A Unifying Model of Winner-takes-all Contests

Julio González-Díaz

Kellogg School of Management (CMS-EMS) Northwestern University and Research Group in Economic Analysis Universidad de Vigo

March 13th, 2007

Outline

2 Winner-takes-all Contests

Outline

2 Winner-takes-all Contests

③ Various Models of Contests

Motivation Various Models of Contests Results

Motivation

• Contests:

Motivation

• Contests: Auctions, Bertrand Competition,...

- Contests: Auctions, Bertrand Competition,...
- Similar results across models and further strategic connections

- Contests: Auctions, Bertrand Competition,...
- Similar results across models and further strategic connections Well Known!

- Contests: Auctions, Bertrand Competition,...
- Similar results across models and further strategic connections
- Unifying model

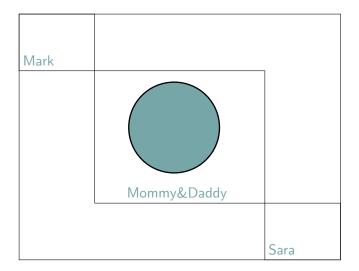
Motivation

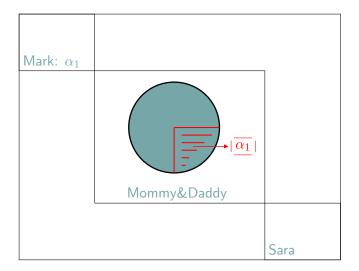
- Contests: Auctions, Bertrand Competition,...
- Similar results across models and further strategic connections
- Unifying model

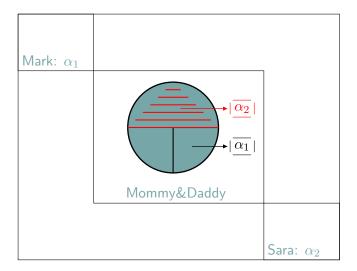
Complete information

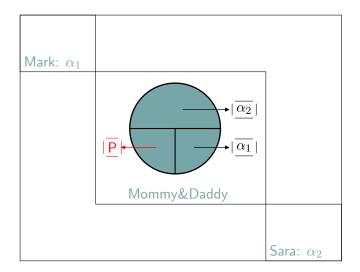
	1
Mommy&Daddy	

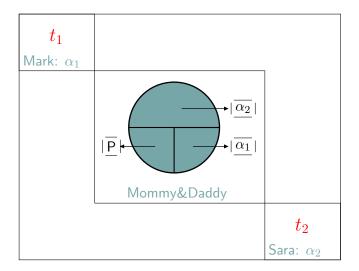
Mark		
	Mommy&Daddy	
		Sara

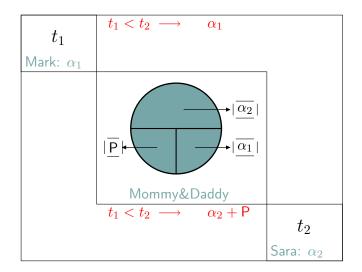


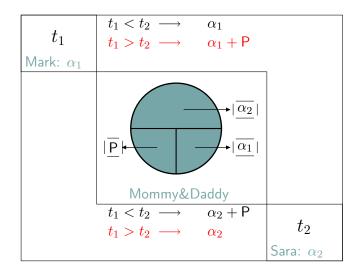




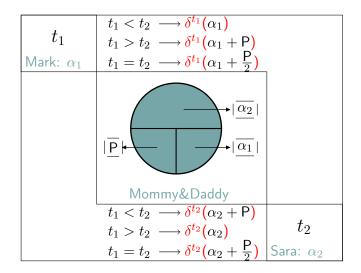


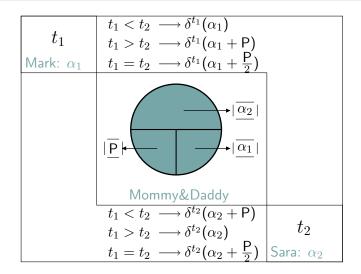












The Cake Sharing Game

The Model

The Cake Sharing Game

The Model

• $N = \{1, \ldots, n\}$ is the set of players

The Cake Sharing Game

The Model

- $N = \{1, \ldots, n\}$ is the set of players
- Let $\alpha \in \mathbb{R}^N_+$ be the initial rights vector:
 - $\mathsf{P} = 1 \sum_{i \in N} \alpha_i > 0 \qquad 0 < \alpha_1 < \alpha_2 < \dots < \alpha_n$

The Cake Sharing Game

The Model

- $N = \{1, \dots, n\}$ is the set of players
- Let $\alpha \in \mathbb{R}^N_+$ be the initial rights vector:
 - $\mathsf{P} = 1 \sum_{i \in N} \alpha_i > 0 \qquad 0 < \alpha_1 < \alpha_2 < \dots < \alpha_n$
- $\bullet \ \mbox{Let} \ \delta \in (0,1)$ be the discount factor

The Cake Sharing Game

The Model

- $N = \{1, \ldots, n\}$ is the set of players
- Let $\alpha \in \mathbb{R}^N_+$ be the initial rights vector:
 - $\mathsf{P} = 1 \sum_{i \in N} \alpha_i > 0 \qquad 0 < \alpha_1 < \alpha_2 < \dots < \alpha_n$
- Let $\delta \in (0,1)$ be the discount factor

Cake sharing game: $\Gamma_{\alpha,\delta}^{\text{pure}} = \langle N, \{A_i\}_{i \in N}, \{\pi_i\}_{i \in N} \rangle$

The Cake Sharing Game

The Model

- $N = \{1, \ldots, n\}$ is the set of players
- Let $\alpha \in \mathbb{R}^N_+$ be the initial rights vector:

$$\mathsf{P} = 1 - \sum_{i \in N} \alpha_i > 0 \qquad 0 < \alpha_1 < \alpha_2 < \dots < \alpha_n$$

• Let $\delta \in (0,1)$ be the discount factor

Cake sharing game: $\Gamma_{\alpha,\delta}^{\text{pure}} = \langle N, \{A_i\}_{i \in N}, \{\pi_i\}_{i \in N} \rangle$

• $A_i = [0,\infty)$ is the set of pure strategies of player $i \in N$

The Cake Sharing Game

The Model

- $N = \{1, \dots, n\}$ is the set of players
- Let $\alpha \in \mathbb{R}^N_+$ be the initial rights vector:

$$\mathsf{P} = 1 - \sum_{i \in N} \alpha_i > 0 \qquad 0 < \alpha_1 < \alpha_2 < \dots < \alpha_n$$

• Let $\delta \in (0,1)$ be the discount factor

Cake sharing game: $\Gamma_{\alpha,\delta}^{\text{pure}} = \langle N, \{A_i\}_{i \in N}, \{\pi_i\}_{i \in N} \rangle$ • $A_i = [0, \infty)$ is the set of pure strategies of player $i \in N$ • π_i is the payoff function of player $i \in N$, defined by:

$$\pi_i(t_1, \dots, t_n) = \begin{cases} \delta^{t_i} \alpha_i & t_i \le \max_{j \ne i} t_j \\ \delta^{t_i}(\alpha_i + \mathsf{P}) & t_i > \max_{j \ne i} t_j \end{cases}$$

The Cake Sharing Game

The Model

- $N=\{1,\ldots,n\}$ is the set of players
- Let $\alpha \in \mathbb{R}^N_+$ be the initial rights vector:

$$\mathsf{P} = 1 - \sum_{i \in N} \alpha_i > 0 \qquad 0 < \alpha_1 < \alpha_2 < \dots < \alpha_n$$

• Let $\delta \in (0,1)$ be the discount factor

Cake sharing game: $\Gamma_{\alpha,\delta}^{\text{pure}} = \langle N, \{A_i\}_{i \in N}, \{\pi_i\}_{i \in N} \rangle$ • $A_i = [0, \infty)$ is the set of pure strategies of player $i \in N$ • π_i is the payoff function of player $i \in N$, defined by:

$$\pi_i(t_1, \dots, t_n) = \begin{cases} \delta^{t_i} \alpha_i & t_i \le \max_{j \ne i} t_j \\ \delta^{t_i}(\alpha_i + \mathsf{P}) & t_i > \max_{j \ne i} t_j \end{cases}$$
 Ties??

A Negative Result

A Negative Result

There is no Nash equilibrium in pure strategies

A Negative Result

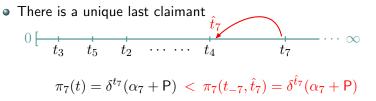
There is no Nash equilibrium in pure strategies

• There is a unique last claimant

$$0 \begin{bmatrix} & & & \\ t_3 & t_5 & t_2 & \cdots & t_4 \end{bmatrix} t_7 \cdots \infty$$
$$\pi_7(t) = \delta^{t_7}(\alpha_7 + \mathsf{P})$$

A Negative Result

There is no Nash equilibrium in pure strategies



A Negative Result

There is no Nash equilibrium in pure strategies

- There is a unique last claimant $0 \begin{bmatrix} t_{1} & t_{2} & t_{3} & t_{5} & t_{2} & \cdots & t_{4} & t_{7} \end{bmatrix} \cdots \infty$ $\pi_{7}(t) = \delta^{t_{7}}(\alpha_{7} + \mathsf{P}) < \pi_{7}(t_{-7}, \hat{t}_{7}) = \delta^{\hat{t}_{7}}(\alpha_{7} + \mathsf{P})$
- There are several last claimants

$$0 \begin{bmatrix} t_3 & t_5 & t_2 & \cdots & t_4 & t_7 = t_1 \end{bmatrix} \cdots \infty$$
$$\pi_7(t) = \delta^{t_7} \alpha_7$$

A Negative Result

There is no Nash equilibrium in pure strategies

• There is a unique last claimant $0\begin{bmatrix} t_{1} & t_{2} & t_{3} & t_{5} & t_{2} & \cdots & t_{4} & t_{7} \\ \hline t_{3} & t_{5} & t_{2} & \cdots & t_{4} & t_{7} & \cdots & \infty \\ \pi_{7}(t) = \delta^{t_{7}}(\alpha_{7} + \mathsf{P}) < \pi_{7}(t_{-7}, \hat{t}_{7}) = \delta^{\hat{t}_{7}}(\alpha_{7} + \mathsf{P})$ • There are several last claimants

$$0 [t_{3} t_{5} t_{2} \cdots t_{4} t_{7} = t_{1}] \cdots \infty$$
$$\pi_{7}(t) = \delta^{t_{7}} \alpha_{7} < \pi_{7}(t_{-7}, \hat{t}_{7}) = \delta^{\hat{t}_{7}}(\alpha_{7} + \mathsf{P})$$

A Negative Result

There is no Nash equilibrium in pure strategies

• There is a unique last claimant <u>∖</u>....∞ $0 \begin{bmatrix} t_3 & t_5 & t_2 & \cdots & t_4 \end{bmatrix}$ t_7 $\pi_7(t) = \delta^{t_7}(\alpha_7 + \mathsf{P}) < \pi_7(t_{-7}, \hat{t}_7) = \delta^{\hat{t}_7}(\alpha_7 + \mathsf{P})$ There are several last claimants $0 \begin{bmatrix} & & & & \\ t_3 & t_5 & t_2 & \cdots & t_4 & & t_7 = t_1 \end{bmatrix} \cdots \infty$ $\pi_7(t) = \delta^{t_7} \alpha_7 < \pi_7(t_{-7}, \hat{t}_7) = \delta^{\hat{t}_7}(\alpha_7 + \mathsf{P})$ **Options:**

A Negative Result

There is no Nash equilibrium in pure strategies

• There is a unique last claimant <u>∖</u>....∞ $0 \begin{bmatrix} t_3 & t_5 & t_2 & \cdots & t_4 \end{bmatrix}$ t_7 $\pi_7(t) = \delta^{t_7}(\alpha_7 + \mathsf{P}) < \pi_7(t_{-7}, \hat{t}_7) = \delta^{\hat{t}_7}(\alpha_7 + \mathsf{P})$ There are several last claimants $0 \begin{bmatrix} t_3 & t_5 & t_2 & \cdots & t_4 \end{bmatrix} t_7 \cdots \infty$ $\pi_7(t) = \delta^{t_7} \alpha_7 < \pi_7(t_{-7}, \hat{t}_7) = \delta^{\hat{t}_7}(\alpha_7 + \mathsf{P})$ **Options: Discretizing??**

A Negative Result

There is no Nash equilibrium in pure strategies

• There is a unique last claimant <u>∖</u>....∞ $0 \begin{bmatrix} t_3 & t_5 & t_2 & \cdots & t_4 \end{bmatrix}$ t_7 $\pi_7(t) = \delta^{t_7}(\alpha_7 + \mathsf{P}) < \pi_7(t_{-7}, \hat{t}_7) = \delta^{\hat{t}_7}(\alpha_7 + \mathsf{P})$ There are several last claimants $0 \begin{bmatrix} t_3 & t_5 & t_2 & \cdots & t_4 \end{bmatrix} t_7 \cdots \infty$ $\pi_7(t) = \delta^{t_7} \alpha_7 < \pi_7(t_{-7}, \hat{t}_7) = \delta^{\hat{t}_7}(\alpha_7 + \mathsf{P})$ **Options: Discretizing?? Mixing??**

Mixed Strategies

The extended model

Mixed Strategies

The extended model

A mixed strategy is a distribution function G, defined on $[0,\infty)$

Mixed Strategies

The extended model

A mixed strategy is a distribution function G, defined on $[0,\infty)$ Given a strategy profile $G = (G_1, G_2, \ldots, G_n)$,

 $\pi_i(G_{-i},t) =$

Mixed Strategies

The extended model

$$\pi_i(G_{-i},t) = t$$

Mixed Strategies

The extended model

$$\pi_i(G_{-i},t) = G_j(t^-)$$

Mixed Strategies

The extended model

$$\pi_i(G_{-i},t) = \prod_{j \neq i} G_j(t^-)$$

Mixed Strategies

The extended model

$$\pi_i(G_{-i},t) = \mathsf{P}\prod_{j\neq i} G_j(t^-)$$

Mixed Strategies

The extended model

$$\pi_i(G_{-i}, t) = \alpha_i + \mathsf{P} \prod_{j \neq i} G_j(t^-)$$

Mixed Strategies

The extended model

$$\pi_i(G_{-i},t) = \delta^t(\alpha_i + \mathsf{P}\prod_{j\neq i} G_j(t^-))$$

Mixed Strategies

The extended model

$$\pi_i(G_{-i},t) = \delta^t(\alpha_i + \mathsf{P}\prod_{j\neq i} G_j(t^-))$$

The Characterization Result

Theorem

The Characterization Result

Theorem Let $\Gamma_{\alpha,\delta}$ be an *n*-player cake sharing game.

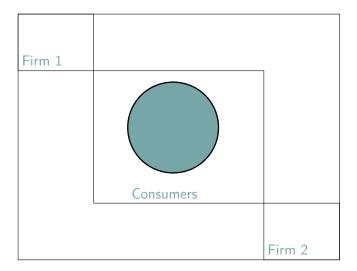
The Characterization Result

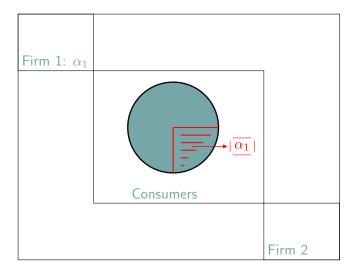
Theorem Let $\Gamma_{\alpha,\delta}$ be an *n*-player cake sharing game. Then, $\Gamma_{\alpha,\delta}$ has a unique Nash equilibrium. Moreover...

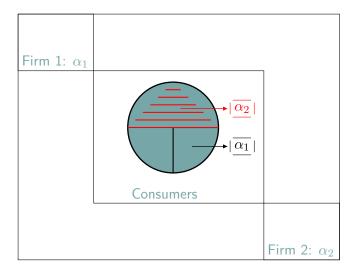
The Characterization Result

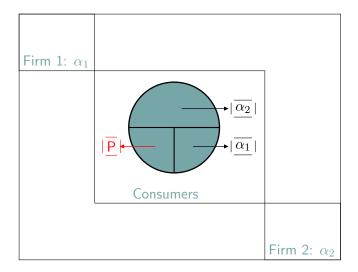
Theorem Let $\Gamma_{\alpha,\delta}$ be an *n*-player cake sharing game. Then, $\Gamma_{\alpha,\delta}$ has a unique Nash equilibrium. Moreover...

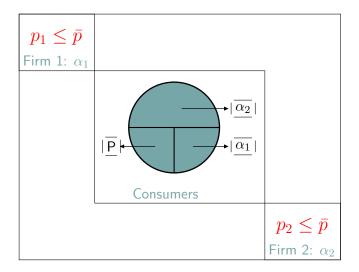
Firm 2

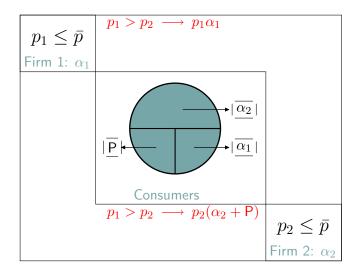


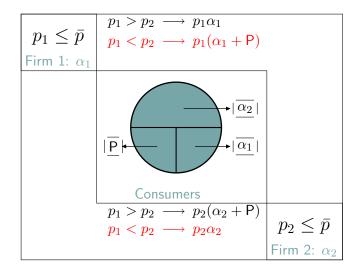


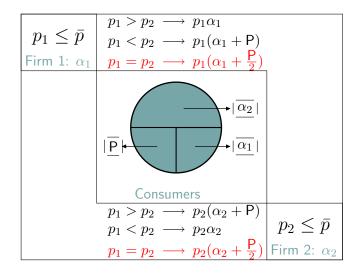


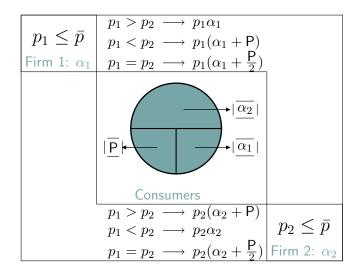












The Characterization Result and the Pricing Game

The Characterization Result and the Pricing Game

The pricing game

- N firms. Each one with α_i loyal consumers
- Strategic consumers: P
- Higher admissible price: \bar{p}

The Characterization Result and the Pricing Game

The pricing game

- N firms. Each one with α_i loyal consumers
- Strategic consumers: P
- Higher admissible price: \bar{p}

The Characterization Result and the Pricing Game

The pricing game

- N firms. Each one with α_i loyal consumers
- Strategic consumers: P
- Higher admissible price: \bar{p}

The equilibrium of the pricing game

• Only the two firms with less loyal consumers "compete"

The Characterization Result and the Pricing Game

The pricing game

- N firms. Each one with α_i loyal consumers
- Strategic consumers: P
- Higher admissible price: \bar{p}

- Only the two firms with less loyal consumers "compete"
- Only the firm with less loyal consumers gains by "competing"

The Characterization Result and the Pricing Game

The pricing game

- N firms. Each one with α_i loyal consumers
- Strategic consumers: P
- Higher admissible price: \bar{p}

- Only the two firms with less loyal consumers "compete"
- Only the firm with less loyal consumers gains by "competing"
- Strategic consumers pay no more than loyal consumers

The Characterization Result and the Pricing Game

The pricing game

- N firms. Each one with α_i loyal consumers
- Strategic consumers: P
- Higher admissible price: \bar{p}

- Only the two firms with less loyal consumers "compete"
- Only the firm with less loyal consumers gains by "competing"
- Strategic consumers pay no more than loyal consumers

Outline

Oversion of Contests

Winner-takes-all Contests

The Game

Winner-takes-all Contests

The Game

• The players want to get a **prize**

Winner-takes-all Contests

The Game

- The players want to get a **prize**
- Players choose efforts

Winner-takes-all Contests

The Game

- The players want to get a **prize**
- Players choose efforts
- The highest effort gets the prize

Winner-takes-all Contests

The Game

- The players want to get a **prize**
- Players choose efforts
- The highest effort gets the prize

Winner-takes-all Contests

The Game

- The players want to get a **prize**
- Players choose efforts
- The highest effort gets the prize

Primitives

• Efforts: $e \in E = [m, M]$

Winner-takes-all Contests

The Game

- The players want to get a **prize**
- Players choose efforts
- The highest effort gets the prize

• Efforts:
$$e \in E = [m, M]$$
 $(M = +\infty \rightarrow E = [m, +\infty))$

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

Primitives

• Efforts: $e \in E = [0, M]$ $(M = +\infty \rightarrow E = [m, +\infty))$

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

- Efforts: $e \in E = [0, M]$
- Base Payoff Functions: $b_i(e): [0, M] \to \mathbb{R}$

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

- Efforts: $e \in E = [0, M]$
- Base Payoff Functions: $b_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

- Efforts: $e \in E = [0, M]$
- Base Payoff Functions: $b_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing
- Prize Payoff Functions: $p_i(e): [0, M] \to \mathbb{R}$

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

- Efforts: $e \in E = [0, M]$
- Base Payoff Functions: $b_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing
- **Prize Payoff Functions:** $p_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

- Efforts: $e \in E = [0, M]$
- Base Payoff Functions: $b_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing
- Prize Payoff Functions: $p_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing $p_i(0) > 0$

Winner-takes-all Contests

The Game

- The players want to get a prize
- Players choose efforts
- The highest effort gets the prize

Primitives

- Efforts: $e \in E = [0, M]$
- Base Payoff Functions: $b_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing
- Prize Payoff Functions: $p_i(e) : [0, M] \to \mathbb{R}$ continuous and weakly decreasing $p_i(0) > 0$

• Tie Payoff Functions:

Winner-takes-all Contests Tie Payoff Functions

 $T_i: [0, M] \times 2^N \setminus \{\emptyset\} \to \mathbb{R}:$

$$T_i: [0, M] \times 2^N \setminus \{\emptyset\} \to \mathbb{R}:$$

$$\top 1) \ T_i(e, \{i\}) = p_i(e)$$

$$\begin{split} T_i &: [0, M] \times 2^N \setminus \{\emptyset\} \to \mathbb{R}: \\ & \mathsf{T1}) \ T_i(e, \{i\}) = p_i(e) \\ & \mathsf{T2}) \ \text{For each } S \text{ such that } i \notin S, \ T_i(e, S) = 0 \end{split}$$

$$\begin{split} T_i &: [0, M] \times 2^N \setminus \{ \emptyset \} \to \mathbb{R}: \\ & \text{T1}) \ T_i(e, \{i\}) = p_i(e) \\ & \text{T2}) \ \text{For each } S \text{ such that } i \notin S, \ T_i(e, S) = 0 \\ & \text{T3}) \ \dots \end{split}$$

Winner-takes-all Contests Tie Payoff Functions

$$\begin{split} T_i &: [0, M] \times 2^N \setminus \{ \emptyset \} \to \mathbb{R}: \\ & \text{T1}) \ T_i(e, \{i\}) = p_i(e) \\ & \text{T2}) \ \text{For each } S \text{ such that } i \notin S, \ T_i(e, S) = 0 \\ & \text{T3}) \ \dots \end{split}$$

Examples

Winner-takes-all Contests Tie Payoff Functions

$$\begin{split} T_i &: [0, M] \times 2^N \setminus \{ \emptyset \} \to \mathbb{R}: \\ & \text{T1}) \ T_i(e, \{i\}) = p_i(e) \\ & \text{T2}) \ \text{For each } S \text{ such that } i \notin S, \ T_i(e, S) = 0 \\ & \text{T3}) \ \dots \end{split}$$

Examples

•
$$T_i(e,S) = \begin{cases} \frac{p_i(e)}{|S|} & i \in S \\ 0 & \text{otherwise} \end{cases}$$

Winner-takes-all Contests Tie Payoff Functions

$$\begin{split} T_i &: [0, M] \times 2^N \setminus \{ \emptyset \} \to \mathbb{R}: \\ & \text{T1}) \ T_i(e, \{i\}) = p_i(e) \\ & \text{T2}) \ \text{For each } S \text{ such that } i \notin S, \ T_i(e, S) = 0 \\ & \text{T3}) \ \dots \end{split}$$

Examples

•
$$T_i(e, S) = \begin{cases} \frac{p_i(e)}{|S|} & i \in S \\ 0 & \text{otherwise} \end{cases}$$

• $T_i(e, S) = \begin{cases} p_i(e) & \{i\} = S \\ 0 & \text{otherwise} \end{cases}$

Winner-takes-all Contests

• Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

$$C^{f}_{pure} := (\{E_i\}_{i \in N}, \{u_i\}_{i \in N}), \text{ where}$$

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

$$C^{f}_{pure} := (\{E_i\}_{i \in N}, \{u_i\}_{i \in N}), \text{ where }$$

$$E_i := [0, M]$$

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

$$C_{pure}^{f} := (\{E_i\}_{i \in N}, \{u_i\}_{i \in N}), \text{ where }$$

$$E_i := [0, M]$$
 and $u_i(\sigma) := b_i(e_i) + T_i(e_i, w^{\sigma})$

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

$$C_{pure}^{f} := (\{E_i\}_{i \in N}, \{u_i\}_{i \in N}), \text{ where }$$

$$E_i := [0, M]$$
 and $u_i(\sigma) := b_i(e_i) + T_i(e_i, w^{\sigma})$

Winner-takes-all Contests

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

$$C^{f}_{pure} := (\{E_i\}_{i \in N}, \{u_i\}_{i \in N}), \text{ where }$$

$$E_i := [0, M]$$
 and $u_i(\sigma) := b_i(e_i) + T_i(e_i, w^{\sigma})$

Productivity functions

- Contest form: $f := (\{b_i\}_{i \in N}, \{p_i\}_{i \in N}, \{T_i\}_{i \in N})$
- For each $\sigma = (e_1, \ldots, e_n) \in [0, M]^n$, $w^{\sigma} := \operatorname{argmax}_{i \in N} \{e_i\}$
- Contest with pure strategies:

$$C_{pure}^{f} := (\{E_i\}_{i \in N}, \{u_i\}_{i \in N}), \text{ where }$$

$$E_i := [0, M]$$
 and $u_i(\sigma) := b_i(e_i) + T_i(e_i, w^{\sigma})$

Assumptions

Assumptions

• Assumption: All-pay

For each $i \in N$, $b_i(\cdot)$ is strictly decreasing

Assumptions

• Assumption: All-pay

For each $i \in N$, $b_i(\cdot)$ is strictly decreasing

• Assumption: Winner-pays

For each $i \in N$, $p_i(\cdot)$ is strictly decreasing and $b_i(\cdot)$ is constant

Assumptions

• Assumption: All-pay

For each $i \in N$, $b_i(\cdot)$ is strictly decreasing

• Assumption: Winner-pays

For each $i \in N$, $p_i(\cdot)$ is strictly decreasing and $b_i(\cdot)$ is constant

 $\bar{e}_i := \sup_{e \in [0,M]} \{ b_i(0) \le b_i(e) + p_i(e) \}$

Assumptions

• Assumption: All-pay

For each $i \in N$, $b_i(\cdot)$ is strictly decreasing

• Assumption: Winner-pays

For each $i \in N$, $p_i(\cdot)$ is strictly decreasing and $b_i(\cdot)$ is constant

 $\bar{e}_i := \sup_{e \in [0,M]} \{ b_i(0) \le b_i(e) + p_i(e) \}$

• Assumption: *M*-bounding

For each $i \in N$, $\bar{e}_i < M$

Assumptions

• Assumption: All-pay

For each $i \in N$, $b_i(\cdot)$ is strictly decreasing

• Assumption: Winner-pays

For each $i \in N$, $p_i(\cdot)$ is strictly decreasing and $b_i(\cdot)$ is constant

 $\bar{e}_i := \sup_{e \in [0,M]} \{ b_i(0) \le b_i(e) + p_i(e) \}$

• Assumption: *M*-bounding

For each $i \in N$, $\bar{e}_i < M$

Impact (trade-off) functions: for each $i \in N$, $I_i(e) = \frac{b_i(0) - b_i(e)}{p_i(e)}$

Assumptions

• Assumption: All-pay

For each $i \in N$, $b_i(\cdot)$ is strictly decreasing

• Assumption: Winner-pays

For each $i \in N$, $p_i(\cdot)$ is strictly decreasing and $b_i(\cdot)$ is constant

 $\bar{e}_i := \sup_{e \in [0,M]} \{ b_i(0) \le b_i(e) + p_i(e) \}$

• Assumption: *M*-bounding

For each $i \in N$, $\bar{e}_i < M$

Impact (trade-off) functions: for each $i \in N$, $I_i(e) = \frac{b_i(0) - b_i(e)}{p_i(e)}$

• Assumption: No-crossing

For each pair $i, j \in N$, if there is e^* such that $I_i(e^*) < I_j(e^*)$, then $I_i(e) < I_j(e)$ for all e

A First Result

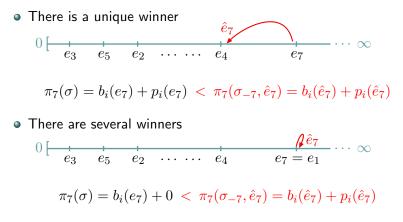
A First Result

Proposition

If the contest C_{pure}^{f} satisfies All-pay and M-bounding, then it does not have any Nash equilibrium.

A First Result

There is no Nash equilibrium in pure strategies



A First Result

Proposition

If the contest C_{pure}^{f} satisfies All-pay and M-bounding, then it does not have any Nash equilibrium.

A First Result

Proposition

If the contest C_{pure}^{f} satisfies All-pay and M-bounding, then it does not have any Nash equilibrium.

We need mixed strategies

A First Result

Proposition

If the contest C_{pure}^{f} satisfies All-pay and M-bounding, then it does not have any Nash equilibrium.

We need mixed strategies

No ties with positive probability in equilibrium

Outline

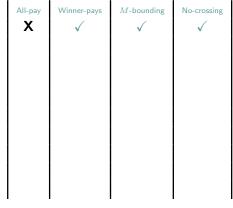
2 Winner-takes-all Contests

Generalized Models All-pay M-bounding Winner-pays No-crossing

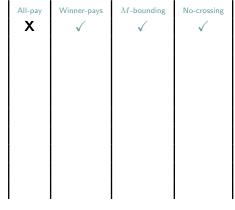
1. First Price Auction

All-pay	Winner-pays	M-bounding	No-crossing

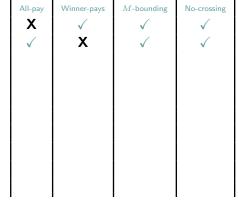
1. First Price Auction



First Price Auction
 All-Pay Auction
 (Politically Contestable Rents)



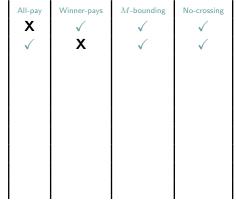
First Price Auction
 All-Pay Auction
 (Politically Contestable Rents)



- 1. First Price Auction
- 2. All-Pay Auction

(Politically Contestable Rents)

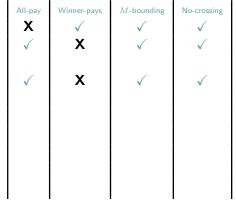
3. Politically Contestable Transfers



- 1. First Price Auction
- 2. All-Pay Auction

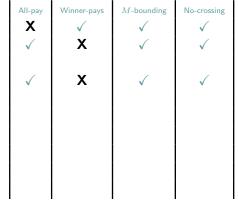
(Politically Contestable Rents)

3. Politically Contestable Transfers



- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition

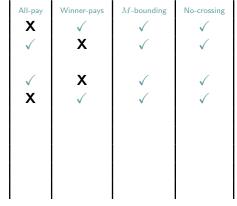


- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition

- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales



- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales



- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- $\pmb{6.} \ \mathsf{Federalism} \ \mathsf{and} \ \mathsf{Economic} \ \mathsf{Growth}$



- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- $\pmb{6.} \ \mathsf{Federalism} \ \mathsf{and} \ \mathsf{Economic} \ \mathsf{Growth}$

- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- **6.** Federalism and Economic Growth
- 7. Market Makers

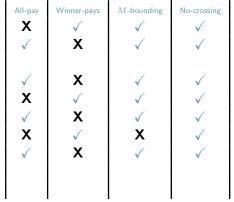


- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- **6.** Federalism and Economic Growth
- 7. Market Makers

- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- **6.** Federalism and Economic Growth
- 7. Market Makers
- 8. Litigation Systems

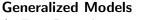


- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- $\pmb{6.} \ \mathsf{Federalism} \ \mathsf{and} \ \mathsf{Economic} \ \mathsf{Growth}$
- 7. Market Makers
- 8. Litigation Systems

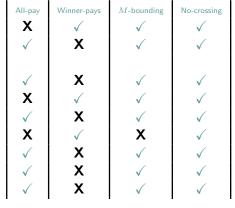
- 1. First Price Auction
- 2. All-Pay Auction

- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- $\pmb{6.} \ \mathsf{Federalism} \ \mathsf{and} \ \mathsf{Economic} \ \mathsf{Growth}$
- 7. Market Makers
- 8. Litigation Systems
- 9. Timing Games



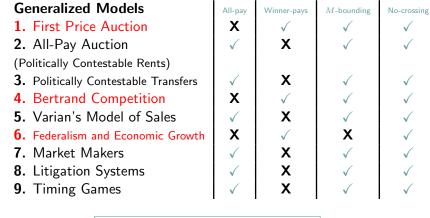
- 1. First Price Auction
- 2. All-Pay Auction

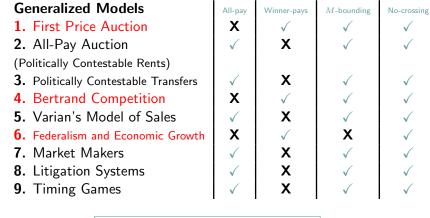
- 3. Politically Contestable Transfers
- 4. Bertrand Competition
- 5. Varian's Model of Sales
- **6.** Federalism and Economic Growth
- 7. Market Makers
- 8. Litigation Systems
- 9. Timing Games



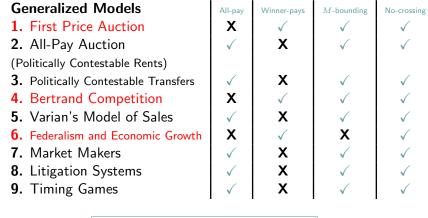
No-crossing

Discretizing??



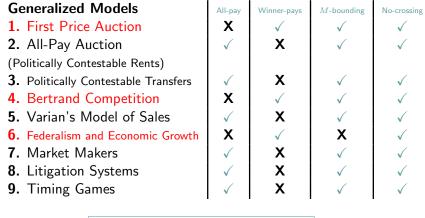


Other models



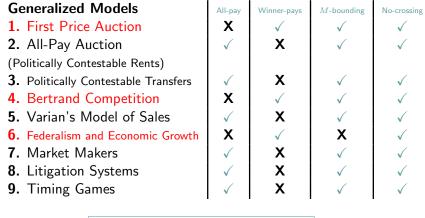
Other models

Second Price Auction



Other models

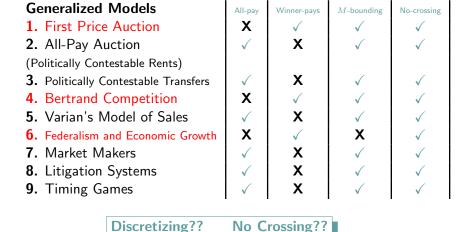
- Second Price Auction
- Second Price All-Pay Auction



Discretizing?? No Crossing??

Other models

- Second Price Auction
- Second Price All-Pay Auction
- War of Attrition

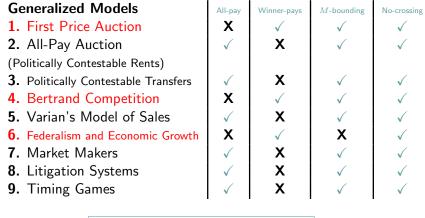


Other models

- Second Price Auction
- Second Price All-Pay Auction
- War of Attrition

 \rightarrow First Price Auction \rightarrow (First Price) All-pay Auction

 \rightarrow Timing Games



Discretizing?? No Crossing??

Other models

- Second Price Auction
- Second Price All-Pay Auction
- War of Attrition

Classification

Classification

All-pay (b_i functions strictly decreasing)

- All-pay auction (Politically contestable rents)
- Politically contestable Transfers
- Varian's model of sales
- Market makers
- Litigation systems
- (Silent) Timing games

Classification

All-pay (b_i functions strictly decreasing)

- All-pay auction (Politically contestable rents)
- Politically contestable Transfers
- Varian's model of sales
- Market makers
- Litigation systems
- (Silent) Timing games

Winner-pays (p_i functions strictly decreasing)

- First price auction
- Bertrand competition
- Federalism and economic growth (No *M*-bounding)

Discussion

Discussion

Positive Features of the model

Discussion

Positive Features of the model

Generality

Discussion

Positive Features of the model

- Generality
- Powerful to model asymmetries

Discussion

Positive Features of the model

- Generality
- Powerful to model asymmetries
- Accounts for non-linear functions

Discussion

Positive Features of the model

- Generality
- Powerful to model asymmetries
- Accounts for non-linear functions

Limitations of the model

Complete information

Discussion

Positive Features of the model

- Generality
- Powerful to model asymmetries
- Accounts for non-linear functions

- Complete information
- Multiple prizes

Discussion

Positive Features of the model

- Generality
- Powerful to model asymmetries
- Accounts for non-linear functions

- Complete information
- Multiple prizes
- No-crossing assumption

Outline

2 Winner-takes-all Contests

Output: Section 3 (2018) 3

Characterization under All-pay and M-bounding

Theorem (Characterization under All-pay and *M*-bounding)

Characterization under All-pay and M-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium

Characterization under All-pay and *M*-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium

$$G_1^*(e) = \begin{cases} 0 & e < 0 \\ I_2(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_2^*(e) = \begin{cases} 0 & e < 0 \\ I_1^*(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_i^*(e) = \begin{cases} 0 & e < 0 \\ 1 & e \ge 0 \end{cases}$$

Characterization under All-pay and *M*-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium It takes two to tango!

$$G_1^*(e) = \begin{cases} 0 & e < 0 \\ I_2(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_2^*(e) = \begin{cases} 0 & e < 0 \\ I_1^*(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_i^*(e) = \begin{cases} 0 & e < 0 \\ 1 & e \ge 0 \end{cases}$$

Characterization under All-pay and M-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium

$$G_1^*(e) = \begin{cases} 0 & e < 0 \\ I_2(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_2^*(e) = \begin{cases} 0 & e < 0 \\ I_1^*(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_i^*(e) = \begin{cases} 0 & e < 0 \\ 1 & e \ge 0 \end{cases}$$

• Otherwise, EP^f has a continuum of Nash equibria

Characterization under All-pay and *M*-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium

$$G_1^*(e) = \begin{cases} 0 & e < 0 \\ I_2(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_2^*(e) = \begin{cases} 0 & e < 0 \\ I_1^*(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_i^*(e) = \begin{cases} 0 & e < 0 \\ 1 & e \ge 0 \end{cases}$$

- Otherwise, EP^f has a continuum of Nash equibria
- All the Nash equilibria give raise to the same payoffs:

Characterization under All-pay and *M*-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium

$$G_1^*(e) = \begin{cases} 0 & e < 0 \\ I_2(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_2^*(e) = \begin{cases} 0 & e < 0 \\ I_1^*(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_i^*(e) = \begin{cases} 0 & e < 0 \\ 1 & e \ge 0 \end{cases}$$

- Otherwise, EP^f has a continuum of Nash equibria
- All the Nash equilibria give raise to the same payoffs:

$$\eta_1=b_1(ar e_2)+p_1(ar e_2)$$
 and, for each $i
eq 1,\eta_i=b_i(0)$

Characterization under All-pay and M-bounding

Theorem (Characterization under All-pay and M-bounding)

• If either n = 2 or $\bar{e}_1 > \bar{e}_2 > \bar{e}_3$, then EP^f has a unique Nash equibrium

$$G_1^*(e) = \begin{cases} 0 & e < 0 \\ I_2(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_2^*(e) = \begin{cases} 0 & e < 0 \\ I_1^*(e) & 0 \le e \le \bar{e}_2 \\ 1 & e > \bar{e}_2 \end{cases}, \quad G_i^*(e) = \begin{cases} 0 & e < 0 \\ 1 & e \ge 0 \end{cases}$$

- Otherwise, EP^f has a continuum of Nash equibria
- All the Nash equilibria give raise to the same payoffs:

$$\eta_1=b_1(ar e_2)+p_1(ar e_2)$$
 and, for each $i
eq 1,\eta_i=b_i(0)$

Implications of the result

Characterization under Winner-pays

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

• Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

- Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.
- Let $\bar{e}_1 = \bar{e}_2$. Then, the set of Nash equilibria of EP^f is nonempty if and only if there is $S \subseteq N$, |S| > 1, such that, for each $i \in S$, $T_i(\bar{e}_2, S) = 0$

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

- Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.
- Let $\bar{e}_1 = \bar{e}_2$. Then, the set of Nash equilibria of EP^f is nonempty if and only if there is $S \subseteq N$, |S| > 1, such that, for each $i \in S$, $T_i(\bar{e}_2, S) = 0$ All the Nash equilibria give raise to the same payoffs:

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

- Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.
- Let $\bar{e}_1 = \bar{e}_2$. Then, the set of Nash equilibria of EP^f is nonempty if and only if there is $S \subseteq N$, |S| > 1, such that, for each $i \in S$, $T_i(\bar{e}_2, S) = 0$ All the Nash equilibria give raise to the same payoffs:

 $\eta_1 = b_1 + p_1(\bar{e}_2)$ and, for each $i \neq 1, \eta_i = b_i$

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

- Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.
- Let $\bar{e}_1 = \bar{e}_2$. Then, the set of Nash equilibria of EP^f is nonempty if and only if there is $S \subseteq N$, |S| > 1, such that, for each $i \in S$, $T_i(\bar{e}_2, S) = 0$ All the Nash equilibria give raise to the same payoffs:

$$\eta_1 = b_1 + p_1(\bar{e}_2)$$
 and, for each $i \neq 1, \eta_i = b_i$

Implications of the result:

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

- Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.
- Let $\bar{e}_1 = \bar{e}_2$. Then, the set of Nash equilibria of EP^f is nonempty if and only if there is $S \subseteq N$, |S| > 1, such that, for each $i \in S$, $T_i(\bar{e}_2, S) = 0$ All the Nash equilibria give raise to the same payoffs:

$$\eta_1 = b_1 + p_1(\bar{e}_2)$$
 and, for each $i \neq 1, \eta_i = b_i$

Implications of the result: Auctions

Theorem (Characterization under Winner-pays and *M*-bounding)

Assume that, for each $i \in N$, $b_i(\cdot)$ equals constant $b_i \in \mathbb{R}$.

- Let $\bar{e}_1 > \bar{e}_2$. Then, EP^f has no Nash equilibrium in pure strategies but it has a continuum of mixed Nash equilibria. The equilibrium payoffs are such that $\eta_1 \in (b_1, b_1 + p_1(\bar{e}_2)]$ and, for each $i \neq 1$, $\eta_i = b_i$.
- Let $\bar{e}_1 = \bar{e}_2$. Then, the set of Nash equilibria of EP^f is nonempty if and only if there is $S \subseteq N$, |S| > 1, such that, for each $i \in S$, $T_i(\bar{e}_2, S) = 0$ All the Nash equilibria give raise to the same payoffs:

$$\eta_1 = b_1 + p_1(\bar{e}_2)$$
 and, for each $i \neq 1, \eta_i = b_i$

Implications of the result: Auctions and Bertrand competition

Characterization under Winner-pays

Corollary

A Unifying Model of Winner-takes-all Contests Julio González-Díaz

Characterization under Winner-pays

Corollary

Take a general Bertrand competition model (BM) with n firms

Characterization under Winner-pays

Corollary

Take a general Bertrand competition model (BM) with n firms If the cost function is the same for all firms and exhibits strictly decreasing average costs,

Characterization under Winner-pays

Corollary

Take a general Bertrand competition model (BM) with n firms If the cost function is the same for all firms and exhibits strictly decreasing average costs, then there is no Nash equilibrium (neither pure, nor mixed)

Characterizations

Characterizations without *M*-bounding?

Characterizations

Characterizations without *M*-bounding?

Conclusions

Conclusions

Conclusions

• Generalization of the results included in the models satisfying All-pay assumption

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - Oultiple prizes:

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - 2 Multiple prizes: K prizes

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - **2** Multiple prizes: K prizes $\rightarrow K + 1$ compete
 - Incomplete information

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - **2** Multiple prizes: K prizes $\rightarrow K + 1$ compete
 - Incomplete information
- Other applications:

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - **2** Multiple prizes: K prizes $\rightarrow K + 1$ compete
 - Incomplete information
- Other applications:
 - Hybrid auctions

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - 2 Multiple prizes: K prizes $\rightarrow K+1$ compete
 - Incomplete information
- Other applications:
 - Hybrid auctions
 - New tool to analyze Bertrand competition models

Conclusions

Conclusions

- Generalization of the results included in the models satisfying All-pay assumption
- Characterization result under Winner-pays assumption
- Further extensions:
 - Relax No-crossing
 - 2 Multiple prizes: K prizes $\rightarrow K+1$ compete
 - Incomplete information
- Other applications:

. . .

- Hybrid auctions
- New tool to analyze Bertrand competition models

A Unifying Model of Winner-takes-all Contests

Julio González-Díaz

Kellogg School of Management (CMS-EMS) Northwestern University and Research Group in Economic Analysis Universidad de Vigo

March 13th, 2007

