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baseada en cópulas. Nunca tan motivado estiven como aquel d́ıa para seguir unha conferencia, posto
que tiña que escribir a proposta de TFM para entregar catro d́ıas despois e pensei que esa conferencia
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Summary

Resumo en galego

A diabetes é unha enfermidade crónica caracteŕızada pola presenza dunha concentración elevada de
glicosa no sangue. Esta enfermidade ten un gran número de complicacións derivadas dun diagnóstico
tard́ıo ou mal control da glicemia (glicosa en sangue).

A determinación da hemoglobina glicada (HbA1c) considerase a proba “gold standard” no control
da diabetes. Sen embargo os seus niveis poden variar considerablemente, incluso entre individuos
que presenten os mesmos niveis de glicemia. Ademáis da hemoglobina, outras protéınas presentes no
sangue poden ser glicadas e usadas como marcadores da glicemia, sendo a albumina glicada a principal
alternativa a HbA1c. Sen emabargo, as discorndancias entre os niveis de ambos marcadores son comúns
e os investigadores mdicos están interesados en coñecer cal é a causa.

Para investigar de forma conxunta os factores que poidan influir nas discordancias atopadas entre
os niveis de ambas medidas de control glicémico, proponse o uso de modelos flexibles para respostas
bivariadas baseados en funcións cópula (CGAMLSS) (Marra e Radice, 2017). Estes modelos extenden
o uso do GAMLSS (Rigby e Stasinopoulos, 2005), a respostas bivariadas, modelizando de forma flexible
todos os parámetros que definen unha resposta bivariada construida por medio dunha función cópula.

Neste traballo de fin de mestrado o uso desta metodolox́ıa deu lugar a resultados non descritos
previamente do efecto de distintas variables sobre a asociación entre os niveis de ambas protéınas
glicadas.

English abstract

Diabetes is a serious chronic disease in which the blood glucose become chronically elevated, a delayed
diagnosis or poor glycemic control lead in the long term, to serious complications.

Glycated haemoglobin (HbA1c) is considered the gold standard test in the glycemic control. Never-
theless, it has been seen that HbA1c levels can vary considerably, even among individuals with similar
mean blood glucose levels. In addition to HbA1c, other circulating proteins can also become glycated
and can therefore also be used as a marker of blood sugar levels, being the glycated albumin (GA) the
main alternative to he HbA1c. However, discordances between the levels of HbA1c and GA are often
encountered and clinicians are aware of the conditions that might explain them.

To simultaneously investigate factors that may influence on the discordance between measures
of glycemic control, the bivariate additive conditional copula regression models (CGAMLSS) are pro-
posed. This novel approach extends the use of GAMLSS (Rigby and Stasinopoulos, 2005) to situations
in which each parameter of a bivariate response built using a copula function are modeled using additive
predictors in a flexible way.

In this master thesis, the use of these models have shown hitherto unreported effects, in the asso-
ciation between both glycemic markers.
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Chapter 1

Introduction

Regression modeling strategies have been widely applied in biomedical studies since they enable the
identification and characterization of the relationship between a variable of interest y and a covariate x
or a set of k covariates x1, . . . , xk identifying statistical associations between them that could be useful
for a better understanding of different disase mechanisms. However, regression models are generally
based on some assumptions that must be true to get valid conclusions from them, and which rarely
holds in real data applications.

In order to get more flexible approaches to apply in real problems, different models have been
proposed overcoming the less realistic assumptions of the Linear Models, where a Gaussian distribution
was assumed for the response, with a constant variance and linear relationship between the predictor
and the response variable. The development of the Generalized Linear Models (GLM; McCullagh
and Nelder, 1989) relaxed the distributional assumption from gaussianity to any distribution from the
exponential family and the proposal of the Generalized Additive Models (GAM; Hastie and Tibshirani,
1990; Wood, 2006) allowed to model the relation between covariates and the response variable in a
non-linear way using additive predictors. However, the exponential distributional assumption and
variance of the response independent from the covariates were maintained until the development of
the Generalized Additive Models for Location, Scale and Shape (GAMLSS).

The GAMLSS regression models were proposed by Rigby and Stasinopoulos (2005) relaxing the
exponential family assumption for the response variable by a very general distribution family and
modelling each parameter of the distribution, not just the mean, in function to the explanatory variables
in a non-linear way. GAMLSS let us model, virtually any variable found in biomedical studies, including
quite skewed ones. Moreover, the modelization of the entire distribution of the response variable in
function to a set of explanatory variables relaxed the assumption of fixed variance in the response that
is quite useful in the clinical applications, where is common to find response variables whose variability
changes with other covariates like age or gender.

Therefore most of the biomedical problems can be studied using the univariate regression framework
introduced above, modeling the whole distribution of the response conditioned to a set of covariates
in a non-linear way and with no restriction in the distribution of the response variable. However, in
some situations is necessary study two responses jointly, regressing a bivariate response on a set of
covariates in a non-linear way, in order to assess which factors modify the relationship between the
responses, in addition to the changes in mean and variability. These can be achieved extending the
flexible GAMLSS models to bivariate responses, using copula functions (Sklar, 1953). Such copula
functions enable the construction of bivariate response from two given and arbitrary margins from
the GAMLSS class. Furthermore, the parametric copulas are defined by one parameter measuring
the strength of dependence between the marginals and that can be modeled as a function to a set
of covariates as well. Also, the copula allows us to consider non symmetric structures of dependence
between the responses.

1



2 CHAPTER 1. INTRODUCTION

From the different regression approaches for bivariate responses based on the use of copula functions
and considering non-exponential responses in the margins, proposed in the literature, either in the
bayesian (Klein and Kneib, 2016) or frequentist framework (Vatter and Cahez-Demoulin 2015; Yee
2015) we have chosen the recent proposal Bivariate copula additive models for location, scale and
shape (CGAMLSS) (Marra and Radice, 2017a). In this type of models, the covariates effect on a
bivariate response, built using a copula function, are estimated at the same time using a trust region
algorithm and with integrated automatic multiple smoothing parameter selection for the smooth terms,
overcoming the limitations of the models proposed in Vatter and Chaved-Demoulin (2015) based on
a less efficient two-step estimation, and Yee (2015) models without an automatic way of chose the
smoothing parameter. Furthermore, the only alternative that presents a simultaneous estimation and
a automatic way of chosing the smoothing parameter for the smooth terms, is the Bayesian model
proposed by Klein and Kneib (2016). However, these models present a high computational cost that
is a limitation in the model building process.

Thereby the CGAMLSS approach is currently the most flexible framework to model bivariate re-
sponses, with more marginal distributions and copulas available, presenting a software implementation
in the R package GJRM incorporating the utilities and syntax of the well known mgcv package, suppos-
ing a huge methodological advance, necessary to fill a gap in the study of some of the open problems
in biomedicine. In the case of this master thesis the Clinical Epidemiological Unit from the Clinical
Hospital of Santiago de Compostela, required the CGAMLSS approach to solve a problem derived from
the AEGIS project (Clinical Trials: NCT01796184) to study which factors modify the concordances
between the levels of two glycated proteins, the glycated hemoglobin (HbA1c) and glycated albumin
(GA), used to monitor the Diabetes mellitus disease.

Diabetes mellitus is a disease characterized by the disability of human body to regulate blood
glucose concentration, with a global incidence of 422 million four times more than in 1980 (WHO,
2016). An early diagnosis and strict glycemic control is essential to prevent diabetes complications
such as cardiovascular disease, nephropathy or retinopathy. This control is based on the fasting levels
of glucose and in the concentration of different glycated proteins, being the most used the HbA1c and
the GA. However, discordances between the HbA1c and GA determinations are common in clinical
practice and remain unexplained, given the number of HbA1c test performed in the world, studying
which factors modify the association between the levels of both proteins will improve the diagnosis
and control of diabetic patients.

To analyze which factors are involved in the discordances encountered between the levels of HbA1c
and GA we propose the use of the CGAMLSS regression models, using the data collected in the AEGIS
project. This is a cross-sectional population based study conducted between the years 2012 to 2015 in
order to study the differential glycation of proteins. As pointed above the CGAMLSS approach will let
us model the levels, variability and discordances between both glycemic markers without a restrictive
distributional assumption for the responses and with the possibility of consider non-standard structures
of dependence between them.

This master thesis is structured as follows: in Chapter 2 the medical problem that has motivated
studying jointly the concentration of two glycemic markers is presented. In the Chapter 3 the GAMLSS
regression is introduced to better understand their bivariate extension and will be applied to study the
main cofounders that modify the glycation of proteins. In Chapter 4, copula functions are presented
with the main parametric families used in CGAMLSS models. In Chapter 5, the CGAMLSS models
are introduced. Chapter 6, presents a simulation study, in order to analyze the general performance of
the CGAMLSS models. Chapter 7 show application of the CGAMLSS regression models to a medical
problem. Finally the master thesis ends with a final discussion.



Chapter 2

A Case Study in Diabetes Research

Diabetes is a metabolic disease that occurs either when the pancreas does not produce enough insulin
(a hormone that regulates blood glucose concentration), or when the body cannot effectively use
the insulin it produces (WHO, 2016), resulting in an abnormal blood glucose control that becomes
chronically elevated. Raised blood glucose, may, over time, lead to serious damage to the heart, blood
vessels, eyes, kidneys and nerves. In order to avoid such complications is necessary an early diagnose
and a frequent evaluation of the glycemic levels.

This evaluation of the glycemic status take advantage of a chemical reaction, known as glycation,
that is a spontaneous attachment of a sugar molecule to proteins. In the case of the blood circulating
proteins, are glycated according to the blood glucose levels deserve as circulating glycemic markers
that offer us a summary measure of the mean blood sugar levels to which the blood proteins were
exposed during their circulating life-span, that can be minutes, days or even months.

From the different circulating glycated proteins the most studied and used in the clinical practice
are the glycated hemoglobin (HbA1c) and glycated albumin (GA), however discordances between their
estimations in the assessment of glycemia is often encountered and clinicians are aware of the conditions
that might explain it.

In this Chapter the main ideas of the glucose homeostasis are presented. Then the use of glycated
proteins as glycemic markers is explained. Finally an outline of the AEGIS project is given.

2.1 Glucose homeostasis and diabetes

Glucose is an essential metabolic substrate of all mammalian cells. D-glucose is the major carbohy-
drate presented to the cell for energy production, supplying its catabolic and anabolic requeriments
(Szablewski, 2011) and for some organs like the brain is the obligate metabolic fuel.

In fact, the brain is dependent on a continuous supply of glucose from blood plasma, because of
the low circulating concentrations of other possible alternative substrates (e.g., ketone bodies) and
due to transport limitations across the blood-brain barriers (e.g., free fatty acids) which separate the
circulating blood from the brain extracellular fluid in the central nervous system. Moreover, the brain
cannot synthesize glucose or store it as glycogen more than for a few minutes supply (Shrayyef and
Gerich, 2010). A low concentration of glucose in plasma (hipoglycemia) impairs cerebral function and
prolonged hypoglycemia causes convulsions, permanent brain damage and even death.

On the other hand, even midly elevated plasma glucose concentrations, can produce celular damages
in the blood vessels and multiple organs because of the toxic effects of glucose, in the short term due
to its osmotic activity and in the long term to its binding to different blood proteins (Serrano-Rios and
Gutierrez-Fuentes, 2009) and contribution to the oxidative stress related to cancer disease. Thus the

3



4 CHAPTER 2. A CASE STUDY IN DIABETES RESEARCH

maintainance of normal plasma glucose levels, glucose homeostasis, is crucial to mantain the normal
function of metabolism and physiology.

Plasma glucose levels are determined by the relative rates at which glucose enters and leaves the
bloodstream (Shrayyef and Gerich, 2010) the mantaining of relatively stable plasma glucose levels
requires precise matching of glucose utilization by the tissues, the glucose derived from the diet and in
a minor proportion the endogenous glucose produced in the liver and kidneys through Glucongenolysis
and Gluconeogenesis (Giugliano et al, 2008).

This regulation of the glycemia is conducted mainly by two hormones produced in the pancreas,
the insulin and glucagon. The pancreas is a secretory organ located behind the stomach within the
left upper abdominal region. Most part of this organ consists of exocrine cells that secrete different
digestive enzimes in the duodenum and only 1.2% of the entire organ presents an endocrine action,
releasing hormones into the blood stream. This endocrine cells are clustered together assembling
the so-called islets of Langerhans, which are small, island-like structures that contain five different cell
types releasing several hormones from the endocrine system, but the main ones are glucagon-producing
α−cells and insulin-producing β−cells.

Figure 2.1: Regulation of the blood glucose concentration (Roder et al, 2016)

The pancreatic glycemic control is based on the action insulin and glucagon that work in an
antagonic way. As it is shown in Figure 2.1 during sleep or in between meals, when blood glucose levels
are low, glucagon is released from α−cells to promote hepatic glycogenolysis. In addition, glucagon
leads hepatic and renal gluconeogenesis to increase endogenous blood glucose levels during prolonged
fasting. In contrast, insulin secretion from β−cells is stimulated by elevated exogenous glucose levels,
such as those occurring after a meal. After docking to its receptor on muscle and adipose tissue, insulin
enables the uptake of glucose into these tissues and hence, reduces blood glucose levels by removing
the exogenous glucose from the blood stream. Furthermore, insulin promotes glycogenesis, lipogenesis
and the incorporation of amino acids into proteins; thus, it is an anabolic hormone, in contrast to the
catabolic activity of glucagon (Roder et al, 2016).

The well known Diabetes mellitus disease is a malfunction in the glucose homeostasis caused by
a failure in the endocrine action of the insulin, being the intake of sugars by the tissues reduce and
hence the glucose remains in the circulating blood. This failure in the endocrine action of the insuline,
can be caused mainly by two mechanism that define two sub-types of the disease:



2.2. GLYCATED PROTEINS AND GLYCEMIC CONTROL 5

• Type 1: the less common diabetes, caused by the destruction of the β−cells within the islets of
Lagerhans as a result of autoinmune response with multiple genetic predispositions and is also
related to enviromental factors that are still poorly defined.

• Type 2: most common common and with an increasing incidence. It is highly related to the
life style of western society. This type of diabetes, curse with peripheral insulin resistance and
a compensatory hypersecretion of insulin from the pancreatic islets, that leads to a progressive
decline in the islet secretory function.

The chronic hyperglycemia, causes different complications in the diabetic patients derived mainly
from the toxicity of the glucose molecule, that in short term produces an increase in the inflamation
processes (Rekeneire et al, 2006) and raises the blood osmotic pressure (Liamis et al, 2014), that in
worst cases lead to a osmotic coma and dead and in the long term causes “microvascular disease” (dam-
ages in tiny blood vessels) associated with kidney disease and retinopathy as well as “macrovascular
disease” (damages in the arteries) associated to Cardiovascular disease (Forbes and Cooper, 2013)
being the cause of death of more than the 70% of diabetic patients (Laakso, 2010).

The monitoring of the diabetic patients in order to maintain the blood glucose levels back in the
normal range is then a quite important task since it is the only way to prevent the complications of
the disease. This control has been clasiccaly conducted using the plasma glucose levels in the fasting
condition but currently is mainly based on the circulating levels of different glycated proteins, since
the last option offers a global measurement of the mean blood glucose levels of the patient in the recent
past.

2.2 Glycated proteins and glycemic control

The reducing sugars as glucose react with the biological amines present in proteins and both molecules
become covalent binding forming a glycated protein (Ulrich and Cerami, 2001; Morais et al, 2013).
For the circulating proteins present in blood this reaction occurs constantly in a spontaneous way and
with a glycation rate of the 0.01% per day being higher at higher glucose levels (Zang et al, 2009).
Despite of the slow rate of this reaction, for the proteins that show a high life-span in the bloodstream
(slow turnover) the glycated products are gradually accumulated and serve as circulating glycemic
biomarkers that offer an indirect measurement of the patients glycemia in the recent past.

From the circulating glycated proteins, the glycated hemoglobin discovered in 1968 (Rahbar 1968,
Rahbar 2005) and proposed as diagnostic test in 2009 (ADA, 2009) has become the gold standard for
the diabetes control. The hemoglobin is located inside of the Red Blood Cells (RBCs) that circulate
in the bloodstream between three to four months before being broken down and replaced. During
that time, the hemoglobin can bond, irreversibly, to glucose present in blood. The levels of glycated
hemoglobin within the RBCs therefore reflects the average level of glucose to which the cell has been
exposed during its life cycle. Thus, HbA1C readings higher than about 6.5% indicate higher than
normal amounts of glucose roaming the blood stream in the past 120 days.

However, falsely elevated HbA1c in relation to mean blood glucose concentration can be obtained
when RBC turnover is decreased, exposing the cell to glucose for a longer period of time, resulting in
higher HbA1c levels (Radin, 2013). Similarly, any condition that shortens the life of the erythrocyte
or is associated with increased red cell turnover that abbreviates the exposure time of the cell to
glucose, resulting in lower HbA1c levels (Radin, 2013). Conditions such as acute and chronic blood
loss, hemolytic anemia, and splenomegaly can all cause falsely lowered HbA1c results (Natin, 2010) .
Moreover, due to the long life of the RBC the glycated hemoglobin is not adequate for study short-term
changes in the concentration of blood glucose.

As a result of the problems present by the HbA1c test other glycated proteins, like the glycated
albumin (GA), have been introduced in the glycemic control (Lee, 2015). The GA is present in the
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Figure 2.2: Formation of the HbA1c and GA, note that the first is in the celular space and the second
in the intravascular space, (Welsh et al, 2016)

blood plasma and hence is not affected by the RBC life-span being proposed like a best glycemic
control measurement in patients with anemia or acute renal failure (Inaba et al, 2007; Kobayashi et al,
2016; Wu et al, 2016). As the HbA1c the levels of these glycated protein are modified by non-glycemic
factors like the Albumin turnover, a process enhanced by thyroid hormones and different drugs (Denese
et al, 2015).

However, the levels of both glycemic markers are not concordant in all cases. These discordances
encountered in the clinical practice can be partially explained by the factors that modify the life-span
in blood of both proteins in a different way. However, other factor such as the use of tobacco and
alcohol consumption have been reported to change the rate of glycation with independence of the
glucose levels or time of exposition to it.

This problem of a differential glycation of proteins have been received much attention since the
work of Cohen et al (2003). In this work the author proposed the difference between the levels of
glycated hemoglobin predicted using other glycemic marker and the actual HbA1c levels, under the
term of Glycation Gap (GG), as other marker to follow the diabetic patients, finding a relationship
between the GG and the kidney disease.

This term of Glycation Gap and the necesity of developing statistical alternatives to analyze it,
have motivated the AEGIS project in 2012.

2.3 AEGIS project

The A Estrada Glycation and Inflammation Study (AEGIS) is a cross-sectional study of a general
population from A Estrada Municipality, selected by random sample, estratified by age 3500 persons,
from these 428 were excluded due to the finalization of the study, 84 were dead, 211 did not response,
134 have changed their homes, 19 do not have medical asistance and 394 do not have the inclusion
criteria because they suffered demencia, cerebrovascular disease, cancer, a terminal disease or inability
of comunication. From these 1516 persons (55% Women, 45% Men) accepted to participate.

Between November 2012 and March 2015, all the participants went to the primary care centre from
A Estrada in order to realize a clinic interview and determinations that included:

1. Demographic and Antropometric questionaire

2. Life-styles register, physical activity, diet, use of tobaco and alcohol consumption

3. Psicological tests
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4. Periodontal analysis

5. Alergic tests

6. Blood sample

7. Continuous glucose monitoring (600 patients)

Non-diabetic (1329) Diabetic (187)

Male, n (%) 579 (45%) 99 (52%)

Age, years 50.61 (17.32) 66.56 (11.91)

BMI, kg/m2 27.82 (4.93) 31.20 (5.00)

Alcohol

Abstainers 478 (36%) 68 (37%)

Ligth Drinkers 541 (41%) 57 (30%)

Moderate Drinkers 201 (15%) 40 (21%)

Heavy Drinkers 109 (8%) 22 (12%)

Smoking

Non-smokers 716 (54%) 109 (58%)

Ex-smokers 338 (25%) 57 (30%)

Smokers 275 (21%) 21 (12%)

Physical Activity

Inactive 506 (38%) 90 (48%)

Minimally Active 482 (36%) 70 (37%)

HEPA-active 341 (26%) 27 (15%)

Glucose, mg/dL 88.91 (11.98) 134.24 (37.38)

Albumin, mg/dL 4.40 (0.23) 4.40 (0.23)

MCV, fL 89.75 (4.70) 90.16 (5.15)

Tyrosine (T3) 3.40 (0.41) 3.23 (0.41)

GA, % 13.67 (1.66) 17.53 (4.25)

HbA1c, % 5.41 (0.36) 6.96 (1.16)

Cor (HbA1c, GA) 0.12 0.71

Table 2.1: Characteristics of the population of study. The correlation between both proteins is pre-
sented in terms of Spearman ρ.

Regarding the variables considered in this study all laboratory analyses were performed on the
day of sample collection in the Clinical Biochemistry Laboratory of the Hospital Clnico Universitario
de Santiago de Compostela, Spain. The HbA1c was determined by high-performance liquid chro-
matography and the values obtained converted to Diabetes Control and Complications Trial-aligned
units (Hoelze et al, 2004). The glycated albumin was estimated using the results of a glycated Serum
Proteins Assay (Dyazyme Laboratories, 2017), that determines the concentration of all the glycated
proteins in plasma and the levels of plasma albumin.
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The Fasting Plasma Glucose was determined using the glucose oxidase peroxidase method. The
Tyroid hormone T3, was determined using a competitive inmunoassay through direct chemiluminescent
technology using the Advia Centaur XP, and the Mean Corpuscular Volume using a hematological
autoanalizer ADVIA 2120.

Alcohol consumption was assessed using a questionaire where the patients were asked about the
amount of alcoholic drinks consumed every week, using the standard unit system which consider 10g
of alcohol for every glass of wine or bottle of beer and 20g for evey glass of a destilated liquor. Based
on the grames of alcohol consumed per week the individuals were clasified in 1) Abstainers 0-9g, 2)
Low drinkers 10-139g, 3) Moderate drinkers 140-279g and 4) Heavy drinkers 140-279g. Smoking habit
was register as the number of cigarettes regularly consumed per day. Consumers of at least 1 cigarette
per day were considered smokers, individuals who had quit smoking before the preceding year were
considered ex-smokers and non-smokers the individuals who have never consumed tobacco. Moreover,
the patients completed the International Physical Activity Questionnaire (short form) (IPAQ-Group,
2012), and based on the method described in Craig et al (2003) were clasified in 1) Inactive, 2)
Minimally Active and 3) “HEPA-active”, healt-enhancing physical activiy.



Chapter 3

Generalized Additive Models of
Location, Scale, and Shape
(GAMLSS)

The univariate smoothing regression techniques introduced by Hastie and Tibshirani (1990) have su-
possed a huge advance in the modelization of the relationship between a response variable and a set
of covariates, letting us consider data-driven, non-linear relations between them. These models have
been extended in Wood (2006) with contributions in the estimation method, automatic choosing of the
smoothing parameter and estimation of the confidence intervals based on a bayesian approximation.

The extension of the smooth regression idea of the GAM models was made by the introduction of the
GAMLSS models (Rigby and Stasinopoulos, 2005) letting us considerer any parameteric distribution
in the response and model each of the parameters that define the response variable distribution.

In this Chapter the Generalized Additive Models (GAM) is introduced. Then, the Generalized
Additive Models for Location, Scale, and Shape (GAMLSS) is presented and applied to study which
clinical variables or life-styles are involved in the mean levels and variability of both glycemic markers.

3.1 Generalized Additive Models (GAM)

These models were proposed by Hastie and Tibshirani (1990) to model the relationship between the
continuous covariates and the response in a non-linear way being extended and popularized by Wood
(2006). The general model specification is:

g(µi) = X∗i + β + s1(x1i) + s2(x2i) + . . .+ sj(xji) (3.1)

where

µi ≡ E(Yi)

Yi is the response variable that must be a distribution form the exponential family, g() is a known
monotonic, twice differentiable link function that makes the response lie in the space of the parameters
of the response, X∗i is a row of the model matrix for any strictly parametric model components, β is
the vector of parameters for the parametric model, and sj are smooth functions of the covariates, xj
(Wood, 2006).

The smooth terms sj are approximated by choosing a basis, defining the space of functions of which
s is an element (Wood, 2006), representing the smooth term sj(xj) as:

9
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sj(xj) =

qj∑
i=1

bji(xj)βji (3.2)

The model given in (2.1) is then can be represented as a linear model,

g(µi) = X∗i β + b1i(x1)β1i + b2i(x2)β2i + . . .+ bji(x1)βji (3.3)

In the original proposal of the GAM regression models (Hastie and Tibshirani, 1990) a backfitting
algorithm was used to estimate the model parameters, then (Wood, 2006) proposed a better method

defining the GAM model as a penalized GLM, in this case the coefficient estimates β̂ of the model are
obtained by minimizing the penalized least square objective:

||y −Xβ||2 + λjβ
TSjβ (3.4)

In (3.4) the second term is a penalization of the smooth terms using their second derivative, we can
see in Wood (2006) that the second derivarite of the basis in (3.2) is λβTSβ, where the λ parameter
control the smoothness of the estimate. The automatic selection of these parameter is solved with
different methods like UBRE or Cross-validation.

The uncertainty of the estimations is made in form of confidence intervals based on a bayesian
approximation.

Despite of the flexibility that this approach has supposed to model the effect of continuous covariates
in a response, the GAM models are just a penalized GLM (Wood, 2006) and thus the response must
follow a distribution from the exponential family. A distribution is considered from the exponential
family if can be written in the form (Fahremeir et al, 2013):

f(y|θ, φ) = exp(
yθ − b(θ)
a(φ)

+ c(y, φ) (3.5)

where a, b and c are arbitrary functions, φ is called dispersion parameter and represent the scale
while θ is the “canonical parameter” that represents the location and which is made dependent on the
covariates. The most commonly used distributions are:

Distribution (θ(µ) b(θ) φ

Normal N(µ, σ2) µ θ2/2 σ2

Bernoulli B(1, π) log(π/(1− π)) log(1 + exp(θ)) 1

Poisson P (λ) log(λ) exp(θ) 1

Gamma G(µ, ν) −1/µ − log(−θ) ν−1

Inverse Gaussian IG(µ, σ2) −1/(2µ2) −(−2θ)1/2 σ2

Table 3.1: Some of the distributions belong to the exponential family, (Fahrmeir et al 2013).

These distributions let us handle with count and binary data but not with some continuous variables
that appear in real data problems. Moreover, the φ parameter is not made dependent from the
covariates, that is not so realistic in some cases.
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3.2 GAM for Location, scale and, shape (GAMLSS)

The Generalized Additive Models for Location, Scale and Shape (GAMLSS) relaxed the exponential
family assumption of the GLM and GAM models, and replace it by a very general distribution family.
In addition the GAMLSS models given a response variable y of a distribution defined by p parameters
θT = (θ1, θ2, . . . , θp), each parameter, and not just the mean, are related to covariates using additive
non-parametric (smooth) functions (Rigby and Stasinopoulos, 2005), modeling the parameter of lo-
cation (the mean), scale (variance) and shape (skewness and kurtosis) of the reponse variable y. A
general formulation of the model is (Rigby and Stasinopoulos, 2005):

gk(θk) = ηk = Xkβk +

Jk∑
j=1

sjk(xjk), , k = 1, . . . , 4 (3.6)

The first two population parameters θ1 and θ2 in model (2.2) are usually location (µ) and scale
parameter (σ), whereas the remaining parameters, if any, are characterized as shape parameters (skew-
ness ν (θ3) and kurtosis τ (θ4)), we obtain then the model (Rigby and Stasinopoulos, 2005):



g1(µ) = η1 = X1β1 +
∑J1
j=1 sj1(xj1)

g2(σ) = η2 = X2β2 +
∑J2
j=1 sj2(xj2)

g3(ν) = η3 = X3β3 +
∑J3
j=1 sj3(xj3)

g4(τ ) = η4 = X4β4 +
∑J4
j=1 sj4(xj4)

where g() is an known monotonic, twice differentiable link function, Xk for k = 1, . . . , 4 are
the design matrices incorporating the linear additive terms in the model, βk are the linear coeffi-
cient parameters and skj(xkj) represent smoothing functions for the explanatory variables (Rigby and
Stasinopoulos, 2005; Stasinopoulos et. al, 2017). The smooth functions used within GAMLSS can be
written in the form s(x) = Zγ where Z is the basis matrix which depends on the explanatory variable
X and γ is a parameter vector to be estimated, subject to a quadratic penalty of the form λγTGγ,
for a known matrix G = DTD and where λ regulates the amount of smoothing needed for the fit
(Stasinopoulos et. al 2017).

The estimation of the GAMLSS regression model is achieved by penalized maximum likelihood
estimation for a fixed λ, maximazing the expression:

l =

n∑
i=1

log f(yi|µi, σi, νi, τi)

lp = l − 1

2

K∑
k=1

Jk∑
j=1

γTkjGkj(λkj)γkj (3.7)

The maximization of the penalized log-likelihood function is based on the RS algorithm using a
backffiting method.

The GAMLSS approach is of interest in the statistical field and has been developed in the Bayesian
framework, first as a way of handle with zero inflated data (Klein et al, 2015a) and then extending
it to any parametric response (Klein et al, 2015c). In the frequentist framework (Wood et al, 2016)
have suggested an alternative way of chosing the λ parameter in the line of the GAM using a Laplace
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integration and (Marra and Radice, 2017b) have proposed a GAMLSS models using a penalized log-
likelihood estimation based on a Trust-region algorithm with an automatic selection of smoothing
parameter.

3.3 Univariate modelling of glycemic markers

Both the glycated hemoglobin (HbA1c) and the glycated albumin (GA) are indirect measurements
of glycemia, that depend on the concentration of sugar in the bloodstream but also in the glycation
rate of proteins and the blood glucose exposition time of the hemoglobin and Albumin. Hence any
biological factor that modifies the glycation rate or the circulating proteins life-span, can modify the
levels of both glycated markers with independence of glycemic levels.

The GAMLSS models will be applied to study such cofounders, using the estimation process of
Rigby and Stasinopoulos (2005) implemented in the gamlss package and the more recent approach
of Marra and Radice (2017b) present in the GJRM package. This study will let us assess what are the
main biological factors modifying the levels and variability of the HbA1c and GA with independence
of the glucose enviroment, evaluated using fasting plasma glucose, and to compare both approaches in
a real data application.
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Figure 3.1: Histograms of Glycated hemoglobin (HbA1c) and Glycated Albumin (GA).

The use of the GAMLSS methodology is justified because if we want to study the mean levels of the
HbA1c or GA in function of any covariate in a flexible way using a GAM model, we see that the levels
of both proteins show a non-normal distribution (Figure 3.1). While if we considerer a non-exponential
distribution like the reverse Gumbel we get a better fit (Figure 3.2). The choice of the reverse Gumbel
distribution was based on terms of AIC, its interpretability and because is implemented in both R
packages.

Furthermore, the use of GAM models will not be proper, because as we can see in the (Figure 3.3)
the variability of both glycated proteins are not independent from the glucose levels and patient age.

In Figure 3.3 we can see that the variability of both glycated proteins increase with the glucose
levels and patient age, this can be caused mainly because the diabetic patients show higher levels of
sugar and most of them are up to 40 years old, showing their glucose levels a higher variability in such
patients because they do not have the necessary mechanism to control their glycemia.
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Figure 3.2: Density of the glycated hemoglobin (HbA1c) and glycated albumin (GA) for the continuous
distributions of the exponential family and the reverse Gumbel. The red line represents different
distributional assumptions.
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Figure 3.3: Scatter plot of the levels of Glycated hemoglobin (HbA1c) and Glycated Albumin (GA),
regarding to Glucose levels and Age.

In the first model, to study the effects of different covariates in the mean levels and variability of
the HbA1c levels, we propose:


ηµi = βµ0i +Genderiβ

µ
1i + Smokeβµ2i +Alcoholβµ3i + Exerciseβµ4i + sµi (Glucose) + sµi (Age)+

+ sµi (BMI) + sµi (MCV )i,

ησi = βσ0i +Genderiβ
σ
1i + Smokeβσ2i +Alcoholβσ3i + Exerciseβσ4i + sσi (Glucose) + sσi (Age)

(3.8)

The predictors (η1 and η2) are an additive composition of an intercept β0 being the overall level of
the predictor, linear effects (Gender, Smoke, Alcohol and Exercise), and the functions si(z) represent
non-linear effects of the continuous covariates (Age, Glucose, BMI, and MCV) with penalized splines
representation for both estimations. The first equation refers to the location parameter µ of the reverse
Gumbel distribution and the second to the scale parameter σ.

Table 3.2 shows the parametric effects obtained with both models. The levels of HbA1c are equal
for men and women. Smoking increases its levels while the alcohol consumption reduces it with
independence of the glycemic status. Its variability is higher in men, lower in ex-smokers and decreases
with the alcohol consumption.

Both methods show a difference in the significance of the effect of ligth alcohol consumption and
the minimal activity in the HbA1c variability.
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Glycated hemoglobin µ Glycated hemoglobin σ

Coefficients SE P value Coefficients SE P value

µGender
−0.01 0.02 0.362

σGender
0.19 0.05 < 0.01

−0.01 0.01 0.459 0.37 0.09 < 0.01

µex−smoker
0.01 0.02 0.416

σex−smoker
−0.21 0.05 < 0.01

−0.008 0.02 0.648 −0.10 0.09 0.305

µsmoker
0.10 0.02 < 0.01

σsmoker
−0.09 0.06 0.120

0.07 0.02 < 0.01 0.02 0.11 0.847

µoh10−139

−0.03 0.20 0.07
σoh10−139

−0.18 0.05 < 0.01

−0.03 0.01 0.08 −0.31 0.09 < 0.01

µoh140−279

−0.12 0.03 < 0.01
σoh140−279

−0.13 0.06 0.04

−0.10 0.02 < 0.01 −0.14 0.13 0.271

µoh280+

−0.12 0.03 < 0.01
σoh280+

−0.26 0.08 < 0.01

−0.10 0.03 < 0.01 −0.53 0.16 < 0.01

µLow−activity
−0.04 0.02 0.057

σLow−activity
0.25 0.04 < 0.01

−0.02 0.01 0.264 0.08 0.09 0.352

µHEPA−activity
−0.03 0.03 0.140

σHEPA−activity
0.06 0.05 0.212

−0.01 0.02 0.439 0.11 0.10 0.290

Table 3.2: Parametric effects in the mean and variability of the HbA1c levels. In black the gamlss fit
and in red the GJRM fit.
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Figure 3.4: Estimated smooth centered effects of Glucose, Age, BMI and Mean Corpuscular Volume
(MCV) in the levels of HbA1c with the associated 95% point-wise intervals. Using the gamlss R
package with a RS estimation (up) and the using the GJRM package (down). The jittered rug plot, at
the bottom of each graph, shows the covariate values.

Regarding the smooth effects (Figure 3.4), HbA1c increases with the Glucose from the 100mg/dL,
raises with age until 70 years and also with the BMI. As expected the levels of HbA1c decrease at higher
levels of Mean Corpuscular Volume. In the GJRM estimate, lower levels of glycated hemoglobin are also
associated with low values of MCV, as a consequence of the shorter life-span of the red blood cells in
patients with microcytic anemia, when the hemoglobin exposure time to blood glucose is shortern.
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Figure 3.5: Estimated smooth centered effects of Glucose and Age in the variability of th HbA1c levels
with the associated 95% point-wise intervals. Using the gamlss R package with a RS estimation (up)
and using the GJRM package (down). The jittered rug plot, at the bottom of each graph, shows the
covariate values.

The HbA1c variability increases with glucose and age for both methods (Figure 3.5). In the case
of the gamlss fit, the HbA1c levels show higher variability at lower glucose levels as well, due to the
presence of the diabetic patients taking anti-glycemic drugs with low fasting plasma glucose when
measure, while the GJRM do not get this feature from the data. Regarding to the effect of the age the
GJRM fit show a linear increase while the gamlss estimation raise only until 60 years.

In the second model, to study the effects of different covariates in the mean levels and variability
of the GA the following predictors are proposed:


ηµi = βµ0i +Genderiβ

µ
1i + Smokeβµ2i +Alcoholβµ3i + Exerciseβµ4i + sµi (Glucose) + sµi (Age)+

+ sµi (BMI) + sµi (T3)i,

ησi = βσ0i +Genderiβ
σ
1i + Smokeβσ2i +Alcoholβσ3i + Exerciseβσ4i + sσi (Glucose) + sσi (Age)

(3.9)

As in the case of the HbA1c the predictors (η1 and η2) are an additive composition of an intercept
β0 being the overall level of the predictor, linear effects (Gender, Smoke, Alcohol and Exercise), and
the functions si(z) represent non-linear effects of the continuous covariates (Age, Glucose, BMI and
T3) with penalized splines representation for both estimations. The first ecuation refers to the location
parameter µ of the reverse Gumbel distribution and the second to the scale parameter σ.

In the Table 3.3 we can see the estimation of the parametric effects by both methods. The levels of
the GA are lower for smokers and people with moderate and high alcohol consumption. Its variability is
higher for smokers and decrease with the alcohol consumption either in the gamlss and GJRM packages.

Regarding the smooth effects (Figure 3.6) the levels of GA raise for levels of Glucose higher than
100mg/dL and increase for ages higher than 60 for both model estimations. Furthermore, higher BMI
and Thyroid hormones levels reduce the GA concentration.

The variability of the GA levels increases with the Glucose from 100-120 mg/dL and raises for ages
beyond 60 years (Figure 3.7), with similar smooth estimates for both methods. .



16CHAPTER 3. GENERALIZED ADDITIVEMODELS OF LOCATION, SCALE, AND SHAPE (GAMLSS)

Glycated Albumin µ Glycated Albumin σ

Coefficients SE P valor Coefficients SE P valor

µGender
−0.08 0.10 0.379

σGender
−0.02 0.05 0.615

−0.08 0.10 0.421 −0.07 0.10 0.496

µex−smoker
−0.02 0.10 0.846

σex−smoker
−0.03 0.05 0.533

−0.04 0.10 0.686 −0.06 0.11 0.600

µsmoker
−0.78 0.12 < 0.01

σsmoker
0.16 0.05 < 0.01

−0.78 0.12 < 0.01 0.36 0.12 < 0.01

µoh10−139

−0.08 0.10 0.41
σoh10−139

−0.20 0.05 < 0.01

−0.09 0.10 0.359 −0.41 0.10 < 0.01

µoh140−279

−0.61 0.14 < 0.01
σoh140−279

−0.16 0.07 0.010

−0.62 0.14 < 0.01 −0.41 0.10 0.019

µoh280+

−0.71 0.18 < 0.01
σoh280+

−0.19 0.08 0.02

−0.76 0.18 < 0.01 −0.37 0.17 0.03

µLow−activity
−0.09 0.10 0.356

σLow−activity
0.06 0.04 0.156

−0.08 0.10 0.398 0.11 0.09 0.226

µHEPA−activity
−0.14 0.10 0.183

σHEPA−activity
−0.01 0.05 0.718

−0.13 0.10 0.210 −0.03 0.11 0.790

Table 3.3: Parametric effects in the mean and variability of the GA levels. In black the gamlss fit and
in red the GJRM fit.
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Figure 3.6: Estimated smooth centered effects of Glucose, Age, BMI and T3 (a thyroid hormone) in
the levels of GA with the associated 95% point-wise intervals. Using the gamlss R package with a RS
estimation (up) and the GJRM package (down). The jittered rug plot, at the bottom of each graph,
shows the covariate values.
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Figure 3.7: Estimated smooth centered effects of Glucose and Age in the variability of th GA levels
with the associated 95% point-wise intervals. Using the gamlss R package with a RS estimation (up)
and the GJRM package (down). The jittered rug plot, at the bottom of each graph, shows the covariate
values.

Note about the interpretability

For a clinical interpretation of the model results, we have to take into account, that the parameters
modeled in some of the distributions used in GAMLSS do not represent the expectation and variance
of the response itself.

In the particular case of the reverse-Gumbel µ is a location parameter of the distribution but
represents the mode instead of the mean. And the variance of the response can be obtained from

σ using the transformation V (Y ) = (π
2

6 )σ2 while the mean can be obtained from µ using E(Y ) =
µ− 0.5777722σ.

To ilustrates this transformation we present the effect of the moderate alcohol consumption and
age in the mean levels of GA. In the case of the moderate alcohol consumption (see Table 3.3, gamlss
fit), the effect in the expectation is:

(−0.606 + C ∗ (−exp(0.166)) = −1.28), C = 0.5777722

given a fitted model m1, in the case of a smooth effect like age the effect on the expectation can
be obtained as:

1 Age_order <- order(with(dat ,Age))

2 Variable=dat[Age_order ,]$Age

3

4 prediction=predict(m1,what="mu",type="terms",se=T)

5

6 Intercept =13.40

7

8 mu_effect=as.numeric(Intercept+prediction$fit[,6])

9 mu_effect_low=as.numeric(Intercept+prediction$fit[ ,6]-1.96*prediction$se.fit[,6])

10 mu_effect_high=as.numeric(Intercept+prediction$fit [ ,6]+1.96*prediction$se.fit[,6])

11

12

13 prediction=predict(g11 ,what="sigma",type="terms",se=T)

14

15 Intercept =0.40

16
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17 sigma_effect=exp(as.numeric(Intercept+prediction$fit[,6]))

18 sigma_effect_low=exp(as.numeric(Intercept+prediction$fit[ ,6]-1.96*prediction$se.fit

[,6]))

19 sigma_effect_high=exp(as.numeric(Intercept+prediction$fit [ ,6]+1.96*prediction$se.fit

[,6]))

20

21 plot(mu_effect[Age_order ]+0.577722*sigma_effect[Age_order]~Variable ,ylim=c(13 ,16.5),

22 xlab="Age , years",ylab="Mean GA, %",type="l")

23 lines(mu_effect_low[Age_order ]+0.577722*sigma_effect_low[Age_order]~Variable ,col="grey

")

24 lines(mu_effect_high[Age_order ]+0.577722*sigma_effect_high[Age_order]~Variable ,col="

grey")
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Figure 3.8: Effect of the Age in the expectation of the Glycated Albumin levels with the 95% confidence
interval.



Chapter 4

Copula functions

Most of the approaches found in the literature for modeling two responses jointly conditioned to a
set of covariates, assume a specific bivariate distribution like a bivariate gaussian (Klein and Kneib,
2015c). However, this assumption implies that both responses must be gaussian distributed and show
a symmetric structure of dependence, known as elliptical (Durante and Sempi, 2016).

However, in our case of study, both assumptions are not realistic. In this case we have two non-
gaussian responses that show higher correlation at higher vaules. A good alternative to study such
kind of situations is to consider a bivariate distribution constructed by means of a copula function.

A copula function lets us build a bivariate distribution from two given marginals, that can be-
long to any parametric family, be equal or not and even consider two discrete variables or a mixed
joint distribution of a continuous and discrete variable. Furthermore, for two given marginals, using
the parametric copulas proposed in the literature we can consider different structures of dependence
between them.

In this Chapter, the concept of copula function will be introduced. Then, a description of the main
parametric families of copulas is given, as well as, the correspondence between copula functions and
other correlation measurements.

4.1 Sklar theorem

Copulas are joint distributions generated from given marginals. Therefore, properties of copulas are
analogous to properties of joint distributions for two or more random variables. In the bivariate case
for two random variables (X,Y ) the joint distribution H is defined as:

H(x, y) = P [X ≤ x, Y ≤ y]

The properties of this bivariate cdf are:

1. limx,y→−∞ H(x, y) = 0,

2. limx,y→∞∀j H(x, y) = 1

3. By the rectangle inequality, for all (a1, a2) and (b1, b2) with a1 ≤ b1, a2 ≤ b2,

H(b1, b2)−H(a1, b2)−H(b1, a2) +H(a1, a2) ≥ 0

Conditions 1 and 2 imply 0 ≤ H ≤ 1. Condition 3 is referred to as the property that H is
2-increasing.

19
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Given the bivariate cdf H(x, y), univariate margins F (x) = P (X < x) and G(y) = P (Y < y) are
obtained by letting y →∞ and x→∞, respectively.

The concept of copula function was introduced by Sklar (1953) under the Sklar theorem which
states that the joint distribution function (c.d.f) H(x, y) of any pair (X,Y ) of continuous random
variables can be written in the form:

H(x, y) = C(F (x), G(y)), x, y ∈ R (4.1)

This theorem implies that copulas can be ussed to express a bivariate distribution in terms of its
maringal distribution and a function that bind them together. Hence given a copula function C with
margins F and G we can build a bivariate distribution of our chosen:

• By varying F and G in the previous expression, joint distributions with arbitrary marginals can
be built.

• On the other hand, by varying C, one alters the nature of dependence between X and Y.

4.2 Parametric families of the copula functions

To proper consider the dependence structure between the margins of a bivariate random variable
we have different parametric copulas available, most of them defined by one single parameter θ that
measure the strength of dependence between the margins. The main differences between the parametric
copula functions proposed in the literature are given by their ability to model assymetrical structures
of dependence and the range of their θ parameter. To better understand what a assymetric structure
of dependence is, I will introduce the concept of tail dependence.

The tail dependence concept is designed to show how large (or small) values of one random variable
appear with large (or small) values of the other (Balakrishnan and Lai, 2009), a common situation in
bivariate variables, including our biomedical problem (see Figure 4.1).
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Figure 4.1: Relationship between the levels of glycated hemoglobin (HbA1c) and glycated albumin
(GA), note the assymetric structure of dependence with higher relation at higher levels of both proteins.

In (Balakrishnan and Lai, 2009) the upper tail dependence is defined in terms of a coefficient λU
as the limit (if it exist) of the conditional probability that Y is greater than the 100αth percentile of
G given that X is greater than the 100αth percentile F as α approaches 1:

λU = lim
α↑1

P [Y > G−1(α)|F−1(α)] (4.2)
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If λU > 0, then X and Y are upper tail dependent and asymptotically independent otherwise.

Similarly, the lower tail dependence coefficient is defined as:

λU = lim
α↓1

P [Y < G−1(α)|F−1(α)] (4.3)

Let C be the copula of X and Y. It can be shown that:

λU = lim
u↑1

C(u, v)

1− u , λL = lim
u↓1

C(u, v)

u

Several parametric copula functions have been proposed for both situations of upper and lower tail
dependence as well as different strengths of association between the margins. Most of the proposed
copulas can be classified in two families, Archimidean or Elliptical.

Copula Range of θ λL λU

Archimedean

AMH θ ∈ (−1, 1) 0 0

Clayton θ ∈ (0,∞) 21/θ

Frank 0 ∈ R 0 0

Gumbel 0 ∈ (1,∞) 0 2− 21/θ

Joe 0 ∈ (1,∞) 0 2− 21/θ

Elliptical

Gaussian θ ∈ (−1, 1) 0 0

t-Copula θ ∈ (−1, 1),ζ ∈ (2, 120) 2 ∗ tζ+1(−
√

(ζ+1)(1−θ)
1+θ )

Table 4.1: Summary of the main copula functions, with the range of the θ parameter, the λL and λU
coefficients.

4.2.1 Archimidean copulas

All the parametric copulas of the Archimidean family can be expressed as a sum of functions of
marginals F and G of the form (Nelsen, 2006):

ϕ(C(u, v)) = ϕ(u) + ϕ(v) (4.4)

Since we are interested in expressions that we can use for the construction of copulas, we want to
solve the relation ϕ(C(u, v)) = ϕ(u) + ϕ(v). We thus need to find an appropriately defined ”inverse”
ϕ[−1] so that:

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (4.5)
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In (Nelsen, 2006) ϕ is defined as a continuous, strictly decreasing function from [0, 1] to [0,∞] such
that ϕ(1) = 0. The pseudoinverse of ϕ is the function ϕ[−1], with domain [0,∞] and range [0, 1], given
by:

ϕ[−1](t) =

{
ϕ[−1](t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞ (4.6)

Note that if ϕ(0) =∞, then ϕ[−1](t) = ϕ−1(t) and:

C(u, v) = ϕ−1(ϕ(u), ϕ(v)) (4.7)

The function ϕ is called the generator of the copula.

Clayton copula

The Clayton copula proposed by Clayton (1978), has the generation function ϕ(t) = (1+ t)−1/θ taking
the form:

C(u, v; θ) = (u−θ + v−θ − 1)−1/θ (4.8)

With the dependence parameter θ restricted on the region (0,∞). As θ approaches to zero, the
marginals become independent and∞ corresponds to the Frechet upper bound 1 (Triverdi and Zimmer,
2006).
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Figure 4.2: Contour plot of the bivariate density function of the Clayton copula with different
marginals.

It exhibits strong left tail dependence (λl = 2−1/θ) and relatively weak right tail dependence, this is
an appropiate copula for two random variables with a strong relation at low values but less correlated
at high (Triverdi and Zimmer, 2006).

Joe copula

The copula function, proposed by Joe and Hu (1996) has the generator function ϕ(t) = 1 − (1 −
exp(−t))1/θ and the expression:

C(u, v; θ) = 1− {(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ}1/θ (4.9)

With the dependence parameter θ restricted on the region (1,∞), being 1 the independence and
∞ the upper Frechet bound.
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Figure 4.3: Contour plot of the bivariate density function of the Joe copula with different marginals.

The Joe copula exhibits strong right tail dependence (λu = 2− 2−1/θ) and relatively weak left tail
dependence and is appropiate when two random variables are strongly correlated at high values and
less correlated at low (Triverdi and Zimmer, 2006).

Gumbel copula

The Gumbel copula has been proposed by Gumbel (1960) with the generator function ϕ(t) = exp(−t1/θ),
and takes the form:

C(u, v; θ) = exp(−(−logu)θ + (−logv)θ)1/θ (4.10)

The dependence parameter θ is restricted to the interval [1,∞). Values 1 and ∞ correspond to
independence and the upper Frechet bound (Triverdi and Zimmer, 2006). As the Joe copula exhibits
strong rigth upper tail dependence and relatively weak left tail dependence.
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Figure 4.4: Contour plot of the bivariate density function of the Gumbel copula with different
marginals.

Frank copula

The generator of the Frank copula is, ϕ(t) = log( 1−θ
1−θt ), 0 < θ < 1, and:

1we encountered the Fréchet-Hoeffding bounds as universal bounds for copulas, fo any copula C: W (u, v) = max(u+
v − 1.0) ≤ C(u, v) ≤ min(u, v) = M(u, v) being W and M the upper and lower bound respectively (Nelsen, 2006)
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C(u, v) = logθ(1 +
(θu − 1)(θv − 1)

(θ − 1)
) (4.11)

The dependence parameter may assume any real value (−∞,∞). Values of−∞, 0,∞ corresponding
to the Frechet lower bound, independence and Frechet upper bound, respctively (Triverdi and Zimmer,
2006). This is a comprehensive copula function given that both Frecht bounds are included in the range
of permissible dependence (Devroye, 1986).
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Figure 4.5: Contour plot of the bivariate density function of the Frank copula with different marginals.

Dependence in the tails of the Frank copula tends to be relatively weak and the strongest depen-
dence is centered in the middle of the distribution.

Ali-Mikhail-Haq copula

The Ali-Mikhail-Haq (AMH) copula proposed by Ali et al (1978) has the generator function ϕ(t) =
1−θ

exp(t)−θ and the expression:

C(u, v) =
uv

1− θ(1− u)(1− v)
(4.12)

This copula function is appropiate for modeling margins showing strong correlations and the de-
pendence in the tails tends to be weak.
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Figure 4.6: Contour plot of the bivariate density function of the Ali-Mikhail-Haq copula with different
marginals.
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4.2.2 Elliptical copulas

Elliptical copulas are obtained from the multivariate elliptical distributions by applying the inverse
transformation related to Sklars theorem (Durante and Sempi, 2016). A random vector has a multi-
variate elliptical distribution if can be expressed in the form:

X
d
= µ+RAU (4.13)

where µ ∈ Rd, A ∈ Rd∗k with Σ := AAT ∈ Rd∗d and rank(Σ) = k ≤ d, U is a d-dimensional
random vector uniformly distributed on the sphere Sd−1 = {u ∈ Rd : u2

1 + . . . + u2
d = 1} and R is a

positive random variable independent of U (Durante and Sempi, 2016).

Because of the transformation matrix A, the uniform random variable U produces elliptically
contoured density level surfaces, whereas the generating random variable R gives the distribution
shape; in particular determines the tails of the distribution (Durante and Sempi, 2016). This radial
symmetry causes that the lower and upper bivariate tail dependence coefficients coincide.

Gaussian copula

The Gaussian copula is given by the expression:

X
d
= AZ (4.14)

where A ∈ Rd∗k, Σ := AAT ∈ Rd∗d is the covariance matrix, rank(Σ) = k ≤ d and Z is a
d-dimensional random vector whose independent components have the univariate standard gaussian
distribution, given the expression (Durante and Sempi, 2016):

Φ2

(
Φ−1(u),Φ−1(v); θ

)
(4.15)

where Φ is the cdf of the standard normal distribution and Φ2 the standard bivariate normal
distribution with the correlation parameter θ restricted to the interval (−1, 1), attained the lower and
upper Frechet bound (Nelsen, 2006).

The gaussian copula has both and lower tail dependence coefficients equal to 0.
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Figure 4.7: Contour plot of the bivariate density function of the Gaussian copula with different
marginals.
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Student-t copula

The Students t-copula is given by:

X
d
= µ+ Σ1/2

√
WZ (4.16)

where Z ∈ Nd(0, Id) is a Gaussian distribution, Σ := Σ1/2Σ1/2 is positive definite. Moreover,
W and Z are independent, and W follows a inverse Gamma distribution with parameters (ν/2, ν/2)
(Durante and Sempi, 2016). The bivariate Students t-copula is given by:

C(u, v) = t2,ζ

(
t−1
ζ (u), t−1

ζ (v); ζ, θ
)

(4.17)

where θ is in the range (−1, 1), t2 denotes the bivariate of a Student t-distribution, and the t−1
ζ

denotes the inverse of the standard t-distribution, ζ is the degrees of freedom, t-copula becomes a
Gaussian copula in the limit ζ → ∞. As a consequence of the radial symmetry, the lower and upper
tail dependence coefficients are identical and given by Durante and Sempi (2016):

λL(Cθ,ζ) = λU (Cθ,ζ) = 2 ∗ tζ+1(−
√

(ζ + 1)(1− θ)
1 + θ

) (4.18)
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Figure 4.8: Contour plot of the bivariate density function of the t-Student copula with different
marginals.

4.2.3 Other copulas

Eyraud-Farlie-Gumbel-Morgesten copula

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Normal (0,1)

N
or

m
al

 (
0,

1)

0 1 2 3 4 5

−
3

−
2

−
1

0
1

2
3

Inverse gaussian (1,2)

N
or

m
al

 (
0,

1)

0 10 20 30 40

0
5

10
15

Log−Normal (0,1)

Lo
g−

N
or

m
al

 (
0,

1)

Figure 4.9: Contour plot of the bivariate density function of the EFGM copula with different marginals.
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The Eyraud-Farlie-Gumbel-Morgesten (EFGM) copula is not a member of the Archimidean or
Elliptical families, Nelsen (2006) describes it like a copula with a quadratic section and a perturbation
of the product copula C(u, v) = uv. This copula takes the form:

C(u, v) = uv(1 + θ(1 + u)(1− v)) (4.19)

Do not allow for upper or lower tail dependence and like the AMH copula is appropiate for two
random variables with weak dependences (Triverdi and Zimmer, 2006).

Plackett copula

As the EFGM this copula function defined by Plackett (1965) do not belong to the Archimidean or
elliptical family and has the expression:

C =
[1 + (1 + θ)(u+ v)]−

√
[1 + (θ − 1)(u+ v)]

2 − 4θ(θ − 1)uv

2(θ − 1)
(4.20)

For θ > 0, and do not present upper or tail dependence.
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Figure 4.10: Contour plot of the bivariate density function of the Plackett copula with different
marginals.

4.2.4 Survival and other rotated copulas

For any pair (X,Y ) of random variables with joint distribution function H, the joint survival function is
given by H̄(x, y) = P (X > x, Y > y). The marginals of H̄ are the functions H̄(x,−∞) and H̄(−∞, y),
which are the univariate survival functions F̄ (x) = P (X > x) and Ḡ(y) = (Y > y), respectively
(Nelsen, 2006) if we apply the Sklar theorem to this survival functions instead of considering the
distribution of the form F (x) = P (x < X) and G(y) = P (y < Y ), we obtain a survival copula also
known as 180o rotated copulas:

H̄(x, y) = 1− F (x)−G(y) +H(x, y) = F̄ (x) + Ḡ(y)− 1 + C(F (x), G(y))

= F̄ (x) + Ḡ(y)− 1 + C(1− F̄ (x), 1− Ḡ(y)) (4.21)

So we have:

H̄(x, y) = Ĉ(F̄ (x), Ḡ(y)) (4.22)

Where Ĉ is the 180o rotated version of the original copula function. This rotation only make sense
for assymetric copula functions as the Joe, Gumbel and Clayton. Similarly to the survival copula we
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can obtain other rotated versions following the definition given in Brechmann and Schepsmeier (2013)
as:

C90(u1, u2) = u2 − C(1− u1, u2) 90o rotation (4.23)

C270(u1, u2) = u1 − C(u1, 1− u2) 270o rotation (4.24)

An interesting property of the 90o and 270o rotated copulas is that present the opposite ranges of
the θ parameter than the non-rotated versions and 180o, that let us model non-symmetrical structures
of depdence not possible with the non-rotated versions that present a θ > 0 for the Calyton and θ > 1
for the Gumbel and Joe.
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Figure 4.11: Contour plots of the bivariate density function of the rotated Joe and Clayton copulas
that let us model positive and negative correlation of two random variables.

Furthermore, this rotated versions let us model a bivariate variable showing an assymetric structure
of dependence with both negative and positive correlations. This can be achieved by mixing any of the
Clayton, Joe and Gumbel with any of the rotated versions of the same family. For instance, mixing
the Clayton copula with its 90 rotation allows one to model positive and negative tail dependence.
(Marra and Radice, 2017a).

4.3 Concordance measurements and copulas

Although the θ parameter measures the dependence between two random variables, for some families
the range of θ has no upper or lower limit. Given that, it is not easy realize how strong is the correlation
between the margins, and in the regression context, how much a set of covariates modify the relationship
between the responses. In order to have a correlation measurement in a more interpretable scale we
can express the copula parameter in terms of concordance measures that fall in the (−1, 1) interval.
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Kendall τ and Copula functions

Let (xi, yi) and (xj , yj) be two observations from (X,Y ) of continuous random variables. The two pairs
(xi, yi) and (xj , yj) are concordant if (xi − xj)(yi − yj) > 0 and discordant if (xi − xj)(yi − yj) < 0
(Balakrishnan and Lai 2009).

There are
(
n
2

)
distinct pairs (xi, yi) and (xj , yj) of observations in the sample, and each pair is

either concordant or discordant. Let c denote the number of concordant pairs and d the number of
discordant pairs. Then Kendall’s tau for the sample is defined as (Nelsen 2006):

τ =
c− d
c + d

(4.25)

Just as H can be expressed as a function of copula C, Kendalls τ can be expressed in terms of the
copula (Balakrishnan and Lai 2009) as:

τ = 4

∫ 1

0

∫ 1

0

C(u, v)c(u, v) du dv − 1 = 4E(C(U, V ))− 1 (4.26)

Spearman ρ and Copula functions

Like Kendalls τ , the Spearmans ρ is based on concordance and discordance. Let (X1, Y1), (X2, Y2) and
(X3, Y3) be three independent pairs of random variables with a common distribution function H. Then,
ρs is defined to be proportional to the probability of concordance minus the probability of discordance
for the two pairs (X1, Y1) and (X2, Y3) (Balakrishnan and Lai 2009):

ρs = 3(P [(X1 −X2)(Y 1− Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) (4.27)

Equation 4.27 can be expressed in terms of the copula as:

ρs = 12

∫ 1

0

∫ 1

0

C(u, v) du dv − 3 = 12E(UV )− 3 (4.28)
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Chapter 5

Copula GAMLSS for bivariate
responses

The univarite regression models GAMLSS allow us to study how a set of covariates is related to
distributional aspects of one single response. However, the objective of this work is study jointly the
levels of the glycated hemoglobin and glycated albumin to determine which factors could modify the
association between them.

To study both proteins jointly, flexible copula regression models for bivariate responses are pro-
posed. The reason to consider such kind of modeling is that both proteins show non-standard distribu-
tions with variability dependent on the covariates and the relationship between both is not symmetric,
as seen in the previous chapter the use of copula functions let us address both situations.

From the alternatives found in the literature we have considered Copula Regression Models for
Location, Scale and Shape (CGAMLSS) proposed by Marra and Radice (2017a). These models consider
a copula function to build a bivariate response of the GAMLSS-class, estimating the copula dependence
and marginal distribution parameters simultaneously. CGAMLSS model each parameter using an
additive predictors casting different types of covariate effects (linear, non-linear, spatial or random
effects). The simultaneous parameter estimation is achieved within a penalized likelihood framework
using a trust region algorithm with integrated automatic multiple smoothing parameter estimation.

These models are implemented in the R package GJRM (Marra and Radice, 2017b) and are easily
applicable using the copulaReg() function with a similar syntax of the well known mgcv R package
(Wood, 2006).

This Chapter introduces the model formulation of the CGAMLSS. Then, the estimation process is
explained. Finally, the key points of the model building process are given.

5.1 Model formulation

In these models the joint cumulative distribution function (cdf) of two continuous random variables,
Y1 and Y2 is expressed by means of a copula function and two marginals distributions as:

H(y1, y2|ϑ) = C (F1(y1|µ1, σ1, ν1), F2(y2|µ2, σ2, ν2); ζ, θ) , (5.1)

where ϑ = (µ1, σ1, ν1, µ2, σ2, ν2, θ, ζ) is a vector containing all the parameters that define the
bivariate response, F1(y1|µ1, σ1, ν1) and F2(y2|µ2, σ2, ν2) are the marginal cdfs of Y1 and Y2 taking
values in (0, 1), µm, σm and νm, for m = 1, 2 are marginal distribution parameters, C is a uniquely
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defined two-place copula function with the association parameter θ and ζ represents the number of
degrees of freedom of the Student-t copula, only relevant when this copula is used.

The distribution available in the GJMR to consider in the marginals F1(y1|µ1, σ1, ν1) and F2(y2|µ2, σ2, ν2)
are included in the appendix 1. These distributions have two or three parameters, however the
CGAMLSS approach can be extended to any twice differentiable parametric distribution. Regard-
ing the copula functions, CGAMLSS have implemented all the copulas presented in the Table 5.1, in
addition to them the GJRM displays the rotated versions of the Clayton, Joe and Gumbel and the mixed
copulas that can be constructed using it.

Copula C(u, v; ζ, θ) Ranges of θ and ζ Link function Kendall’s τ

AMH uv
1−θ(1−u)(1−v) θ ∈ [−1, 1] tanh−1(θ)

− 2
3θ2

{
θ + (1− θ)2

log(1− θ)}+ 1

Clayton
(
u−θ + v−θ − 1

)−1/θ
θ ∈ (0,∞) log(θ − ε) θ

θ+2

FGM uv {1 + θ(1− u)(1− v)} θ ∈ [−1, 1] tanh−1(θ) 2
9
θ

Frank
−θ−1 log

{
1 + (e−θu − 1)

(e−θv − 1)/(e−θ − 1)
} θ ∈ R\ {0} − 1− 4

θ
[1−D1(θ)]

Gaussian Φ2

(
Φ−1(u),Φ−1(v); θ

)
θ ∈ [−1, 1] tanh−1(θ) 2

π
arcsin(θ)

Gumbel
exp

[
−
{

(− log u)θ

+(− log v)θ
}1/θ] θ ∈ [1,∞) log(θ − 1) 1− 1

θ

Joe
1−

{
(1− u)θ + (1− v)θ

−(1− u)θ(1− v)θ
}1/θ θ ∈ (1,∞) log(θ − 1− ε) 1 + 4

θ2
D2(θ)

Student-t t2,ζ
(
t−1
ζ (u), t−1

ζ (v); ζ, θ
)

θ ∈ [−1, 1] , ζ ∈ (2,∞) tanh−1(θ) , log(ζ − 2− ε) 2
π

arcsin(θ)

Plackett (Q−
√
R)/ {2(θ − 1)} θ ∈ (0,∞) log(θ) -

Table 5.1: Definition of copulas implemented in GJRM, with corresponding parameter ranges of associ-
ation parameter θ, transformation/link function of θ and ζ, and relation between Kendall’s τ and θ.
Φ2(·, ·; θ) denotes the cdf of a standard bivariate normal distribution with correlation coefficient θ, and
Φ(·) the cdf of a univariate standard normal distribution. t2,ζ(·, ·; ζ, θ) indicates the cdf of a standard
bivariate Student-t distribution with correlation θ and ζ degrees of freedom, and tζ(·) denotes the cdf

of a univariate Student-t distribution with ζ degrees of freedom. D1(θ) = 1
θ

∫ θ
0

t
exp(t)−1dt is the Debye

function and D2(θ) =
∫ 1

0
t log(t)(1− t) 2(1−θ)

θ dt. Quantity ε is set to 1e-07 and is used to ensure that the
restrictions on the space of θ are maintained. Finally Q = 1 + (θ−1)(u+ v) and R = Q2−4θ(θ−1)uv
(Marra and Radice 2017a).

In these models all the parameters in the vector ϑ = (µ1, σ1, ν1, µ2, σ2, ν2, ζ, θ), are related to
covariates and regression coefficients using additive predictors and in the case of the distribution
parameters with restricted ranges, known monotonic link functions which ensure that the restrictions
on the parameter spaces are maintained.

The additive predictors employed to model all the parameters that characterize the bivariate re-
sponse can be defined as a generic predictor ηi function of an intercept and smooth functions of
sub-vectors of a generic covariate vector zi. That is,

ηi = β0 +

K∑
k=1

sk(zki), i = 1, . . . , n (5.2)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of the complete covariate vector
zi (containing, for example, binary, categorical, continuous, and spatial variables) and the K functions
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sk(zki) represent generic effects which are chosen according to the type of covariate(s) considered. We
obtain then the model:



ηµ1 = β0 +
∑K
k=1 sk(zki) ηµ2 = β0 +

∑K
k=1 sk(zki)

ησ1
= β0 +

∑K
k=1 sk(zki) ησ2

= β0 +
∑K
k=1 sk(zki)

ην1 = β0 +
∑K
k=1 sk(zki) ην2 = β0 +

∑K
k=1 sk(zki)

ηθ = β0 +
∑K
k=1 sk(zki)

Each sk(zki) of the additive predictor can be approximated as a linear combination of Jk basis
functions bkjk(zki) and regression coefficients βkjk ∈ R, i.e.

Jk∑
jk=1

βkjkbkjk(zki). (5.3)

The generic effects sk(zki) can represent then linear effects, for which the equation 5.3 becomes
zTkiβk. For continuous variables the smooth functions are represented using a regression spline ap-

proach. For each continuous variable zki, sk(zki) is approximated by
∑Jk
jk=1 βkjkbkjkzki where bkjk

are known basis functions. To enforce some properties in the estimation, such as smoothness, a
conventional integrated square second derivative spline penalty is typically employed, that is Dk =∫
dk(zk)dk(zk)Tdzk , where the jthk element of dk(zk) is given by ∂2bkjj (zk)/∂z2

k and the integration
over the range of zk. As in the GAM models (Wood, 2006) each βk has an associated quadratic penalty
λkβkDkβk to enforce the smoothness. The smoothing parameter λk ∈ [0,∞) controls the trade-off
between fit and smoothness, and plays a crucial role in determining the shape of ŝk(zki). The overall
penalty can be defined as βDβT , where D = diag(0, λ1D1, . . . , λKDK).

Marra and Radice (2017a) suggest the use of low rank thin regression splines (Wood, 2003; Wood,
2006) as basis function bkjk , however any of the splines implemented in the mgcv R package can be
employed instead. Finally, the smooth functions are subject to centering (identifiability) constraints
(Wood, 2006).

Furthermore, this models can also handle with spatial data information, if we have an area split
up into discrete contiguous geographic units we can employ a Markov random field approach. In this
case the equation (5.3) becomes zTkiβk where β represents the vector of spatial effects and zki is made
up of a set of area labels. Moreover, a smoothing penalty based on the neighborhood strucuture is
applied, being Dk an adjacency matrix, a recent application of the CGAMLSS for spatial data can be
see in Duarte et al (2017).

5.2 Estimation process

The inference is based on a penalized maximum likelihood estimation. First, it is considered the
log-likelihood function for a copula model with two continuous margins (Kolev and Pavia, 2009):

l(δ) =

n∑
i=1

log {C(F1i(y1i|µ1i, σ1i, ν1i), F2(y2i|µ2i, σ2i, ν2i); ζi, θi)}+

n∑
i=1

2∑
m=1

log {fm(ymi | µmi, σmi, νmi))}
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where parameter δ is defined as (βTµ1, β
T
µ2, β

T
σ1, β

T
σ2, β

T
ν1, β

T
ν2, β

T
θ , β

T
ζ )T .

Given the additive predictors structure casting non-linear relationships considered in these models,
the use of a classic unpenalized optimization algorithm could excessively smooth the effects and there-
fore would not reflect the true trends found in the data. For that reason, Marra and Radice (2017a)
propose the use of a penalized maximum likelihood, maximizing the expression:

lp(δ) = l(δ)− 1

2
δTSλδ (5.4)

where Sλ = diag(λµ1Dµ1,λµ2Dµ2,λσ1Dσ1,λσ2Dσ2,λν1Dν1,λν2Dν2,λθDθ,λζDζ) with each smooth-
ing parameters related to the corresponding D component and the overall λ is defined as (λ1, ..., λK)T .

To maximize expression (5.4) with an automatic selection of the smoothing parameter, λ, CGAMLSS
use a two step algorithm where the estimation of the vector δ is achieved using a Trust Region algo-
rithm in the first step and in the second, the smoothing parameter is selected using the methodology
proposed in Wood (2004):

• Step 1: at a iteration index a, holding λ at a vector of values and with a starting vector δ[a]

(obtained for the marginals parameters using the gamlss function from the GJRM package and
for θ from the kendall’s τ between the responses) the equation (5) is then maximized using a
Trust Region algorithm, as follows:

min
p
l̆p

def
= −{lp(δ[a]) + pTg[a]

p +
1

2
pTH [a]

p p} so that ‖p‖ ≤ ∆[a]

δ[a] = arg min
p

l̆p(δ
[a]) + δ[a] (5.5)

where g
[a]
p and the H

[a]
p are the gradient vector and Hessian matrix of the log-likelihood function

penalized by the Sλ̂ matrix, ‖ · ‖ the euclidean norm and ∆[a] is the radius of the trust region
algorithm of each iteration.

At each iteration of the algorithm, l̂(δ[a]) is minimized using a quadratic approximation and
subject to the the constraint that the solution falls within a trust region with radius ∆[a]. Based
on the ratio between the improvement in the objective function when going from δ[a] to δ[a+1]

the proposed solution is then rejected or accepted and the region ∆[a] expanded or shrunked
(Conn et al, 2000, Nocedal and Wright, 2006), that is, given the expression:

φ =
lp(δ

[a+i] − lp(δ[a])

g
T [a])
p p+ 1

2p
TH

[a]
p p
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For a given λ[a]

and i = 1

Estimate δ[a+i] that: minp l̆p
def
= −{lp(δ[a]) + pTg

[a]
p + 1

2p
TH

[a]
p p} so that ‖p‖ ≤ ∆[a]

if 1/4 <
lp(δ

[a+i]−lp(δ[a])

g
T [a]
p p+ 1

2p
TH

[a]
p p

< 3/4Redefine ∆ radius

For the estimate δ[a+i] calcu-
late λ[a+i] using (Wood,2004)

if
lp(δ

[a+i]−lp(δ[a])

0.1+|lp(δ[a+i])| < 1e− 07 For λ[a+i] and i = i+1

STOP:

• Hp positive defined and gp ' 0: optimal estimation

• Otherwise, algorithm do not reach the optimal

YES

NO

YES

NO

Figure 5.1: Scheme of the CGAMLSS estimation process. In green the first step and in yellow the
second. Note that the algorithm stops when it is not able to get a better estimation of δ. If this
happens and the Hessian matrix is not positive defined or/and the gradient vector is not close to zero,
the algorithm was not able to reach an optimal estimation.

If φ ≥ 1/4, then we accept [a+ 1] as the next iterate, however if φ < 1/4 then we do not accept
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[a+ 1] as the next iterate and decrese ∆ to 1/4 of its current value, while if φ > 3/4, we do not
accept [a+ 1] as the next iterate either and increase ∆ to 2 times its current value (Geyer, 2015;
Nocedal and Wright, 2006).

The maximization of the equation (5.5) by means of a Trust Region algortihm instead of the use
of a line search methods such as the Newton Raphson algorithm is justified becasue the first is
generally more stable and faster, particularly for functions that are, for example, non-concave
and/or exhibit regions that are close to flat (Marra and Radice, 2016; Nocedal and Wright 2006)
common in this flexible copula regression models.

• Step 2: holding the models parameter vector value fixed at δ[a+1], solve the problem:

λ[a+1] = arg min
p

V (λ)
def
= ||z[a+1] −A[a+1]

λ[a] z
[a+1]||2 − n̂+ 2tr(A

[a+1]

λ[a] ), (5.6)

where, after defining I [a+1] = −H [a+1], z[a+1] =
√
I [a+1]δ[a+1] +

√
I [a+1]

−1
g[a+1], A

[a+1]

λ[a] =√
I [a+1](Ia+1 +Sλ[a])−1

√
I [a+1], tr(A

[a+1]

λ[a] ) represent the number of effective degrees of freedom
(edf) of the penalized model and n̂ = 7n (if we employ a three parameter distribution for both
margins). Note that gradient vector and Hessian matrix needed in this expression is obtained as
a byproduct of the previous step.

This expression is equivalent to the Un-Biased Risk Estimator (UBRE) (Wood 2006), solved
with the methodology proposed in Wood (2004), the equivalence between the equation (5.6) and
the UBRE estimator is given in Radice et al (2015).

These two steps are iterated until they are not able to improve the objective function lp(δ), that
is:

lp(δ
[a+i] − lp(δ[a])

0.1 + |lp(δ[a+i])| < 1e− 07 (5.7)

Note that (5.7) only depends in the δ parameter vector estimation, and as pointed in Marra and
Radice (2017a) proving the algorithm convergence when smoothing parameters are estimated in
a performance iteration fashion is difficult and to the best of our knowledge this is still an open
issue.

Some Inferential details

If the model reaches the convergence, reliable point-wise confidence intervals for linear and non-linear
functions of the models coefficients are obtained using a Bayesian large sample approximation, as in
GAM (Wood, 2006):

δ ∼̇ N(δ̂,−Hp(δ̂)−1) (5.8)

The justification to use this Bayesian approximation is given in Marra and Wood (2012) and it
can be justified making the large sample assumption that H(δ) can be treated as fixed, and making
a Bayesian assumption on the prior of δ for smooth models (Wood, 2006). Note that the equation
(5.12) do not take into account the λ, but based on Marra and Wood (2012) is not a problem provide
that a heavy oversmoothing is avoided.
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5.3 Model building process

This kind of modelling has three key points in the model building process that the researcher must
solve, 1) choose suitable distributions for the marginals, 2) to chose the covariates for building the
predictors for each parameter and 3) choose the copula function that best accommodate the type
and/or strength of dependence between the margins. To solve these problems Marra and Radice
(2017a) propose:

1. Choose suitable distributions for the marginals: use of the normalized quantile residuals for each
marginal to choosing the marginal‘s distributions graphically. The normalized quantile residuals
are defined as r̂mi = Φ−1{Fm(ymi|µ̂mi, σ̂mi, ν̂mi)} for i = 1, . . . , n and m = 1, where Φ−1 is the
quantile function of a standard normal distribution. If Fm(ymi|µ̂mi, σ̂mi, ν̂mi) is close to the true
distribution then the r̂mi follow approximately a standard normal distribution, and using a Q-Q
plot we can detect a lack of fit of the marginal distribution graphically. Moreover, we can base
our selection in the AIC and BIC.

2. The selection of the covariates for the predictors can be based on AIC and BIC, but a good
knowledge of the problem is required.

3. Given the marginals distributions and the predictors of the parameters, the choice of the copula
function is based on the model AIC and BIC defined as −2l(δ̂) + 2edf and −2l(δ̂) + log(n)edf ,
respectively.
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Chapter 6

Simulation study

Due to the recent proposal of the CGAMLSS there is only a simulation study of the general perform
of the model in Marra and Radice (2017a), where CGAMLSS outperform the models proposed by
Vatter and Chavez-Demoulin (2015), at sample sizes n = 500 and n = 5000 and for fixed variances
the estimation of the smooth and linear effects in the marginal means and θ parameter were quite
accurate, as well as the coverage properties of the point-wise confidence intervals.

However, given our medical problem where both responses present higher variability at higher
glucose levels and increase with age, a simulation scenario where the variances are dependent on
the predictors will be displayed to study the general perform of the model at different sample sizes.
Moreover, given the recent introduction of CGAMLSS different model features have not been studied
yet, mainly regarding the association parameter. For that reason, in a second scenario, the effect of
the dependence strength between both margins in the estimation of the association parameters effects
will be explored, as well as the effect of a copula misspecification in the estimation of the smooth and
linear effects in the association parameter.

In this Chapter, the performance of the model will be study for different sample sizes. Then the
effect of the strength of dependence between the margins in the estimation of the covariates effects
in the association parameter is given. Finally, the effect that a copula missespecification has in the
estimation of parametric and smooth effects in the association parameter is presented.

6.1 Performance of the model at different sample sizes

Two continuous outcomes following both a reverse-Gumbel distribution were considered. We have
created two continuous covariates i.i.d uniformly distributed and a third variable was dichotomized
so that each value had a 50% chance of appearing. Both continuous outcomes were joined using a
gaussian copula to obtain a bivariate response. Linear and non-linear effects of the regressors on the
parameters of the bivariate response were considered, of the form:



ηµ1
= 1.25x1 + s1(x2)

ησ1
= 1.1x3 + s1(x2)

ηµ2
= 0.9x1 + s2(x2)

ησ2 = 0.8x3 + s2(x2)

ηθ = 0.5x1 + s3(x2)

where x1, x2 ∈ U(0, 1) and x3 is a categorical variable that can take the value 0 or 1. s1,s2 and s3

are smooth functions, s1(x2) = x2 sin(3x2), s2(x2) = sin(πx2) and s3(x2) = sin(2πx2):

39



40 CHAPTER 6. SIMULATION STUDY

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

s1

x2

s1
(x

2)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s2

x2

s2
(x

2)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s3

x2

s3
(x

2)

Figure 6.1: Simulated smooth effects in the simulation setup.

Sample sizes were set to 200, 500, 1000 and 2000, and the number of replicates 1000 each. Models
were fitted using the copulaReg() function of the GJRM package. In practice the R code used to
simulate and fit the models is:

1 library(copula) # Let us simulate a bivariate response

2 library(gamlss) # Include the distributions for the marginals

3 library(GJRM) # Let us fit the model

4

5 # We define some non -linear effects

6

7 f1 <- function(x) x * sin(3 * x)

8 f2 <- function(x) sin(pi*x)

9 f3 <- function(x) sin(2*pi*x)

10

11 # The data.gen function (Marra and Radice , 2017a), let us generate a bivariate

12 #response conditioned to a set of covariates

13

14 data.gen <- function(f1 ,f2,f3){

15

16 # Define the covarites:

17

18 x1=runif (1,0,1)

19 x2=runif (1,0,1)

20 x3=round(runif (1,0,1) ,0)

21

22 # Define the predictors

23

24 eta_mu1 <- 1.25*x1 + f1(x2)

25 eta_mu2 <- 0.9*x1 + f2(x2)

26 eta_sigma21 <- 1.1*x3 + f1(x2)

27 eta_sigma22 <- 0.8*x3 + f2(x2)

28 eta_theta <- 0.5+x1+f3(x2)

29

30 theta.para <- tanh(eta_theta) # Theta parameter with the inverse of the link function

31

32 speclist1 <- list( mu = eta_mu1 , sigma = exp(eta_sigma21)) #Marginal 1 Parameters

33 speclist2 <- list( mu = eta_mu2 , sigma = exp(eta_sigma22)) #Marginal 2 Parameters

34

35 #Note that we use exp(eta_sigma21) because of the link function (log) for sigma

36

37 spec <- mvdc(copula = Cop , c("RG", "RG"),list(speclist1 , speclist2))

38

39 #The mvcd build a bivariate response defined by the marginals and the Copula function

40

41 c(rMvdc(1, spec), x1, x2, x3)}

42

43 # Any time that we run the funcion we obtain one row with the bivariate

44 #response and the covariates

45

46 #Simulate data
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47

48 datos=t(replicate(n,data.gen(f1,f2,f3),simplify=T))

49 colnames(datos)=c("y1","y2","x1","x2","x3")

50 datos=as.data.frame(datos)

51 datos$x3=as.factor(datos$x3)

52

53 #Define the predictors for the model

54

55 mu1=y1~x1+s(x2)

56 mu2=y2~x1+s(x2)

57 sd1=~x3+s(x2)

58 sd2=~x3+s(x2)

59 theta=~x1+s(x2)

60

61 f=list(mu1 ,mu2 ,sd1 ,sd2 ,theta)

62

63 #Fit the model

64

65 m1=copulaReg(f,margins=c("rGU","rGU"),BivD ="N",data=datos)

66

67 #Evaluate the model estimation

68

69 m1$fit$converged

70 m1$iter.if

71 m1$iter.sp

72 m1$iter.inner

73

74

75 s1=summary(m1) #From the summary we obtain the parametric effects , std. deviation and

p values

76

77 #Evaluate the Smooth Effects in 200 equally spaced fixed points:

78

79 newdata=data.frame(x1=0,x2=seq(0,1,len =200),x3=0)

80

81 p1=predict(m1,eq=1,newdata=newdata ,type="terms",se=T)

82

83 p2=predict(m1,eq=2,newdata=newdata ,type="terms",se=T)

84

85 p3=predict(m1,eq=3,newdata=newdata ,type="terms",se=T)

86

87 p4=predict(m1,eq=4,newdata=newdata ,type="terms",se=T)

88

89 p5=predict(m1,eq=5,newdata=newdata ,type="terms",se=T)

The package copula (Hofert et al, 2017) contains the functions, ellipCopula(), mvcd() and
rMvcd() which let us to simulate from any elliptical copula. The package gamlss contains the function
required to simulate values from a reverse Gumbel distribution. The various eta refer to the marginal
and copula parameter predictors. These are transformed in speclist1, speclist2 and theta.para
with the inverse of the link function to ensure that the restrictions on the parameters’ spaces are
maintained. Given the data simulated using the data.gen function (Marra and Radice, 2017a) we
have fitted a model from which we stored the estimated linear effects with the standard error of the
estimation (evaluated with the summary() function), and in the case of the smooth effects have been
evaluated in 200 equally spaced fixed points in the (0, 1) range along with the estimated standard error
associated to each point, using the predict() function. In addition, some estimation details like the
number of iterations needed by the algorithm to reach convergence were stored.

From these stored results we can analyze graphically the estimators of the smooth and parametric
effects in the marginal parameters and given that the main breakthrough of CGAMLSS is the possibility
of study the effect of different covariates in the association between two responses. The estimates of
the predictor effects in the θ parameter will be studied deeply. The estimation accuracy and precission
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will be studied using Bias, given by | ¯̂β − β|, for the linear effects being
¯̂
β = 1

1000

∑1000
1 βi the mean of

the estimates, and β the real effect.

The same formula will be applied for the smooth terms using the expression n−1
s

∑ns
i=1 |¯̂si − si|

being ¯̂si = 1
1000

∑1000
rep=1 ŝrep,i, ns the 200 equally spaces points and si the equivalent point from the

real effect. Moreover, we will use the RMSE given by
√

1
1000 (β̂i − βi)2 for the linear terms and by∑ns

i=1

√
1

1000

∑1000
rep=1 (ŝrep,i − si)2

for the smooth ones.

The coverage properties of the CGAMLSS intervals will be studied for the linear terms, checking
how many times the real β was inside of the confidence intervals constructed for the linear terms, while
the coverage for the smooth terms will be evaluated in the 200 equally spaced points along the range
of the covariate x2.

Since the biggest advance of the CGAMLSS is the possibility of study which covariates are related
to the association between two responses given by the copula association θ parameter, we will present
graphically the results of the estimations of the parametric and smooth effects on the margins param-
eters and study more exhaustively the parametric and smooth effects on the association parameter
θ.

Marginal predictors

Figures 6.3 and 6.4 show the estimation of the smooth effects s1(x2) and s2(x2) in the marginal
parameters. The estimation of the smooth effect from the ησ1

and ησ2
predictors, seems satisfactory

for all samples sizes, with the mean of the one thousand estimates closer to the true effect as the
sample size increases. However, the smooth functions estimates of the location parameter, needs a
bigger sample size to get closer to the real effect.

Figure 6.2 displays the estimates of the parametric effects for the marginal predictors. We can see
that all mean estimates are very close to true values and their variability decrease as the sample size
increases.
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Figure 6.2: Estimation of the parametric effects for the margin parameters. β11 refers to the parametric
effect of the ηµ1 predictor, β21 refers to the parametric effect of the ησ1 predictor, β31 refers to the
parametric effect of the ηµ2

predictor and β41 refers to the parametric effect of the ησ2
predictor.

Association between the responses

Figure 6.5 depicts the parametric effect estimates of the θ parameter predictor, as well as the coverage
rate of the confidence intervals constructed for each estimate. All mean estimates are very close to
the real effect (Table 6.1) and the variability of the estimations decreases as the sample size increases
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Figure 6.3: Estimates of the smooth effect on the parameters of the first margin at different sample
sizes. In red the real function, and in black the mean of the 1000 estimates, the grey shade represent
the 2.75 and the 97.5 quantiles.
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Figure 6.4: Estimates of the smooth effect on the parameters of the second margin at different sample
sizes. In red the real function, and in black the mean of the 1000 estimates, the grey shade represent
the 2.75 and the 97.5 quantiles.
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(Figure 6.5). The coverage rates of the confidence intervals constructed for the parametric effect are
close to the significance levels for all sample sizes and get closer as this increases (Figure 6.5).
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n=500 0.871 0.928 0.978

n=1000 0.879 0.934 0.986

n=2000 0.884 0.948 0.987

Figure 6.5: Parametric effects estimation of parameter θ (left) and the coverage of the confidence
intervals for the linear effects at different samples sizes (n = 200, 500, 1000, 2000) and significance
levels, α (0.1, 0.05, 0.01) (right).

In the Figure 6.6 the estimates of the non-linear effect s3(x2) in the association parameter at
different sample sizes are shown. For all sample sizes the estimation presents a good performance
with the mean of the estimates close to the real effect, as expected, as the sample size increases, the
variability of the estimates decreases and their mean becomes closer to the real effect. In the Table
6.1, we can also see that both the RMSE and bias drop with sample size. Moreover, the rates of
coberture of the point-wise confidence intervals constructed for the smooth effect s3(x2) are near to
the significance level along the range of the predictor covariate x2, and getting closer for higher sample
sizes (Figure 6.7).

Parametric Effect Smooth Effect

Bias RMSE Bias RMSE

n=200 0.100 0.24 0.05 1.28

n=500 0.03 0.12 0.02 0.82

n=1000 0.02 0.08 0.01 0.80

n=2000 0.01 0.06 0.008 0.80

Table 6.1: RMSE and Bias for the estimates for the parametric and smooth terms at different sample
sizes.

The estimation process is quite similar for different sample sizes, showing failures of convergence in
4 every one thousand models at n=200, and 1 every one thousand at n=500. In terms of the iterations
needed by the algorithm to reach the optimal estimation in the trust region and smoothing parameter
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Figure 6.6: Estimates of the smooth effect on the association parameter at different sample sizes. In
red the real function, and in black the mean of the 1000 estimates, the grey shade represents the 2.75
and the 97.5 quantiles.
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Figure 6.7: Coverage properties at different levels of significance of the CGAMLSS confidence intervals
for the smooth effect on the θ parameter at different sample sizes.

loops there is no significant differences between the different sample sizes, however the trust region
iterations within smoothing loops decrease for higher samples sizes, with a mean of 114 loops at n=200,
46 at n=500, 30 at n=1000 and 24 at n=2000.

6.2 Different strengths of dependence between margins

In this scenario following the work of Klein and Kneib (2016) we will study the effect of dependence
strength between the margins in the estimation of the predictor effects, considering three scenarios
that represent weak, constant and strong dependence.

Two gaussian responses were assumed, and joined under a gaussian copula. The copula association
parameter was specified as follow:

1. Constant Dependence: θ = log(3)
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2. Weak Dependence: θ = 0.50 cos(πx)

3. Strong Dependence: θ = log(4.5− 1.7 sin(πx))

Where x ∈ U(0, 1) and considering four sample sizes n = 500, 1000, 2000, 5000 with 1000 replicates
each.
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Figure 6.8: Representation of the different strengths of dependence simulated.

The code to simulate and fit the model is analogous to the applied in the previous scenario, and
the evaluation of the effects was done using a 200 equally spaced points as well.
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Figure 6.9: Bias and RMSE of the 1000 estimates for the different samples sizes and degrees of
dependence. The formulas considered to represent this graphs were for the bias n−1

s ( ˆsi,j − si) and for

the RMSE
∑ns

1

√
( ˆsi,j − si)2, being ns two hundred equally espaced fixed points, and j = 1, . . . , 1000.

We can see that for the weak dependence model both the Bias and RMSE of the estimation is
a slightly higher (Figure 6.9) and clearly the coverage of the point wise estimated intervals, is worst
than for the constant and strong dependences, requiring a higher sample size to become closer to the
significance level (Figure 6.10).
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Figure 6.10: Coverage for the smooth terms at 95% for the different samples sizes and strengths of
dependence.

6.3 Copula missespecification

In this simulation scenario two gaussian responses were considered and joined with a Clayton copula to
produce a bivariate distribution. The bivariate distribution parameters were related to two continuous
covariates and one binary covariate through predictors specified as in the simulation study presented
by Marra and Radice (2017a): 

ηµ1
= 0.5− 1.25x2 − 0.8x3

ηµ2
= 0.1− 0.8 ∗ x1 + s1(x2)

ησ1 = 1.8

ησ2 = 0.1

ηθ = 0.2 + 2x1 + s4(x2)

where x1, x2 ∈ U(0, 1) and x3 a covariate dichotomized as in the first scenario, being s1(x2) =
x sin(3x2) the smooth term used in the first scenario as well, and s4(x2) = sin(3πx2):
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Figure 6.11: Smooth effects consider in this simulation study.

In this scenario two different models will be fitted, one under the right copula assumption using
a Clayton copula, and the other under a copula misspecification considering a Clayton 180o rotated
instead. Both models will be fitted using the same dataset, set.sedd(123), considering a big sample
size of n = 2000 and 1000 replicates. The choice of these two copula functions is justified because for
the same range of the θ parameter show show two antagonic structures of dependence. The clayton
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copula, from which the data were simulated, is appropiate lower tail dependences, while the C180 is
appropiate the opposite situation of upper tail dependence (Figure 6.12).
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Figure 6.12: Contour plots of both copula functions with gaussian margins, the data will be generated
with the structure of dependence like the Clayton 0 (left) and fitted under both copula assumptions.
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Figure 6.13: Estimation of the parametric and smooth effects in the θ parameter under both copula
assumptions, for the smooth effec, in red the real effects, in black the mean of the estimations. In
the parametric effects, β11 and β12 represent the parametric of the ηµ1

predictor, β21 the parametric
effect of the ηµ2

predictor, β31 and β41 the intercept of the ησ1
and ησ2

respectively, and finally β5

the parametric effect of the association parameter predictor, and the horizontal line represent the true
effect.
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In Figure 6.13 we can see the estimation of the parametric and smooth effects in the margins
parameters. Concerning the effects on the means, the model under the right copula assumption
delivery lower variability in the estimates, for both the parametric and smooth effects, but the mean
of the 1000 estimates are very similar in both cases.

However, in the estimation of the effects of the scale parameters predictors we see a higher effect
of the copula misspecification, displaying a clearly biased estimate of the variability levels for both
margins, while in the model under the right copula assumption, the estimation of the variability levels
for both responses are very close to the true effect.
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Figure 6.14: Estimation of the parametric effects for the marginal and association and the estimation
of the smooth term for the µ2 under both copula assumptions.

Focusing on the estimation of the θ smooth and linear effect, in Figure 6.13 we can see that the
model under the copula misspecification show higher variability in the estimates and their mean is
far from the true effect. Additionally, in Figure 6.14 similar results are found for the smooth term
estimation.
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Chapter 7

Bivariate modelling of glycemic
markers

The Clinical Epidemiological Unit of the Clinical Hospital of Santiago de Compostela (CHUS), pre-
sented a biomedical problem derived from the AEGIS project. One of the aims of this project, launched
in the year 2012, was to determine which factors were involved in the glycation rate of the glycated
hemoglobin and the discordances encountered between it and other glycated proteins, such as the
glycated albumin.

The introduction of the flexible copula regression models, by means of CGAMLSS, discussed in this
work, offers a methodological solution letting us study properly the association between the responses,
as well as their mean and variability conditioned to a set of clinical factors, all in a flexible framework
where non-standard marginal can be considered and also different structures of dependence between
them.

In this Chapter, the proposed model to study the concentration of both proteins jointly is presented.
Finally the results obtained from the analysis with the CGAMLSS approach is given.

7.1 Model Building

The choice of the parametric distributions for both responses was based on the AIC criteria, being for
the HbA1c and GA the Sigh-Maddala and DAGUM the distributions that better fit our data. Both
distributions have been developed in the econometrical field and their interpretability requires that each
of the three parameters must be modeled by the covariates in order to understand the effect on terms of
the expectation and variability of the responses. However, for our data we have had convergence failures
under both distributional assumptions. In the case of the GA, the FISK distribution also displays a
good fit to the response, however the right interpretability of this distribution is also complex and only
is possible if σ > 2.

For that reason, both proteins have been modeled under the assumption of a reverse Gumbel
distribution (see Apendix A), this distribution is appropiate for skewed distribution with right heavy
tails, with a higher interpretability in the medical field, since the variance is equal to the product
of a constatn for σ2 and µ is the mode of the distribution and can be easily transformed to get the
expectation using σ.

The covariates selection was based on the AIC of the fitted models, as well as in the knowledge about
the medical problem. In our experience the best way to build the model predictors in the CGAMLSS
class is a previous characterization of the covariates effects in the marginals using first a GAM for study
the effects in the means and GAMLSS for studying the variability, given that the covariates selection
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Glycated Hemoglobin Glycated Albumin

Distribution AIC BIC Distribution AIC BIC

Sigh-Maddala 2049.50 2065.45 Sigh-Maddala 6438.64 6454.58

DAGUM 2159.77 2175.72 DAGUM 6453.16 65469.10

Reverse Gumbel 2249.78 2260.41 FISK 6485.16 6495.80

FISK 2365.52 2376.48 Reverse Gumbel 6533.56 6544.20

Logistic 2568.52 2579.15 Inverse Gaussian 6619.41 6630.04

Log-normal 2713.5 2724.12 Log-normal 6621.44 6632.06

Inverse Gaussian 2716.44 2727.07 Logistic 6637.15 6647.78

Gamma 2807.08 2817.71 Gamma 6667.84 6678.47

Gausian 3011.92 3022.55 Gausian 6667.84 6824.11

Weibull 3671.40 3682.03 Weibull 7163.43 7174.062

Gumbel 4096.78 4107.41 Gumbel 7552.15 7562.78

Table 7.1: AIC and BIC for all the continuous distributions available in the GJMR package for the
levels of Fructosamine and glycated hemoglobin.
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Figure 7.1: Distributions and QQ-plots of the normalized residuals for both responses. For the glycated
hemoglobin (up) and glycated albumin (down).

based exclusively in the fitted models AIC, or computational cost, is a time consuming task due to
the fact that the inclusion of a non-informative covariates in the first margin has a negative effect
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on the estimation of the other predictors effects, given wiggly estimates, even existing an association
between the covariate and the reponse parameter. Based on the clinical knowledge of the problem and
a previous characterization of the margins using a GAMLSS the proposed model is:


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Figure 7.2: Relationship between the levels of Glycated Albumin and Glycated Hemoglobin. This is
our bivariate response.

The copula was chosen based on the AIC and BIC of the models fitted under different copula
assumptions. As expected in this case where at higher concentration of both proteins higher correlation,
the model fitted under the Joe copula assumption presents the best AIC and BIC, this suggests that the
glycated hemoglobina and the glycated albumin present an association with an upper tail dependence
structure.

However, the differences between the AIC and BIC under the Gaussian and the Joe copula as-
sumption are not big and the “scarcity” of the Hessian matrix for the Joe copula model is bigger, this
suggest that the model under the Joe copula assumption could need more data to model the relation
between both proteins properly. Moreover, the confidence intervals for the Kendalls τ and θ parameter
under the assumption of Gaussian copula are not fully positive showing (θ = (−0.0946, 0.379), τ =
(−0.0618, 0.26)).

Taking in account that the effect on the marginals is almost equal in both models, and the range
of the Kendalls τ does not seem really negative, the parametric and smooth estimation for the θ
parameter predictor will be presented under both copula assumptions, while the effects of the covariates
for margins only for the model built under the Joe copula assumption, being pretty similar for the
gaussian copula model.
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Copula AIC BIC

Joe 6074.62 6654.23

Student-T 6130.31 6663.61

N 6150.02 6737.74

F 6207.19 6763.40

AMH 6234.68 6771.96

FGM 6294.20 6789.90

Plackett 6394.90 7022.66

Clayton 7192.50 7986.98

Clayton180 7497.39 8417.58

Gumbel 33241.51 33299.64

Gumbel180 40705.27 41645.00

Joe180 66877.99 66957.16

Table 7.2: AIC and BIC for different copula assumption for modeling the association between both
proteins. In red, models that have shown failures of convergence.

7.2 Results

Regarding the marginal expectations (Figure 7.3 and Figure 7.4), fasting plasma glucose is the main
covariate on predicting both glycated hemoglobin and glycated albumin concentrations and the func-
tional form of the effect of glucose levels on both proteins is similar increasing for values higher than
100mg/dL. Mean concentrations of glycated hemoglobin increase linearly with age while glycated al-
bumin concentrations only do so for elderly people (> 60years). Body mass index, an index of obesity
is a negative factor influencing serum glycated albumin. However, it showed a significant positive
relation with glycated hemoglobin
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Figure 7.3: Smooth functions estimate and associated 95% and point-wise confidence intervals of the
effect of Glucose, Age, Body mass index (BMI) and mean corpuscular volume (MCV) of the red blood
cells (RBC) on the glycated hemoglobin levels.

As explained in Chapter 2, we have selected mean corpuscular volume as covariate in the first
marginal and T3 hormone in the second. Mean corpuscular volume is an indirect measure of the red
blood cells turnover (or life-span), being hemoglobin a protein that is inside the red cells. Glycated
hemoglobin decrease in response to macrocytosis (higher mean corpuscular volume), a condition that
is most commonly associated with vitamin deficiencies and alcohol consumption, and it is also decrease
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Figure 7.4: Smooth functions estimate and associated 95% and point-wise confidence intervals of the
effect of Glucose, Age, Body mass index (BMI) and thyroid hormones (T3) on the glycated albumin
levels.

in response to blood loss (microcytosis), a frequent condition in young women, in both circustances
the red blood cells are destroying at a higher rate than in health subjects and hence there is a bigger
proportion of young RBCs in the blood stream, assembled in response to this higher RBCs destruction.

For the second margin we have considered the T3 hormone, that modifies albumin metabolism,
being this protein the substrate of the glycation process. As expected, a negative relation between the
levels of glycated albumin and thyroid hormones concentration is present, in consequence of the higher
albumin turnover in response to the elevated levels of Thyroid hormones.
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Figure 7.5: Smooth functions estimate and associated 95% and point-wise confidence intervals of the
effect of Glucose and Age on the variability of the glycated hemoglobin and albumin levels.

Regarding the marginal variance (Figure 7.5), variabilities of glycated hemoglobin and glycated
albumin are higher at higher glucose levels and increase with age. A larger variability is expected in
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both glycated proteins at higher levels of glucose, indicating those people with diabetes. The high
variability in the glycated hemoglobin at lower levels of glucose could also indicate the presence of
some people with diabetes being treated with anti-diabetic drugs and thus presenting low glucose
levels when measured.

Finally, the association between glycated hemoglobin and glycated albumin, is presented under two
copula assumptions.

Under the gaussian copula assumption, the correlation between both responses increase with the
fasting plasma glucose concentration and is also higher at low glucose levels, as in the variance case,
due to the presence of people with diabetes being treated with anti-diabetic drugs and thus presenting
low fasting plasma glucose levels when measure. Aging has a clear effect on the correlation between
both proteins, and the MCV shows a U-shape effect, reflecting that the correlation between both is
higher when the RBC turnover is modified in case of anemia disease, either microcytic or macrocytic.

Under the Joe copula assumption the effect of the age is not statistical significant, and the fasting
plasma glucose effect does not get the diabetic patients being treated with antidiabetic drugs, showing
a linear increase until 130 mg/dL. However, the U-shaped MCV effect is very similar to the effect
obtained under the gaussian copula assumption.
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Figure 7.6: Smooth functions estimate and associated 95% and point-wise confidence intervals of the
effect of Glucose, Age and the mean corpuscular volume of the red blood cells (MCV) on the association
between the glycated albumin and glycated hemoglobin levels under a gaussian copula(up), and joe
copula (down) assumption.

A better idea of the covariates effect on the mean levels, variability and association between both
glycated protein levels, can be obtained looking at the contours plots depicted in Figures 7.7 and 7.8.
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HbA1c µ HbA1c σ GA µ GA σ

Coefficient SE P value Coefficient SE P value Coefficient SE P value Coefficient SE P value

Gender (ref: women) −0.01 0.01 0.503 0.25 0.09 0.01 −0.01 0.10 0.310 −0.22 0.09 0.02

Ex-smoker (ref: non-smoker) 0.01 0.01 0.57 −0.09 0.100 0.370 −0.11 0.10 0.257 −0.05 0.10 0.626

Smoker 0.08 0.02 < 0.01 0.14 0.12 0.240 −0.92 0.11 < 0.01 0.21 0.11 0.06

oh10−139 (ref: abstainer) −0.35 0.01 0.03 −0.26 0.09 < 0.01 −0.08 0.09 0.413 −0.35 0.09 < 0.01

oh139−279 −0.10 0.02 0.01 −0.05 0.13 0.700 −0.57 0.13 < 0.01 −0.14 0.13 0.265

oh280+ −0.09 0.03 < 0.01 −0.36 0.17 0.042 −0.68 0.18 < 0.01 −0.15 0.17 0.358

Low-activity (ref: inactive) −0.01 0.01 0.464 0.06 0.09 0.516 −0.09 0.09 0.334 0.131 0.09 0.151

HEPA-activity −0.02 0.01 0.362 0.14 0.11 0.180 −0.06 0.10 0.543 0.06 0.11 0.530

Table 7.3: Parametric effects on the location and scale parameters of both reponses, for the model
under the Joe copula assumption, the results assuming a gaussian copula is quite similar.

Joe Copula Gaussian Copula

Coefficient Std Error P value Coefficient Std Error P value

Gender (ref: women) −0.18 0.33 0.577 0.12 0.07 0.128

Ex-smoker (ref=non-smoker) 0.10 0.35 0.768 −0.03 0.07 0.65

Smoker 0.10 0.35 0.705 −0.05 0.09 0.610

oh10−139 (ref: abstainer) 0.17 0.30 0.572 0.06 0.07 0.341

oh140−279 0.29 0.43 0.498 −0.08 0.09 0.395

oh280+ 0.56 0.46 0.224 −0.07 0.13 0.593

Low-activity (ref: inactive) 0.26 0.30 0.393 −0.003 0.06 0.959

HEPA-activity 0.37 0.33 0.251 0.05 0.08 0.482

Table 7.4: Parametric effects in the association parameter θ under both copula assumptions. Note the
different range of the θ parameter for both copulas.

These plots have been obtained using the predict() function from the GJRM package to both fitted
models, considering different values for the principal predictive covariates. Using the copula package
(Hofert et al, 2017), changes in the bivariate response with glycemia, age and anemia are represented.

Concerning the parametric effects (Table 7.3), smoking increases the mean levels of the glycated
hemoglobin while decreases the mean levels of glycated albumin, despite this inverse effect on both
responses smoking does not modify the correlation between the concentration between glycemic mark-
ers, either under the gaussian or Joe copula assumption (Table 7.4). Alcohol consumption decreases
the levels and variability of both glycated proteins. Regarding differences between males and females,
the glycated hemoglobin show a higher variability in men, while the glycated hemoglobin present a
higer variability in women (Table 7.3). For all the models fitted in this work, the physical activity has
not shown any effect on the levels of the glycated proteins, once adjusted by the glucose levels.
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Figure 7.7: Controur plots representing the changes in the association between the levels of both
proteins under the gaussian copula assumption for two different ages. The normoglycemia is defined
by 90 mg/dL, the Pre-Diabetes = 120 mg/dL and the Diabetes = 150 mg/dL. The normal range of
Mean Corpuscular Volume was fixed in 90 fL and the microcytic anemia in 75 fL.
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Figure 7.8: Controur plots representing the changes in the association between the levels of both
proteins under the Joe copula assumption. The normoglycemia is defined by 90 mg/dL, the Pre-
Diabetes = 120 mg/dL and the Diabetes = 150 mg/dL. The normal range of Mean Corpuscular
Volume was fixed in 90 fL and the microcytic anemia in 75 fL. The Age was fixed to the mean Age of
non-diabetic patients of our sample 50 years.



Chapter 8

Discussion

In this master thesis we have shown the usefulness of bivariate copula additive models (CGAMLSS) in
diabetes research. The use of this approach revealed hitherto unreported effects concerning the mean,
variability and the relationship between glycemic control markers.

Regarding the statistical framework, CGAMLSS models have proved to be fast and present unbiased
estimates of the parametric and smooth effects in the association parameter of two response variables,
with reliable point-wise confidence intervals. CGAMLSS regression offers us a flexible framework to
use in biomedicine, that allows for a broad family of response variables joined by different copula
functions, modelling each of the parameters that define the bivariate response, in a flexible way using
additive predictors.

Concerning the clinical problem, the main variables explaining the correlation between our glycemic
markers are glucose and mean corpuscular volume (MCV). The MCV presents a U-shaped effect on
the correlation, because in conditions of anemia the blood circulating time is closer for both glycemic
markers. The choice of copula leads to a different interpretation of the age effect on the association
parameter. Under a gaussian copula assumption the correlation between the responses raises with
age, a result that can be explained by the increment of the glycation rate with aging (Nakashima et
al, 1933; Kilpatricks et al, 1996) while under the Joe copula assumption this effect is not statistically
significant, changing the medical interpretation of the results.

Since concentrations of both proteins are used as glycemic markers for the Diabetes control these
findings have clinical implications and the determination of both glycemic markers must be interpreted
carefully for patients suffering anemia.

In this study we have focused on two continuous response variables. However, CGAMLSS models
allow for binary bivariate responses, to study concordances between diagnostic tests. Two of these crite-
ria, established by the American Diabetes Association (2014), are fasting glucose levels (> 126mg/dL)
and glycated hemoglobin (HbA1c > 6.5). On this basis the author of this master thesis is currently
working on the development of a bivariate binary model that allows us to investigate whether there
is concordance between these two diagnostic criteria and determine if these threshold levels are the
most appropriate. Moreover, given that the diabetes progression is preceding by a previous state of
low hyperglycemia known as pre-diabetes, a bivariate model for multinomial responses will be also
deserible in diabetes research, considering that a good identification of a pre-diabetes state let the
physician stop the progression of the disease to a chronic hyperglycemia .

In addition to the glycated hemoglobin and fasting plasma glucose tests, there are also other types
of diagnostic criteria needed by the ADA such as the measure of plasma glucose at 2 hours (200 mg/dL)
in a oral glucose tolerance test. From a statistical point of view, work is required to develop regression
models for trivariate responses, in the line of the work of Fillipou et al (2017), accounting for three
binary responses.
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Appendix A

Marginal distributions

Distribution µ σ ν E(Ym) V (Ym)

Beta I(−) I(−) - µ σ2µ(1− µ)

Gamma log log - µ σ2µ2

Gumbel 1 log - µ− 0.577722σ 1.64493σ2

Normal 1 log - µ σ2

Inverse Gaussian log log - µ µ3σ2

Log-normal log log -
√

exp(σ2) expµ exp(σ2)(exp(σ2)− 1)e2µ

Logistic 1 log - µ π2σ2

3

Reverse Gumbel 1 log - µ+ 0.577722σ 1.64493σ2

Weibull log log - µΓ( 1
σ + 1) µ2[Γ( 2

σ + 1)− {Γ( 1
σ + 1)}2]

DAGUM log log log −µσ
Γ(− 1

σ )+Γ( 1
σ+ν)

Γ(ν) if σ > 1 −(µσ )2(2σ
Γ(− 2

σ )Γ( 2
σ+ν)

Γ(ν)

+{Γ(− 1
σΓ( 1

σ+ν))

Γ(ν) }2) if σ > 2

Sigh-Maddala log log log µ
Γ(1+ 1

σ )Γ(− 1
σ+ν)

Γ(ν) if σν > 2 µ2{Γ(1 + 2
σ )Γ(ν)Γ(− 2

σ + ν)

−Γ(1 + 1
σ )2Γ(− 1

σ + ν)2} if σν > 2

FISK log log - µπ/σ
sin(π/σ) if σ > 1 µ2{ 2π/σ

sin(2π/σ) −
(π/σ)2

sin(π/σ)2 } if σ > 2

Table A.1: The distributions implemented in the GJRM package, with the link function for each pa-
rameter of the distribution and in the cases when the parameter are not location or scale parameters
the transformation needed to get location and scale measurements of the distribution. In the table I()
represents the distribution function of a standardized logistic and Γ is the gamma function.
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With exception of the Sigh-Maddala, DAGUM and FISK distribution, obtained from the book
(Kleiber and Kotz, 2003), the remaining dsitribution was been consulted in the gamlss manual.

Beta distribution: appropiate when the response variable take values in a known restricted
range, excludion the endpoints of the range. This distribution present two parameterizations, Marra
and Radice (2017a) use:

fY = (y|µ, σ) =
1

B(α, β)
yα−1(1− y)β−1 (A.1)

for 0 < y < 1, where α = µ(1 − σ2)/σ2, β = (1 − µ)(1 − σ2)/σ2 and B is the regularized beta
function, σ > 0 and β > 0, hence 0 < µ < 1 and 0 < σ < 1. In this parameterization, the mean of Y
is E(Y ) = µ and the variance is V ar(Y ) = σ2µ(1− µ).

Gamma: the gamma distribution is appropriate for positively skew data. Its distribution, is
defined by:

fY (y|µ, σ) =
1

(σ2µ)1/σ2

y1/σ2−1e−y/(σ
2µ)

Γ(1/σ2)
(A.2)

for y > 0, where µ > 0 and σ > 0. Here E(Y ) = µ and V ar(Y ) = σ2µ2.

Gumbel: appropiate for moderately negative skew data. Its distribution is defined by:

fY (y|µ, σ) =
1

σ
exp[ (

y − µ
σ

)− exp(
y − µ
σ

)] (A.3)

for −∞ < y < ∞, where −∞ < µ < ∞ and σ > 0, with E(Y ) = µ − γ ≈ µ − 0.577722σ and
V ar(Y ) = (π2σ2)/6 ≈ 1.64493σ2.

Inverse Gaussian: this distribution is appropriate for highly positive data. Its distribution is
defined as:

fY (y|µ, σ) =
1√

2πσ2y3
exp[− 1

2µ2σ2y
(y − µ)2] (A.4)

for y > 0, where µ > 0 and σ > 0 with E(Y ) = µ and V ar(Y ) = σ2µ3.

Log-normal: appropriate for positively skew data. Its pdf is defined by:

fY (y|µ, σ) =
1√

2πσ2

1

y
exp{− [log(y)− µ]2

2σ2s
} (A.5)

for y > 0, where µ > 0 and σ > 0. Here E(Y ) =
√

exp(σ2)eµ and V at(Y ) = exp(σ2)(exp(σ2) −
1)e2µ.

Logistic: is appropriate for moderately kurtotic data, this distribution is given by:

fY (y|µ, σ) =
1

σ
{exp[−(

y − µ
σ

)]}{1 + exp[−(
y − µ
σ

)]}−2 (A.6)

Normal: the default option of the GJRM package, is defined by:

fY (y|µ, σ) =
1

sqrt2πσ
exp[− (y − µ)2

2σ2
] (A.7)

where −∞ < y < ∞, where −∞ < µ < ∞ and σ > 0. The mean os Y is give by E(Y ) = µ and
the variance of Y by V ar(Y ) = σ2. So µ is the mean and σ is the standard deviation of Y .

Reverse Gumbel: appropriate for moderately positive skew data.
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fy(y|µ, σ) =
1

σ
exp{−(

y − µ
σ

)− exp[− (y − µ)

σ
]} (A.8)

for ∞ < y < ∞, where −∞ < µ < ∞ and σ > 0, with E(Y ) = µ + γσ ≈ µ + 0.57722σ and
V ar(Y ) = (π2σ2)/6 ≈ 1.64493σ2.

Weibull: the distributions is defined by:

fY (y|µ, σ) =
σyσ−1

µσ
exp[−(

y

µ
)σ] (A.9)

for y > 0, where µ > 0 and σ > 0, the mean and variance of this distribution is given by
E(Y ) = µΓ( 1

σ + 1) and V ar(Y ) = µ2{Γ( 2
σ + 1)− [Γ( 1

σ + 1)]2}.
DAGUM: the distribution is defined by:

fY (y|µ, σ, ν) =
σν

y
(

(y/µ)σν

{(y/µ)σ + 1}ν+1
) (A.10)

for y > 0, where µ > 0 and σ > 0, the mean and variance of this distribution is given by

E(Y ) = −µσ
Γ(− 1

σ )+Γ( 1
σ+ν)

Γ(ν) if σ > 1 and V ar(Y ) = −(µσ )2(2σ
Γ(− 2

σ )Γ( 2
σ+ν)

Γ(ν) + {Γ(− 1
σΓ( 1

σ+ν))

Γ(ν) }2) if σ > 2.

Sigh-Maddala: defined by:

fY (y|µ, σ, ν) =
σνyσ−1

µσ{1 + ( yµ )2}ν+1
(A.11)

for y > 0, where µ > 0 and σ > 0, the mean and variance of this distribution is given by E(Y ) =
and V ar(Y ) = µ2{Γ(1 + 2

σ )Γ(ν)Γ(− 2
σ + ν)− Γ(1 + 1

σ )2Γ(− 1
σ + ν)2} if σν > 2.

FISK: defined by:

fY (y|µ, σ, ν) =
σyσ−1

µσ{1 + ( yµ )σ}2 (A.12)

for y > 0, where µ > 0 and σ > 0, the mean and variance of this distribution is given by E(Y ) =

and V ar(Y ) = µ2{ 2π/σ
sin(2π/σ) −

(π/σ)2

sin(π/σ)2 } if σ > 2.
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