Essays on Competition and Cooperation in Game Theoretical Models

Julio González Díaz

Department of Statistics and Operations Research Universidade de Santiago de Compostela

> Thesis Dissertation June 29th, 2005

'문▶' ★ 문≯

/司 ▶ ◀

Competition and Cooperation in Game Theoretical Models Julio González Díaz

Part I: Noncooperative Game Theory

Part I: Noncooperative Game Theory

• A Silent Battle over a Cake (Chapter 1)

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake (Chapter 1)
- A Noncooperative Approach to Bankruptcy Problems (Chapter 4)

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake (Chapter 1)
- A Noncooperative Approach to Bankruptcy Problems (Chapter 4)
- Repeated Games (Chapters 2 and 3)

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake (Chapter 1)
- A Noncooperative Approach to Bankruptcy Problems (Chapter 4)
- Repeated Games (Chapters 2 and 3)

Part II: Cooperative Game Theory (On the Geometry of TU games)

• A Geometric Characterization of the τ -value (Chapter 8)

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake (Chapter 1)
- A Noncooperative Approach to Bankruptcy Problems (Chapter 4)
- Repeated Games (Chapters 2 and 3)

- A Geometric Characterization of the τ -value (Chapter 8)
- The Core-Center (Chapters 5, 6, and 7)

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake (Chapter 1)
- A Noncooperative Approach to Bankruptcy Problems (Chapter 4)
- Repeated Games (Chapters 2 and 3)

Repeated Games

- A Geometric Characterization of the au-value (Chapter 8)
- The Core-Center (Chapters 5, 6, and 7)

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake (Chapter 1)
- A Noncooperative Approach to Bankruptcy Problems (Chapter 4)
- Repeated Games (Chapters 2 and 3)

Repeated Games

- A Geometric Characterization of the au-value (Chapter 8)
- The Core-Center (Chapters 5, 6, and 7)

Part I

Noncooperative Game Theory

Competition and Cooperation in Game Theoretical Models Julio González Día

What is a Strategic Game? And a Nash Equilibrium?

Competition and Cooperation in Game Theoretical Models Julio González Día

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

Competition and Cooperation in Game Theoretical Models Julio González Día

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

• $N = \{1, \dots, n\}$ is the set of players

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$ and each $b_i \in A_i$,

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$ and each $b_i \in A_i$,

$$\pi_i(,)$$

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$ and each $b_i \in A_i$,

 $\pi_i(b_i, a_{-i})$

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$ and each $b_i \in A_i$,

$$\pi_i(b_i, a_{-i}) \leq$$

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$ and each $b_i \in A_i$,

$$\pi_i(b_i, a_{-i}) \leq \pi_i(a)$$

What is a Strategic Game? And a Nash Equilibrium?

Strategic game

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^{n} \pi_i$, where $\pi_i : A \to \mathbb{R}$ is the payoff function of player i

Nash equilibrium

An action profile $a \in A$ is a Nash equilibrium of (N, A, π) if for each $i \in N$ and each $b_i \in A_i$,

$$\pi_i(b_i, a_{-i}) \le \pi_i(a)$$

Unilateral deviations are not profitable

Brief Overview

A Silent Battle over a Cake

A Silent Battle over a Cake Brief Overview

A Noncooperative Approach to Bankruptcy Problems
Brief Overview

Repeated Games
Definitions and Classic Results
A Generalized Nash Folk Theorem
Unilateral Commitments

Brief Overview

Timing Games

Brief Overview

Timing Games

• Patent race

Brief Overview

Timing Games

"Non-Silent" timing games

Patent race

Brief Overview

Timing Games

"Non-Silent" timing games

Patent race

"Silent" timing games

Brief Overview

Timing Games

"Non-Silent" timing games

Patent race

"Silent" timing games

• J. Reinganum, 1981 (Review of Economic Studies)

Brief Overview

Timing Games

"Non-Silent" timing games

Patent race

"Silent" timing games

- J. Reinganum, 1981 (Review of Economic Studies)
- H. Hamers, 1993 (Mathematical Methods of OR)

Timing Games

"Non-Silent" timing games

Patent race

"Silent" timing games

- J. Reinganum, 1981 (Review of Economic Studies)
- H. Hamers, 1993

(Mathematical Methods of OR) — Cake Sharing Games

Brief Overview

Results

Hamers (1993) introduces the cake sharing games

Brief Overview

Results

Hamers (1993) introduces the cake sharing games

Existing Results

Hamers (1993) introduces the cake sharing games

Existing Results

• Hamers (1993) proves the existence and uniqueness of the Nash equilibrium of any two player cake sharing game

Hamers (1993) introduces the cake sharing games

Existing Results

- Hamers (1993) proves the existence and uniqueness of the Nash equilibrium of any two player cake sharing game
- Koops (2001) finds several properties that Nash equilibria of three player cake sharing games must satisfy

Hamers (1993) introduces the cake sharing games

Existing Results

- Hamers (1993) proves the existence and uniqueness of the Nash equilibrium of any two player cake sharing game
- Koops (2001) finds several properties that Nash equilibria of three player cake sharing games must satisfy

Our Contribution

Hamers (1993) introduces the cake sharing games

Existing Results

- Hamers (1993) proves the existence and uniqueness of the Nash equilibrium of any two player cake sharing game
- Koops (2001) finds several properties that Nash equilibria of three player cake sharing games must satisfy

Our Contribution

• Alternative proof of the existence and uniqueness result of the Nash equilibrium in the two player case

Hamers (1993) introduces the cake sharing games

Existing Results

- Hamers (1993) proves the existence and uniqueness of the Nash equilibrium of any two player cake sharing game
- Koops (2001) finds several properties that Nash equilibria of three player cake sharing games must satisfy

Our Contribution

- Alternative proof of the existence and uniqueness result of the Nash equilibrium in the two player case
- Proof of the existence and uniqueness result of the Nash equilibrium in the general case (*n*-players)

A Noncooperative Approach to Bankruptcy Problems

- A Silent Battle over a Cake
 Brief Overview
- A Noncooperative Approach to Bankruptcy Problems
 Brief Overview
- Repeated Games
 Definitions and Classic Results
 A Generalized Nash Folk Theorem
 Unilateral Commitments

Brief Overview

Bankruptcy Problems and Bankruptcy Rules

Brief Overview

Bankruptcy Problems and Bankruptcy Rules

Bankruptcy Problem

● (*E*, *d*)

Brief Overview

Bankruptcy Problems and Bankruptcy Rules

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

$$\begin{aligned} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (E,d) & \longmapsto & \varphi(E,d) \end{aligned}$$

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

$$\begin{aligned} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (E,d) & \longmapsto & \varphi(E,d) \end{aligned}$$

• $\varphi_i(E,d) \in [0,d_i]$

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

$$\begin{array}{rccc} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (E,d) & \longmapsto & \varphi(E,d) \end{array}$$

•
$$\varphi_i(E,d) \in [0,d_i]$$

• $\sum_{i \in N} \varphi_i(E, d) = E$

Foundations for rules

Bankruptcy Problems and Bankruptcy Rules

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

$$arphi : egin{array}{ccc} \Omega & \longrightarrow & \mathbb{R}^n \ (E,d) & \longmapsto & arphi(E,d) \end{array}$$

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

Foundations for rules

• Axiomatic approach

$$\begin{array}{rccc} \varphi: & \Omega & \longrightarrow & \mathbb{R}^n \\ & (E,d) & \longmapsto & \varphi(E,d) \end{array}$$

Bankruptcy Problem

- (*E*, *d*)
- $E \in \mathbb{R}_+$ Amount to be divided
- $d \in \mathbb{R}^n_+$ Claims of the agents
- $\sum_{i=1}^{n} d_i > E$

Bankruptcy Rules

Foundations for rules

- Axiomatic approach
- Noncooperative approach

$$\begin{array}{rccc} \varphi: & \Omega & \longrightarrow & \mathbb{R}^n \\ & (E,d) & \longmapsto & \varphi(E,d) \end{array}$$

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

A strategic game

• Bankruptcy problem (E, d)

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

- Bankruptcy problem (E, d)
- Each player i announces a portion of d_i

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

- Bankruptcy problem (E, d)
- Each player i announces a portion of d_i (admissible for him)

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

- Bankruptcy problem (E, d)
- Each player i announces a portion of d_i (admissible for him)
- The lower the portion you claim,

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

- Bankruptcy problem (E, d)
- Each player i announces a portion of d_i (admissible for him)
- The lower the portion you claim, the higher your priority

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

- Bankruptcy problem (E, d)
- Each player i announces a portion of d_i (admissible for him)
- The lower the portion you claim, the higher your priority
- Unique Nash payoff

Brief Overview

Bankruptcy Problems and Bankruptcy Rules An Example

- Bankruptcy problem (E, d)
- Each player i announces a portion of d_i (admissible for him)
- The lower the portion you claim, the higher your priority
- Unique Nash payoff
- Coincides with the proposal of the proportional rule

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

We define a family, \mathcal{G} , of strategic games such that:

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

We define a family, \mathcal{G} , of strategic games such that:

• Each $G \in \mathcal{G}$ has a unique Nash payoff N(G)

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

We define a family, ${\mathcal G},$ of strategic games such that:

- Each $G \in \mathcal{G}$ has a unique Nash payoff N(G)
- $\bullet\,$ For each bankruptcy rule φ

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

We define a family, ${\mathcal G},$ of strategic games such that:

- Each $G \in \mathcal{G}$ has a unique Nash payoff N(G)
- For each bankruptcy rule φ and each bankruptcy problem (E, d),

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

We define a family, $\mathcal{G}\text{,}$ of strategic games such that:

- Each $G \in \mathcal{G}$ has a unique Nash payoff N(G)
- For each bankruptcy rule φ and each bankruptcy problem (E, d), there is $G \in \mathcal{G}$ such that $N(G) = \varphi(E, d)$

Brief Overview

Bankruptcy Problems and Bankruptcy Rules Results

Our contribution

We define a family, \mathcal{G} , of strategic games such that:

- Each $G \in \mathcal{G}$ has a unique Nash payoff N(G)
- For each bankruptcy rule φ and each bankruptcy problem (E, d), there is $G \in \mathcal{G}$ such that $N(G) = \varphi(E, d)$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Repeated Games

- A Silent Battle over a Cake
 Brief Overview
- A Noncooperative Approach to Bankruptcy Problems
 Brief Overview

3 Repeated Games

- Definitions and Classic Results
- A Generalized Nash Folk Theorem
- Unilateral Commitments

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Repeated Games

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Repeated Games

"The model of a repeated game is designed to examine the logic of longterm interaction. It captures the idea that a player will take into account the effect of his current behavior on the other players' future behavior, and aims to explain phenomena like cooperation, revenge, and threats".

(Martin J. Osborne, Ariel Rubinstein)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Repeated Games

"The model of a repeated game is designed to examine the logic of longterm interaction. It captures the idea that a player will take into account the effect of his current behavior on the other players' future behavior, and aims to explain phenomena like cooperation, revenge, and threats".

(Martin J. Osborne, Ariel Rubinstein)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Repeated Games

"The model of a repeated game is designed to examine the logic of longterm interaction. It captures the idea that a player will take into account the effect of his current behavior on the other players' future behavior, and aims to explain phenomena like cooperation, revenge, and threats".

(Martin J. Osborne, Ariel Rubinstein)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Stage Game

A strategic game G is a triple (N, A, π) where:

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Stage Game

- A strategic game G is a triple (N, A, π) where:
 - $N = \{1, \ldots, n\}$ is the set of players
 - $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
 - $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i : A o \mathbb{R}$ is the utility function of player i

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i \colon A o \mathbb{R}$ is the utility function of player i

Minmax Payoffs:

$$v_i := \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$$

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i \colon A o \mathbb{R}$ is the utility function of player i

Minmax Payoffs:

$$v_i := \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs:

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i \colon A o \mathbb{R}$ is the utility function of player i

Minmax Payoffs:

$$v_i := \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs:

F :=

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i \colon A o \mathbb{R}$ is the utility function of player i

Minmax Payoffs:

$$v_i := \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs:

 $F := co\{\pi(a) : a \in \pi(A)\}$

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i \colon A o \mathbb{R}$ is the utility function of player i

Minmax Payoffs:

$$v_i := \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs:

 $F := co\{\pi(a) : a \in \pi(A)\} \cap \{u \in \mathbb{R}^n : u \ge v\}$

A strategic game G is a triple (N, A, π) where:

- $N = \{1, \ldots, n\}$ is the set of players
- $A = \prod_{i=1}^{n} A_i$, where A_i denotes the set of actions for player i
- $\pi = \prod_{i=1}^n \pi_i$, where $\pi_i \colon A o \mathbb{R}$ is the utility function of player i

Minmax Payoffs:

$$v_i := \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$$

Feasible and Individually Rational Payoffs:

 $F := co\{\pi(a) : a \in \pi(A)\} \cap \{u \in \mathbb{R}^n : u \ge v\}$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Repeated Game

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Repeated Game

Repeated Games (with complete information)

• Let $G = (N, A, \pi)$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Repeated Game

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Repeated Game

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Repeated Game

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where
• $N := \{1, \dots, n\}$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Repeated Game

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ
- $G_{\delta}^T := (N, S, \pi_{\delta}^T)$ where • $N := \{1, \dots, n\}$ • $S := \prod_{i \in N} S_i$,

The Repeated Game

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where
• $N := \{1, \dots, n\}$
• $S := \prod_{i \in N} S_i, S_i := A_i^H$

The Repeated Game

Repeated Games (with complete information)

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where

•
$$N := \{1, ..., n\}$$

•
$$S := \prod_{i \in N} S_i, S_i := A_i^H$$

The Repeated Game

Repeated Games (with complete information)

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where

•
$$N := \{1, \ldots, n\}$$

•
$$S := \prod_{i \in N} S_i$$
, $S_i := A_i^H$

$$\pi^T_{\delta}(\sigma) :=$$

The Repeated Game

Repeated Games (with complete information)

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where

$$\bullet N := \{1, \dots, n\}$$

•
$$S := \prod_{i \in N} S_i$$
, $S_i := A_i^H$

$$\pi^T_\delta(\sigma) := rac{1}{T} \sum_{t=1}^T = \pi(a^t)$$

The Repeated Game

Repeated Games (with complete information)

- Let $G = (N, A, \pi)$
- G_{δ}^{T} denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where

•
$$N := \{1, \ldots, n\}$$

•
$$S := \prod_{i \in N} S_i, S_i := A_i^H$$

$$\pi^T_\delta(\sigma) := \; rac{1-\delta}{1-\delta^T} \sum_{t=1}^T \delta^{t-1} \pi(a^t)$$

The Repeated Game

Repeated Games (with complete information)

- Let $G = (N, A, \pi)$
- $\bullet~G_{\delta}^{T}$ denotes the T-fold repetition of the game G with discount parameter δ

•
$$G_{\delta}^T := (N, S, \pi_{\delta}^T)$$
 where

•
$$N := \{1, \ldots, n\}$$

•
$$S := \prod_{i \in N} S_i$$
, $S_i := A_i^H$

$$\pi_{\delta}^{T}(\sigma) := \frac{1-\delta}{1-\delta^{T}} \sum_{t=1}^{T} \delta^{t-1} \pi(a^{t})$$
Folk Theorems

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

General Considerations

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

General Considerations

Our framework:

• The sets of actions are compact

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

General Considerations

- The sets of actions are compact
- Continuous payoff functions

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

General Considerations

- The sets of actions are compact
- Continuous payoff functions
- Finite Horizon

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

General Considerations

- The sets of actions are compact
- Continuous payoff functions
- Finite Horizon
- Nash Equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

General Considerations

- The sets of actions are compact
- Continuous payoff functions
- Finite Horizon
- Nash Equilibrium
- Complete Information

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

General Considerations

- The sets of actions are compact
- Continuous payoff functions
- Finite Horizon
- Nash Equilibrium
- Complete Information
- Perfect Monitoring (Observable mixed actions)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The State of Art The Folk Theorems

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The State of Art The Folk Theorems

	Nash	Subgame Perfect
Infinite Horizon	The "Folk Theorem" (1970s)	Fudenberg and Maskin (1986) Abreu et al. (1994) Wen (1994)
Finite Horizon	Benoît and Krishna (1987)	Benoît and Krishna (1985) Smith (1995) Gossner (1995)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The State of Art The Folk Theorems

	Nash	Subgame Perfect
Infinite Horizon	The "Folk Theorem" (1970s)	Fudenberg and Maskin (1986) Abreu et al. (1994) Wen (1994)
Finite Horizon	Benoît and Krishna (1987)	Benoît and Krishna (1985) Smith (1995) Gossner (1995)

Necessary and Sufficient conditions

Competition and Cooperation in Game Theoretical Models Julio González Dí

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The State of Art The Folk Theorems

	Nash	Subgame Perfect
Infinite Horizon	The "Folk Theorem" (1970s)	Fudenberg and Maskin (1986) Abreu et al. (1994) Wen (1994)
Finite Horizon	Benoît and Krishna (1987)	Benoît and Krishna (1985) Smith (1995) Gossner (1995)

Necessary and Sufficient conditions

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

(Benoît and Krishna, 1987)

Assumption for the game G

Result

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

(Benoît and Krishna, 1987)

Assumption for the game G

• Existence of strictly rational Nash payoffs

Result

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

(Benoît and Krishna, 1987)

Assumption for the game ${\cal G}$

• Existence of strictly rational Nash payoffs For each player *i* there is a Nash Equilibrium a^i of *G* such that $\pi_i(a^i) > v_i$

Result

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

(Benoît and Krishna, 1987)

Assumption for the game ${\cal G}$

• Existence of strictly rational Nash payoffs For each player i there is a Nash Equilibrium a^i of G such that $\pi_i(a^i) > v_i$

Result

• Every payoff in F can be approximated in equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

(Benoît and Krishna, 1987)

Assumption for the game G

• Existence of strictly rational Nash payoffs For each player i there is a Nash Equilibrium a^i of G such that $\pi_i(a^i) > v_i$

Result

• Every payoff in F can be approximated in equilibrium For each $u \in F$ and each $\varepsilon > 0$, there are T_0 and δ_0 such that for each $T \ge T_0$ and each $\delta \in [\delta_0, 1]$, there is a Nash Equilibrium σ of $G(\delta, T)$ satisfying that $||\pi_{\delta}^T(\sigma) - u|| < \varepsilon$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

(Benoît and Krishna, 1987)

Assumption for the game G

• Existence of strictly rational Nash payoffs For each player i there is a Nash Equilibrium a^i of G such that $\pi_i(a^i) > v_i$

Result

• Every payoff in F can be approximated in equilibrium For each $u \in F$ and each $\varepsilon > 0$, there are T_0 and δ_0 such that for each $T \ge T_0$ and each $\delta \in [\delta_0, 1]$, there is a Nash Equilibrium σ of $G(\delta, T)$ satisfying that $||\pi_{\delta}^T(\sigma) - u|| < \varepsilon$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Our Contribution Minmax Bettering Ladders

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Our Contribution Minmax Bettering Ladders

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

Example

• Minmax Payoff (0,0,0)

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

- Minmax Payoff (0,0,0)
- Nash Equilibrium (T,I,L), Payoff (0,0,3)

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

- Minmax Payoff (0,0,0)
- Nash Equilibrium (T,I,L), Payoff (0,0,3) (B-K not met)

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

- Minmax Payoff (0,0,0)
- Nash Equilibrium (T,I,L), Payoff (0,0,3)
 (B-K not met)
- Player 3 can be threatened

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Our Contribution Minmax Bettering Ladders

		m	r	I	m	r
Т	0,0,3	0,-1,0	0,-1,0	0,3,-1	0,-1,-1	1,-1,-1
Μ	-1,0,0	0,-1,0	0,-1,0	-1,0,-1	-1,-1,-1	0,-1,-1
В	-1,0,0	0,-1,0	0,-1,0	-1,0,-1	-1,-1,-1	0,-1,-1
					R	

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Our Contribution Minmax Bettering Ladders

Example

• Player 3 is forced to play R

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

- Player 3 is forced to play R
- The profile α³ =(T,I,R) is a Nash Equilibrium of the reduced game with Payoff (0,3,-1)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Our Contribution Minmax Bettering Ladders

- Player 3 is forced to play R
- The profile α³ =(T,I,R) is a Nash Equilibrium of the reduced game with Payoff (0,3,-1)
- Now player 2 can be threatened

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

Our Contribution Minmax Bettering Ladders

Example

• Player 3 is forced to play R and player 2 to play r

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Our Contribution Minmax Bettering Ladders

Example

• Player 3 is forced to play R and player 2 to play r

 The profile α³² =(T,r,R) is a Nash Equilibrium of the reduced game with Payoff (1,-1,-1)

Our Contribution Minmax Bettering Ladders

- Player 3 is forced to play R and player 2 to play r
- The profile $\alpha^{32} = (T, r, R)$ is a Nash Equilibrium of the reduced game with Payoff (1,-1,-1)
- Now player 1 can be threatened

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø		
game	G		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø		
game	G		
"Nash equilibrium"	σ^1		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1		
game	G			
"Nash equilibrium"	σ^1			

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1		
game	G	$G(a_{N_1})$		
"Nash equilibrium"	σ^1			

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1		
game	G	$G(a_{N_1})$		
"Nash equilibrium"	σ^1	σ^2		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1		
game	G	$G(a_{N_1})$		
"Nash equilibrium"	σ^1	σ^2		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1	 N_{h-1}	
game	G	$G(a_{N_1})$		
"Nash equilibrium"	σ^1	σ^2		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1	 N_{h-1}	
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2		

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1	 N_{h-1}	
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Minmax Bettering Ladders Formal Definition

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

A minimax-bettering ladder of a game G is a triplet $\{\mathcal{N}, \mathcal{A}, \Sigma\}$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Minmax Bettering Ladders Formal Definition

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

A minimax-bettering ladder of a game G is a triplet $\{\mathcal{N}, \mathcal{A}, \Sigma\}$

• $\mathcal{N} := \{ \emptyset = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_h \}$ subsets of N

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Minmax Bettering Ladders Formal Definition

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

A **minimax-bettering ladder** of a game G is a triplet $\{\mathcal{N}, \mathcal{A}, \Sigma\}$

- $\mathcal{N} := \{ \emptyset = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_h \}$ subsets of N
- $\mathcal{A} := \{a_{N_1} \in A_{N_1}, \dots, a_{N_{h-1}} \in A_{N_{h-1}}\}$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Minmax Bettering Ladders Formal Definition

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

A minimax-bettering ladder of a game G is a triplet $\{\mathcal{N}, \mathcal{A}, \Sigma\}$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Minmax Bettering Ladders Formal Definition

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

A minimax-bettering ladder of a game G is a triplet $\{\mathcal{N}, \mathcal{A}, \Sigma\}$

 N_h is the top rung of the ladder

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Minmax Bettering Ladders Formal Definition

reliable players	Ø	N_1	 N_{h-1}	N_h
game	G	$G(a_{N_1})$	 $G(a_{N_{h-1}})$	
"Nash equilibrium"	σ^1	σ^2	 σ^h	

A minimax-bettering ladder of a game G is a triplet $\{\mathcal{N}, \mathcal{A}, \Sigma\}$

•
$$\mathcal{N} := \{ \emptyset = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_h \}$$
 subsets of N
• $\mathcal{A} := \{ a_{N_1} \in A_{N_1}, \dots, a_{N_{h-1}} \in A_{N_{h-1}} \}$
• $\Sigma := \{ \sigma^1, \dots, \sigma^h \}$

 N_h is the top rung of the ladder $N_h = N \rightarrow$ complete minimax-bettering ladder

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The New Folk Theorem (González-Díaz, 2003)

Assumption for the game G

Result

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The New Folk Theorem (González-Díaz, 2003)

Assumption for the game G

• Existence of a complete minmax bettering ladder

Result

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The New Folk Theorem (González-Díaz, 2003)

Assumption for the game ${\cal G}$

• Existence of a complete minmax bettering ladder

Result

• Every payoff in F can be approximated in equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The New Folk Theorem (González-Díaz, 2003)

Assumption for the game ${\cal G}$

• Existence of a complete minmax bettering ladder

Result

• Every payoff in F can be approximated in equilibrium

Remark Unlike Benoît and Krishna's result, this theorem provides a necessary and sufficient condition

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The New Folk Theorem (González-Díaz, 2003)

Assumption for the game ${\cal G}$

• Existence of a complete minmax bettering ladder

Result

• Every payoff in F can be approximated in equilibrium

Remark

Unlike Benoît and Krishna's result, this theorem provides a necessary and sufficient condition

Why the word generalized?

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments

Motivation

Commitment

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments

- Commitment
- Repeated games

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments

- Commitment
- Repeated games
- Unilateral commitments in repeated games

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments

- Commitment
- Repeated games
- Unilateral commitments in repeated games
- Delegation games

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, \dots, \pi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, \dots, \pi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, ..., n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, ..., \pi_n) \end{cases}$$

• The repeated game: $G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, ..., n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$ $A^U := \prod_{i \in N} A_i^U$, where A_i^U is the set of all couples (A_i^c, α_i) such that

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, \dots, \pi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$

 $A^U:=\prod_{i\in N}A^U_i$, where A^U_i is the set of all couples $\left(A^c_i,\alpha_i\right)$ such that

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, \dots, n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, \dots, \pi_n) \end{cases}$$

• The repeated game:
$$G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, \dots, n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$

 $A^U := \prod_{i \in N} A^U_i$, where A^U_i is the set of all couples $\left(A^c_i, \alpha_i\right)$ such that

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, ..., n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, ..., \pi_n) \end{cases}$$

• The repeated game: $G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, ..., n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$

 $A^U := \prod_{i \in N} A^U_i$, where A^U_i is the set of all couples (A^c_i, α_i) such that

$$\begin{array}{l} \textcircled{0} & \emptyset \subsetneq A_i^c \subseteq A_i, \\ \textcircled{0} & \alpha_i : \prod_{j \in N} 2^{A_j} \longrightarrow A_i \text{ and, for each } A^c \in \prod_{j \in N} 2^{A_j}, \\ & \alpha_i(A^c) \in A_i^c \end{array}$$

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, ..., n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, ..., \pi_n) \end{cases}$$

• The repeated game: $G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, ..., n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$

 $A^U := \prod_{i \in N} A^U_i$, where A^U_i is the set of all couples $\left(A^c_i, \alpha_i\right)$ such that

$$\begin{array}{l} \textcircled{0} & \emptyset \subsetneq A_i^c \subseteq A_i, \\ \textcircled{0} & \alpha_i : \prod_{j \in N} 2^{A_j} \longrightarrow A_i \text{ and, for each } A^c \in \prod_{j \in N} 2^{A_j}, \\ & \alpha_i(A^c) \in A_i^c \end{array}$$

Commitments are Unilateral

Competition and Cooperation in Game Theoretical Models

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Unilateral Commitments Definitions

• The stage game:
$$G := (N, A, \pi) \begin{cases} N := \{1, ..., n\} \\ A := \prod_{i \in N} A_i \\ \pi := (\pi_1, ..., \pi_n) \end{cases}$$

• The repeated game: $G_{\delta}^T := (N, S, \pi_{\delta}^T) \begin{cases} N := \{1, ..., n\} \\ S := \prod_{i \in N} S_i \\ (S_i := A_i^H) \\ \pi_{\delta}^T \end{cases}$

• The UC-extension: $U(G) := (N, A^U, \pi^U)$

 $A^U := \prod_{i \in N} A^U_i$, where A^U_i is the set of all couples (A^c_i, α_i) such that

$$\begin{array}{l} \textcircled{0} & \emptyset \subsetneq A_i^c \subseteq A_i, \\ \textcircled{0} & \alpha_i : \prod_{j \in N} 2^{A_j} \longrightarrow A_i \text{ and, for each } A^c \in \prod_{j \in N} 2^{A_j}, \\ & \alpha_i(A^c) \in A_i^c \end{array}$$

Commitments are Unilateral

Competition and Cooperation in Game Theoretical Models

ulio González Díaz

Complete Information

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

• Eliminates Nash equilibria based on incredible threats

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definition (Informal)

Let σ be a strategy profile.

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definition (Informal)

Let σ be a strategy profile. A subgame is σ -relevant

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- \bullet A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definition (Informal)

Let σ be a strategy profile. A subgame is σ -relevant if it can be reached by a sequence of unilateral deviations of the players

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- \bullet A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definition (Informal)

Let σ be a strategy profile. A subgame is σ -relevant if it can be reached by a sequence of unilateral deviations of the players

Virtually Subgame Perfect Equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- \bullet A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definition (Informal)

Let σ be a strategy profile. A subgame is σ -relevant if it can be reached by a sequence of unilateral deviations of the players

Virtually Subgame Perfect Equilibrium

• Eliminates Nash equilibria based on incredible threats

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Motivation

Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- \bullet A strategy σ is a SPE if it prescribes a Nash equilibrium for each subgame

Definition (Informal)

Let σ be a strategy profile. A subgame is σ -relevant if it can be reached by a sequence of unilateral deviations of the players

Virtually Subgame Perfect Equilibrium

- Eliminates Nash equilibria based on incredible threats
- A strategy σ is a VSPE if it prescribes a Nash equilibrium for USC each σ-relevant subgame

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

• In our model, we face very large trees

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

- In our model, we face very large trees
- There can be subgames with no Nash Equilibrium

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

- In our model, we face very large trees
- There can be subgames with no Nash Equilibrium
- Hence,

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Virtually Subgame Perfect Equilibrium Discussion

Subgame Perfect Vs Virtually Subgame Perfect

Why do we need VSPE?

- In our model, we face very large trees
- There can be subgames with no Nash Equilibrium
- Hence,

We cannot use the classic results for the existence of SPE

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Folk Theorems

Competition and Cooperation in Game Theoretical Models Julio González Día
Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

Existence of a complete minmax bettering ladder

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

Existence of a complete minmax bettering ladder

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

Existence of a complete minmax bettering ladder

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Subgame Perfect Folk Theorem (without UC)

G must have a pair of Nash equilibra in which some player gets different payoffs

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

The Folk Theorems Finite Horizon

Nash Folk Theorem (without UC)

Existence of a complete minmax bettering ladder

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Subgame Perfect Folk Theorem (without UC)

G must have a pair of Nash equilibra in which some player gets different payoffs

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Folk Theorems Finite Horizon

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

The Folk Theorems Finite Horizon

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold

Proposition 2

Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\pi(\bar{a})$

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

The Folk Theorems Finite Horizon

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold

Proposition 2

Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\pi(\bar{a})$

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments

Definitions and Classic Results A Generalized Nash Folk Theorem Jnilateral Commitments

The Folk Theorems Finite Horizon

Theorem 1 (García-Jurado et al., 2000)

No assumption is needed for the Nash folk theorem with UC

Proposition 1

The counterpart of Theorem 1 for VSPE does not hold

Proposition 2

Let $\bar{a} \in A$ be a Nash equilibrium of G. Then, the game U(G) has a VSPE with payoff $\pi(\bar{a})$

Theorem 2

No assumption is needed for the VSPE folk theorem when we have two stages of commitments

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None		
Infinite Horizon	(Fudenberg and Maskin, 1986)		
(Virtual) Perfect Th.	Non-Equivalent Utilities		
Infinite Horizon	(Abreu et al., 1994)		
Nash Theorem	Minimax-Bettering Ladder		
Finite Horizon	(González-Díaz, 2003)		
(Virtual) Perfect Th.	Recursively-distinct		
Finite Horizon	Nash payoffs (Smith, 1995)		

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	
Nash Theorem	Minimax-Bettering Ladder		
Finite Horizon	(González-Díaz, 2003)		
(Virtual) Perfect Th.	Recursively-distinct		
Finite Horizon	Nash payoffs (Smith, 1995)		

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	
Nash Theorem	Minimax-Bettering Ladder	None	
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	
(Virtual) Perfect Th.	Recursively-distinct		
Finite Horizon	Nash payoffs (Smith, 1995)		

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	
Nash Theorem	Minimax-Bettering Ladder	None	
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	
(Virtual) Perfect Th.	Recursively-distinct	Minimax-Bettering Ladder	
Finite Horizon	Nash payoffs (Smith, 1995)	(Prop. 2, only sufficient)	

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	None
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	(Prop. 2)
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	None
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	(Prop. 2)
Nash Theorem	Minimax-Bettering Ladder	None	None
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	(Prop. 2)
(Virtual) Perfect Th.	Recursively-distinct	Minimax-Bettering Ladder	None
Finite Horizon	Nash payoffs (Smith, 1995)	(Prop. 2, only sufficient)	(Th. 2)

	Without UC	1 stage of UC	2 stages of UC
Nash Theorem	None	None	None
Infinite Horizon	(Fudenberg and Maskin, 1986)	(Prop. 2)	(Prop. 2)
(Virtual) Perfect Th.	Non-Equivalent Utilities	None	None
Infinite Horizon	(Abreu et al., 1994)	(Prop. 2)	(Prop. 2)
Nash Theorem	Minimax-Bettering Ladder	None	None
Finite Horizon	(González-Díaz, 2003)	(García-Jurado et al., 2000)	(Prop. 2)
(Virtual) Perfect Th.	Recursively-distinct	Minimax-Bettering Ladder	None
Finite Horizon	Nash payoffs (Smith, 1995)	(Prop. 2, only sufficient)	(Th. 2)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

Conclusions

• We have studied a special family of timing games, extending the results in Hamers (1993)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems
- We have extended the result in Benoît and Krishna (1987)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems
- We have extended the result in Benoît and Krishna (1987)
- We have generalized the result in Benoît and Krishna (1987)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems
- We have extended the result in Benoît and Krishna (1987)
- We have generalized the result in Benoît and Krishna (1987)
- Our main result establishes a necessary and sufficient condition for the finite horizon Nash folk theorem

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems
- We have extended the result in Benoît and Krishna (1987)
- We have generalized the result in Benoît and Krishna (1987)
- Our main result establishes a necessary and sufficient condition for the finite horizon Nash folk theorem
- UC lead to weaker assumptions for the folk theorems

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems
- We have extended the result in Benoît and Krishna (1987)
- We have generalized the result in Benoît and Krishna (1987)
- Our main result establishes a necessary and sufficient condition for the finite horizon Nash folk theorem
- UC lead to weaker assumptions for the folk theorems
- Nonetheless, some assumptions are still needed for some VSPE folk theorems

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Conclusions

- We have studied a special family of timing games, extending the results in Hamers (1993)
- We have presented a noncooperative approach to bankruptcy problems
- We have extended the result in Benoît and Krishna (1987)
- We have generalized the result in Benoît and Krishna (1987)
- Our main result establishes a necessary and sufficient condition for the finite horizon Nash folk theorem
- UC lead to weaker assumptions for the folk theorems
- Nonetheless, some assumptions are still needed for some VSPE folk theorems

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Future Research

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Future Research

Future Research

• Study the extent up to which our results for timing games can be extended

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Future Research

- Study the extent up to which our results for timing games can be extended
- Study whether the games in our family are natural for different bankruptcy rules

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Future Research

- Study the extent up to which our results for timing games can be extended
- Study whether the games in our family are natural for different bankruptcy rules
- Try to find decentralized results (where the regulator needs not to have complete information)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Future Research

- Study the extent up to which our results for timing games can be extended
- Study whether the games in our family are natural for different bankruptcy rules
- Try to find decentralized results (where the regulator needs not to have complete information)
- Study whether the general folk theorems like our's can be obtained in other families of repeated games (infinite horizon, subgame perfection, incomplete information)

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory Future Research

- Study the extent up to which our results for timing games can be extended
- Study whether the games in our family are natural for different bankruptcy rules
- Try to find decentralized results (where the regulator needs not to have complete information)
- Study whether the general folk theorems like our's can be obtained in other families of repeated games (infinite horizon, subgame perfection, incomplete information)
- Study Unilateral Commitments in models with incomplete information

Definitions and Classic Results A Generalized Nash Folk Theorem Unilateral Commitments

Noncooperative Game Theory References

References

• GONZÁLEZ-DÍAZ, J., P. BORM, H. NORDE (2004):

"A Silent Battle over a Cake," Tech. rep., CentER discussion paper series

• GARCÍA-JURADO, I., J. GONZÁLEZ-DÍAZ, A. VILLAR (2004):

"A Noncooperative Approach to Bankruptcy Problems," Preprint

• González-Díaz, J. (2003):

"Finitely Repeated Games: A Generalized Nash Folk Theorem," To appear in *Games and Economic Behavior*

• GARCÍA-JURADO, I., J. GONZÁLEZ-DÍAZ (2005):

"Unilateral Commitments in Repeated Games", Preprint

A Geometric Characterization of the $\tau\text{-value}$ The Core-Center

Part II

Cooperative Game Theory

Competition and Cooperation in Game Theoretical Models Julio González Día

33/60

What is a Cooperative Game? And an Allocation Rule?

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N = \{1, \dots, n\}$ is the set of players

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N = \{1, \ldots, n\}$ is the set of players

• v is the characteristic function,

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N = \{1, \ldots, n\}$ is the set of players

• v is the characteristic function,

v

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N = \{1, \ldots, n\}$ is the set of players

• v is the characteristic function,

v

Allocation rule

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N=\{1,\ldots,n\}$ is the set of players

• v is the characteristic function,

Allocation rule

An allocation rule on a domain Ω is a function φ such that

v

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N=\{1,\ldots,n\}$ is the set of players

• v is the characteristic function,

Allocation rule

An allocation rule on a domain Ω is a function φ such that

$$\begin{array}{cccc} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (N,v) & \longmapsto & \varphi(N,v) \end{array}$$

v

What is a Cooperative Game? And an Allocation Rule?

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

• $N = \{1, \ldots, n\}$ is the set of players

• v is the characteristic function,

Allocation rule

An allocation rule on a domain Ω is a function φ such that

$$\begin{array}{cccc} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (N,v) & \longmapsto & \varphi(N,v) \end{array}$$

An allocation $x \in \mathbb{R}^n$ is efficient if $\sum_{i=1}^n x_i = v(N)$

A Geometric Characterization of the τ -value

A Geometric Characterization of the *τ*-value Brief Overview

5 The Core-Center

• The Core-Center: Definition and Properties

- A Characterization of the Core-Center
- The Core-Center and the Shapley Value

Brief Overview

The τ -value

Let v denote a cooperative game (N is fixed)

Brief Overview

The τ -value

Previous concepts

Brief Overview

The τ -value

Previous concepts

• Utopia vector, $M(v) \in \mathbb{R}^n$:

The τ -value

Previous concepts

• Utopia vector, $M(v) \in \mathbb{R}^n$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

Brief Overview

The τ -value

Previous concepts

• Utopia vector, $M(v) \in \mathbb{R}^n$:

for each
$$i \in N$$
, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $m(v) \in \mathbb{R}^n$:

Brief Overview

The τ -value

Previous concepts

• Utopia vector, $M(v) \in \mathbb{R}^n$:

for each
$$i \in N$$
, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $m(v) \in \mathbb{R}^n$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

Brief Overview

The τ -value

Previous concepts

• Utopia vector, $M(v) \in \mathbb{R}^n$:

for each
$$i \in N$$
, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $m(v) \in \mathbb{R}^n$:

$$\text{for each } i \in N, \quad m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$$

• Core cover:

Brief Overview

The τ -value

Previous concepts

- Utopia vector, $M(v) \in \mathbb{R}^n$:
 - for each $i \in N$, $M_i(v) := v(N) v(N \setminus \{i\})$
- Minimum right vector, $m(v) \in \mathbb{R}^n$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

• Core cover:

 $CC(v) := \{x \in \mathbb{R}^n :$

}

Brief Overview

The τ -value

Previous concepts

- Utopia vector, $M(v) \in \mathbb{R}^n$:
 - for each $i \in N$, $M_i(v) := v(N) v(N \setminus \{i\})$
- Minimum right vector, $m(v) \in \mathbb{R}^n$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

• Core cover:

$$CC(v) := \{x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N),$$

}

Brief Overview

The τ -value

Previous concepts

- Utopia vector, $M(v) \in \mathbb{R}^n$:
 - for each $i \in N$, $M_i(v) := v(N) v(N \setminus \{i\})$
- Minimum right vector, $m(v) \in \mathbb{R}^n$:

$$\text{for each } i \in N, \quad m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$$

• Core cover:

$$CC(v) := \{x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N), \ m(v) \le x \le M(v)\}$$

The τ -value

Previous concepts

- Utopia vector, $M(v) \in \mathbb{R}^n$:
 - for each $i \in N$, $M_i(v) := v(N) v(N \setminus \{i\})$
- Minimum right vector, $m(v) \in \mathbb{R}^n$:

$$\text{for each } i \in N, \quad m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$$

• Core cover:

$$CC(v) := \{x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N), \ m(v) \le x \le M(v)\}$$

• A game v is compromise admissible if $CC(v) \neq \emptyset$

The τ -value or compromise-value (Tijs, 1981):

The τ -value or compromise-value (Tijs, 1981):

 $\tau(v) :=$ "point on the line segment between m(v) and M(v) that is efficient",

The τ -value or compromise-value (Tijs, 1981):

 $\tau(v) :=$ "point on the line segment between m(v) and M(v) that is efficient",

$$\tau(v) = \lambda m(v) + (1 - \lambda)M(v),$$

The τ -value or compromise-value (Tijs, 1981):

 $\tau(v) :=$ "point on the line segment between m(v) and M(v) that is efficient",

$$au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

The τ -value or compromise-value (Tijs, 1981):

 $\tau(v) :=$ "point on the line segment between m(v) and M(v) that is efficient",

$$au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

The τ -value or compromise-value (Tijs, 1981):

 $\tau(v) :=$ "point on the line segment between m(v) and M(v) that is efficient",

$$au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003):

The τ -value or compromise-value (Tijs, 1981):

au(v):= "point on the line segment between m(v) and M(v) that is efficient",

$$au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003): $\tau^*(v) :=$ "center of gravity of the edges of the core-cover"

The τ -value or compromise-value (Tijs, 1981):

au(v):= "point on the line segment between m(v) and M(v) that is efficient",

$$au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

The au^* -value, González-Díaz et al. (2003):

 $\tau^*(v):=$ "center of gravity of the edges of the core-cover" (multiplicities for the edges have to be taken into account)

The τ -value or compromise-value (Tijs, 1981):

au(v):= "point on the line segment between m(v) and M(v) that is efficient",

$$au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003):

 $\tau^*(v):=$ "center of gravity of the edges of the core-cover" (multiplicities for the edges have to be taken into account)

• By definition, $\tau(v) \in CC(v)$ and $\tau^*(v) \in CC(v)$

Brief Overview

Results

▲圖 → ▲ 臣 → ▲ 臣 →

Brief Overview

Results

P1: Let v be such that

Brief Overview

Results

P1: Let v be such that

$$v(N) - \sum_{j \in N} m_j(v)$$

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v)$$
 $v(N) - \sum_{j \in N} m_j(v)$

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem If v satisfies P1,

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Bankruptcty Problem

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Bankruptcty Problem \longrightarrow Bankruptcty Game

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Bankruptcty Problem → Bankruptcty Game Proportional Rule

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Bankruptcty Problem \longrightarrow Bankruptcty GameProportional Rule \longrightarrow τ -value

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Bankruptcty Problem \longrightarrow Bankruptcty GameProportional Rule \longrightarrow τ -valueAdjusted Proportional Rule \neg τ -value

Brief Overview

Results

P1: Let v be such that for each $i \in N$,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

Quant et al. (2004):

Bankruptcty Problem	\longrightarrow	Bankruptcty Game
Proportional Rule	\longrightarrow	au-value
Adjusted Proportional Rule	\longrightarrow	$ au^*$ -value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center

5 The Core-Center

- The Core-Center: Definition and Properties
- A Characterization of the Core-Center
- The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

• x is efficient if
$$\sum_{i=1}^{n} x_i = v(N)$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$,

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$,

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The **Core** (Gillies, 1953):

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of v is the set of all efficient and stable allocations

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of v is the set of all efficient and stable allocations

$$C(v) := \{x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) ext{ and, for each } S \subseteq N, \sum_{i \in S} x_i \geq v(S)\}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Some More Background

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of v is the set of all efficient and stable allocations

$$C(v) := \{x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) ext{ and, for each } S \subseteq N, \sum_{i \in S} x_i \geq v(S)\}$$

A game v is balanced if
$$C(v) \neq \emptyset$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The **Core-Center** (González-Díaz and Sánchez Rodríguez, 2003): Let v be a balanced game

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

Let v be a balanced game The core-center, $\mu(v)$, is center of gravity of C(v):

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

Let v be a balanced game The core-center, $\mu(v)$, is center of gravity of C(v):

v

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

Let v be a balanced game The core-center, $\mu(v)$, is center of gravity of C(v):

C(v)

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

Let v be a balanced game The core-center, $\mu(v)$, is center of gravity of C(v):

U(C(v))

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

Let v be a balanced game The core-center, $\mu(v)$, is center of gravity of C(v):

 $\frac{E(U(C(v)))}{}$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

Let v be a balanced game The core-center, $\mu(v)$, is center of gravity of C(v):

 $\mu(v) := E\big(U(C(v))\big)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

• •

Weber Set

US

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

• •

Weber Set & Shapley Value • . • • • • • • • • • •

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

Core-Cover

US

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

Core-Cover & τ -value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

Core

US(

- ∢ ⊒ →

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

Core & Core-Center
The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

Weber Set & Shapley Value

Core-Cover & τ -value

Core & Core-Center

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

£

Motivation

$$v = \begin{cases} v(1) = 0 \ v(2) = 0 \ v(3) = 0 \\ v(12) = 1 \ v(13) = 4 \ v(23) = 7 \\ v(123) = 15 \end{cases}$$

Weber Set & Shapley Value Core-Cover & τ-value

Core & Core-Center

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

Basic Properties

• Efficiency

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

Basic Properties

• Efficiency

• Individual rationality

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

Basic Properties

- Efficiency
- Stability

• Individual rationality

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

- Efficiency
- Stability

- Individual rationality
- Dummy player

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

- Efficiency
- Stability
- Symmetry

- Individual rationality
- Dummy player

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

- Efficiency
- Stability
- Symmetry

- Individual rationality
- Dummy player
- Translation invariance

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

- Efficiency
- Stability
- Symmetry
- Scale invariance

- Individual rationality
- Dummy player
- Translation invariance

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Basic Properties

- Efficiency
- Stability
- Symmetry
- Scale invariance

- Individual rationality
- Dummy player
- Translation invariance
- ...

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Continuity

Continuity

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

$$\begin{array}{ll} \mathsf{Continuity} \\ \varphi : & \Omega \subseteq \mathbb{R}^{2^n} \end{array}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

$$\begin{array}{ccc} \text{Continuity} \\ \varphi : & \Omega \subseteq \mathbb{R}^{2^n} & \longrightarrow & \mathbb{R}^n \end{array}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

$$\begin{array}{c} \text{Continuity} \\ \varphi: \quad \Omega \subseteq \mathbb{R}^{2^n} \quad \longrightarrow \quad \mathbb{R}^n \\ v \quad \longmapsto \quad \varphi(v) \end{array}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

$$\begin{array}{c} \text{Continuity} \\ \varphi : \quad \Omega \subseteq \mathbb{R}^{2^n} \quad \longrightarrow \quad \mathbb{R}^n \\ v \quad \longmapsto \quad \varphi(v) \end{array}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Continuity

Competition and Cooperation in Game Theoretical Models Julio González Díaz

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$,

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity

For each $i \in T$,

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity

For each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity

For each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

NOT SATISFIED

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicityNOT SATISFIEDLet $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$ $(T) = (T) = i \leq i \leq j \leq T$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity For each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicity

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity For each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicity

T=N implies that for each $i\in N$,

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

Strong monotonicityNOT SATISFIEDLet $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicity

T=N implies that for each $i\in N$, $arphi_i(N,w)\geq arphi_i(N,v)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicityNOT SATISFIEDLet $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$ • w(T) > v(T) and for each $S \neq T$, w(S) = v(S)Conditional magnetonicity

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicity NOT SATISFIED T = N implies that for each $i \in N$, $(a \in N, w) > (a \in N, w)$

T=N implies that for each $i\in N$, $arphi_i(N,w)\geq arphi_i(N,v)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

• Take a pair of games v and w

Strong monotonicityNOT SATISFIEDLet $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$ • w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicityNOT SATISFIEDT = N implies that for each $i \in N$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Weak coalitional monotonicity

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicityNOT SATISFIEDLet $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$ (T)

• w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

T=N implies that for each $i\in N$, $arphi_i(N,w)\geq arphi_i(N,v)$

Weak coalitional monotonicity $\sum_{i \in T} \varphi_i(w) \ge \sum_{i \in T} \varphi_i(v)$

Aggregate mononicity

NOT SATISFIED

イロト イポト イヨト イヨト

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Monotonicity

 \bullet Take a pair of games v and w

Strong monotonicityNOT SATISFIEDLet $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$ • w(T) > v(T) and for each $S \neq T$, w(S) = v(S)NOT SATISFIEDCoalitional monotonicityNOT SATISFIED

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicityNOT SATISFIEDT = N implies that for each $i \in N$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Weak coalitional monotonicity $\sum_{i \in T} \varphi_i(w) \ge \sum_{i \in T} \varphi_i(v)$

The Core-Center

The Core-Center: Definition and Properties

The Core-Center: Monotonicity

• Take a pair of games v and w

NOT SATISFIED Strong monotonicity Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$ • w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

NOT SATISFIED Coalitional monotonicity For each $i \in T$, $\varphi_i(N, w) \geq \varphi_i(N, v)$

NOT SATISFIED Aggregate mononicity T = N implies that for each $i \in N$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Weak coalitional monotonicity $\sum_{i \in T} \varphi_i(w) \geq \sum_{i \in T} \varphi_i(v)$

SATISFIED!!!

Core-Center \iff **Nucleolus**

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity:

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T \subsetneq N$.

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

$$\overline{v}(S) = \begin{cases} k & T = S \\ v(S) & \text{otherwise} \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

$$\overline{v}(S) = \left\{egin{array}{cc} \max\{v(S),v(Sackslash T)+k\} & T\subseteq S \ v(S) & ext{otherwise} \end{array}
ight.$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

"CUT"

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T \subsetneq N$. Let $k \in [v(T), v(N) - v(N \setminus T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

Definition φ is a T-solution

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T \subsetneq N$. Let $k \in [v(T), v(N) - v(N \setminus T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

 $\begin{array}{l} \text{Definition} \\ \varphi \text{ is a } \mathcal{T}\text{-solution if for each pair } \overline{v}, \ \underline{v} \end{array}$

The Core-Center

The Core-Center: Definition and Properties

The Core-Center: An Additivity Property

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) > v(S) + v(T)$

Let v be a balanced game. Let $T \subseteq N$. Let $k \in [v(T), v(N) - v(N \setminus T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise} \end{cases}$$

Definition

 φ is a \mathcal{T} -solution if for each pair \overline{v} , v

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

Definition Dissection of a game v:

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

Definition

Dissection of a game $v: \mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

Definition Dissection of a game v: $\mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition φ is an \mathcal{RT} -solution if:

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

Definition Dissection of a game $v: \mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition φ is an \mathcal{RT} -solution if:

() φ is a \mathcal{T} -solution

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: An Additivity Property

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0, 1]$

Definition

Dissection of a game v: $\mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition

- φ is an \mathcal{RT} -solution if:
 - $\textcircled{O} \ \varphi \text{ is a } \mathcal{T}\text{-solution}$
 - Translation Invariance

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

Balanced Games

Competition and Cooperation in Game Theoretical Models Julio González Díaz

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

Let \boldsymbol{v} be a balanced game

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

Let v be a balanced game

Let v^\prime and $v^{\prime\prime}$ be two balanced games such that belong to some dissection of v

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

Let v be a balanced game

Let v^\prime and $v^{\prime\prime}$ be two balanced games such that belong to some dissection of v

```
\varphi satisfies fair additivity with respect to the core if:
```


The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

Let v be a balanced game

Let v^\prime and $v^{\prime\prime}$ be two balanced games such that belong to some dissection of v

 φ satisfies fair additivity with respect to the core if:

() φ is a \mathcal{RT} -solution

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center:

Let v be a balanced game

Let v^\prime and $v^{\prime\prime}$ be two balanced games such that belong to some dissection of v

 φ satisfies fair additivity with respect to the core if:

 $\textcircled{0} \hspace{0.1 cm} \varphi \hspace{0.1 cm} \text{is a} \hspace{0.1 cm} \mathcal{RT}\text{-solution}$

$$C(v') = C(v'') \text{ implies that } \alpha_v(v') = \alpha_v(v'')$$

Table of Properties	Shapley	Nucleolus	Core-Center

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency			
Individual Rationality			
Continuity			
Dummy Player			
Symmetry			
Translation and Scale Invariance			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	X	\checkmark	\checkmark
Strong Monotonicity			
Coalitional Monotonicity			
Aggregate Monotonicity			
Weak Coalitional Monotonicity			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	Х
Consistency (Davis/Maschler)			
Consistency (Hart/Mas-Collel)			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	Х	\checkmark	X
Consistency (Hart/Mas-Collel)			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	Х	\checkmark	Х
Consistency (Hart/Mas-Collel)	\checkmark	Х	X

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	Х	\checkmark	X
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Fair Additivity w.r.t. the core			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	Х	\checkmark	X
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Fair Additivity w.r.t. the core	Х	Х	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	X	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	X	\checkmark	X
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Fair Additivity w.r.t. the core	Х	Х	\checkmark

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Competition and Cooperation in Game Theoretical Models Julio González Díaz

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Competition and Cooperation in Game Theoretical Models Julio González Día

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Theorem

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Theorem Let φ be an allocation rule satisfying

• Efficiency

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

- Efficiency
- Translation Invariance

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

- Efficiency
- Translation Invariance
- Weak Symmetry

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

- Efficiency
- Translation Invariance
- Weak Symmetry
- Continuity

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

- Efficiency
- Translation Invariance
- Weak Symmetry
- Continuity
- Fair Additivity with respect to the core

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

Let φ be an allocation rule satisfying

- Efficiency
- Translation Invariance
- Weak Symmetry
- Continuity
- Fair Additivity with respect to the core

Then, for each $v \in BG$,

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

Let φ be an allocation rule satisfying

- Efficiency
- Translation Invariance
- Weak Symmetry
- Continuity
- Fair Additivity with respect to the core

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

Let φ be an allocation rule satisfying

- Efficiency
- Translation Invariance
- Weak Symmetry
- Continuity
- Fair Additivity with respect to the core

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

Let φ be an allocation rule satisfying

- Efficiency
- Translation Invariance
- Extended Weak Symmetry
- Continuity
- Fair Additivity with respect to the core

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Characterization

Fair Additivity \iff Volume

Theorem

Let φ be an allocation rule satisfying

- Efficiency
- Translation Invariance
- Extended Weak Symmetry
- Continuity
- Fair Additivity with respect to the core

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

General ideas:

• We define games u_1 , u_2 , u_3 , u_4

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I*(*v*) in *C*(*v*), *C*(*u*₁), *C*(*u*₂), *C*(*u*₃), *C*(*u*₄)
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose I(v) in C(v), C(u₁), C(u₂), C(u₃), C(u₄)
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄
- ${\ensuremath{\,\circ}}$ We define the game v^*

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄
- ${\ensuremath{\,\circ\,}}$ We define the game v^*
- We combine the two additivity properties

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄
- ${\ensuremath{\,\circ}}$ We define the game v^*
- We combine the two additivity properties

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄
- ${\ensuremath{\,\circ}}$ We define the game v^*
- We combine the two additivity properties

$$\mu(N, v) \stackrel{\text{Fair Add.}}{=}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄
- ${\ensuremath{\,\circ}}$ We define the game v^*
- We combine the two additivity properties

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w₀, w, w₁, w₂, w₃, w₄
- ${\ensuremath{\,\circ}}$ We define the game v^*
- We combine the two additivity properties

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w_0 , w, w_1 , w_2 , w_3 , w_4
- ${\ensuremath{\,\circ}}$ We define the game v^*
- We combine the two additivity properties

$$\mu(N, v) \stackrel{\mathsf{Fair Add.}}{=} \frac{w_0}{w} \mu(N, u_0) - \sum_{i \in N} \frac{w_i}{w} \mu(N, u_i)$$
$$= \frac{w_0}{w} \operatorname{Sh}(N, u_0) - \sum_{i \in N} \frac{w_i}{w} \operatorname{Sh}(N, u_i)$$

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w_0 , w, w_1 , w_2 , w_3 , w_4
- ${\ensuremath{\,\circ}}$ We define the game v^*

$$\mu(N, v) \stackrel{\text{Fair Add.}}{=} \frac{w_0}{w} \mu(N, u_0) - \sum_{i \in N} \frac{w_i}{w} \mu(N, u_i)$$
$$= \frac{w_0}{w} \operatorname{Sh}(N, u_0) - \sum_{i \in N} \frac{w_i}{w} \operatorname{Sh}(N, u_i)$$
$$\underset{=}{\operatorname{Shap Add.}}$$

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

The Core-Center and the Shapley Value

- We define games u1, u2, u3, u4
- Whose cores decompose *I(v)* in *C(v)*, *C(u₁)*, *C(u₂)*, *C(u₃)*, *C(u₄)*
- The corresponding volumes are w_0 , w, w_1 , w_2 , w_3 , w_4
- ${\ensuremath{\,\circ}}$ We define the game v^*

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center and the Shapley Value

Competition and Cooperation in Game Theoretical Models Julio González Día

The Core-Center: Definition and Properties A Characterization of the Core-Center The Core-Center and the Shapley Value

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

Conclusions

57/60

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

Conclusions

 \bullet We have shown a geometric characterization of the τ value

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

- We have shown a geometric characterization of the au value
- We have studied a new allocation rule: the core-center

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

- We have shown a geometric characterization of the au value
- We have studied a new allocation rule: the core-center
- We have carried out an axiomatic analysis

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

- ${\ensuremath{\, \bullet }}$ We have shown a geometric characterization of the τ value
- We have studied a new allocation rule: the core-center
- We have carried out an axiomatic analysis
- We have presented an axiomatic characterization

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

- ${\ensuremath{\, \bullet }}$ We have shown a geometric characterization of the τ value
- We have studied a new allocation rule: the core-center
- We have carried out an axiomatic analysis
- We have presented an axiomatic characterization
- We established a connexion between the core-center and the Shapley value

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Conclusions

- ${\ensuremath{\, \bullet }}$ We have shown a geometric characterization of the τ value
- We have studied a new allocation rule: the core-center
- We have carried out an axiomatic analysis
- We have presented an axiomatic characterization
- We established a connexion between the core-center and the Shapley value

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Future Research

Future Research

Competition and Cooperation in Game Theoretical Models Julio González Día

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Future Research

Future Research

• Try to find different characterizations of the core-center

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Future Research

Future Research

- Try to find different characterizations of the core-center
- Deepen in the relation between the core-center and the Shapley value

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Future Research

Future Research

- Try to find different characterizations of the core-center
- Deepen in the relation between the core-center and the Shapley value
- Look for noncooperative foundations for the core-center (implementation)

A Geometric Characterization of the τ -value The Core-Center The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Future Research

Future Research

- Try to find different characterizations of the core-center
- Deepen in the relation between the core-center and the Shapley value
- Look for noncooperative foundations for the core-center (implementation)
- Look for a consistency property for the core-center

A Geometric Characterization of the τ -value The Core-Center The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory Future Research

Future Research

- Try to find different characterizations of the core-center
- Deepen in the relation between the core-center and the Shapley value
- Look for noncooperative foundations for the core-center (implementation)
- Look for a consistency property for the core-center
- Look for extensions to different classes of games

A Geometric Characterization of the au-value The Core-Center

The Core-Center: Definition and Properties A Characterization of the Core-Center **The Core-Center and the Shapley Value**

Cooperative Game Theory References

References

• González-Díaz, J., P. Borm, R. Hendrickx, M. Quant (2005):

"A Geometric Characterisation of the Compromise Value," *Mathematical Methods of Operations Research* 61

• GONZÁLEZ-DÍAZ, J., E. SÁNCHEZ-RODRÍGUEZ (2003):

"From Set-Valued Solutions to Single-Valued Solutions: The Centroid and the Core-Center," Reports in Statistics and Operations Research 03-09, University of Santiago de Compostela

• GONZÁLEZ-DÍAZ, J., E. SÁNCHEZ-RODRÍGUEZ (2003):

"The Core-Center and the Shapley Value: A Comparative Study," Reports in Statistics and Operations Research 03-10, Universidade de Santiago de Compostela

• González-Díaz, J., E. Sánchez-Rodríguez (2005):

"A Characterization of the Core-Center," Preprint

Essays on Competition and Cooperation in Game Theoretical Models

Julio González Díaz

Department of Statistics and Operations Research Universidade de Santiago de Compostela

> Thesis Dissertation June 29th, 2005

Part I: Noncooperative Game Theory

- A Silent Battle over a Cake
 - Brief Overview
- 2 A Noncooperative Approach to Bankruptcy Problems
 - Brief Overview
- 3 Repeated Games
 - Definitions and Classic Results
 - A Generalized Nash Folk Theorem
 - Unilateral Commitments

Part II: Cooperative Game Theory

- ${f 4}$ A Geometric Characterization of the au-value
 - Brief Overview
- 5 The Core-Center
 - The Core-Center: Definition and Properties

(日) (四) (王) (王) (王) (王)

- A Characterization of the Core-Center
- The Core-Center and the Shapley Value