya-Watson estimator (red) and the local linear estimator (green).

3.2 Nonparametric significance test for circular data

In the previous section, regression models involving circular variables (response and/or explanatory)
were reviewed. As it happened with linear data, these kernel-type estimators are constructed so that
they depend heavily on the data and, sometimes, it is not clear if the features of the estimated function
are actually real or if they are a consequence of the variability in the data. Specifically, it seems of great
importance to asses if the response actually depends on the predictor variable. This section provides
novel proposals to formally investigate the significance of the predictor variable. First, a proposal is
given for the circular-linear regression setting. Afterwards, a different method is introduced for the
circular response case.

3.2.1 Test for circular-linear regression

Consider the circular-linear regression scenario, with Θ being a circular predictor variable and Y a
linear response variable. Let {(Θ1, Y1), ..., (Θn, Yn)} be a sample from (Θ, Y ). The goal is to construct
a no-effect test for regression model (3.1). Therefore, the following hypotheses are considered:

H0 : Yj = γ + εj , γ ∈ R,
H1 : Yj = m(Θj) + εj , m(Xj) 6= γ for some j ∈ {1, ..., n}.

Recall that the errors εj are independent and identically distributed and independent from Θ and,
in addition, follow a normal distribution with zero mean and constant standard deviation σ. A test
statistic can be constructed by adapting the ideas by Bowman and Azzalini (1997) to the circular
context, using the nonparametric estimator presented in Section 3.1.1. Therefore, the residual sums of
squares are used to quantify how much the models explain the data under each of the two hypotheses:

RSS0 =

n∑
j=1

(Yj − γ̂)2, and RSS =

n∑
j=1

(Yj − m̂(Xj))
2,
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where m̂ is the nonparametric estimator for circular predictors introduced by Di Marzio et al. (2009)
(see Section 3.1.1 of this manuscript) and γ̂ is the sample mean of the responses. The test statistic is
then constructed as a ratio:

C1 =
RSS0 −RSS

RSS
.

The derivation of the distribution of C1 under H0 is based on the normality assumption on the errors.
The nonparametric estimator for circular predictors is a linear form in the data, i.e.,

m̂ = SY ,

where m̂ is the vector with the fitted values and S is the smoothing matrix. Consequently, the residual
sums of squares can be expressed in vector-matrix notation

RSS0 = Y ′(In −L)′(In −L)Y and RSS = Y ′(In − S)′(In − S)Y ,

where L is a n× n matrix with n−1 in all its components. Thus, the test statistic can be rewritten as

C1 =
Y ′BY

Y ′AY
,

with A = (In − S)′(In − S) and B = In −L−A. Now, a p-value for the test is obtained as

p = P
(
Y ′BY

Y ′AY
> Obs

)
= P(Y ′(B −A ·Obs)Y > 0),

with Obs being the observed value of the statistic. As discussed in Section 1.2.1, under the null
hypothesis E(Yj) = γ, and in order to apply the results about quadratic forms in normal variables it
is necessary that these normal variables have zero mean. However, because of the construction of C1,
it is easy to see that γ disappears due to the differences involved. Then, the p-value calculation is
equivalent to

p = P(ε′(B −A ·Obs)ε > 0).

Now, given that matrices A and B are symmetric, B−Obs ·A is also symmetric and the results used
in Section 1.2.1 can be directly applied. Therefore, the first three cumulants of ε′(B −A · Obs)ε are
obtained as

νs = 2s−1(s− 1)!tr(V C)s, s = 1, 2, 3.

Then, the distribution of ε′(B−A ·Obs)ε is approximated to a shifted and scaled χ2, with parameters
calculated as

a = |ν3|/(4ν2), b = (8ν3
2)/ν2

3 , c = ν1 − ab, (3.6)

with a being the scale parameter, c being the location parameter and b the number of degrees of
freedom. Now, the p-value for the test is calculated as p = 1− q, where

q = P[χ2
b ≤ −c/a].

It is important to note that, as in the linear case described in Section 1.2.1, the test is very
influenced by the smoothing parameter, and because of the bias present in the estimation of m, the
smoothing parameter obtained by cross-validation will not be the most suitable one in many settings.
In the simulation study carried out in Chapter 4 this matter will be studied and different smoothing
parameters will be considered.
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3.2.2 Test for circular responses

A significance test in the regression setting where the response is circular will be presented in this
section. Consider a circular response variable Φ and a predictor variable ∆ which can be either
circular or real-valued. Let {(∆1,Φ1), ..., (∆n,Φn)} be a sample from (∆,Φ). The hypotheses needed
for a nonparametric significance test are

H0 : Yj = [γ + εj ](mod2π), γ ∈ [0, 2π),

H1 : Yj = [m(Θj) + εj ](mod2π), m(Θj) 6= γ + 2lπ for some j ∈ {1, ..., n}, ∀ l ∈ Z.

Recall that the errors εj are angles with zero mean direction, finite concentration and are independent
from ∆. The model under H0 is fitted by obtaining the sample mean direction of the responses, namely
γ̂. Under the alternative hypotheses the model is fitted using estimator (3.5), denoted by m̂.

When trying to construct a suitable test statistic, one would consider adapting statistic L1 defined
in (1.7), but the approach should be discarded since its construction as a ratio of the residual sums
of squares is not adequate for the circular response case. The residual sums of squares measures the
quadratic distance between the observed data and the fitted data (under the null and the alternative).
When the responses are of a circular nature, the residual sums of squares cannot be used because the
quadratic distance is not well defined on the circle. As a consequence, the newly proposed approach
will also be constructed as a ratio, but in order to measure how well the fitted model explains the data,
the circular distance (2.3) will be employed. Consequently, the proposed test statistic takes the form

C2 =
RSD0 −RSD

RSD
,

where RSD0 and RSD are, respectively, the residual sums of distances under H0 and H1, defined as

RSD0 =

n∑
j=1

[1− cos(Φj − γ̂)] and RSD =

n∑
j=1

[1− cos(Φj − m̂(∆j))].

Unlike in the previous section, the test statistic cannot be written in vector-matrix notation, and the
arguments used for obtaining the distribution of the statistic under H0 are not valid in this setting.
Yet, the distribution of statistic C2 under the null hypothesis can be obtained through bootstrap
methods. The resampling strategy is specified hereafter.

1. Given a smoothing parameter h or κ (depending on the nature of the predictor variable), compute
the nonparametric estimator of the regression function, namely m̂. In addition, obtain the sample
mean direction of the responses, γ̂, and compute the observed value of the statistic C2, denoted
by Obs.

2. Obtain the residuals under the null hypothesis: ε̂j = Φj − γ̂, j ∈ {1, ..., n}.

3. Construct the resampled responses as

Φ∗j = [γ̂ + ε̂∗j ](mod 2π),

where ε̂∗j are obtained from sampling the residuals randomly with replacement.

4. Compute the bootstrap versions of m̂ and γ̂, denoted by m̂∗ and γ̂∗. In order to obtain m̂∗, the
smoothing parameter used in step 1 is again employed.

5. Evaluate the bootstrap version of the statistic

C∗2 =

∑n
j=1[1− cos(Φ∗j − γ̂∗)]−

∑n
j=1[1− cos(Φ∗j − m̂∗(∆j))]∑n

j=1[1− cos(Φ∗j − m̂∗(∆j))]
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6. Repeat steps 3-5 B times to obtain the bootstrap versions of the statistic, C
∗(1)
2 , ..., C

∗(B)
2 and

approximate the critical value as

p− value∗ =
#{C∗(b)2 ≥ Obs}

B
.

As in the no-effect test for circular-linear regression, the previously proposed test depends heavily
on the smoothing parameter, and again, given the bias present in the estimation of m, the parameters
selected by cross-validation are usually not adequate. This matter will be studied in detail in Chapter 4.

3.3 Nonparametric ANCOVA for circular regression

A discrete covariate can be added to the regression models studied in Section 3.1, allowing the obser-
vations to belong to different groups. Proposals of nonparametric approaches for ANCOVA models
with circular variables will be detailed in this section, presenting testing methods for equality and
parallelism, for regression models with circular response and/or covariate.

3.3.1 Tests for circular-linear regression

Let {(Θij , Yij)}ij i ∈ {1, ..., I}, j ∈ {1..., ni} be a sample drawn from (Θ, Y ), where Θ is a circular
covariate and Y a linear response variable, and suppose each observation belongs to one out of I
groups. Under this scenario, an ANCOVA regression model is formulated as

Yij = mi(Θij) + εij , i ∈ {1, ..., n}, j ∈ {1, ..., ni},

where the εij are independent and N(0, σ). This model assumes that there is a different regression
curve for each group. In what follows, two different tests will be proposed: one for testing equality
and another one for testing parallelism.

Test of equality

The goal for the test of equality is to determine if the regression curves are the same for all groups
or, on the contrary, if there are two or more groups with different regression functions. Therefore, the
hypothesis testing problem is formulated as

H0 : Yij = m(Θij) + εij , ∀ i ∈ {1, ..., I},
H1 : Yij = mi(Θij) + εij , mi(·) 6= mk(·) for some i, k ∈ {1, ..., I}.

Now, the regression functions are estimated using the nonparametric circular-linear estimator presented
in Section 3.1.1. The estimator of m, namely m̂, is obtained fitting the regression model with all the
data, while the estimator of mi, m̂i, is constructed using only the data belonging to group i, with
i ∈ {1, ..., I}.

In the circular-linear scenario, although the predictor variable is circular, the response of the
regression function is still linear. Thus, the quadratic distance is adequate to measure the differences
between the global estimator and the estimated regression curves for each group. Therefore, for the
equality test, the next statistic is proposed:

C3 =
1

σ̂2

I∑
i=1

ni∑
j=1

[m̂i(Θij)− m̂(Θij)]
2, (3.7)

where σ̂2 is an estimator of the variance. Despite the simple form of the test which resembles the
corresponding one for real-valued covariates, the circular behavior of the predictor variable plays an
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important role in the variance estimation. In the linear case, two estimators were presented, (1.10) and
(1.11). When the nature of the explanatory variable is circular, because of its periodic behavior, these
variance estimators should be adjusted. Modifications of both estimators for the circular predictors
case are proposed.

In order to estimate the variance in each group, the modification of estimator (1.10) takes the form

σ̂2
i =

1

2ni

ni∑
j=1

[Yi[j+1] − Yi[j]]2, i ∈ {1, ..., I}.

In the above expression, Yi[j], with j ∈ {1, ..., ni}, denotes the value of Y corresponding to Θi[j], where
Θi[j] represents the jth smallest value on the real line of the sample from Θ in group i (given that an
origin has been chosen) and Yi[ni+1] = Yi[1]. Consequently, this estimator also measures the differences
between the observations corresponding to the smallest and the largest values of the sample from Θ
(in group i), given an origin. Hence, the global variance would be estimated as

σ̂2 =
1

n− I

I∑
i=1

niσ̂
2
i .

The previous modified estimator can also be expressed in vector-matrix notation as Y ′BY , where B
is a n× n block matrix composed of i blocks, where the ith block is a ni × ni matrix of the form

(2n− 2I)−1



2 −1 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

. . . . . . . . .

−1 2 −1

−1 −1 2



.

Note that the B matrix is different from the one used in the linear context, since it adjusts for the
circular nature of the covariate. Specifically, in the linear context the first and last terms of the diagonal
where 1 and all the terms outside the three main diagonals where zero.

In addition, estimator (1.11) is also adapted to the circular setting. In this context, the modified
pseudo-residuals are defined as

ε̃i[j] =
Θi[j+1] −Θi[j]

Θi[j+1] −Θi[j−1]
Yi[j−1] +

Θi[j] −Θi[j−1]

Θi[j+1] −Θi[j−1]
Yi[j+1] − Yi[j], i ∈ {1, ..., I}, j ∈ {1, ..., ni},

where Yi[ni+1] = Yi[1], Yi[ni+2] = Yi[2] and Yi[0] = Yi[ni]. Note that in the linear case, the pseudo-
residuals introduced by Gasser et al. (1986) are only defined for j ∈ {2, ..., ni − 1}. The new pseudo-
residuals can then be expressed as ε̃i[j] = ai[j]Yi[j−1] + bi[j+1]Yi[j+1] − Yi[j], and thus, the variance in
each group is estimated as

σ̂2
i =

1

ni

ni∑
j=1

1

c2i[j]
ε̃2
i[j], (3.8)
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where c2i[j] = a2
i[j] + b2i[j] + 1, i ∈ {1, ..., I}, j ∈ {1, ..., ni}. Therefore, the global variance is estimated as

σ̂2 =
1

n− I

I∑
i=1

niσ̂
2
i .

This estimator can also be written as Y ′BY = Y ′A′AY , where A is a n× n block matrix, with the
ith block taking the form

(n−I)−1/2



−1/ci[1] bi[1]/ci[1] ai[1]/ci[1]

ai[2]/ci[2] −1/ci[2] bi[2]/ci[2]

ai[3]/ci[3] −1/ci[3] bi[3]/ci[3]

. . . . . . . . .

. . . . . . . . .

ai[ni−1]/ci[ni−1] −1/ci[ni−1] bi[ni−1]/ci[ni−1]

bi[n]/ci[n] ai[n]/ci[n] −1/ci[n]



.

Note that the difference with the matrix used in the linear context is that, in that case, the first and
last rows of each block were zeros, while that does not happen here.

Now, C3 can be written in vector-matrix notation as Y ′QY /Y ′BY . The matrix Q is of the form
[Sd − S]′[Sd − S], with S being the smoothing matrix under the null hypothesis and Sd being the
block matrix made out of the smoothing matrices of each group. In order to obtain a p-value for the
test it is necessary to calculate the distribution of C3 under the null hypothesis. As in the linear case
exposed in Section 1.2.2, it will be seen that such distribution is almost equivalent to the distribution
of ε′Bε. Given that under the null hypothesis Y = m+ ε, the statistic C3 can be expressed as

m′Qm+ ε′Qε

m′Bm+ ε′Bε
. (3.9)

If a common concentration parameter κ is used to estimate m̂ and m̂i, i ∈ {1, ..., I}, the first
term in the numerator of the previous expression disappears asymptotically, because, as it happened
with the nonparametric linear estimator, the means of the circular-linear estimators of m and mi are
approximately equal. This is due to their bias expressions, which are, respectively

bias[m̂(θ)|Θ1, ...,Θn] ≈ 1

4

[
I1(κ)

κI0(κ)

]2

m
′′
(θ) +

∣∣∣∣ I0(2κ)

2πI2
0 (κ)

∣∣∣∣ σ2

nf(θ)
,

and

bias[m̂i(θ)|Θ1, ...,Θn] ≈ 1

4

[
I1(κ)

κI0(κ)

]2

m
′′

i (θ) +

∣∣∣∣ I0(2κ)

2πI2
0 (κ)

∣∣∣∣ σ2

nif(θ)
.

In addition, the first term in the denominator of (3.9) is very small in comparison with the term
Y = m+ ε, because of how the B matrices are constructed, so such term can be ignored. Therefore,
the distribution of the statistic is obtained by calculating the distribution of ε′Qε/ε′Bε. Hence, the
correspondent p-value of the test is obtained as

p = P
(
ε′Qε

ε′Bε
> Obs

)
= P (ε′(Q−B ·Obs)ε > 0) .
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The variable ε′(Q −B · Obs)ε is again a quadratic form in normal variables of the type z′Cz, with
E(z) = 0 and C being a symmetric matrix. Consequently, the shifted and scaled χ2 approximation
also works in this scenario: the first three moments of ε′(Q −B · Obs)ε are calculated and used to
obtain the parameters of a aχ2

b + c distribution as in (3.6).

Test of parallelism

Once it is known that the regression curves are different, it is of interest to test parallelism, i.e., to
test whether switching from one group to another just increases or decreases the value of the response
variable by a constant. The hypotheses considered in this case are

H0 : Yij = γi +m(Θij) + εij , γ1 = 0, ∀ i ∈ {1, ..., I},
H1 : Yij = mi(Θij) + εij , mi(·) 6= mk(·) + γ for some i, k ∈ {1, ..., I}, ∀ γ ∈ R.

Under the null hypothesis, the model can be written in vector-matrix notation as

Y = Dγ +m+ ε, (3.10)

where D is a known matrix consisting of 0s and 1s. Given a vector γ, an estimate of the regression
function can be constructed:

m̂ = S(Y −Dγ),

with S being a smoothing matrix constructed with the circular-linear regression method. Substituting
this estimator in equation (3.10) and applying the least squares method, an estimate of γ is derived:

γ̂ = [D′(In − S1)′(In − S1)D]−1D′(In − S1)′(In − S1)Y = AY ,

where S1 is a preliminary smoothing matrix. After γ̂ is estimated, the regression function m is
estimated as

m̂ = S(Y −Dγ̂).

However, for estimating the vector of parameters γ̂ it is necessary to choose a first smoothing
parameter κ1, independent of the one used to estimate the actual curves. Although in practice it is
recommended to explore several smoothing parameters, a new automatic rule was derived in order to be
able to obtain a p-value. For obtaining the rule, the recommendation of Bowman and Azzalini (1997)
in the linear case was followed, that is to restrict the smoothing to approximatively eight neighboring
observations. Let d2(·, ·) be defined as

d2(Φ,Θ) = min{|Φ−Θ|, 2π − |Φ−Θ|}, Φ,Θ ∈ [0, 2π).

Then, d2 is a distance in the circle, different from distance (2.3). The automatic rule consists of finding
a preliminary vector of smoothing parameters, h1, containing one parameter for each observation, in
which the parameter associated to observation Θij will be the distance to its 8th2 nearest neighbor
(considering distance d2). Then, h1 is used to obtain a vector of smoothing parameters valid for the
circular case using the results in Gumbel et al. (1953), which show that for large values of κ the von
Mises vM(µ, κ) converges in distribution to a N(µ, 1/

√
κ). Thus, if h1 is the preliminary smoothing

parameter corresponding to Θij , the concentration parameter for this observation will be κ1 = 1/h2
1.

Now, the proposed statistic for the test of parallelism is of the form

C4 =
1

σ̂2

I∑
i=1

ni∑
j=1

[γ̂i + m̂(Θij)− m̂i(Θij)]
2,

2The election of 8 as the number of neighbors used was motivated by the recommendations in Bowman and Azzallini
(1997). However, simulations not showed in this manuscript revealed that when considering a number of neighbors close
to 8 (e.g. 6,10,12) the bias of the estimator of γ remained practically unchanged.
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with σ̂2 being one of the two variance estimators proposed in the equality test, accounting for the
periodic behavior of Θ, and m̂ and m̂i are, respectively, the circular-linear estimators of m and mi,
with i ∈ {1, ..., I}. Again, C4 can be written in matrix notation as Y ′QY /Y ′BY where B is one of
the matrices described above and the matrix Q is of the form

[DA+ S(In −DA)− Sd]′[DA+ S(In −DA)− Sd].

In order to derive the distribution of the statistic under the null, the same reasoning as in the equality
test is carried out. Therefore, the desired distribution will be a shifted and scaled χ2 distribution,
where the shift and scale parameters and the number of degrees of freedom depend on the first three
cumulants of ε′(Q−B ·Obs)ε, and are obtained as in the previous section.

3.3.2 Tests for circular responses

In this section, proposals for nonparametric ANCOVA models for circular responses will be given,
both for linear or angular predictors. Two tests are proposed: equality and parallelism. The goal is to
formulate a nonparametric ANCOVA model and to construct the hypotheses for testing equality and
parallelism, as well as obtaining the corresponding test statistics and their distribution under the null
hypothesis.

Consider the notation in Section 3.1.2, where ∆ represents the predictor variable, which can be
either real-valued or circular, and Φ represents the response variable, which is angular. Consider, in
addition, a discrete predictor variable with I different groups as attributes. Let {(∆ij ,Φij)}ij , i ∈
{1, ..., I},
j ∈ {1, ..., nI}, be a random sample from (∆,Φ), where the index i indicates that the observation
belongs to the ith group. Now, the ANCOVA model can be written as

Φij = [mi(∆ij) + εij ](mod2π), i ∈ {1, ..., I}, j ∈ {1, ..., nI}.

The methods that will be described assume that the errors εij have zero mean and constant concen-
tration, but they do not need to follow any specific distribution. The equality and parallelism test will
be introduced next.

Test of equality

For testing the equality of the regression curves the following hypotheses are needed:

H0 : Φij = [m(∆ij) + εij ](mod2π), ∀ i ∈ {1, ..., I},
H1 : Φij = [mi(∆ij) + εij ](mod2π), mi(·) 6= mk(·) + 2lπ for some i, k ∈ {1, ..., I}, ∀ l ∈ Z.

Then, the null hypotheses assumes that there is only one regression curve, independently from the
group, while the alternative presumes that there are at least two different regression functions, as in
the situation displayed in Figure 3.4, which shows simulated data from two distinct regression curves,
both in the cylinder and the torus. The statistics used in Section 3.3.1 are a modification of the ones
proposed by Young and Bowman (1995), and reviewed in Section 1.2, to account for the circular nature
of the predictor variable. The idea under those statistics is to measure the quadratic distance between
the estimations of the regression curves for each group and the estimation of the regression function
for all the data. Such approach is not feasible in this scenario, since the response variable is now
circular and the quadratic distance is not well defined on the circle. It is necessary, then, to consider
the circular distance given in (2.3). Therefore, a proposal of test statistic in this context is given by

C5 =
1

D̄

I∑
i=1

nI∑
j=1

d(m̂i(∆ij), m̂(∆ij)) =
1

D̄

I∑
i=1

nI∑
j=1

[
1− cos(m̂i(∆ij)− m̂(∆ij))

]
, (3.11)
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(a) (b)

Figure 3.4: Simulated data from different regression functions in (a) the cylinder and (b) the torus,
with the true regression functions. Data size is 100 for each group in both cases. Units in the circle
given in degrees.

where D̄ is an estimator of the circular variance of the errors defined in (2.2) and it is given by given
by

D̄ =
1

n− I

I∑
i=1

ni∑
j=1

[1− cos(Yij − m̂i(∆ij))]. (3.12)

The distribution of C5 under the null hypothesis is obtained using bootstrap methods. The resampling
strategy is described next.

1. Compute the dispersion estimator D̄ and the nonparametric estimates m̂ (with all the data) and
m̂1, ..., m̂I (for each group) using the same smoothing parameter, for example the one selected
by cross-validation. Obtain the observed value of statistic C5, namely Obs.

2. Obtain the residuals under the null hypothesis: ε̂ij = Φij − m̂(∆ij).

3. Construct the resampled responses as

Φ∗ij = [m̂(∆ij) + ε̂∗ij ](mod 2π),

where ε̂∗ij are obtained from sampling the residuals randomly with replacement.

4. Compute the bootstrap versions of m̂, m̂1, ..., m̂I and D̄, denoted by m̂∗, m̂∗1, ..., m̂
∗
I , and D̄∗,

using the same smoothing parameter employed in step 1 for the estimation of the regression
functions.

5. Evaluate the bootstrap version of the statistic

C∗5 =
1

D̄∗

I∑
i=1

nI∑
j=1

[
1− cos(m̂∗i (∆ij)− m̂∗(∆ij))

]
.
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6. Repeat steps 3-5 B times to obtain the bootstrap versions of the statistic, C
∗(1)
5 , ..., C

∗(B)
5 and

approximate the significant value as

p− value∗ =
#{C∗(b)5 ≥ Obs}

B
.

Note that in step 4 the bootstrap versions of the estimators are obtained using the smoothing
parameter applied initially, instead of selecting a new bandwidth for each bootstrap replication. This
is the usual procedure when dealing with bootstrap methods in nonparametric regression (Hardle
and Bowman, 1988; Politis, 2014), because the goal here is to obtain the distribution of the statistic
under the null hypothesis, and changing the smoothing parameter would highly increase the variability
of the estimator under H0. In addition, in most literature concerning this matter, the bootstrap
versions of the responses are constructed with an oversmoothed estimator, in order to correct the bias
(Hardle and Marron, 1991; Cao and González-Manteiga, 1993). However, in this case such correction
is unnecessary, given that the statistic in (3.11) involves the differences between m̂i and m̂, and since
the same smoothing parameter is used for both estimations, the bias is canceled out.

Test of parallelism

On top of the test of equality, it can be useful to determine if the regression curves are “parallel”,
meaning that the regression functions have the same shape, except for an angular shift between the
curves. Figure 3.5 shows this “parallel” behavior of the functions with simulated data belonging to
two different groups. The left plot corresponds to the case with a linear covariate (represented on the
cylinder), while the right plot displays data coming from a model with a circular predictor (represented
on the torus).

(a) (b)

Figure 3.5: Simulated data from parallel regression functions in (a) the cylinder and (b) the torus,
with the true regression functions. Data size is 100 for each group in both cases. Units in the circle
given in degrees.

For testing parallelism, the considered hypotheses are:

H0 : Φij = [γi +m(∆ij) + εij ](mod2π), ∀ i ∈ {1, ..., I},
H1 : Φij = [mi(∆ij) + εij ](mod2π), mi(·) 6= [mk(·) + γ](mod2π) for some i, k ∈ {1, ..., I}, ∀ γ ∈ [0, 2π).
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In order to fit the model under H1, the regression estimator (3.5) is applied to the data of each group,
leading to the estimations m̂1, ..., m̂I . The estimation under the null hypothesis is more complicated.
The approach followed will be similar to the one used in the circular-linear case: if γ1, ..., γI were known,
the global regression function could be estimated applying estimator (3.5) to the data {(∆ij ,Φij−γi)},
with i ∈ {1, ..., I} and j ∈ {1, ..., ni}. Hence, estimations γ̂1, ..., γ̂I of the shift parameters will be
obtained, and then they will be used to estimate the global m. In the circular-linear case, the model
is written in vector-matrix notation and after some rearrangement the vector containing the shift
parameters is estimated through the least squares method, but several problems arise when trying
to use the same approach in this scenario. In the first place, it is difficult to write the fitted model
in vector-matrix notation, since the regression estimator proposed by Di Marzio et al. (2012) is not
linear on the responses, i.e., it can not be written as a smoothing matrix multiplied by the vector
of responses. In the second place, applying least squares would not be adequate here, given that the
quadratic distance is not well defined on the circle. In order to overcome these problems, the circular
distance (2.3) is again considered. Therefore, γ̂1, ..., γ̂I will be the parameters that solve the next
minimization problem:

arg min
γ1,...,γI

I∑
i=1

ni∑
j=1

[1− cos(Φij − γi − m̂1(∆ij))]

s.t. γi ∈ [0, 2π), ∀ i ∈ {1, ..., I},

where m̂1 is a preliminary estimation of m. Given the difficulty of the optimization problem, it is
solved with numerical methods. Specifically, the optimization method used is a limited memory BFGS
(L-BFGS) proposed by Byrd et al., (1995), which is meant for bound constraint optimization. The
estimations γ̂1, ..., γ̂I obtained will not be unbiased, due to the bias of the preliminary estimator m̂1

(simulations showed that when using the true values of m, the estimators of the shift parameters were
unbiased). However, the bias is smaller as the sample size increases.

At the same time, a first smoothing parameter needs to be chosen to obtain m̂1, and it should be
selected so that it minimizes the bias in the preliminary estimation of m and therefore in the estimation
of γ1, ..., γI . For this aim, when the predictor variable is linear, the smoothing parameter should be
large, and for circular covariates the smoothing (concentration) parameter should be small. Although
it is recommended to explore several parameters, an automatic rule was derived.

When the predictors are linear (∆ = X), the rule consists of using a vector of smoothing parameters
in which each of them corresponds to one observation. Each parameter will be the distance to the
8th nearest observation. On the other hand, in the case where the predictor is of a circular nature
(∆ = Θ), the rule is the same as in the test of parallelism for circular-linear regression (Section 3.3.1).

Now, using the same ideas behind the statistic for the equality test, the next statistic is proposed
for the test of parallelism:

C6 =
1

D̄

I∑
i=1

nI∑
j=1

d(γ̂i + m̂(∆ij), m̂i(∆ij)) =
1

D̄

I∑
i=1

nI∑
j=1

[
1− cos(γ̂i + m̂(∆ij)− m̂i(∆ij))

]
,

with D̄ being the dispersion estimator in (3.12). As in the test of equality, the distribution of C6 under
the null hypothesis is calculated through bootstrap methods. The resampling plan is as follows:

1. Choose a preliminary smoothing parameter h1 or κ1 (depending on the nature of the explanatory
variable) and obtain the nonparametric estimator m̂1 using all the data. Calculate γ̂1, ..., γ̂I .

2. Compute the nonparametric estimate m̂ using all the data and the shift parameters estimators.
Compute m̂1, ..., m̂I using the data belonging to each group and calculate D̄. Evaluate statistic
C6 obtaining the observed value Obs.

3. Obtain the residuals under the null hypothesis: ε̂ij = Φij − γ̂i − m̂(∆ij).
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4. Construct the resampled responses as

Φ∗ij = [γ̂i + m̂(∆ij) + ε̂∗ij ](mod 2π),

where ε̂∗ij are obtained from sampling the residuals randomly with replacement.

5. Using h1 (or κ1) as a smoothing parameter, compute the bootstrap version of m̂1, m̂1∗, with the
resampled data, and use it to obtain the bootstrap estimates of the shift parameters, γ̂∗1 , ..., γ̂

∗
I .

6. Compute the bootstrap versions of m̂, m̂1, ..., m̂I and D̄ denoted by m̂∗, m̂∗1, ..., m̂
∗
I , D̄

∗, using
the smoothing parameter employed in step 2 for the estimation of the regression functions.

7. Evaluate the bootstrap version of the statistic

C∗6 =
1

D̄∗

I∑
i=1

nI∑
j=1

[
1− cos(m̂∗i (∆ij)− γ̂∗i − m̂∗(∆ij))

]
.

8. Repeat steps 4-7 B times to obtain the bootstrap versions of the statistic, C
∗(1)
6 , ..., C

∗(B)
6 and

approximate the significant value as

p− value∗ =
#{C∗(b)6 ≥ Obs}

B
.

3.4 Contributions of this chapter

This chapter has been focused on different hypotheses testing problems for regression involving circular
variables. In addition to surveying the existing regression models for this kind of data, the present
chapter included several new proposals for significance tests and ANCOVA tests. To sum up, this
section collects the principal contributions of the chapter.

To begin with, two significance tests in the circular regression context were presented in Section 3.2:
one for circular predictors and linear responses and one for circular responses, with the predictors
being either real-valued or circular. In the circular-linear regression context, the significance test is an
adaptation of the one for real-valued variables proposed by Bowman and Azzalini (1997), where the
regression function is estimated with the circular-linear estimator proposed by Di Marzio et al. (2009).
The second test, designed for the linear-circular and the circular-circular regression settings, is based
on a new statistic which makes use of the circular distance defined in (2.3).

Secondly, the main contribution of the manuscript (and primary goal of this MSc Thesis) was
presented in Section 3.3, which contains proposals for ANCOVA tests in the three circular regression
contexts. In each case, a test of equality and a test of parallelism were provided. In the circular-linear
regression setting, the test statistics are based on their linear counterparts, but they were modified,
not only by using the circular-linear regression estimator, but also by providing two different variance
estimators for the circular-linear regression context. Regarding the linear-circular and circular-circular
regression scenarios, new test statistics for testing equality and parallelism were proposed, again making
use of the circular distance. In addition, a novel estimator of the circular variance for nonparametric
regression models with circular response variables was introduced.
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Chapter 4

Simulation study

This chapter contains an extensive simulation study which analyzes the performance of the nonpara-
metric tests proposed in Chapter 3. The tests will be applied to simulated data generated under both
the null and the alternative hypotheses, therefore analyzing the calibration and power of the tests. It
must be highlighted that the code for the proposed tests as well as the code for the simulation study
was self programmed. Section 4.1 is devoted to the study of the significance tests, whereas Section 4.2
contains the analysis of the ANCOVA tests.

4.1 Significance tests

In Section 3.2, different significance tests for circular variables were proposed, providing tools for
assessing the effect of the predictor variable in each of the three regression scenarios (circular-linear,
linear-circular and circular-circular). The objective of this section is to analyze the performance of
the three tests, which will be applied to simulated data drawn from three different regression models
(in each setting). As explained in Section 3.2, the no-effect tests relies heavily on the smoothing
parameter, and because of the bias present in the estimation of the regression function, using the
smoothing parameter selected by cross-validation is not adequate for the correct calibration of the
tests. For that reason in this section the simulations will be carried out considering different values
of the smoothing parameter. In addition, various settings will be contemplated in order to analyze
the performance of the tests under different situations: several values of the sample size and the
variance/concentration and different design points for the predictor variables will be used.

After B replications of the simulated data are drawn, the percentages of rejection for α = .05 will
be computed. As a way to determine if a certain percentage of rejection p̂ obtained under the null
hypothesis is large, one can easily construct a 95% confidence interval for the proportion:(

p̂− z0.025

√
p̂(1− p̂)

B
, p̂+ z0.025

√
p̂(1− p̂)

B

)
, (4.1)

where z0.025 is the quantile of the Normal distribution function leaving a probability of .025 to the
right. If the nominal level α = .05 does not fall inside the interval, then the percentage of rejections is
significantly different from 5%, indicating a poor calibration of the test (if the null hypothesis is true).

The next subsections contain, for each of the three regression settings, descriptions of the simulation
scenarios and models, as well as the percentages of rejection obtained and comments on the results.

4.1.1 Circular-linear regression

The no-effect test for circular predictors and real-valued responses, presented in Section 3.2.1, is ana-
lyzed in this section. The following models will be studied:
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A. Y = β sin Θ + ε, β = 0, .2, .3

B. Y = 3 + β sin Θ cos Θ + ε β = 0, .25, .5

C. Y = 1 + β sin(Θ + 2 sin Θ) + ε, β = 0, .4, .6

The errors follow a N(0, σ) distribution where the standard deviation σ takes different values depending
on the model (which will be specified in the corresponding tables with the results). The sample size
takes the values 50, 100, 250 and 400. If the first value of β is used, the data are drawn from the null
hypothesis. When the other values of β are considered the alternative hypothesis holds, and the effect
of the predictor variable is more noticeable when employing the last value of β. Regarding the design
points, three scenarios were contemplated:

� Design 1: Circular uniform distribution.

� Design 2: vM(π, 1.5).

� Design 3: vM(0, 1.5).

Figure 4.1 displays realizations of the models under H1, with β = .3 in Model A, β = .5 in Model
B and β = .6 in Model C. In addition, the curves representing the regression models under the null
hypothesis are also shown. As mentioned before, the tests are applied using different values of the
smoothing parameters, namely the one obtained by cross-validation (cv) and modifications of it ( 1

8cv,
1
4cv, 2cv and 4cv). The number of replications is B = 1000. For this value, using the confidence
interval in (4.1) it can be determined that a percentage of rejection under H0 is significantly different
from α if it is higher than .065. The results are summarized next:

Model A The percentages of rejection obtained in Model A are collected in Table 4.1 (Design 1),
Table 4.2 (Design 2) and Table 4.3 (Design 3). When the null hypothesis is true (β = 0) percentages
of rejection when using cv are very large compared to the nominal level α = .05 (around 9% or 10%).
When increasing the smoothing parameter, for example when using 4cv, percentages are slightly smaller
than α for the smallest sample size (n = 50), but for n = 400 some results are significantly larger than
.05. On the other hand, when 1

8cv is used, percentages of rejection under H0 are close to the nominal
level α.

If the alternative hypothesis is true, the largest percentages of rejection are obtained for cv, and
increasing the smoothing parameter makes the percentages diminish. On the other hand, when reduc-
ing the smoothing parameter ( 1

4cv or 1
8cv) these results are lower than with cv, but still quite high.

As it was expected, when augmenting the sample size and reducing the variance, the percentages of
rejection increase.

As for the differences between the three designs, under H0 results are similar for the three scenarios.
However, under the alternative hypothesis the power of the test is larger for the circular uniform design.

Model B The results obtained for Model B are shown in Table 4.4 for Design 1, Table 4.5 for Design 2
and Table 4.6 for Design 3. When the null hypothesis is true, large percentages of rejection (compared
to α) are obtained with cv and the percentages decrease when either increasing or decreasing the
smoothing parameter. If 1

8cv is used, percentages of rejection are close to .05. Also with 4cv results
are close to the nominal level, although some percentages are significantly different from .05.

When the alternative hypothesis holds, the largest percentages of rejection are gotten with cv.
Under Design 1, 1

8cv obtains not certainly large percentages, since the low concentration makes it
difficult to ascertain the effect of the predictor variable. However, if Designs 2 or 3 are considered, the
power of the test with 1

8cv is almost as high as with cv. On contrast, with 4cv results are high when
using a uniform design, but they are lower if Designs 2 and 3 are considered. In general, percentages
of rejection are higher with the von Mises designs.
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

(g) Model A. Design 3 (h) Model B. Design 3 (i) Model C. Design 3

Figure 4.1: Representations of simulated data from models A (first column), B (second column) and C
(third column) under the alternative hypothesis (β = .3 in A, β = .5 in B and β = .6 in C) under the
three different designs, along with the true regression curves for each group (blue) and the regression
lines assumed by the null hypothesis (red). Number of observations is 250 in all cases.
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Model C Results for Model C are displayed in Tables 4.7, 4.8 and 4.9 respectively for Designs 1, 2
and 3. On the one hand, if the null hypothesis is true, the test obtains percentages of rejection close
to the nominal level α = .5 when using 1

8cv. Results for 4cv are also close to α but several percentages
obtained were significantly different from .05. Again, when using the smoothing parameter selected by
cross-validation (cv) percentages of rejection lie around 9% and 10%.

On the other hand, if H1 holds, the power of the test changes fairly with the different designs. As it
happened in Model B, if Design 1 is used the percentages of rejection are quite low with 1

8cv but they
are larger in the von Mises designs. This behavior is turned around when using 4cv, which obtains
higher percentages of rejection with the circular normal design. Predominantly, results under H1 are
higher under Design 3. This is due to the shape of the regression function, since the region where the
data are concentrated in Design 3 is the region where the regression function deviates more from a
horizontal line.

As a general conclusion on the smoothing parameter, with a small bandwidth ( 1
8 of the parameter

obtained by cross-validation) the test seems to be well calibrated. Also when using 4cv results under H0

are close to α, but sometimes percentages of rejection with this selection of the smoothing parameter
are either too high or too low. Therefore, the best results for calibration are obtained with 1

8 , although
in practice it is recommended to use a sequence of smoothing parameters and to obtain the significance
trace of the test.
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4.1.2 Linear-circular regression

This section is devoted to the analysis of the performance of the test proposed in Section 3.2.2 in the
specific case of a linear predictor. The models studied are the following:

A. Φ = [β tan(X) + ε](mod2π), β = 0, .25, .5,

B. Φ = [π4 + β sin(4X − 1) + ε](mod2π), β = 0, .5, 1,

C. Φ = [3π
8 + β cos(3X) + ε](mod2π), β = 0, .5, 1,

where the errors ε follow a von Mises distribution with mean direction 0 and concentration κ. The
values of κ are different for each model and are specified in the corresponding tables with the results.
Again, the first value of β corresponds to the null hypothesis being true, and with the other two values
the performance of the test under H1 is being studied. Two designs of the predictor variable are
considered:

� Design 1: U(0, 1).

� Design 2: N(.5, .1).

Figure 4.2 shows realizations of simulated data under the alternative hypothesis (β = .5) with the true
regression functions. The regression lines under the null hypothesis are also represented. It can be
seen that when Design 2 is considered it is difficult to discern if the data are drawn from the null or
the alternative hypothesis.

(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

Figure 4.2: Representations on the cylinder of simulated data from models A, B and C under the
alternative hypothesis (β = .5) under Design 1 (top row) and Design 2 (bottom row). True regression
curves (blue) and regression lines under H0. Number of observations is 250 and the value of κ is 2 in
Model A and 4 in Models B and C. Circular units are in degrees.

As in the previous section, different smoothing parameters will be contemplated: cv (the bandwidth
selected by cross-validation), 1

4cv, 1
2cv, 2cv and 4cv. In this case, since the test includes a bootstrap
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procedure, the number of bootstrap resamples is 500. Percentages of rejection are computed after
applying the test to B = 500 replications of the simulated data, therefore, considering the confidence
interval for the proportion in (4.1), a percentage of rejection will be considered large (compared to the
nominal level .05) when it is .074 or larger. A summary of the results is given next.

Model A Percentages of rejection corresponding to Model A are displayed on Table 4.10 (Design 1)
and Table 4.11 (Design 2). When β = 0 (i.e. when H0 is true), percentages of rejection when using
cv are many times significantly greater than α = .05 (around 8% of rejections). On the other hand,
when augmenting or diminishing the smoothing parameter, percentages of rejection turn closer to α.
In fact, when using 1

4cv or 4cv, the nominal level falls in all the confidence intervals of the form (4.1)
for the correspondent percentages.

If the alternative hypothesis is true, percentages of rejection for cv are the highest ones, however,
with larger smoothing parameters such as 4cv the percentages are almost as high. On the contrary,
when using smaller bandwidths, like 1

4cv, the power of the test is lower. Under Design 2 the percentages
of rejection are much smaller than under Design 1, which is not surprising given that, as mentioned
before, when the data are concentrated in the middle of the cylinder the regression functions under
H0 and H1 are not very different. Regarding the concentration of the errors, it can be seen that the
percentages of rejection under H1 are larger when the concentration is higher.

Model B The results for Model B can be found in Table 4.12 for Design 1 and Table 4.12 for Design
2. Under the null hypothesis, as in Model A, the test seems to be well calibrated for 1

4cv and 4cv,
while when using the smoothing parameter selected by cross-validation large percentages of rejection
are obtained (even reaching 10% of rejections).

On the other side, if H1 is true, percentages of rejection are larger with 4cv than with 1
4cv. This

means that when the smoothing parameter is small it is more difficult for the test to reject H0 when
it is false. As before, percentages obtained for Design 2 and under H1 are lower than for Design 1.

Model C Tables 4.14 and 4.15 contain percentages of rejection for Model C, under Designs 1 and
2 respectively. When the null hypothesis holds, using 1

4cv and 4cv as bandwidths makes percentages
of rejection close to the level .05. When the alternative hypothesis is true, out of the two parameters
that make the test well calibrated under the null, 4cv obtains higher percentages of rejection.

Summing up, the parameters 1
4cv and 4cv make the significance test well calibrated under the null

hypothesis but, in general, with 4cv the test has more power under the alternative, so it should be
considered as a usable bandwidth for the test. However, as for the test for circular-linear data, the test
in practice should be carried out using several smoothing parameters and obtaining the significance
trace of the test.
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4.1.3 Circular-circular regression

The last one of the nonparametric significance tests, for circular covariates and circular responses, will
be analyzed in this section. The models studied are

A. Φ = [π4 + β exp(sin(Θ + π)) + ε](mod2π), β = 0, .3, .5

B. Φ = [ 3π
4 + β sin(2Θ + 2 sin(Θ + π

2 )) + ε](mod2π), β = 0, .35, .5

C. Φ = [3π
2 − β cos(2Θ + 4 cos Θ + 3 sin Θ) + ε](mod2π), β = 0, .3, .5

When the value of β is 0, the predictor variable Θ has no effect on the response, therefore the null
hypothesis is true. On the contrary, with the other values of β the alternative hypothesis is being
considered. The errors ε follow a von Mises distribution with zero mean and variable concentration
(depending on the model). The values of the concentration for each model are specified in the tables
containing the results, which will be presented later. The data corresponding to the predictor variable
are drawn from three different distributions:

� Design 1: Circular uniform distribution.

� Design 2: vM(π, 2).

� Design 3: vM(0, 2).

Simulated data from all the models and designs drawn under the alternative hypothesis (β = .3 in
Models A and C, β = .35 in Model B) are represented in Figure 4.3. The true regression functions are
also included, as well as the regression curves assumed under the null hypothesis.

The number of bootstrap resamples is 500 in all cases. As in the previous section, the percentages
of rejection for the nominal level α = .05 are computed after applying the test to 500 realizations of
the simulated data. Consequently, as before, a percentage under H0 will be significantly larger than α
when it is .074 or more. In this case, the considered smoothing parameters are cv, 1

8cv, 1
4cv, 2cv and

4cv. A recapitulation of the results follows.

Model A Results obtained for Model A are collected in Table 4.16 (Design 1), Table 4.17 (Design 2)
and Table 4.18 (Design 3). Under the null hypothesis, where the data are generated from a constant
regression function, percentages of rejection are close to α = .05 when using 1

8cv and 4cv, although
a couple percentages of rejection are slightly high. On contrast, when using the other smoothing
parameters results under H0 are usually large, specially for cv (surpassing 11% of rejections several
times).

On the other hand, under the alternative hypothesis, with 4cv percentages of rejection are low
compared to the ones corresponding to other bandwidths. Diminishing the smoothing parameter
makes the percentages of rejection slightly lower. In addition, the power of the test is higher when
considering Design 1, although percentages of rejection for the von Mises designs are not very low in
comparison with the uniform design.

Model B Tables 4.19, 4.20 and 4.21 show the percentages of rejection obtained for Model B under
Designs 1, 2 and 3, respectively. Results are similar to the ones obtained in Model A. Under H0,
with cv the percentages of rejection are large compared to the nominal level .05. When incrementing
or diminishing the bandwidth, results are closer to α. For instance, for 1

8cv and 4cv only a couple
percentages are significantly larger than .05.

When the alternative hypothesis is true, and the regression function changes with the values of
Θ, the percentages of rejection obtained for 1

8cv are larger than the ones gotten with 4cv. In this
case, percentages for the von Mises designs under H1 are larger than the ones obtained in the uniform
setting. In fact, with Design 3 the power of the test is generally higher. This is due to the shape of
the regression function under the alternative hypothesis: it departs more from a constant in the region
where the data are concentrated in Design 3.
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Model C The results for this model are displayed in Table 4.22 for Design 1, Table 4.23 for Design 2
and Table 4.24 for Design 3. Under H0, as in the previous models, if the smoothing parameter selected
by cross-validation (cv) is used, large percentages of rejection are obtained, which lie between 8%
and 12% of rejections. However, when incrementing the smoothing parameter, percentages are closer
to α. Using a smaller parameter than cv also gives results closer to the nominal level. Specifically,
percentages of rejection for 1

8cv and 4cv are the closest to .05.
Regarding the performance of the test under the alternative hypothesis, the power of the test

when using 1
8cv is generally higher than the power for 4cv. Comparing results between the different

designs, the lowest percentages of rejection under H1 are obtained with Design 2. However, in all cases
percentages of rejection are close to one at least when the sample size is large (n = 250, 400).

To sum up, if the smoothing parameter is selected by cross-validation the test will not be well
calibrated. However, using 1

8cv as the bandwidth seems the best option since, for this parameter, the
test obtains percentages of rejection close to α under H0 and the power of the test under H1 is still
high compared to the results obtained for other smoothing parameters. Still, in practice the test must
be applied using several bandwidths and obtaining the significance trace of the test, rejecting the null
hypothesis if it is rejected for the majority of the smoothing parameters.
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

(g) Model A. Design 3 (h) Model B. Design 3 (i) Model C. Design 3

Figure 4.3: Representations on the torus of simulated data from models A, B and C under the alter-
native hypothesis (second value of β) under Design 1 (top row), Design 2 (middle row) and Design
3 (bottom row). The true regression curves (blue) and regression lines under H0 (red) are included.
Number of observations is 400 and the value of κ is 3 in Model A, 5 in Model B and 4 in Model C.
Circular units are in degrees.
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4.2 ANCOVA tests

In Section 3.3 nonparametric equality and parallelism tests were proposed for the three different circular
regression settings. The performance of those tests will be analyzed in this section. First, the simulation
scenarios will be presented. Afterwards, the obtained results will be shown and examined.

4.2.1 Circular-linear regression

In this section the equality and parallelism tests for circular predictors and linear responses described
in Section 3.3.1 will be considered. For both tests, data will be drawn from three different models
under both the null and the alternative hypothesis. In all cases 1000 replications of the data will be
simulated and the percentages of rejection for α = .05 will be recorded, so a null hypothesis is rejected
when the associated p-value is smaller than α. Taking into account the number of replications and
using the 95% confidence interval in (4.1), a percentage of rejection will be considered significantly
larger that α when it is greater than .065.

For the equality test, the three following models will be studied:

A. Group 1: Y = sin Θ + ε.
Group 2: Y = β cos Θ + sin Θ + ε, β = 0, .2, .3

B. Group 1: Y = exp(sin Θ) + 2 + ε.
Group 2: Y = β exp(sin Θ) + 2 + ε, β = 1, 1.15, 1.3

C. Group 1: Y = cos Θ sin Θ + ε.
Group 2: Y = β cos Θ sin Θ + ε, β = 1, 1.5, 1.75

The number of observations in each group takes the values 50, 100, and 250. The errors follow a N(0, σ)
distribution, where σ takes different values depending on the model. When using the first value of β,
the null hypothesis is being considered, while the other values correspond to H1 being true.

At the same time, for the test of parallelism the same models are contemplated, but adding a shift
of .2 to the responses in the second group. Thus, for the first value of β the regression curves are
parallel (as assumed in the null hypothesis), while for the other two values of β the regression curves
are different, so the data is drawn under H1. As for the design points, three scenarios were examined:

� Design 1: Both groups determined by a different sample from a circular uniform distribution.

� Design 2: Both groups determined by a different sample from a von Mises distribution, with
mean µ = π and concentration κ = 1.5.

� Design 3: Both groups determined by a different sample from a von Mises distribution, with
mean µ = 0 and concentration κ = 1.5.

As an example of the models considered in the test of equality, Figure 4.4 shows simulated data from
the three models under H1 (β = 0.3 in A, β = 1.3 in B and β = 1.75 in C) and the true regression
functions. On the other hand, Figure 4.5 displays representations of simulated data from the three
models for the test of parallelism under the null hypothesis, where the parallel curves can be observed.

In addition to the nonparametric tests for circular predictors presented in Section 3.3 (which will
be denoted by NPC), the nonparametric tests for linear data (NPL) presented in Section 1.2 and the
parametric interaction and parallelism tests for circular predictors (PCP) introduced in Section 2.4.2,
will be also studied in order to compare their performances. Results for the NPL test were obtained
using the sm library, while the code for the PCP and NPC tests was self-programmed. Regarding
the estimation of the curves, the cross-validation criterion (3.2) was used to select the smoothing
parameter in the NPC test. For the NPL test, cross-validation was also the criterion employed for
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

(g) Model A. Design 3 (h) Model B. Design 3 (i) Model C. Design 3

Figure 4.4: Representations of simulated data from models A (first column), B (second column) and
C (third column) under the alternative hypothesis (β = 0.3 in A, β = 1.3 in B and β = 1.75 in C)
under the three different designs, along with the true regression curves for each group. Number of
observations is 250 for both groups in all cases.
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

(g) Model A. Design 3 (h) Model B. Design 3 (i) Model C. Design 3

Figure 4.5: Representations of simulated data from models A (first column), B (second column) and
C (third column) under the null hypothesis under the three different designs, along with the true
regression curves for each group. Number of observations is 250 for both groups in all cases.
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the selection of the smoothing parameter. As for the tests of parallelism, recall that it is necessary to
choose a preliminary smoothing parameter. For the NPL test, the rule implemented in the sm library
and proposed by Young and Bowman (1995) is to use 2R/n as a first smoothing parameter, where R is
the range of the design points. For the NPC test, the preliminary concentration parameter is selected
with the rule proposed in Section 3.3.1. A discussion on the results is presented next.

Model A Results for the test of equality for Model A are displayed on Table 4.25 (Design 1),
Table 4.26 (Design 2) and Table 4.27 (Design 3). The parametric model is correct in this case and, as
expected, the PCP test outperforms the rest in this scenario. Under the null hypothesis, the PCP and
the NPC tests obtain percentages of rejection close to the nominal level .05 under the three designs.
On the other hand, results for the NPL test under H0 are also close to α when the uniform design is
used (Design 1), but for Designs 2 and 3 the percentages of rejection are slightly higher, surpassing
the 7% of rejections many times and even reaching 8%.

Under the alternative hypotheses, the nonparametric tests obtain similar results, although the
power of the parametric test is higher since the parametric shape of the regression function assumed
by the PCP test is correct. As expected, for the three tests, percentages of rejection under H1 are
lower when the value of σ is increased.

As for the test of parallelism, Table 4.28 displays the results obtained for Model A under Design
1, while Tables 4.29 and 4.30 contain results for Designs 2 and 3, respectively. As before, Model A
follows the parametric shape assumed by the parametric test. Consequently it is expected that this
test will outperform the rest in this setting. Under H0, percentages of rejection of the PCP test, under
the three designs are close to the nominal level α. The results for the NPC test are also around α,
although it does reject 7.4% of the times in one scenario, under Design 3 with the lowest sample size.
As for the nonparametric test for linear data, with the uniform design percentages of rejection vary
around the nominal level, but under Design 2 it rejects more than 7% of the times in many occasions,
although these numbers decrease by increasing the sample size. When using Design 3 the results are
slightly higher than α (around 6.5%).

Furthermore, under the alternative hypothesis the PCP test obtains the largest percentages of
rejection, as expected, although with large sample sizes the results obtained by the two nonparametric
tests are quite close to the parametric results. The percentages of rejection for the NPL and NPC
tests are similar, but under Design 1 the results for the circular test are slightly larger than the ones
corresponding to its linear counterpart, and this behavior is turned around with Designs 2 and 3.

Model B Tables 4.31, 4.32 and 4.33 present results for the test of equality applied to Model B
under Designs 1, 2 and 3, respectively. In this case the model is not of the parametric form (2.5), but
it is an exponential transformation of it and the parametric test is still able to detect the differences
between the groups.

Under H0 (β = 1), as it happened in Model A, results for the PCP and the NPC tests are close to
the value of α. This also happens for the NPL test when Design 1 is being considered but not with the
von Mises designs. In the cases where Design 2 is used, 7% of rejections are obtained several times,
even surpassing 8% of rejections once. However, with the largest sample size (250 for each group)
the results get closer to α. Under Design 3 results are not as high as in the previous case, but many
percentages of rejection lie above .065, reaching 7.5% of rejections once, which is significantly higher
than the nominal level .05. In this case it does not seem that the results are closer to α when increasing
the sample size. This behavior shows that the NPL test is not invariant to changes in the mean of the
distribution of Θ.

Under the alternative hypothesis the three tests present similar results, obtaining higher percentages
of rejection as the values of n1 and n2 increase and as the value of σ decreases.

As for the test of parallelism, percentages of rejection obtained for Model B are collected in Ta-
bles 4.34, 4.35 and 4.36 for Designs 1, 2 and 3, respectively. In this case, under H0, the parametric
test obtains percentages of rejection close to α = .05 when Design 1 is used, but for Designs 2 and 3
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the test gets quite high results in some scenarios, even surpassing 8% of rejections a couple of times.
This behavior is explained by the fact that Model B does not follow the parametric shape assumed
by the PCP test. Concerning the nonparametric test for linear data, with the uniform design results
are pretty close to α, but with Design 2 it obtains some high percentages (around 8%). Under Design
3 results for the NPL test are not excessively high but some percentages are still significantly higher
then α in all cases.

Under H1, although the parametric assumption of test PCP is not right, this test obtains slightly
larger percentages of rejection than the nonparametric ones. However, with large sample sizes the
differences between the results of the three tests are small. As expected, percentages of rejection when
β = 1.3 are larger, because the differences between the two groups are more pronounced. At the same
time, reducing the variance of the errors and increasing the sample size leads to larger percentages of
rejection.

Model C Results for the test of equality in Model C are shown in Tables 4.37, 4.38 and 4.39,
containing the percentages of rejection under Designs 1, 2 and 3, respectively.

Under the null hypothesis, the NPC test obtains results close to the nominal level, α = .05, for
the three considered designs. Results for the PCP test are also close to α under Design 1, but when
the von Mises designs are used the test obtains results which double or triplicate α. Thus, since now
the model is far from the parametric shape assumed in (2.5), the test rejects the null hypothesis many
more times than it should. As for the NPL test, results are close to the nominal level when Design 1
is used and just slightly higher than α under Design 3, but under Design 2, 7% and 8% of rejections
are reached several times.

Under the alternative hypothesis, if Design 1 is considered the PCP test is completely unable to
detect the differences between the two groups, obtaining percentages of rejection below .1. When the
other two designs are considered, the parametric test is able to reject the null hypothesis more often,
but the power of the test is considerably low. The nonparametric tests obtain again similar results
under H1, with percentages close to 1 as the sample size increases. Again, a large value of σ leads to
lower percentages of rejection, but they are still high if the sample is sufficiently large.

Results for the test of parallelism applied to Model C are found in Table 4.40 for Design 1, Table 4.41
for Design 2 and Table 4.42 for Design 3. When the null hypothesis holds, the parametric test performs
well under Design 1, rejecting around 5% of the times in all cases. Nevertheless, the performance of
the test is very unsatisfactory when Designs 2 and 3 are considered, obtaining between 10% and 20%
of rejections. Results for the NPL test under H0 are not too far from α when using the uniform design,
but under Designs 2 some large percentages of rejection are recorded (around 7% or 8% of rejections),
although results are closer to α when considering large sample sizes. Under Design 3 the results of the
NPL test are not too high, but it was shown that the proportion of rejections was significantly larger
that .05. Lastly, the nonparametric test for circular predictors performs well under the three designs,
with percentages of rejection around α = .05.

On another note, when the alternative hypothesis is true, the PCP test is unable to determine the
differences between the groups under Design 1, with results lower than 6% of rejections in all cases.
Under the other two designs the test is actually able to detect the two different curves, but the power
is much lower than the obtained for the other two tests. Anyhow, given that the test is not well
calibrated, it should not be used in practice. Results for the NPL and NPC tests are similar under
H0, with percentages of rejection close to 1 as the sample size and the differences between the curves
increase.

As a general summary of the results, it was found that the parametric test does not provide a
correct calibration when the true model is not correctly imposed (being sometimes anticonservative).
Thus, it should only be employed under this assumption. Regarding the nonparametric tests, focusing
on the calibration, the linear test is sometimes anticonservative, while the same is not true for the
new proposal in the circular setting. In the scenarios where the level under the null is close to α,
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the percentage of rejections under the alternative is similar for both or slightly better for the circular
proposal.

In Section 3.3 it was shown that the distribution of the test statistic C3 (3.7) under H0 was a
shifted and scaled χ2 distribution. In order to ascertain it, the values of the statistic obtained in
the simulations were recorded. As an example, Figure 4.6 shows histograms of the statistic values
obtained after applying the test of equality to simulated data from Model A with σ = .25 and different
values for the sample size. The density function of the statistic values was estimated using the kernel
density estimator, with the bandwidth selected by the plug-in method proposed by Sheather and Jones
(1991). The aχ2

b + c distribution was also represented in Figure 4.6 although the scale parameter a,
the location parameter c and the number of degrees of freedom b were estimated by replacing the first
three cumulants ν1, ν2 and ν3 in (3.6) by the first three sample central moments of the statistic values.
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(a) Design 1. n1 = n2 = 50 (b) Design 1. n1 = n2 = 100 (c) Design 1. n1 = n2 = 250

(d) Design 2. n1 = n2 = 50 (e) Design 2. n1 = n2 = 100 (f) Design 2. n1 = n2 = 250

(g) Design 3. n1 = n2 = 50 (h) Design 3. n1 = n2 = 100 (i) Design 3. n1 = n2 = 250

Figure 4.6: Histograms of 1000 realizations of the statistic C3 computed with data drawn from Model
A with different designs and different sample sizes. The blue lines are the nonparametric density
estimators of the statistic values and the green lines are aχ2

b + c distributions with the parameters
estimated from the data.
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Model A. Design 1: circular uniform

Test of equality. Circular-linear regression

β = 0 β = .2 β = .3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .043 .067 .050 .621 .435 .428 .935 .827 .803

50 100 .037 .042 .033 .752 .619 .613 .983 .954 .946

100 100 .052 .059 .055 .928 .837 .838 .998 .994 .995

100 250 .057 .048 .048 .984 .931 .933 1 1 1

250 250 .041 .048 .048 1 .999 .999 1 1 1

.5 50 50 .047 .047 .043 .175 .143 .124 .355 .273 .270

50 100 .045 .055 .055 .243 .176 .171 .505 .381 .381

100 100 .047 .058 .047 .322 .250 .236 .694 .555 .578

100 250 .051 .053 .043 .469 .367 .366 .867 .736 .752

250 250 .057 .060 .057 .758 .615 .648 .988 .951 .962

Table 4.25: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model A and Design 1 based on 1000 simulations. Results for
β = 0 show empirical size, whereas β = .2 and β = .3 show empirical power.
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Model A. Design 2: vM(π, 1.5)

Test of equality. Circular-linear regression

β = 0 β = .2 β = .3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .053 .078 .038 .723 .630 .529 .979 .934 .893

50 100 .046 .077 .046 .850 .761 .708 .997 .985 .976

100 100 .065 .080 .062 .967 .929 .909 1 .998 .998

100 250 .062 .071 .053 .996 .983 .978 1 1 1

250 250 .050 .062 .053 1 1 1 1 1 1

.5 50 50 .057 .071 .051 .228 .205 .149 .460 .398 .334

50 100 .049 .071 .042 .268 .241 .199 .593 .498 .470

100 100 .063 .076 .055 .421 .347 .330 .786 .683 .676

100 250 .052 .060 .046 .615 .477 .468 .925 .858 .849

250 250 .043 .058 .040 .849 .737 .740 .995 .983 .981

Table 4.26: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model A and Design 2 based on 1000 simulations. Results for
β = 0 show empirical size, whereas β = .2 and β = .3 show empirical power.
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Model A. Design 3: vM(0, 1.5)

Test of equality. Circular-linear regression

β = 0 β = .2 β = .3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .059 .069 .066 .717 .578 .570 .975 .921 .927

50 100 .059 .074 .049 .868 .770 .755 .994 .979 .981

100 100 .052 .064 .052 .958 .890 .896 1 1 .999

100 250 .047 .054 .043 .998 .990 .987 1 1 1

250 250 .042 .060 .048 1 1 1 1 1 1

.5 50 50 .046 .059 .048 .195 .191 .149 .449 .368 .334

50 100 .054 .068 .048 .258 .222 .183 .594 .517 .475

100 100 .059 .076 .064 .419 .374 .344 .771 .688 .672

100 250 .049 .053 .041 .567 .474 .443 .921 .863 .850

250 250 .044 .065 .050 .830 .752 .745 .998 .987 .988

Table 4.27: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model A and Design 3 based on 1000 simulations. Results for
β = 0 show empirical size, whereas β = .2 and β = .3 show empirical power.
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Model A. Design 1: circular uniform

Test of parallelism. Circular-linear regression

β = 0 β = .2 β = .3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .043 .056 .052 .675 .497 .489 .961 .851 .852

50 100 .048 .052 .038 .815 .647 .650 .992 .956 .961

100 100 .059 .070 .059 .943 .852 .860 .998 .993 .993

100 250 .055 .040 .039 .987 .949 .947 1 1 1

250 250 .050 .057 .048 1 1 1 1 1 1

.5 50 50 .043 .056 .044 .206 .158 .147 .404 .298 .320

50 100 .054 .061 .053 .258 .187 .190 .577 .422 .446

100 100 .047 .058 .049 .373 .272 .286 .758 .601 .626

100 250 .045 .050 .042 .546 .396 .425 .904 .775 .798

250 250 .049 .057 .057 .817 .653 .703 .991 .960 .969

Table 4.28: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model A and Design 1 based on 1000 simulations.
Results for β = 0 show empirical size, whereas β = .2 and β = .3 show empirical power.



4.2. ANCOVA TESTS 109

Model A. Design 2: vM(π, 1.5)

Test of parallelism. Circular-linear regression

β = 0 β = .2 β = .3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .051 .074 .054 .378 .287 .227 .697 .536 .433

50 100 .041 .074 .040 .489 .363 .298 .843 .712 .624

100 100 .059 .075 .062 .674 .536 .459 .963 .875 .832

100 250 .054 .067 .050 .858 .714 .645 .991 .973 .957

250 250 .053 .058 .051 .982 .929 .908 1 1 1

.5 50 50 .053 .076 .050 .127 .130 .091 .249 .223 .163

50 100 .047 .072 .045 .148 .142 .101 .292 .255 .202

100 100 .054 .068 .048 .236 .202 .155 .442 .372 .307

100 250 .048 .061 .049 .307 .245 .198 .577 .486 .416

250 250 .046 .053 .046 .507 .378 .368 .857 .721 .723

Table 4.29: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model A and Design 2 based on 1000 simulations.
Results for β = 0 show empirical size, whereas β = .2 and β = .3 show empirical power.



110 CHAPTER 4. SIMULATION STUDY

Model A. Design 3: vM(0, 1.5)

Test of parallelism. Circular-linear regression

β = 0 β = .2 β = .3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .045 .077 .074 .345 .247 .250 .693 .522 .516

50 100 .044 .063 .049 .507 .363 .339 .846 .689 .664

100 100 .059 .071 .054 .710 .535 .511 .954 .872 .852

100 250 .057 .052 .048 .862 .699 .664 .992 .956 .945

250 250 .043 .056 .046 .980 .918 .913 1 1 .998

.5 50 50 .045 .059 .046 .105 .101 .087 .199 .165 .138

50 100 .060 .067 .049 .148 .131 .106 .301 .222 .187

100 100 .058 .064 .059 .224 .168 .166 .438 .327 .309

100 250 .048 .065 .047 .312 .253 .220 .605 .463 .448

250 250 .045 .067 .046 .500 .392 .380 .840 .744 .726

Table 4.30: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model A and Design 3 based on 1000 simulations.
Results for β = 0 show empirical size, whereas β = .2 and β = .3 show empirical power.
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Model B. Design 1: circular uniform

Test of equality. Circular-linear regression

β = 1 β = 1.15 β = 1.3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.5 50 50 .052 .068 .054 .345 .331 .314 .935 .918 .906

50 100 .042 .044 .035 .454 .419 .416 .980 .975 .970

100 100 .053 .059 .052 .676 .630 .630 .999 .998 .997

100 250 .059 .048 .049 .845 .799 .810 1 1 1

250 250 .042 .048 .045 .980 .970 .975 1 1 1

.75 50 50 .049 .049 .045 .187 .162 .161 .634 .558 .568

50 100 .048 .055 .054 .245 .201 .208 .774 .707 .718

100 100 .045 .053 .043 .348 .282 .298 .934 .891 .899

100 250 .059 .053 .043 .488 .426 .439 .979 .970 .977

250 250 .051 .060 .058 .799 .727 .744 1 .999 1

Table 4.31: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model B and Design 1 based on 1000 simulations. Results for
β = 1 show empirical size, whereas β = 1.15 and β = 1.3 show empirical power.
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4.2.2 Linear-circular regression

In the present section the performance of the nonparametric tests for circular responses and linear pre-
dictors, proposed in Section 3.3.2 will be analyzed. For the test of equality and the test of parallelism,
data will be drawn from three different models. The number of resamples in the bootstrap procedure
will be 500. Percentages of rejection for α = .05 will be computed after 500 realizations of the data.
Consequently, in order to determine if a particular percentage of rejection is large, one can calculate
the 95% confidence interval and check if it contains the nominal level .05. For 500 replications of the
data, a percentage will be considered high when it is .074 or larger. The simulated models for the test
of equality are presented next:

A. Group 1: Φ = [10 tan( 2
3X −

1
4 ) + ε](mod 2π).

Group 2: Φ = [β tan( 3
2X −

1
4 ) + ε](mod 2π), β = 10, 8.5, 7.

B. Group 1: Φ = [2 sin(4X − 1) + ε](mod 2π).
Group 2: Φ = [β sin(4X − 1) + ε](mod 2π), β = 2, 1.75, 1.5.

C. Group 1: Φ = [3πX2 + ε](mod 2π).
Group 2: Φ = [βπX2 + ε](mod 2π), β = 3, 3.2, 3.4.

The sample size for each group takes values in the set {50, 100, 250}. The errors ε follow a von Mises
distribution vM(0, κ), where κ takes different values depending on the model. The null hypothesis
holds when the first value of β is being used. The other two values match different situations where
H1 is true. The performance of the test of parallelism is studied using the same models as in the test
of equality, but adding a shift of π/8 radians to the responses in the second group. The two tests are
analyzed under two different scenarios for the design points:

� Design 1: Both group determined by a different sample from a U(0, 1) distribution.

� Design 2: Both groups determined by a different sample from a N(0.5, 0.1) distribution.

Figure 4.7 shows, as an example, a representation on the cylinder of data simulated from the three
models used for the test of equality under H1 with the last values of β, along with the true regression
curves. Regarding the test of parallelism, the models under the null hypothesis are represented on the
cylinder with realizations of the simulated data in Figure 4.8.

In order to estimate the regression curves, the tests were applied to the simulated data using the
cross-validation criterion in order to select the smoothing parameter. For the test of parallelism it
was necessary to select a preliminary smoothing parameter to estimate the shift, and it was done
with the rule presented in Section 3.3.2. In this section the results of the test will not be compared
with other methods as in the previous section. The reasons are, in the first place, that it does not
exist a parametric ANCOVA test for circular responses. Secondly, the nonparametric equality and
parallelism tests for linear data were applied to the simulated data and the percentages of rejection
obtained under H0 were undoubtedly high (e.g. 20% of rejections with α = .05). Because it was clear
that when applying the tests to linear-circular data they were not well calibrated, results were not
included in the manuscript. The obtained percentages of rejection for the newly proposed tests for
linear-circular data are shown and analyzed next.

Model A Results for the test of equality applied to Model A are displayed on Table 4.43. Under the
null hypothesis the test rejects close to 5% of the times, although in some scenarios the percentage is
even lower (2.4% or 3.2%, which are significantly lower than α = .05). When the alternative hypothesis
holds, under Design 1 (uniform distributed predictors) the percentages of rejection grow closer to 1 as
the sample size increases, even when β = 8.5 is used. At the same time, results under the normal design
are quite smaller than under the uniform design, which is understandable since under Design 2 the data
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Model B. Design 2: vM(π, 1.5)

Test of equality. Circular-linear regression

β = 1 β = 1.15 β = 1.3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.5 50 50 .065 .076 .044 .387 .376 .305 .917 .907 .856

50 100 .068 .076 .046 .451 .446 .387 .969 .974 .963

100 100 .069 .081 .063 .634 .595 .554 .998 .999 .998

100 250 .076 .067 .053 .822 .773 .735 1 1 1

250 250 .070 .055 .053 .962 .958 .956 1 1 1

.75 50 50 .065 .066 .048 .174 .182 .131 .623 .622 .554

50 100 .061 .068 .041 .228 .222 .183 .718 .693 .646

100 100 .076 .076 .051 .350 .336 .295 .916 .896 .873

100 250 .070 .060 .047 .486 .444 .416 .981 .977 .965

250 250 .069 .055 .042 .733 .667 .654 1 1 1

Table 4.32: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model B and Design 2 based on 1000 simulations. Results for
β = 1 show empirical size, whereas β = 1.15 and β = 1.3 show empirical power.
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Model B. Design 3: vM(0, 1.5)

Test of equality. Circular-linear regression

β = 1 β = 1.15 β = 1.3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.5 50 50 .069 .069 .060 .341 .290 .270 .905 .848 .861

50 100 .061 .069 .047 .492 .396 .395 .969 .939 .949

100 100 .076 .063 .053 .663 .586 .594 .998 .997 .997

100 250 .070 .056 .043 .825 .752 .763 1 1 1

250 250 .069 .059 .050 .967 .955 .959 1 1 1

.75 50 50 .059 .055 .042 .174 .175 .168 .611 .529 .540

50 100 .067 .068 .047 .234 .192 .179 .761 .675 .674

100 100 .060 .075 .060 .362 .323 .307 .904 .859 .872

100 250 .049 .049 .043 .464 .389 .375 .976 .952 .962

250 250 .049 .069 .050 .730 .650 .649 .999 .999 .999

Table 4.33: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model B and Design 3 based on 1000 simulations. Results for
β = 1 show empirical size, whereas β = 1.15 and β = 1.3 show empirical power.
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Model B. Design 1: circular uniform

Test of parallelism. Circular-linear regression

β = 1 β = 1.15 β = 1.3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.5 50 50 .050 .055 .039 .141 .118 .130 .487 .374 .381

50 100 .043 .052 .040 .174 .146 .145 .589 .500 .496

100 100 .054 .066 .045 .274 .218 .235 .771 .723 .737

100 250 .051 .046 .052 .363 .278 .288 .907 .872 .892

250 250 .043 .055 .059 .603 .495 .508 .996 .984 .993

.75 50 50 .046 .054 .042 .082 .082 .081 .251 .203 .170

50 100 .048 .063 .047 .117 .084 .094 .336 .259 .273

100 100 .052 .060 .041 .135 .127 .113 .470 .359 .384

100 250 .053 .047 .056 .212 .168 .149 .609 .504 .534

250 250 .045 .060 .051 .320 .225 .248 .855 .790 .826

Table 4.34: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model B and Design 1 based on 1000 simulations.
Results for β = 1 show empirical size, whereas β = 1.15 and β = 1.3 show empirical power.
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Model B. Design 2: vM(π, 1.5)

Test of parallelism. Circular-linear regression

β = 1 β = 1.15 β = 1.3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.5 50 50 .068 .078 .051 .178 .152 .107 .422 .382 .306

50 100 .073 .068 .048 .191 .147 .136 .549 .482 .409

100 100 .068 .080 .044 .246 .215 .180 .724 .642 .661

100 250 .084 .064 .052 .320 .245 .213 .879 .798 .796

250 250 .065 .057 .049 .542 .426 .414 .979 .970 .979

.75 50 50 .067 .068 .053 .101 .098 .085 .249 .214 .174

50 100 .070 .066 .043 .070 .112 .081 .269 .233 .199

100 100 .053 .068 .040 .160 .133 .118 .418 .357 .355

100 250 .064 .060 .051 .187 .152 .139 .546 .433 .403

250 250 .059 .051 .049 .286 .205 .208 .774 .670 .713

Table 4.35: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model B and Design 2 based on 1000 simulations.
Results for β = 1 show empirical size, whereas β = 1.15 and β = 1.3 show empirical power.
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Model B. Design 3: vM(0, 1.5)

Test of parallelism. Circular-linear regression

β = 1 β = 1.15 β = 1.3

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.5 50 50 .065 .067 .062 .126 .111 .123 .439 .333 .360

50 100 .064 .056 .048 .202 .157 .126 .547 .420 .423

100 100 .079 .068 .051 .273 .217 .162 .723 .622 .633

100 250 .067 .055 .048 .309 .219 .232. 855 .772 .790

250 250 .075 .060 .056 .535 .417 .429 .981 .969 .965

.75 50 50 .062 .062 .045 .095 .094 .099 .234 .160 .170

50 100 .078 .066 .048 .107 .095 .086 .284 .209 .189

100 100 .065 .065 .060 .142 .118 .121 .396 .299 .318

100 250 .058 .065 .036 .179 .131 .116 .544 .406 .447

250 250 .054 .068 .056 .292 .231 .222 .799 .669 .724

Table 4.36: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model B and Design 3 based on 1000 simulations.
Results for β = 1 show empirical size, whereas β = 1.15 and β = 1.3 show empirical power.
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Model C. Design 1: circular uniform

Test of equality. Circular-linear regression

β = 1 β = 1.5 β = 1.75

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .059 .071 .055 .048 .541 .519 .055 .925 .917

50 100 .055 .053 .042 .028 .680 .679 .019 .983 .987

100 100 .045 .065 .058 .048 .918 .915 .042 .999 1

100 250 .056 .046 .043 .018 .985 .987 .007 1 1

250 250 .050 .048 .046 .055 1 1 .054 1 1

.5 50 50 .047 .059 .042 .047 .153 .152 .055 .302 .297

50 100 .057 .058 .062 .029 .166 .174 .032 .383 .418

100 100 .041 .053 .041 .044 .296 .333 .057 .649 .683

100 250 .052 .054 .047 .030 .407 .425 .024 .834 .866

250 250 .042 .063 .056 .054 .715 .755 .043 .987 .990

Table 4.37: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model C and Design 1 based on 1000 simulations. Results for
β = 1 show empirical size, whereas β = 1.5 and β = 1.75 show empirical power.
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Model C. Design 2: vM(π, 1.5)

Test of equality. Circular-linear regression

β = 1 β = 1.5 β = 1.75

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .192 .083 .046 .312 .617 .547 .403 .941 .917

50 100 .152 .070 .053 .273 .741 .731 .380 .987 .984

100 100 .177 .076 .068 .414 .939 .923 .577 .999 .999

100 250 .170 .067 .049 .395 .988 .986 .636 1 1

250 250 .153 .058 .055 .696 1 1 .909 1 1

.5 50 50 .106 .080 .052 .179 .171 .150 .255 .364 .336

50 100 .094 .071 .050 .174 .192 .181 .257 .428 .432

100 100 .103 .067 .051 .231 .294 .286 .354 .671 .681

100 250 .093 .061 .046 .208 .402 .406 .397 .844 .845

250 250 .090 .063 .051 .415 .736 .751 .709 .988 .999

Table 4.38: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model C and Design 2 based on 1000 simulations. Results for
β = 1 show empirical size, whereas β = 1.5 and β = 1.75 show empirical power.
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Model C. Design 3: vM(0, 1.5)

Test of equality. Circular-linear regression

β = 1 β = 1.5 β = 1.75

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .161 .063 .048 .302 .522 .551 .423 .904 ,917

50 100 .178 .062 .044 .288 .672 .713 .393 .979 .986

100 100 .160 .057 .056 .418 .909 .926 .576 1 1

100 250 .161 .052 .045 .421 .978 .984 .645 1 1

250 250 .164 .062 .052 .668 1 1 .901 1 1

.5 50 50 .098 .066 .040 .181 .191 .149 .254 .331 .333

50 100 .097 .064 .050 .164 .214 .203 .242 .444 .454

100 100 .103 .074 .068 .237 .313 .317 .397 .651 .701

100 250 .079 .067 .046 .267 .406 .443 .392 .819 .859

250 250 .098 .062 .049 .412 .723 .741 .671 .983 .988

Table 4.39: Percentages of rejection (for α = .05) for the parametric interaction test for circular pre-
dictors (PCP), the nonparametric equality test for linear data (NPL) and the nonparametric equality
test for circular predictors (NPC) for Model C and Design 3 based on 1000 simulations. Results for
β = 1 show empirical size, whereas β = 1.5 and β = 1.75 show empirical power.
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Model C. Design 1: circular uniform

Test of parallelism. Circular-linear regression

β = 1 β = 1.5 β = 1.75

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .060 .061 .048 .044 .584 .579 .056 .937 .915

50 100 .049 .060 .052 .027 .707 .730 .026 .987 .974

100 100 .046 .066 .053 .048 .930 .932 .044 1 1

100 250 .047 .042 .054 .025 .987 .985 .017 1 1

250 250 .058 .057 .064 .045 1 1 .049 1 1

.5 50 50 .053 .055 .043 .046 .154 .156 .051 .332 .327

50 100 .059 .066 .044 .030 .187 .226 .036 .419 .476

100 100 .046 .059 .042 .057 .334 .341 .056 .680 .697

100 250 .049 .045 .059 .033 .442 .505 .023 .872 .880

250 250 .041 .052 .047 .051 .754 .791 .047 .991 .995

Table 4.40: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model C and Design 1 based on 1000 simulations.
Results for β = 1 show empirical size, whereas β = 1.5 and β = 1.75 show empirical power.
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Model C. Design 2: vM(π, 1.5)

Test of parallelism. Circular-linear regression

β = 1 β = 1.5 β = 1.75

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .218 .079 .058 .355 .661 .634 .446 .957 .957

50 100 .178 .072 .050 .328 .779 .750 .450 .989 .990

100 100 .182 .081 .045 .452 .950 .938 .659 .999 .998

100 250 .172 .067 .058 .476 .988 .992 .712 1 1

250 250 .169 .056 .048 .754 1 1 .932 1 1

.5 50 50 .120 .073 .051 .190 .186 .184 .284 .425 .377

50 100 .111 .074 .040 .203 .226 .224 .298 .491 .517

100 100 .105 .068 .047 .275 .334 .356 .417 .716 .744

100 250 .117 .058 .049 .252 .438 .505 .469 .871 .887

250 250 .096 .056 .039 .463 .779 .793 .762 .992 .990

Table 4.41: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model C and Design 2 based on 1000 simulations.
Results for β = 1 show empirical size, whereas β = 1.5 and β = 1.75 show empirical power.
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Model C. Design 3: vM(0, 1.5)

Test of parallelism. Circular-linear regression

β = 1 β = 1.5 β = 1.75

σ n1 n2 PCP NPL NPC PCP NPL NPC PCP NPL NPC

.25 50 50 .171 .064 .060 .348 .568 .605 .473 .930 .955

50 100 .189 .060 .045 .326 .703 .787 .455 .983 .988

100 100 .180 .065 .045 .446 .916 .935 .644 1 1

100 250 .182 .053 .052 .484 .986 .986 .709 1 1

250 250 .177 .061 .055 .732 1 1 .925 1 1

.5 50 50 .106 .063 .047 .208 .206 .168 .291 .368 .368

50 100 .113 .069 .039 .192 .240 .218 .289 .489 .498

100 100 .104 .068 .059 .277 .339 .364 .428 .683 .721

100 250 .090 .066 .037 .314 .445 .519 .458 .848 .885

250 250 .113 .056 .058 .479 .759 .813 .733 .990 .995

Table 4.42: Percentages of rejection (for α = .05) for the parametric parallelism test for circular
predictors (PCP), the nonparametric parallelism test for linear data (NPL) and the nonparametric
parallelism test for circular predictors (NPC) for Model C and Design 3 based on 1000 simulations.
Results for β = 1 show empirical size, whereas β = 1.5 and β = 1.75 show empirical power.
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

Figure 4.7: Representations in the cylinder of simulated data from models A, B and C under the
alternative hypothesis (β = 7 in A, β = 1.5 in B and β = 3.4 in C) under Design 1 (top row) and
Design 2 (bottom row), along with the true regression curves for each group. Number of observations
is 100 for both groups and the value of κ is 3 in Model A, 5 in Model B and 4 in Model C. Circular
units are in degrees.

are concentrated near the point where the two curves intersect (see Figure 4.7d). Even so, when the
differences between the curves are more noticeable (β = 7) and the sample size is large, the percentages
of rejection are also close to 1. In addition, as expected, when diminishing the concentration of the
errors the percentages of rejection under H1 decrease.

For the test of parallelism, results are collected in Table 4.44. Under the null hypothesis the
percentages of rejection are close to α, showing that the test is well calibrated. If the data are drawn
under the alternative hypothesis, when considering Design 1 the power of the test is high, specially
for the second value of α. If the data are concentrated as in Design 2 the percentages of rejection are
lower, since it is more difficult to discern the different curves. However, when the sample size is large
percentages of rejection are high.

Model B Table 4.45 shows the percentages of rejection obtained after applying the equality test to
Model B. Under H0, and when Design 1 is being considered, results are close to the nominal level
α = .05, while under the normal design the percentages of rejection are moderately smaller than α
(around 3% our 4% of rejections, and sometimes being significantly smaller than α).

Under the alternative hypothesis, with Design 1 results converge to 1 as the sample size increases.
As it happened with Model A, when using Design 2 the data are concentrated in the point where the
regression curves are closer (see Figure 4.7e), so it is more difficult to detect the differences between
both curves. Consequently, the percentages of rejection are quite lower than in the Design 1 scenario,
but they are still close to 1 when the second value of β is used and the sample size is large. Again, a
reduction in the concentration of the errors translates in lower percentages of rejection.

Table 4.46 contains percentages of rejection for the test of parallelism applied to Model B. Under
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

Figure 4.8: Representations in the cylinder of simulated data from models A, B and C under the
alternative hypothesis (β = 7 in A, β = 1.5 in B and β = 3.4 in C) under Design 1 (top row) and
Design 2 (bottom row), along with the true regression curves for each group. Number of observations
is 100 for both groups and the value of κ is 3 in Model A, 5 in Model B and 4 in Model C. Circular
units are in degrees.

H0 all the percentages of rejection are close to the level .05. Regarding the performance of the test
under H1, results are close to the ones obtained for the test of equality. When Design 2 is considered,
percentages of rejection are lower, but it is comprehensible given the shape of the regression functions
where the data are concentrated.

Model C Table 4.47 contains the percentages of rejection corresponding to the test of equality
applied to Model C. Under the null hypothesis the test rejects close to 5% of the times, although when
the normal design is used the percentages are slightly lower than α. On the other hand, when the
alternative hypothesis holds, results are similar under both designs, unlike in the other two models.
In fact, percentages of rejection are sometimes larger under Design 2. The cause of this behavior is
that under the normal design the points are concentrated in a zone where the curves are not close, as
it can be seen in Figure 4.7f.

On the other hand, results for the test of parallelism are displayed on Table 4.48. In this case, all the
percentages are close to .05 when the null hypothesis is true. However, when H1 holds, percentages of
rejection are not very high, specially under Design 2, because of the shape of the regression functions.
When β 6= 3 the two curves are not parallel, but they are close to being parallel. Furthermore, when
the data are concentrated as in Design 2 it is more difficult to discern the different curves, which
explains the low power of the test.

As a general conclusion, it was found that both the equality and parallelism tests are well calibrated
and are the only available method to test equality and parallelism when working with linear-circular
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data, since, as mentioned before, the nonparametric test for linear data are far from providing a
correct calibration. It shall be noticed that, given that a bootstrap procedure is used to calculate the
distribution of the statistics under H0, the tests are somewhat computationally costly, specially the
test of parallelism, which also uses numerical optimization to estimate the shift parameter.

Model A

Test of equality. Linear-circular regression

Design 1: U(0, 1) Design 2: N(0.5, 0.1)

κ n1 n2 β = 10 β = 8.5 β = 7 β = 10 β = 8.5 β = 7

4 50 50 .038 .604 .994 .058 .230 .682

50 100 .048 .776 1 .038 .250 .798

100 100 .045 .932 1 .050 .384 .950

100 250 .050 .992 1 .032 .538 .992

250 250 .040 1 1 .046 .810 1

3 50 50 .036 .428 .956 .052 .148 .492

50 100 .024 .592 .996 .046 .218 .670

100 100 .062 .794 1 .052 .270 .842

100 250 .034 .930 1 .048 .416 .954

250 250 .052 .996 1 .038 .630 1

Table 4.43: Percentages of rejection (for α = .05) for the nonparametric equality test for linear
predictors and circular responses for Model A based on 500 simulations. Results for β = 10 show
empirical size, whereas β = 8.5 and β = 7 show empirical power.
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Model A

Test of parallelism. Linear-circular regression

Design 1: U(0, 1) Design 2: N(0.5, 0.1)

κ n1 n2 β = 10 β = 8.5 β = 7 β = 10 β = 8.5 β = 7

4 50 50 .056 .586 .990 .044 .098 .338

50 100 .070 .738 1 .038 .132 .466

100 100 .060 .896 1 .048 .196 .628

100 250 .054 .982 1 .050 .254 .822

250 250 .044 1 1 .034 .460 .974

3 50 50 .042 .420 .952 .054 .100 .282

50 100 .038 .540 .990 .042 .100 .332

100 100 .050 .750 1 .048 .154 .494

100 250 .056 .908 1 .052 .224 .692

250 250 .064 .998 1 .060 .330 .898

Table 4.44: Percentages of rejection (for α = .05) for the nonparametric parallelism test for linear
predictors and circular responses for Model A based on 500 simulations. Results for β = 10 show
empirical size, whereas β = 8.5 and β = 7 show empirical power.
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Model B

Test of equality. Linear-circular regression

Design 1: U(0, 1) Design 2: N(0.5, 0.1)

κ n1 n2 β = 2 β = 1.75 β = 1.5 β = 2 β = 1.75 β = 1.5

6 50 50 .066 .450 .976 .038 .154 .514

50 100 .050 .650 .998 .028 .212 .718

100 100 .046 .784 1 .036 .320 .882

100 250 .046 .748 1 .036 .320 .882

250 250 .046 .976 1 .040 .506 .994

5 50 50 .054 .286 .856 .030 .086 .268

50 100 .056 .408 .956 .048 .132 .436

100 100 .042 .584 .996 .052 .202 .620

100 250 .048 .748 1 .042 .260 .846

250 250 .054 .918 1 .038 .462 .968

Table 4.45: Percentages of rejection (for α = .05) for the nonparametric equality test for linear
predictors and circular responses for Model B based on 500 simulations. Results for β = 2 show
empirical size, whereas β = 1.75 and β = 1.5 show empirical power.
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Model B

Test of parallelism. Linear-circular regression

Design 1: U(0, 1) Design 2: N(0.5, 0.1)

κ n1 n2 β = 2 β = 1.75 β = 1.5 β = 2 β = 1.75 β = 1.5

6 50 50 .072 .364 .930 .044 .142 .474

50 100 .044 .488 .974 .046 .182 .590

100 100 .052 .686 1 .042 .258 .740

100 250 .046 .836 1 .056 .320 .894

250 250 .058 .986 1 .056 .556 .986

5 50 50 .046 .340 .892 .040 .110 .382

50 100 .056 .460 .960 .038 .134 .498

100 100 .056 .582 .996 .056 .204 .682

100 250 .052 .740 1 .056 .308 .844

250 250 .066 .962 1 .048 .476 .966

Table 4.46: Percentages of rejection (for α = .05) for the nonparametric parallelism test for linear
predictors and circular responses for Model B based on 500 simulations. Results for β = 2 show
empirical size, whereas β = 1.75 and β = 1.5 show empirical power.
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Model C

Test of equality. Linear-circular regression

Design 1: U(0, 1) Design 2: N(0.5, 0.1)

κ n1 n2 β = 3 β = 3.2 β = 3.4 β = 3 β = 3.2 β = 3.4

5 50 50 .044 .326 .780 .038 .278 .838

50 100 .058 .520 .868 .038 .346 .952

100 100 .048 .730 .854 .034 .528 .988

100 250 .048 .888 .926 .054 .710 1

250 250 .060 .968 .966 .036 .924 1

4 50 50 .062 .274 .744 .040 .222 .742

50 100 .054 .382 .852 .040 .320 .858

100 100 .040 .598 .862 .032 .438 .970

100 250 .052 .836 .922 .046 .570 .992

250 250 .056 .950 .946 .062 .810 1

Table 4.47: Percentages of rejection (for α = .05) for the nonparametric equality test for linear
predictors and circular responses for Model C based on 500 simulations. Results for β = 3 show
empirical size, whereas β = 3.2 and β = 3.4 show empirical power.
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Model C

Test of parallelism. Linear-circular regression

Design 1: U(0, 1) Design 2: N(0.5, 0.1)

κ n1 n2 β = 3 β = 3.2 β = 3.4 β = 3 β = 3.2 β = 3.4

5 50 50 .044 .134 .514 .048 .060 .162

50 100 .052 .232 .718 .054 .098 .194

100 100 .066 .440 .844 .040 .100 .308

100 250 .052 .602 .924 .068 .156 .410

250 250 .056 .888 .934 .052 .206 .728

4 50 50 .048 .138 .412 .038 .058 .112

50 100 .046 .190 .620 .048 .070 .170

100 100 .042 .314 .806 .046 .106 .242

100 250 .044 .478 .932 .048 .106 .322

250 250 .068 .772 .906 .062 .170 .572

Table 4.48: Percentages of rejection (for α = .05) for the nonparametric parallelism test for linear
predictors and circular responses for Model C based on 500 simulations. Results for β = 3 show
empirical size, whereas β = 3.2 and β = 3.4 show empirical power.
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4.2.3 Circular-circular regression

To finalize this simulation study, the equality and parallelism tests for circular predictors and circular
covariates will be analyzed. As in the previous section, 500 replications of data will be drawn from
simulated models and the percentages of rejection for the nominal level α = .05 will be computed.
Again, for this number of replications it will be considered that a percentage is significantly larger
than α if it is .074 or higher. The test of equality will be applied to the next models:

A. Group 1: Φ = [2 sin(2Θ) + ε](mod 2π).
Group 2: Φ = [β sin(2Θ) + ε](mod 2π), β = 2, 2.5, 3.

B. Group 1: Φ = [cos(2Θ + 3 cos(2Θ)) + ε](mod 2π).
Group 2: Φ = [β[cos(2Θ + 3 cos(2Θ)) + ε](mod 2π), β = 1, 1.5, 1.75.

C. Group 1: Φ = [sin(3Θ)(Θ/2)1/2 + ε](mod 2π).
Group 2: Φ = [β sin(3Θ)(Θ/2)1/2 + ε](mod 2π), β = 1, 1.35, 1.5.

The sample size for each group is 50, 100 or 250. The errors ε follow a von Mises distribution with
mean direction zero and concentration κ, which variates in each model. As in the other sections, with
the first value of β the data is drawn under H0, whereas for the other two values the data is drawn
from different regression functions. For the test of parallelism the previous models are modified by
adding a shift of π/8 radians to the responses in each group. Thus, if the first value of β is used,
the regression curves are parallel. A random design is used for the predictor variable, although three
designs are used:

� Design 1: Both groups determined by a different sample from a circular uniform distribution.

� Design 2: Both groups determined by a different sample from a von Mises distribution, with
mean µ = π and concentration κ = 2.

� Design 3: Both groups determined by a different sample from a von Mises distribution, with
mean µ = 0 and concentration κ = 2.

Realizations of data drawn from models for the test of equality under the alternative hypothesis (first
value of β) can be seen in Figure 4.9. For the test of parallelism, representations on the torus of data
drawn under the null hypothesis are displayed in Figure 4.10, where the parallel regression curves are
shown.

Regarding the estimation of the regression functions, the cross-validation criterion was used to select
the smoothing parameter. In addition, for the test of parallelism the rule proposed in Section 3.3.2
was employed to estimate the shift parameter. For the bootstrap procedure 500 bootstrap replicates
were obtained. Now, a summary of the results is given.

Model A Table 4.49 contains the results of the test of equality applied to Model A. Under the null
hypothesis percentages of rejection are mostly close to α = .05, although one of the results (.074) is
significantly higher than α. Under H1, as the data size increases the percentages of rejection grow
closer to 1. In fact, for β = 3 results are close to 1 even for n1 = 50 and n2 = 50.

With respect to the test of parallelism, results are collected in Table 4.50. When the null hypothesis
hold, the corresponding percentages of rejection are close to the nominal level, indicating a correct
calibration of the test. If the data are drawn from the alternative hypothesis, again the power of the
test is high specially for large sample sizes.
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Model B Table 4.51 shows percentages of rejection for the test of equality applied to Model B.
Under the null hypothesis there are not percentages of rejection significantly different than α. On the
other hand, if the alternative hypothesis is true, as in the previous model percentages of rejection are
high, converging to 1 as n1 and n2 increase. In general, when H1 hold results obtained under Designs
2 and 3 are higher than the ones gotten under Design 1.

Table 4.52 presents percentages of rejection for the test of parallelism, when it is applied to Model
B. Although in one occasion a percentage of rejection under H0 turned out to be significantly larger
than .05 (7.4% of rejections) most percentages are close to α. Under the alternative hypothesis results
are very similar to the ones obtained for the test of equality: percentages grow closer to 1 as the sample
size increases, and the power of the test is slightly higher under the von Mises designs.

Model C Results obtained for the last model are displayed in Table 4.53 (test of equality) and
Table 4.54 (test of parallelism). Under H0 percentages of rejection in both tests are close to α except
for a couple of exceptions (7.4% of rejections in the test of equality, Design 1 and 7.8% of rejections
in the test of parallelism, Design 2). On the other hand, when the alternative hypothesis holds,
percentages of rejection are similar for the two tests, which are able to detect the different curves,
specially for large sample sizes.

As a general summary, the tests of equality and parallelism for circular-circular regression seem to
be well calibrated, although sometimes the percentages under the null are slightly higher than the
considered level. These vaguely high percentages under H0 may be corrected when using a higher
number of bootstrap replicates. In the present simulation study the number of replicates was held to
500 for computational reasons, but it is recommended to use a larger number in practice. It should be
noted that because of the bootstrap procedure used to calculate the distribution of the statistic, the test
are computationally slow, specially the parallelism case, since it also involves numerical optimization
methods.
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Model A

Test of equality. Circular-circular regression

Design 1: CU Design 2: vM(π, 2) Design 3: vM(0, 2)

κ n1 n2 β = 2 β = 2.5 β = 3 β = 2 β = 2.5 β = 3 β = 2 β = 2.5 β = 3

4 50 50 .060 .408 .966 .048 .508 .992 .070 .516 .988

50 100 .062 .498 .994 .040 .646 .998 .036 .640 .996

100 100 .052 .834 1 .054 .878 1 .040 .872 1

100 250 .064 .942 1 .048 .974 1 .052 .980 1

250 250 .064 1 1 .068 1 1 .058 1 1

2 50 50 .072 .144 .514 .062 .222 .708 .062 .204 .704

50 100 .048 .166 .656 .042 .208 .848 .048 .214 .836

100 100 .074 .326 .928 .048 .430 .970 .064 .436 .968

100 250 .044 .410 .984 .060 .532 .998 .060 .528 .998

250 250 .044 .878 1 .044 .808 1 .038 .816 1

Table 4.49: Percentages of rejection (for α = .05) for the nonparametric equality test for circular-
circular regression for Model A based on 500 simulations. Results for β = 2 show empirical size,
whereas β = 2.5 and β = 3 show empirical power.
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Model A

Test of parallelism. Circular-circular regression

Design 1: CU Design 2: vM(π, 2) Design 3: vM(0, 2)

κ n1 n2 β = 2 β = 2.5 β = 3 β = 2 β = 2.5 β = 3 β = 2 β = 2.5 β = 3

4 50 50 .058 .426 .956 .050 .570 .992 .048 .532 .986

50 100 .054 .524 .992 .040 .694 .998 .060 .692 .998

100 100 .052 .858 1 .062 .878 1 .038 .880 1

100 250 .066 .966 1 .050 .974 1 .050 .970 1

250 250 .054 1 1 .040 1 1 .066 1 1

2 50 50 .062 .142 .528 .056 .250 .738 .054 .254 .730

50 100 .070 .164 .650 .058 .262 .832 .056 .262 .844

100 100 .054 .320 .942 .046 .414 .976 .054 .410 .974

100 250 .058 .444 .992 .048 .520 .998 .046 .600 .998

250 250 .066 .884 1 .028 .864 1 .040 .868 1

Table 4.50: Percentages of rejection (for α = .05) for the nonparametric parallelism test for circular-
circular regression for Model A based on 500 simulations. Results for β = 2 show empirical size,
whereas β = 2.5 and β = 3 show empirical power.
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Model B

Test of equality. Circular-circular regression

Design 1: CU Design 2: vM(π, 2) Design 3: vM(0, 2)

κ n1 n2 β = 2 β = 1.75 β = 1.5 β = 2 β = 1.75 β = 1.5 β = 2 β = 1.75 β = 1.5

4 50 50 .066 .474 .852 .066 .578 .936 .072 .586 .942

50 100 .068 .530 .924 .070 .654 .974 .046 .662 .970

100 100 .072 .862 .996 .052 .916 1 .046 .912 1

100 250 .070 .948 1 .054 .978 1 .056 .982 1

250 250 .044 1 1 .058 1 1 .038 1 1

3 50 50 .060 .300 .622 .060 .400 .792 .066 .380 .800

50 100 .062 .380 .780 .044 .496 .872 .060 .496 .874

100 100 .058 .722 .990 .066 .788 .996 .068 .792 .996

100 250 .070 .810 1 .052 .878 1 .058 .862 1

250 250 .062 .994 1 .066 .998 1 .062 .998 1

Table 4.51: Percentages of rejection (for α = .05) for the nonparametric equality test for circular-
circular regression for Model B based on 500 simulations. Results for β = 2 show empirical size,
whereas β = 2.5 and β = 3 show empirical power.
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Model B

Test of parallelism. Circular-circular regression

Design 1: CU Design 2: vM(π, 2) Design 3: vM(0, 2)

κ n1 n2 β = 2 β = 1.75 β = 1.5 β = 2 β = 1.75 β = 1.5 β = 2 β = 1.75 β = 1.5

4 50 50 .044 .436 .814 .058 .514 .918 .062 .554 .868

50 100 .054 .508 .920 .060 .644 .960 .054 .642 .962

100 100 .062 .892 .998 .072 .894 .998 .058 .886 .996

100 250 .056 .974 1 .056 .974 1 .074 .980 1

250 250 .048 1 1 .048 1 1 .058 1 1

3 50 50 .070 .338 .656 .052 .366 .758 .054 .396 .744

50 100 .072 .376 .786 .054 .454 .862 .062 .446 .834

100 100 .072 .726 .976 .062 .730 .986 .050 .734 .976

100 250 .058 .834 .992 .052 .856 1 .072 .856 .996

250 250 .074 .994 1 .072 .998 1 .064 .992 1

Table 4.52: Percentages of rejection (for α = .05) for the nonparametric parallelism test for circular-
circular regression for Model B based on 500 simulations. Results for β = 2 show empirical size,
whereas β = 2.5 and β = 3 show empirical power.
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Model C

Test of equality. Circular-circular regression

Design 1: CU Design 2: vM(π, 2) Design 3: vM(0, 2)

κ n1 n2 β = 1 β = 1.5 β = 1.75 β = 1 β = 1.5 β = 1.75 β = 1 β = 1.5 β = 1.75

5 50 50 .070 .346 .692 .066 .520 .866 .056 .508 .862

50 100 .068 .492 .840 .052 .624 .942 .040 .612 .938

100 100 .074 .782 .990 .052 .868 .996 .042 .884 1

100 250 .048 .944 1 .046 .944 1 .050 .964 1

250 250 .058 1 1 .052 .996 1 .050 1 1

3 50 50 .060 .214 .418 .070 .264 .524 .040 .268 .560

50 100 .052 .220 .472 .046 .306 .632 .064 .326 .654

100 100 .066 .494 .838 .052 .558 .916 .040 .524 .908

100 250 .064 .650 .938 .054 .702 .964 .060 .712 .960

250 250 .042 .960 1 .070 .964 1 .054 .942 1

Table 4.53: Percentages of rejection (for α = .05) for the nonparametric equality test for circular-
circular regression for Model C based on 500 simulations. Results for β = 2 show empirical size,
whereas β = 2.5 and β = 3 show empirical power.
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Model C

Test of parallelism. Circular-circular regression

Design 1: CU Design 2: vM(π, 2) Design 3: vM(0, 2)

κ n1 n2 β = 1 β = 1.5 β = 1.75 β = 1 β = 1.5 β = 1.75 β = 1 β = 1.5 β = 1.75

5 50 50 .070 .412 .728 .054 .546 .856 .044 .490 .804

50 100 .058 .470 .854 .054 .654 .948 .054 .608 .914

100 100 .064 .814 .992 .038 .894 .998 .068 .846 .994

100 250 .054 .926 .998 .070 .964 1 .050 .948 .998

250 250 .056 1 1 .046 1 1 .030 1 1

3 50 50 .066 .222 .456 .068 .362 .616 .048 .228 .454

50 100 .060 .220 .470 .078 .384 .694 .048 .270 .586

100 100 .052 .430 .830 .060 .546 .910 .056 .522 .870

100 250 .064 .636 .958 .052 .710 .970 .048 .626 .952

250 250 .052 .974 1 .066 .952 1 .040 .944 1

Table 4.54: Percentages of rejection (for α = .05) for the nonparametric parallelism test for circular-
circular regression for Model C based on 500 simulations. Results for β = 2 show empirical size,
whereas β = 2.5 and β = 3 show empirical power.
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

(g) Model A. Design 3 (h) Model B. Design 3 (i) Model C. Design 3

Figure 4.9: Representations in the torus of simulated data from models A, B and C of the equality
test under the alternative hypothesis (β = 2.5 in A, β = 1.75 in B and β = 1.5 in C) under Design 1
(top row), Design 2 (middle row) and Design 3 (bottom row), along with the true regression curves
for each group. Number of observations is 250 for both groups and the value of κ is 2 in Model A and
3 in Models B and C. Circular units are in degrees.
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(a) Model A. Design 1 (b) Model B. Design 1 (c) Model C. Design 1

(d) Model A. Design 2 (e) Model B. Design 2 (f) Model C. Design 2

(g) Model A. Design 3 (h) Model B. Design 3 (i) Model C. Design 3

Figure 4.10: Representations in the torus of simulated data from models A, B and C of the parallelism
test under the null hypothesis. Data drawn under Design 1 (top row), Design 2 (middle row) and
Design 3 (bottom row), along with the true regression curves for each group. Number of observations
is 250 for both groups and the value of κ is 2 in Model A and 3 in Models B and C. Circular units are
in degrees.
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Chapter 5

Application to real data

The aim of this chapter is to apply the tests proposed in Chapter 3 to real data, for which two
different datasets will be used. The tests involving circular covariates and linear responses will be
applied to a dataset which belongs to the automotive industry field, and can be found in Anderson-
Cook (1999). On contrast, the dataset used to illustrate the tests for circular responses belongs to
the animal orientation field, and it was provided by Professor Felicita Scapini from the Department of
Biology of the University of Florence.

5.1 Flywheel data

In this section, the flywheel data given in Anderson-Cook (1999) will be analyzed with the nonpara-
metric tests presented in Chapter 3. This dataset gives two measures on flywheels (a mechanical device
used in the automotive industry), where one of them is circular, and it is used to predict the second
measure, which is linear. In addition, the data belong to four different groups.

Figure 5.1: Transmission system of a car, including a flywheel on the left, from Wikimedia Commons
(2013).
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A flywheel is a device used in different machines designed to regulate an engine’s rotation. It is,
essentially, a heavy wheel attached to a rotating shaft (see Figure 5.1) and it is used to increase the
machine’s momentum, in order to produce stability and to store rotational energy in an efficient way. In
vehicles production it is necessary to balance flywheels to ensure that the rotation transmits minimal
vibration, since such vibration can lead to the malfunctioning of the system. When correcting the
balance, the response obtained is cylindrical: an angular component measuring the angle of imbalance
and a linear component evaluating the magnitude of the correction required to balance the flywheel.
Modeling the relationship between the angle and the magnitude of correction can be helpful for a
better understanding of the process, leading to the minimization of the costs by creating more efficient
designs. In addition, a metallic molding is used in the production process. The metal’s purity and
density can influence both the angle and the correction magnitude.

The data given in Anderson-Cook (1999) contains measurements of the angles of imbalance of 60
flywheels, as well as the measurements of the corrections required (in inch-ounces). Four different
kinds of metals were employed, with 15 flywheels corresponding to each type of metal. The goal of this
chapter is twofold: first, to analyze the dependence of the two variables through a significance test.
The second objective is to test whether the regression curves for the four types of metal are the same
or, in case of concluding that they are different, to test if they are parallel. However, one must note
that the data size in this example is small, since when obtaining the regression function estimators in
each group only 15 observations are used.

(a) (b)

Figure 5.2: Scatter plots of the angle of imbalance (in radians) against the measurements of correction
(in inch-ounces). (a) Regression curve estimated parametrically with all the data. (b) Regression
curves estimated parametrically for each group.

Anderson-Cook (1999) focuses on the detection of different regression functions, estimating the
curves parametrically, using model (2.5). Figure 5.2 presents two scatter plots of the data with the
parametric estimations of the regression curves. The left image shows the regression curve obtained
using all the data while the image in the right displays four parametric estimations, one for each
metal. In order to test if the regression functions are the same for all the groups, the approach taken
by Anderson-Cook (1999) is the one described in Section 2.4.2. The author uses the test for the
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interaction model, obtaining a p-value of .012, smaller than .05, and concluding, for this significance
level, that a single function is inadequate to describe the behavior of the data. Afterwards, the author
uses the test of parallelism, obtaining a large p-value, .32, and coming up to the conclusion of no
evidence against parallel regression functions. Therefore, since the equality hypothesis was rejected
and the parallelism hypothesis was not, the final conclusion is that the four curves are parallel.

(a) (b)

Figure 5.3: Scatter plots of the angle of imbalance (in radians) against the measurements of correction
(in inch-ounces) for the four groups. The continuous line is the nonparametrically estimated regression
curve for all the data. The dashed line represents the mean of the responses. (a) Linear representation.
(b) Circular representation.

There is no justification of a particular parametric model in the original paper. Thus, the flywheel
example will be analyzed with nonparametric methods, using the proposal described in Section 3.2.1
to test the significance of the predictor variable, and the proposal in Section 3.3.1 to test the existence
of different regression functions according to the groups.

A single nonparametric model can be constructed, without considering the different groups, as
in Figure 5.3 (continuous line), where the regression function was estimated with the circular-linear
nonparametric estimator (see Section 3.1.1) using all the data. The dashed line represents the mean
of the responses, corresponding to the estimated model under the hypotheses of no effect of the
covariate. The nonparametric estimation of the regression function changes for the different values
of the predictor variable, but it could be possible that the responses did not depend on the angle of
imbalance and that the features of the curve were due to sample noise. To ascertain this, in the first
place the CircSiZer map was constructed, obtaining the image shown in Figure 5.4. The map shows
that the regression function is significantly increasing in the fourth quadrant for many values of the
concentration parameter, and it is significantly decreasing in the second quadrant for most values of
κ.

Given the CircSiZer map, it seems clear that the predictor variable affects the response. Even so,
the no-effect test for circular predictors (presented in Section 3.2.1) is applied to the data. A range of
smoothing parameters between 0 and 15 was considered, obtaining a p-value for each bandwidth. The
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Figure 5.4: CircSiZer map for circular-linear regression for the flywheel data.

results are displayed in Figure 5.5. For all the smoothing parameters, the obtained critical value lie
below the nominal level α = .05, therefore the null hypothesis of no effect of the predictor is rejected
for all the considered parameters.

Figure 5.5: Trace of the no effect test applied to the flywheel data. Dotted vertical line representing
the bandwidth selected by cross-validation. Dotted-dashed vertical line representing 1

8cv.
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(a) (b)

Figure 5.6: Scatter plots of the angle of imbalance (in radians) against the measurements of correction
(in inch-ounces) for each of the groups with the nonparametric estimators for circular-linear regression.
(a) Smoothing parameters selected by cross-validation in each group. (b) Same smoothing parameter
is used in all groups.

However, since the metal used in the molding is different, it could be possible to have different
regression curves for the groups. Figure 5.6 shows the data with different colors for each of the groups,
with their corresponding estimated regression curves. In the left panel the smoothing parameter was
selected by cross-validation in each of the groups. However, the equality and parallelism tests will be
applied to the data using only one smoothing parameter for all the groups, in order to avoid the bias.
The right panel of the figure shows the estimation of the regression functions in each group with the
concentration parameter selected by applying cross-validation to the whole dataset.

The test of equality is first applied to the data, to test if all the regression curves are the same.
The value of the statistic obtained is 20.96, while the p-value is .0263, lower than the nominal level
α = .05. Thus, for that significance level, the hypothesis of equal regression curves is rejected. This
result is obtained using the smoothing parameter selected by cross-validation for all the data and the
variance estimator (3.8). For a better application of the test, a sequence of concentration values is
used. Figure 5.7 shows the trace of the test for the sequence of smoothing parameters. It is shown
that the equality assumption is not rejected for concentration values approximately larger than 5,
although given the sample size, large smoothing parameters are quite unrealistic in practice. Then, it
can be concluded that there is evidence for saying that the four regression curves are not equal for a
significance level of .05.



148 CHAPTER 5. APPLICATION TO REAL DATA

Figure 5.7: Trace of the equality test applied to the flywheel data. Dotted vertical line representing
the bandwidth selected by cross-validation using all the data. Horizontal dashed line representing the
nominal level α = .05.

Figure 5.8: Trace of the parallelism test applied to the flywheel data. Dotted vertical line representing
the bandwidth selected by cross-validation using all the data.

Once the equality hypothesis is rejected, it could be checked if the regression curves are parallel.
The parallelism test is applied with the smoothing parameter selected by cross-validation, and the
obtained value for the test statistic is 5.44, while the p-value is 0.4695, much greater than α = .05.
Thus, there is no evidence for rejecting the null hypothesis of parallel regression curves. Again, to
avoid difficulties derived from the selection of the smoothing parameter, the test is applied using a
range of smoothing values. The trace of the test is displayed in Figure 5.8, which shows that the null
hypothesis is not rejected for α = .05 for any of the smoothing parameters considered (κ lying between
.05 and 15).
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5.2 Sandhoppers data

Biologists and zoologists have focused their research on analyzing the sources of variation in ani-
mal orientation under natural conditions. For some animals it is easy to observe their behavior and
movements, but for some others the process requires more effort. A particular case is the study of
sandhoppers (talitridae family) which are amphipod crustaceans (see Figure 5.9) known for their typ-
ical “hopping” movement, from which their common name is derived. The behavior of sandhoppers
has been studied for years. They usually remain burrowed in the wet sand during the day and go out
to the surface from sunset to sunrise. When they are displaced during the day due to the drying up of
the sand layers, they return to the wet sand near the water. Several authors have linked the direction
of sandhoppers movements to different factors, such as the slope of the beach or landscape features.
Pardi and Ercolini (1986) stated that in Mediterranean shores the movement on sandhoppers relies on
sun orientation, while this does not happen in Atlantic shores. Differences in sandhoppers orientation
also arise between those living on tidal and non-tidal beaches, because of the risk of being swept away.

Figure 5.9: Sandhopper of the species Talitrus saltator, from Wikimedia Commons (2017).

In this section, data containing orientation directions of sandhoppers will be analyzed. The dataset
was first studied in Scapini et al. (2002). It contains observations involving two sympatric sandhopper
species (Talitrus saltator and Talorchestia brito). The study was conducted in an exposed and non-tidal
beach in Tunisia, the Zouara beach. The main goal of the experiment was to analyze the direction of
movement given different conditions. In order to record the data, the experimenters used two different
circular arenas with 72 cross pit-fall traps each, placed at the circumference. The animals were released
in the arenas, and once they made an orientation choice they were caught in one of the traps, which
were separated from each other by an angle of 5°. One of the arenas allowed the view of both the
sky and the landscape, while in the other the landscape was screened off, so that only the sky was
visible. In addition to the direction of movement, other variables were recorded, such as sun azimuth,
the species of sandhopper, the type of arena, the sex of the animal and several climatic variables (air
temperature, air relative humidity and atmospheric preasure). The experiments were conducted in
two different seasons (April and October).

With the objective of studying the variation of directions taken by the sandhoppers in the presence
of several factors, Scapini et al. (2002) use the Projected Multivariate Linear Model (PMLM) proposed
by Presnell et al. (1998) (see Section 2.3.2). However, when using this model the authors consider all
the predictor variables as discrete variables, factorizing the continuous ones such as the sun azimuth
or the climatic variables.

Marchetti et al. (2003) also analyzed this dataset, focusing only on the data obtained for the
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sandhoppers of the species Talitrus saltator. In this case the authors consider the variable sun azimuth
as continuous, and fit regression models to explain the movement direction of the animals. As an
exploratory tool, they fit a nonparametric regression model with the movement directions as a response
variable and the sun azimuth as a predictor variable, and try to graphically asses the differences between
the screened and the unscreened groups. However, the regression smoothers used are meant for both
linear responses and linear predictors. The authors also apply the PMLM as in Scapini et al. (2002),
but this time considering the sun azimuth as a continuous linear variable.

The objective in this section is to apply the nonparametric significance tests proposed in Sec-
tion 3.2.2 and the ANCOVA tests proposed in Section 3.3.2 to the sandhoppers data. As in Marchetti
et al. (2003), the animals considered will be those of the species Talitrus saltator, but only the data
recorded on the October season will be employed. An analogous study could be conducted with the
data recorded in the spring season, but it will not be shown here because the range of the variables
which will be used as predictors is very small in this season, and the study lacks of interest. Two
different regression models will be used: the first one treating the angle of direction as the dependent
variable and the temperature as the predictor (therefore leading to a linear-circular regression), while
the second model considers the angle of direction as a function of the sun azimuth, thus obtaining a
circular-circular regression model. For the ANCOVA tests, the groups considered will be the sand-
hoppers placed in a screened arena and the ones situated in unscreened ones. The total number of
observations is 278, with 146 belonging to the unscreened group and 132 in the screened group.

To begin with, the relationship between the angle of direction of the sandhoppers and the temper-
ature will be analyzed. Figure 5.10a shows a representation on the cylinder of the angle of direction
against temperature, with the estimated regression curve obtained with the cross-validation method
for selecting the bandwidth. The first goal here is to ascertain if the temperature actually has an effect
on the responses, for which the nonparametric significance test for linear-circular regression is used.
The significance test introduced in Section 3.2.2 was applied using 1000 bootstrap replicates and over
a sequence of smoothing parameters between .05 and 3. The resultant p-value was zero in all cases,
concluding that there are evidences to reject the null hypothesis of no effect of the temperature over
the direction of movement.

(a) (b)

Figure 5.10: Representations on the cylinder of the direction of movement against temperature with
the estimated regression curve with the smoothing parameter selected by cross-validation. (a) Without
distinguishing by group. (b) Distinguishing by group: unscreened group in blue and screened group
in red.
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Once it is known that the direction of movement is actually influenced by the temperature, the
question relies on whether the regression functions for the screened and the unscreened animals are
the same. Figure 5.10b shows representations of the data distinguishing between the screened and the
unscreened groups, with the estimated regression functions. The smoothing parameter was selected
by cross-validation in each group.

The plots suggest that the behavior of the screened animals was quite different from the behavior
of the unscreened sandhoppers. This issue can be assessed by using the nonparametric test of equality
for linear-circular regression. The test was applied to the data with the smoothing parameter selected
by cross-validation and using 1000 bootstrap replicates, obtaining a critical value of .001. Then,
there are evidences for a significance value α = .05 to conclude that the two regression curves are
different. Because the test depends on the smoothing parameter, its significance trace over a sequence
of bandwidths is displayed in Figure 5.11. The corresponding p-values were much smaller than the
significance level .05 in all cases, supporting the previous conclusion.

The test of parallelism is also applied to the data, obtaining a p-value of 0 when using the smoothing
parameter selected by cross-validation and 1000 bootstrap replicates. Figure 5.12 shows the trace of
the parallelism test, with all the critical values below .05 and rejecting, for this significance level, that
the two curves are parallel, in favor of different regression curves for each group.

Figure 5.11: Trace of the equality test for linear-circular regression applied to the sandhoppers data.
Dotted vertical line representing the bandwidth selected by cross-validation using all the data. Hori-
zontal dashed line representing the nominal level α = .05.

Now the regression relationship between the direction of movement and the sun azimuth will be
studied. As mentioned before, some studies have linked the direction of movement of sandhoppers
in Mediterranean beaches to the position of the sun. Figure 5.13a displays a representation of the
direction of movement against the sun azimuth on the torus, with the estimation of the regression
function.

Now the objective lies on determining if the sun azimuth affects the direction of the animals. For
such purpose it is necessary to consider several concentration parameters in order to apply the no-effect
test for circular-circular regression. The significance trace of the test (using 1000 bootstrap replicates)
is displayed in Figure 5.14, which shows that the p-values are much lower than .05 for all the values of
the smoothing parameter considered. Therefore, for that significance level it is rejected that the sun
azimuth has no effect on the direction of movement of the sandhoppers.

The next objective consists on studying if the relationship between the direction of movement and
the sun azimuth is different for the two groups of sandhoppers. The estimated regression curves for
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Figure 5.12: Trace of the parallelism test for linear-circular regression applied to the sandhoppers
data. Dotted vertical line representing the bandwidth selected by cross-validation using all the data.
Horizontal dashed line representing the nominal level α = .05.

each group are represented in Figure 5.13b, where the smoothing parameter was selected by applying
the cross-validation method in each group. The obtained smoothing parameter in the screened group
turned out to be quite large, resulting in a undersmoothed estimator of the regression function. How-
ever, recall that the test of equality is applied using the same concentration parameter to the global
estimator and to the group estimators, in order to cancel out the bias. When this parameter is the one
obtained by cross-validation (for all the data), the p-value of test is .011, lower than the significance
level α = .05. In order to avoid wrong conclusions because of the selection of the smoothing parameter,
the test is also applied using different values for the concentration. Figure 5.15 displays the trace of
the test, showing that the critical value lies below .05 for all the considered concentration parameters.
Consequently, for that value of α, there are evidences to reject the hypothesis of equal regression curves
for the sandhoppers placed in the unscreened and screened arenas.

Lastly, one can wonder if the two groups of sandhoppers change their movements in an equal
manner depending on the sun azimuth, but one group just shifts their direction in an specific angle
because of the presence or absence of the screen in the arena. The test of parallelism will be applied in
this case, using 1000 bootstrap replicates. If the smoothing parameter selected by cross-validation is
employed, the corresponding critical value for the test is .011, lower than α = .05. Figure 5.16 present
the significance trace of the test. The p-value lies below α for concentration values approximately larger
than 20, while for lower concentrations the critical value is larger than the nominal level. However,
taking into account the sample size, it is expected that the optimal concentration parameter is large,
so the parameters for which the p-value is larger than α are quite unrealistic in practice. It can be
concluded, then, that there are evidences to reject the parallelism of the two regression function.

To conclude, it has been shown that the effect of both the temperature and the sun azimuth on the
direction of movement of the sandhoppers is significant. In addition, it has been concluded that the
relationship between the angle of direction and the temperature and the angle of direction and the sun
azimuth are different for the screened and the unscreened groups of sandhoppers.
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(a) (b)

Figure 5.13: Representations on the torus of the direction of movement against sun azimuth with the
estimated regression curve and the smoothing parameter selected by cross-validation. (a) Without
distinguishing by group. (b) Distinguishing by group: unscreened data in blue and screened data in
red.

Figure 5.14: Trace of the significance test for circular-circular regression applied to the sandhoppers
data. Dotted vertical line representing the bandwidth selected by cross-validation.
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Figure 5.15: Trace of the equality test for circular-circular regression applied to the sandhoppers
data. Dotted vertical line representing the bandwidth selected by cross-validation using all the data.
Horizontal dashed line representing the nominal level α = .05.

Figure 5.16: Trace of the parallelism test for circular-circular regression applied to the sandhoppers
data. Dotted vertical line representing the bandwidth selected by cross-validation using all the data.
Horizontal dashed line representing the nominal level α = .05.



Chapter 6

Conclusions and discussion

Two goals have been accomplished in this MSc Thesis. In the first place, new nonparametric signifi-
cance tests for regression involving circular variables have been proposed. The three tests have shown a
high dependence on the smoothing parameter and simulations showed that with an adequate selection
of the bandwidth, the tests are well calibrated. However, the tests must be applied in practice by
constructing the significance trace of the tests. The second and main accomplished objective present
in this manuscript is the construction of new nonparametric analysis of covariance models for circular
regression. In the circular-linear context, the proposed tools for testing equality and parallelism were
found to be well calibrated in all the scenarios considered, while their counterparts for linear data
were found to be anticonservative in some settings. As for the power of the tests, it was ascertained
that the new circular proposals were able to compete with the linear tests, even outperforming them
in some cases. At the same time, in the regression scenarios where the response variable is circular
(linear-circular and circular-circular regression) the novel methods proposed are the only tools avail-
able to correctly test equality and parallelism with this type of data, since methods for real-valued
data provide a deficient calibration in these cases.

Regarding some possible extensions of the proposed methods, the ANCOVA models could be adapted
to the multivariate case. Recently, the nonparametric regression estimators for circular data have been
extended to the multivariate context, where the response variable depends on two or more predictors.
Such estimators could be used to construct nonparametric ANCOVA models for circular data with two
covariates. Moreover, the problem of considering more than one factor variable is a possible extension
that could be studied in the future. In addition, there might be cases where at the time of representing
the data, the existence of different groups seems clear, but where the factor variables are not known.
In such scenarios, modal regression is a useful alternative. Therefore, a future line of work could be
the study of modal regression models for circular variables.

To conclude, the computational developments carried out in this project must be highlighted. The
different tests proposed in this work (no-effect and ANCOVA) have been programmed in the statistical
software R. The new tools are to be included in the library NPCirc (Oliveira et al., 2014b), which
contains nonparametric methods for density and regression estimation involving circular variables.
Again, the Supercomputing Center of Galicia (CESGA) must be recognized for supplying the resources
necessary to perform most of the simulations included in this project.
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