A two-step sequential linear programming algorithm for MINLP problems: An application to gas transmission networks

> Julio González-Díaz Ángel M. González-Rueda María P. Fernández de Córdoba

University of Santiago de Compostela Technological Institute for Industrial Mathematics (ITMATI)

February 3rd, 2017

A two-step sequential linear programming algorithm for MINLP problems:

An application to gas transmission networks

(A twist on) Sequential Linear Programming Algorithms

3 Numerical Results

Optimization in Gas Transmission Networks

1 Optimization in Gas Transmission Networks

2 (A twist on) Sequential Linear Programming Algorithms

3 Numerical Results

$GANESO^{\rm TM}: \ \underline{\textit{Gas}} \ \underline{\textit{Ne}} {\rm tworks} \ \underline{\textit{S}} {\rm imulation} \ {\rm and} \ \underline{\textit{O}} {\rm ptimization}$

• GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated.

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa
- Main functionalities of **GANESO**TM:
 - Steady-state and transient simulation
 - Gas loss analysis
 - Gas quality tracking
 - Linepack control
 - Steady-state optimization
 - Network planning and design under uncertainty
 - Computation of tariffs for network access
 - Database management for indexing network scenarios
 - User Interface (daily usage of GANESOTM by end-user)

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa
- Main functionalities of **GANESO**TM:
 - Steady-state and transient simulation
 - Gas loss analysis
 - Gas quality tracking
 - Linepack control
 - Steady-state optimization
 - Network planning and design under uncertainty
 - Computation of tariffs for network access
 - Database management for indexing network scenarios
 - User Interface (daily usage of GANESOTM by end-user)

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa
- Main functionalities of **GANESO**TM:
 - Steady-state and transient simulation
 - Gas loss analysis
 - Gas quality tracking
 - Linepack control
 - Steady-state optimization
 - Network planning and design under uncertainty
 - Computation of tariffs for network access
 - Database management for indexing network scenarios
 - User Interface (daily usage of GANESO $^{\rm TM}$ by end-user)

Nonlinear optimization

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa
- Main functionalities of **GANESO**TM:
 - Steady-state and transient simulation
 - Gas loss analysis
 - Gas quality tracking
 - Linepack control
 - Steady-state optimization
 - Network planning and design under uncertainty
 - Computation of tariffs for network access
 - Database management for indexing network scenarios
 - User Interface (daily usage of GANESO $^{\rm TM}$ by end-user)

Nonlinear optimization

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa
- Main functionalities of **GANESO**TM:
 - Steady-state and transient simulation
 - Gas loss analysis
 - Gas quality tracking
 - Linepack control
 - Steady-state optimization
 - Network planning and design under uncertainty
 - Computation of tariffs for network access
 - Database management for indexing network scenarios
 - User Interface (daily usage of GANESO $^{\rm TM}$ by end-user)

Nonlinear optimization

Stochastic programming

- GANESOTM is a software developed by researchers at USC and ITMATI for Reganosa Company
- Ongoing project that started in 2011; around 15 researchers have participated. More than 600.000 € invested by Reganosa
- Main functionalities of **GANESO**TM:
 - Steady-state and transient simulation
 - Gas loss analysis
 - Gas quality tracking
 - Linepack control
 - Steady-state optimization
 - Network planning and design under uncertainty
 - Computation of tariffs for network access
 - Database management for indexing network scenarios
 - User Interface (daily usage of GANESO $^{\rm TM}$ by end-user)

Nonlinear optimization

Identify feasible gas flows

Identify feasible gas flows

Main problem constraints

- Meet demands (security of supply)
- Gas pressure is kept within specified bounds

Identify feasible gas flows

Main problem constraints

- Meet demands (security of supply)
- Gas pressure is kept within specified bounds

Identify feasible gas flows

Main problem constraints

- Meet demands (security of supply)
- Gas pressure is kept within specified bounds

Different objective functions

- Minimize gas consumption at compressor stations
- Minimize boil-off gas at regasification plants
- Maximize network linepack
- Maximize/minimize exports of different zones
- Control bottlenecks

Identify feasible gas flows

Main problem constraints

- Meet demands (security of supply)
- Gas pressure is kept within specified bounds

Different objective functions

- Minimize gas consumption at compressor stations
- Minimize boil-off gas at regasification plants
- Maximize network linepack
- Maximize/minimize exports of different zones
- Control bottlenecks

 $\forall k \in A \text{ flow bounds}$

 $\begin{array}{l} \underline{p}_i^2 \leq {p_i}^2 \leq \bar{p}_i^2 \\ \forall i \in \bar{N} \text{ pressure bounds} \end{array}$

 $\begin{array}{l} \underline{q}_k \leq q_k \leq \bar{q}_k \\ \forall k \in A \text{ flow bounds} \end{array}$

 $\begin{array}{l} \underline{p}_i^2 \leq {p_i}^2 \leq \bar{p}_i^2 \\ \forall i \in \bar{N} \text{ pressure bounds} \end{array}$

Variables of the optimization problem

- Flow through each pipe
- Pressure at each node

Given a pipe between two nodes i and j, we have

(A

$$p_i^2 - p_j^2 = \frac{16L_k\lambda_k}{\pi^2 D_k^5} Z(p_m, T_m) RT_m |q_{ij}| q_{ij} + \frac{2g}{RT_m} \frac{p_i^2 + p_j^2}{2Z(p_m, T_m)} (h_j - h_i)$$

Given a pipe between two nodes i and j, we have

(A

$$p_i^2 - p_j^2 = \frac{16L_k\lambda_k}{\pi^2 D_k^5} Z(p_m, T_m) RT_m |q_{ij}| q_{ij} + \frac{2g}{RT_m} \frac{p_i^2 + p_j^2}{2Z(p_m, T_m)} (h_j - h_i)$$

Given a pipe between two nodes i and j, we have

(A

$$p_i^2 - p_j^2 = \frac{16L_k\lambda_k}{\pi^2 D_k^5} Z(p_m, T_m) RT_m |q_{ij}| q_{ij} + \frac{2g}{RT_m} \frac{p_i^2 + p_j^2}{2Z(p_m, T_m)} (h_j - h_i)$$

Given a pipe between two nodes i and j, we have

(A

$$p_i^2 - p_j^2 = \frac{16L_k\lambda_k}{\pi^2 D_k^5} Z(p_m, T_m) RT_m |q_{ij}| q_{ij} + \frac{2g}{RT_m} \frac{p_i^2 + p_j^2}{2Z(p_m, T_m)} (h_j - h_i)$$

As many nonlinear constraints as pipes

Given input pressure p_i and output pressure p_j , we have

$$g_{ij} = \frac{1}{e_h H^c} \frac{\gamma}{\gamma - 1} Z(p_m, T_{in}) RT_{in} \left(\left(\frac{p_j}{p_i}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right) q_{ij}$$

Given input pressure p_i and output pressure p_j , we have

$$g_{ij} = \frac{1}{e_h H^c} \frac{\gamma}{\gamma - 1} Z(p_m, T_{in}) RT_{in} \left(\left(\frac{p_j}{p_i}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right) q_{ij}$$

As many nonlinear constraints as compressors in the network

Nonlinear nonconvex optimization problem

Nonlinear nonconvex optimization problem

Obj. Function: $\min \sum_{k \in A^c} g_k$
Nonlinear nonconvex optimization problem

Obj. Function: $\min \sum_{k \in A^c} g_k$

Box Constraints

 $\begin{array}{ll} \underline{p}_i^2 \leq {p_i}^2 \leq \bar{p}_i^2 & \quad \forall i \in N \text{ pressure bounds} \\ \underline{q}_k \leq q_k \leq \bar{q}_k & \quad \forall k \in A \text{ flow bounds} \end{array}$

Flow conservation constraints

$$\sum_{k \in A_i^{\text{ini}}} q_k - \sum_{k \in A_i^{\text{ini}}} q_k = c_i \qquad \forall i \in N^C \text{ flow conservation at demand nodes}$$
$$0 \leq \sum_{k \in A_i^{\text{ini}}} q_k - \sum_{k \in A_i^{\text{ini}}} q_k \leq s_i \qquad \forall i \in N^S \text{ flow conservation at supply nodes}$$

Gas loss constraints

$$\begin{split} p_i^{\ 2} &- p_j^{\ 2} = \frac{16L_k\lambda_k}{\pi^2 D_j^5} Z(p_m, T_m) RT_m |q_k| q_k + \quad \forall k \in A^n \text{ gas loss } (\lambda_k \text{ Weymouth}) \\ &+ \frac{2g}{RT_m} \frac{p_i^{\ 2} + p_j^{\ 2}}{2Z(p_m, T_m)} (h_j - h_i) & \text{height difference term} \end{split}$$

Gas consumption constraints

$$g_{k} = \frac{1}{e_{h}H^{c}} \frac{\gamma}{\gamma - 1} Z(p_{m}, T_{in}) RT_{in} \left(\left(\frac{p_{j}}{p_{i}}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right) q_{k}$$

A two-step SLP for MINLP problems

RSME 2017

Nonlinear nonconvex optimization problem (continuous)

Obj. Function: $\min \sum_{k \in A^c} g_k$

Box Constraints

 $\begin{array}{ll} \underline{p}_i^2 \leq {p_i}^2 \leq \bar{p}_i^2 & \quad \forall i \in N \text{ pressure bounds} \\ \underline{q}_k \leq q_k \leq \bar{q}_k & \quad \forall k \in A \text{ flow bounds} \end{array}$

Flow conservation constraints

$$\sum_{k \in A_i^{\text{ini}}} q_k - \sum_{k \in A_i^{\text{ini}}} q_k = c_i \qquad \forall i \in N^C \text{ flow conservation at demand nodes}$$
$$0 \leq \sum_{k \in A_i^{\text{ini}}} q_k - \sum_{k \in A_i^{\text{ini}}} q_k \leq s_i \qquad \forall i \in N^S \text{ flow conservation at supply nodes}$$

Gas loss constraints

$$\begin{split} p_i^{\ 2} &- p_j^{\ 2} = \frac{16L_k\lambda_k}{\pi^2 D_j^5} Z(p_m, T_m) RT_m |q_k| q_k + \quad \forall k \in A^n \text{ gas loss } (\lambda_k \text{ Weymouth}) \\ &+ \frac{2g}{RT_m} \frac{p_i^{\ 2} + p_j^{\ 2}}{2Z(p_m, T_m)} (h_j - h_i) & \text{height difference term} \end{split}$$

Gas consumption constraints

$$g_{k} = \frac{1}{e_{h}H^{c}} \frac{\gamma}{\gamma - 1} Z(p_{m}, T_{in}) RT_{in} \left(\left(\frac{p_{j}}{p_{i}}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right) q_{k}$$

A two-step SLP for MINLP problems

RSME 2017

Size and complexity of real instances

Size and complexity of real instances

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

Size and complexity of real instances

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

To be solved routinely by the company

(A twist on) Sequential Linear Programming Algorithms

Optimization in Gas Transmission Networks

(A twist on) Sequential Linear Programming Algorithms

3 Numerical Results

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

How to solve this problem?

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

How to solve this problem?

• Global optimization algorithms on approximations of the problem

nonlinearities \implies piecewise linear functions + integer variables

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

How to solve this problem?

 Global optimization algorithms on approximations of the problem (cannot handle real-size problems) nonlinearities => piecewise linear functions + integer variables

Spanish primary gas network

- ≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)
- ≈ 1000 constraints (and ≈ 2000 box constraints)
- ≈ 500 constraints are nonlinear

How to solve this problem?

- Global optimization algorithms on approximations of the problem (cannot handle real-size problems) nonlinearities => piecewise linear functions + integer variables
- Local optimization algorithms such as sequential linear programming, SLP, or sequential quadratic programming, SQP

Classic SLP

Classic SLP

• We get a solution using Classic SLP

Classic SLP + Control Theory

- We get a solution using Classic SLP
- We refine it using **control theory** by including some second order elements

Classic SLP + Control Theory

- We get a solution using Classic SLP
- We refine it using **control theory** by including some second order elements

Nothing specially original so far

Classic SLP

• We get a solution using Classic SLP

Nothing specially original so far

Additional network elements Elements that require the use of binary variables

Elements that require the use of binary variables

- Different types of control valves
- Operational ranges of each compressor station
- Boil-off gas at regasification plants

Elements that require the use of binary variables

- Different types of control valves
- Operational ranges of each compressor station
- Boil-off gas at regasification plants

Mixed-integer nonlinear nonconvex programming problem

- ullet pprox 1000 continuous variables and 1000 constraints
- No more than 100-200 binary variables

Elements that require the use of binary variables

- Different types of control valves
- Operational ranges of each compressor station
- Boil-off gas at regasification plants

Mixed-integer nonlinear nonconvex programming problem

- ullet pprox 1000 continuous variables and 1000 constraints
- No more than 100-200 binary variables

How are these problems normally tackled?

Elements that require the use of binary variables

- Different types of control valves
- Operational ranges of each compressor station
- Boil-off gas at regasification plants

Mixed-integer nonlinear nonconvex programming problem

- ullet pprox 1000 continuous variables and 1000 constraints
- No more than 100-200 binary variables

How are these problems normally tackled?

Two-step algorithms

Elements that require the use of binary variables

- Different types of control valves
- Operational ranges of each compressor station
- Boil-off gas at regasification plants

Mixed-integer nonlinear nonconvex programming problem

- ullet pprox 1000 continuous variables and 1000 constraints
- No more than 100-200 binary variables

How are these problems normally tackled?

Two-step algorithms

• Step 1. Study a simplified version of the problem to fix all binary choices

Elements that require the use of binary variables

- Different types of control valves
- Operational ranges of each compressor station
- Boil-off gas at regasification plants

Mixed-integer nonlinear nonconvex programming problem

- pprox 1000 continuous variables and 1000 constraints
- No more than 100-200 binary variables

How are these problems normally tackled?

Two-step algorithms

- Step 1. Study a simplified version of the problem to fix all binary choices
- Step 2. Apply SLP, SQP,... to the resulting continuous problem

Classic SLP

• We get a solution using Classic SLP

Classic SLP

• Step 2. Classic SLP. Binary variables already fixed

• We get a solution using Classic SLP

Classic SLP

- Step 1.
- Step 2. Classic SLP. Binary variables already fixed
 - We get a solution using Classic SLP

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
- Step 2. Classic SLP. Binary variables already fixed
 - We get a solution using Classic SLP

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
 - The solution of this step is used to fix the binary variables
- Step 2. Classic SLP. Binary variables already fixed
 - We get a solution using Classic SLP

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
 - The solution of this step is used to fix the binary variables
- Step 2. Classic SLP. Binary variables already fixed
 - We get a solution using Classic SLP

Step 1 runs on the full model. No simplification needed

$SLP-NTR (\underline{N}o \underline{T}rust \underline{R}egion)$

Nonlinear programming problem: NLP minimize f(x)subject to inequality contraints $g_i(x) \le 0, i = 1, \dots, m$ equality constrains $h_j(x) = 0, j = 1, \dots, l$ linear constraints $x \in X = \{x \in \mathbb{R}^n : Ax \le b\}$

where f, g_i and h_j are **nonlinear** functions.

SLP-NTR (<u>N</u>o <u>T</u>rust <u>R</u>egion)

Classic SLP

SLP-NTR (<u>N</u>o <u>T</u>rust <u>R</u>egion)

Classic SLP

• At iteration k we have a candidate solution $oldsymbol{x}^k$

$SLP-NTR (\underline{N}o \underline{T}rust \underline{R}egion)$

Classic SLP

- At iteration k we have a candidate solution $oldsymbol{x}^k$
- We solve the linearization of NLP about x^k , LP (x^k) :

SLP-NTR (No Trust Region)

Classic SLP

- At iteration k we have a candidate solution x^k
- We solve the linearization of NLP about x^k , LP (x^k) :

minimize $\nabla f(\boldsymbol{x}^k)^t \boldsymbol{x}$

subject to

inequality constraints equality constraints linear constraints

$$\begin{array}{ll} \textbf{constraints} & g_i(\boldsymbol{x}^k) + \nabla g_i(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) \leq 0 \quad i = 1, \cdots, m \\ \textbf{constraints} & h_j(\boldsymbol{x}^k) + \nabla h_j(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) = 0 \quad j = 1, \cdots, l \\ \textbf{constraints} & \boldsymbol{x} \in X = \{\boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} \leq b\} \\ \textbf{trust region} & -d_k \leq \boldsymbol{x} - \boldsymbol{x}^k \leq d_k \end{array}$$

$SLP-NTR (\underline{N}o \underline{T}rust \underline{R}egion)$

Classic SLP

- At iteration k we have a candidate solution $oldsymbol{x}^k$
- We solve the linearization of NLP about x^k , LP (x^k) :

minimize $\nabla f(\boldsymbol{x}^k)^t \boldsymbol{x}$ subject to

inequality constraints equality constraints linear constraints

$$g_i(\boldsymbol{x}^k) + \nabla g_i(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) \le 0 \quad i = 1, \cdots, m$$

$$h_j(\boldsymbol{x}^k) + \nabla h_j(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) = 0 \quad j = 1, \cdots, l$$

$$g_i(\boldsymbol{x}^k) + \nabla h_j(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) = 0$$

trust region $-d_k \leq \boldsymbol{x} - \boldsymbol{x}^k \leq d_k$

SLP-NTR (No Trust Region)

Classic SLP

- At iteration k we have a candidate solution x^k
- We solve the linearization of NLP about x^k , LP (x^k) :

minimize $\nabla f(\boldsymbol{x}^k)^t \boldsymbol{x}$

subject to

inequality constraints equality constraints linear constraints

$$\begin{array}{ll} \mathbf{f} \quad \mathbf{constraints} \quad g_i(\boldsymbol{x}^k) + \nabla g_i(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) \leq 0 \quad i = 1, \cdots, m \\ \mathbf{f} \quad \mathbf{constraints} \quad h_j(\boldsymbol{x}^k) + \nabla h_j(\boldsymbol{x}^k)^t(\boldsymbol{x} - \boldsymbol{x}^k) = 0 \quad j = 1, \cdots, l \\ \mathbf{f} \quad \mathbf{constraints} \quad \boldsymbol{x} \in X = \{\boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} \leq b\} \\ \mathbf{trust region} \quad -d_k \leq \boldsymbol{x} - \boldsymbol{x}^k \leq d_k \end{array}$$

Hard to accommodate binary variables with the trust region
$SLP-NTR (\underline{N} o \underline{T} rust \underline{R} egion)$

SLP-NTR

- At iteration k we have a candidate solution $oldsymbol{x}^k$
- We solve the linearization of NLP about x^k , LP (x^k) :

$SLP-NTR \ (\underline{N} \circ \ \underline{T} rust \ \underline{R} egion)$

SLP-NTR

- At iteration k we have a candidate solution $oldsymbol{x}^k$
- We solve the linearization of NLP about x^k , LP (x^k) :

• We remove the constraints that define the trust region

$SLP-NTR (\underline{N} o \underline{T} rust \underline{R} egion)$

SLP-NTR

- At iteration k we have a candidate solution $oldsymbol{x}^k$
- We solve the linearization of NLP about x^k , LP (x^k) :

• We remove the constraints that define the trust region

Straightforward inclusion of binary variables

$SLP-NTR (\underline{N} o \underline{T} rust \underline{R} egion)$

SLP-NTR

- At iteration k we have a candidate solution $oldsymbol{x}^k$
- We solve the linearization of NLP about x^k , LP (x^k) :

• We remove the constraints that define the trust region

Straightforward inclusion of binary variables

Theoretical justification for the removal of the trust region?

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables
- SLP-NTR (<u>N</u>o <u>T</u>rust <u>R</u>egion)
- ++ If the sequence converges, the limit is a KKT point of NLP

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)
- ++ If two consecutive points of $\{x^k\}$ are sufficiently close \longrightarrow almost KKT of NLP

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)
- ++ If two consecutive points of $\{x^k\}$ are sufficiently close \longrightarrow almost KKT of NLP

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)
- ++ If two consecutive points of $\{x^k\}$ are sufficiently close \longrightarrow almost KKT of NLP
- ++ Very easy to implement. No parameters to be tuned

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)
- ++ If two consecutive points of $\{x^k\}$ are sufficiently close \longrightarrow almost KKT of NLP
- ++ Very easy to implement. No parameters to be tuned
- ++ It is straightforward to incorporate **binary** variables

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)
- ++ If two consecutive points of $\{x^k\}$ are sufficiently close \longrightarrow almost KKT of NLP
- $++\,$ Very easy to implement. No parameters to be tuned
- ++ It is straightforward to incorporate **binary** variables
- ++ SLP-NTR competitive with classic SLP for gas network problems and multicommodity flow problems

- ++ Accumulation points of the sequence are KKT points of NLP
- ++ In practice it normally converges
- -- A number of parameters have to be tuned
- -- Hard to accommodate binary variables

- ++ If the sequence converges, the limit is a KKT point of NLP
- -- Other accumulation points may not be KKT points of NLP
- -- It cannot converge to interior points of the feasible set $(\min_{x \in [-1,1]} x^2)$ (Not so critical, since we run 2SLP: SLP-NTR+CSLP)
- -- Less stable in terms of convergence (e.g., cycling)
- $++\,$ Very easy to implement. No parameters to be tuned
- ++ It is straightforward to incorporate **binary** variables
- ++ SLP-NTR competitive with classic SLP for gas network problems and multicommodity flow problems

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>N</u>o <u>T</u>rust <u>R</u>egion)
- Step 2. Classic SLP

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
- Step 2. Classic SLP

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>N</u>o <u>T</u>rust <u>R</u>egion)
- Step 2. Classic SLP

Features of our two-step approach

• Easy to implement

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
- Step 2. Classic SLP

- Easy to implement
- Step 1 runs on the full model. No simplification needed

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
- Step 2. Classic SLP

- Easy to implement
- Step 1 runs on the full model. No simplification needed
- Step 2 "guarantees" convergence

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
- Step 2. Classic SLP

- Easy to implement
- Step 1 runs on the full model. No simplification needed
- Step 2 "guarantees" convergence
- Good practical behavior (< 5 minutes running time on Spanish network)
 - Significant cost reduction with respect to operation schemes reported by the Transmission System Operator (whose software does not optimize)

2SLP: SLP-NTR + Classic SLP

- Step 1. SLP-NTR (<u>No</u> Trust <u>R</u>egion)
- Step 2. Classic SLP

- Easy to implement
- Step 1 runs on the full model. No simplification needed
- Step 2 "guarantees" convergence
- Good practical behavior (< 5 minutes running time on Spanish network)
 - Significant cost reduction with respect to operation schemes reported by the Transmission System Operator (whose software does not optimize)
- Limitation: No bounds/gap to optimality

NLP problems

Theoretical foundation for the SLP-NTR algorithm

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

• Nothing deep, but we have not seen it elsewhere

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

- Nothing deep, but we have not seen it elsewhere
- Good performance in real size problems

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

- Nothing deep, but we have not seen it elsewhere
- Good performance in real size problems

MINLP stochastic problems

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

- Nothing deep, but we have not seen it elsewhere
- Good performance in real size problems

MINLP stochastic problems

• Long-term infrastructure planning under uncertainty (prices and demands)

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

- Nothing deep, but we have not seen it elsewhere
- Good performance in real size problems

MINLP stochastic problems

- Long-term **infrastructure planning under uncertainty** (prices and demands)
- Implementation of a lagrangian decomposition algorithm (progressive hedging) that uses SLP-NTR algorithm to solve the MINLP subproblems

$\mathsf{GANESO}^{\mathrm{TM}}$ user interface

A two-step SLP for MINLP problems

RSME 2017
GANESOTM user interface

A two-step SLP for MINLP problems

RSME 2017

$\mathsf{GANESO}^{\mathrm{TM}}$ user interface

A two-step SLP for MINLP problems

RSME 2017

Numerical Results

1 Optimization in Gas Transmission Networks

(A twist on) Sequential Linear Programming Algorithms

Numerical results

- Comparisons on the Spanish gas transmission network
- Ocmparisons on related gas transmission problems
- Omparisons on multicommodity flow problems

Numerical results

- Comparisons on the Spanish gas transmission network
- Comparisons on related gas transmission problems
- Omparisons on multicommodity flow problems

Work in progress

Intances

Intances

Algorithms CSLP SLP-NTR 2SLP

2 -

- 75 NLP real size instances
 - ≈ 1000 variables and constraints
- 200 iterations maximum
- Running times:

SLP-NTR « 2SLP « CSLP

Density

CSLP SLP-NTR 2SLP

- 75 NLP real size instances
 - ≈ 1000 variables and constraints
- 200 iterations maximum
 - SLP-NTR « 2SLP « CSLP
- **2SLP** superior performance

- Real size instance with 10 binary variables
- 2SLP vs CSLP-Enumeration

- Real size instance with 10 binary variables
- 2SLP vs CSLP-Enumeration

- Real size instance with 10 binary variables
- 2SLP vs CSLP-Enumeration

- Real size instance with 10 binary variables
- 2SLP vs CSLP-Enumeration

- Slightly different model of the gas transmission problem
- ullet Small example: pprox 50 variables and constraints

- Slightly different model of the gas transmission problem
- $\bullet\,$ Small example: \approx 50 variables and constraints

- Slightly different model of the gas transmission problem
- Small example: pprox 50 variables and constraints

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

- Slightly different model of the gas transmission problem
- ullet Small example: pprox 50 variables and constraints

NLP formulation of the problem

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

MINLP formulation of the problem

• $|q_{ij}|q_{ij}$. The absolute values in the constraints are modeled using binary variables that account for the sign of q_{ij}

- Slightly different model of the gas transmission problem
- Small example: pprox 50 variables and constraints

NLP formulation of the problem

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

- $|q_{ij}|q_{ij}$. The absolute values in the constraints are modeled using binary variables that account for the sign of q_{ij}
- pprox 25 binary variables and 50 additional constraints

- Slightly different model of the gas transmission problem
- ullet Small example: pprox 50 variables and constraints

NLP formulation of the problem

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

- $|q_{ij}|q_{ij}$. The absolute values in the constraints are modeled using binary variables that account for the sign of q_{ij}
- pprox 25 binary variables and 50 additional constraints

NLP problem	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	94.8715 (infeasible)
Computational time	0.6497	231.2602	0.0983

- Slightly different model of the gas transmission problem
- ullet Small example: pprox 50 variables and constraints

NLP formulation of the problem

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

- $|q_{ij}|q_{ij}$. The absolute values in the constraints are modeled using binary variables that account for the sign of q_{ij}
- pprox 25 binary variables and 50 additional constraints

NLP problem	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	94.8715 (infeasible)
Computational time	0.6497	231.2602	0.0983

- Slightly different model of the gas transmission problem
- ullet Small example: pprox 50 variables and constraints

NLP formulation of the problem

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

- $|q_{ij}|q_{ij}$. The absolute values in the constraints are modeled using binary variables that account for the sign of q_{ij}
- pprox 25 binary variables and 50 additional constraints

NLP problem	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	94.8715 (infeasible)
Computational time	0.6497	231.2602	0.0983

- Slightly different model of the gas transmission problem
- ullet Small example: pprox 50 variables and constraints

NLP formulation of the problem

NLP problem	CSLP	SLP-NTR	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	91.0562	91.0562	91.0562
Computational time	0.3654	0.3570	0.3570	0.0733	0.0093

MINLP formulation of the problem

- $|q_{ij}|q_{ij}$. The absolute values in the constraints are modeled using binary variables that account for the sign of q_{ij}
- pprox 25 binary variables and 50 additional constraints

NLP problem	2SLP	BARON	Knitro
Objective function	91.0562	91.0562	94.8715 (infeasible)
Computational time	0.6497	231.2602	0.0983

• Next task. Designing a full set of test instances

Tests on multicommodity flow problems (NLP)

• Linear constraints and nonlinear objective function

Tests on multicommodity flow problems (NLP)

• Linear constraints and nonlinear objective function (feasibility \checkmark)

Tests on multicommodity flow problems (NLP)

- Linear constraints and nonlinear objective function (feasibility \checkmark)
- Benchmark test sets available (Babonneau et al. 2004)
- Linear constraints and nonlinear objective function (feasibility \checkmark)
- Benchmark test sets available (Babonneau et al. 2004)

Problem	N	E	T	Constr.	Variab.	z_{opt}		Relative error	
Planar problems							CSLP	SLP-NTR	2SLP
P30	30	150	92	2760	13800	4.445×10^{7}	0.0074	0.0085	0.0074
P50	50	250	267	13350	66750	1.212×10^8	0.0202	0.0212	0.0202
P80	80	440	543	43440	238920	1.819×10^8	0.0174	0.0188	0.0174
P100	100	532	1085	108500	577220	2.291×10^8	0.0212	0.0219	0.0212
Grid problems									
G1	25	80	50	1250	4000	$8.336 imes10^5$	0.0003	0.0054	0.0004
G2	25	80	100	2500	8000	1.727×10^6	0.0006	0.0089	0.0005
G3	100	360	50	5000	18000	1.532×10^6	0.0000	0.0065	0.0002
G4	100	360	100	10000	36000	$3.055 imes 10^6$	0.0000	0.0066	0.0000
G5	225	840	100	22500	84000	5.079×10^6	0.0000	0.0069	0.0000
G6	225	840	200	45000	168000	$1.051 imes 10^7$	0.0001	0.0108	0.0002
G7	400	1520	400	160000	608000	2.607×10^7	0.0000	0.0031	0.0000
Telecommunication-like problems									
N22	14	22	23	322	506	1.871×10^3	0.0131	0.0131	0.0131
N148	58	148	122	7076	18056	$1.402 imes 10^5$	0.0000	0.0002	0.0000
Transportation problems									
S-F	24	76	528	12672	40128	3.202×10^5	0.0050	0.0051	0.0050

- Linear constraints and nonlinear objective function (feasibility \checkmark)
- Benchmark test sets available (Babonneau et al. 2004)

Problem	N	E	T	Constr.	Variab.	z_{opt}		Relative error		
Planar problems							CSLP	SLP-NTR	2SLP	
P30	30	150	92	2760	13800	4.445×10^{7}	0.0074	0.0085	0.0074	
P50	50	250	267	13350	66750	1.212×10^8	0.0202	0.0212	0.0202	
P80	80	440	543	43440	238920	1.819×10^8	0.0174	0.0188	0.0174	
P100	100	532	1085	108500	577220	2.291×10^8	0.0212	0.0219	0.0212	
Grid problems										
G1	25	80	50	1250	4000	$8.336 imes10^5$	0.0003	0.0054	0.0004	
G2	25	80	100	2500	8000	1.727×10^6	0.0006	0.0089	0.0005	
G3	100	360	50	5000	18000	1.532×10^6	0.0000	0.0065	0.0002	
G4	100	360	100	10000	36000	$3.055 imes 10^6$	0.0000	0.0066	0.0000	
G5	225	840	100	22500	84000	5.079×10^6	0.0000	0.0069	0.0000	
G6	225	840	200	45000	168000	$1.051 imes 10^7$	0.0001	0.0108	0.0002	
G7	400	1520	400	160000	608000	$2.607 imes 10^7$	0.0000	0.0031	0.0000	
Telecommunication-like problems										
N22	14	22	23	322	506	1.871×10^3	0.0131	0.0131	0.0131	
N148	58	148	122	7076	18056	$1.402 imes 10^5$	0.0000	0.0002	0.0000	
Transportation problems										
S-F	24	76	528	12672	40128	3.202×10^5	0.0050	0.0051	0.0050	

• All approaches very competitive in terms of objective function

CSLP

2SLP

SLP-NTR

A two-step sequential linear programming algorithm for MINLP problems: An application to gas transmission networks

> Julio González-Díaz Ángel M. González-Rueda María P. Fernández de Córdoba

University of Santiago de Compostela Technological Institute for Industrial Mathematics (ITMATI)

February 3rd, 2017

