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University of Santiago de Compostela
Technological Institute for Industrial Mathematics (ITMATI)

........................

February 3rd, 2017



A two-step sequential linear programming algorithm for
MINLP problems:
An application to gas transmission networks

1 Optimization in Gas Transmission Networks

2 (A twist on) Sequential Linear Programming Algorithms

3 Numerical Results



Optimization in Gas Transmission Networks

1 Optimization in Gas Transmission Networks

2 (A twist on) Sequential Linear Programming Algorithms

3 Numerical Results



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated.

More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated.

More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated.

More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM: Gas Networks Simulation and Optimization

A two-step SLP for MINLP problems RSME 2017 1/25

GANESOTM is a software developed by researchers at USC and
ITMATI for Reganosa Company

Ongoing project that started in 2011; around 15 researchers have
participated. More than 600.000 e invested by Reganosa

Main functionalities of GANESOTM:
Steady-state and transient simulation

Gas loss analysis
Gas quality tracking
Linepack control

Steady-state optimization

Network planning and design under uncertainty

Computation of tariffs for network access
Database management for indexing network scenarios
User Interface (daily usage of GANESOTM by end-user)

Nonlinear optimization

Stochastic programming



Gas transmission networks



Gas transmission networks



Gas transmission networks



Gas transmission networks



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results
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Identify feasible gas flows

Main problem constraints

Meet demands (security of supply)

Gas pressure is kept within specified bounds

Different objective functions

Minimize gas consumption at compressor stations

Minimize boil-off gas at regasification plants

Maximize network linepack

Maximize/minimize exports of different zones

Control bottlenecks
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Network flow problem

Flow conservation constraints∑
k∈Aini

i

qk −
∑
k∈Afin

i

qk = ci

∀i ∈ NC demand nodes

0 ≤
∑
k∈Aini

i

qk −
∑
k∈Afin

i

qk ≤ si

∀i ∈ NSsupply nodes

Box Constraints

¯
qk ≤ qk ≤ q̄k

∀k ∈ A flow bounds

¯
p2i ≤ pi2 ≤ p̄2i

∀i ∈ N pressure bounds

Variables of the optimization problem

Flow through each pipe

Pressure at each node
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Gass loss equations

Given a pipe between two nodes i and j, we have

pi
2−pj2 =

16Lkλk
π2D5

k

Z(pm, Tm)RTm|qij|qij+
2g

RTm

pi
2 + pj

2

2Z(pm, Tm)

(
hj − hi

)

As many nonlinear constraints as pipes
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Given input pressure pi and output pressure pj, we have

gij =
1

ehHc

γ

γ − 1
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)
γ−1
γ − 1

)
qij

As many nonlinear constraints as compressors in the network
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Approaches to solve the problem

Spanish primary gas network

≈ 1000 variables (≈ 500 pipes and ≈ 500 nodes)

≈ 1000 constraints (and ≈ 2000 box constraints)

≈ 500 constraints are nonlinear

How to solve this problem?

Global optimization algorithms on approximations of the
problem

(cannot handle real-size problems)

nonlinearities =⇒ piecewise linear functions + integer variables

Local optimization algorithms such as sequential linear
programming, SLP, or sequential quadratic programming,
SQP

A two-step SLP for MINLP problems RSME 2017 9/25
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Our initial approach

Classic SLP

+ Control Theory

We get a solution using Classic SLP

We refine it using control theory by including some second
order elements

Nothing specially original so far
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Additional network elements
Elements that require the use of binary variables

Different types of control valves

Operational ranges of each compressor station

Boil-off gas at regasification plants

Mixed-integer nonlinear nonconvex programming problem

≈ 1000 continuous variables and 1000 constraints

No more than 100-200 binary variables

How are these problems normally tackled?

Two-step algorithms

Step 1. Study a simplified version of the problem to fix all
binary choices

Step 2. Apply SLP, SQP,. . . to the resulting continuous
problem

A two-step SLP for MINLP problems RSME 2017 11/25
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Our two-step approach for MINLP problems

2SLP: SLP-NTR +

Classic SLP

Step 1.

SLP-NTR (No Trust Region)

The solution of this step is used to fix the binary variables

Step 2. Classic SLP. Binary variables already fixed

We get a solution using Classic SLP

Step 1 runs on the full model. No simplification needed
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SLP-NTR (No Trust Region)

Nonlinear programming problem: NLP

minimize f(x)

subject to

inequality contraints gi(x) ≤ 0, i = 1, · · · ,m
equality constrains hj(x) = 0, j = 1, · · · , l
linear constraints x ∈ X = {x ∈ Rn : Ax ≤ b}

where f , gi and hj are nonlinear functions.
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SLP-NTR (No Trust Region)
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Classic SLP

At iteration k we have a candidate solution xk

We solve the linearization of NLP about xk, LP(xk):

minimize ∇f(xk)tx

subject to

inequality constraints gi(x
k) +∇gi(xk)t(x− xk) ≤ 0 i = 1, · · · ,m

equality constraints hj(x
k) +∇hj(x

k)t(x− xk) = 0 j = 1, · · · , l
linear constraints x ∈ X = {x ∈ Rn : Ax ≤ b}

trust region − dk ≤ x− xk ≤ dk

Hard to accommodate binary variables with the trust region
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SLP-NTR vs classic SLP (in the continuous case, NLP problems)

Classic SLP

++ Accumulation points of the sequence are KKT points of NLP

++ In practice it normally converges

−− A number of parameters have to be tuned

−− Hard to accommodate binary variables

SLP-NTR (No Trust Region)

++ If the sequence converges, the limit is a KKT point of NLP

−− Other accumulation points may not be KKT points of NLP

−− It cannot converge to interior points of the feasible set

(minx∈[−1,1] x
2)

(Not so critical, since we run 2SLP: SLP-NTR+CSLP)

−− Less stable in terms of convergence (e.g., cycling)

++ If two consecutive points of {xk}
are sufficiently close −→ almost KKT of NLP

++ Very easy to implement. No parameters to be tuned

++ It is straightforward to incorporate binary variables

++ SLP-NTR competitive with classic SLP for gas network problems

and
multicommodity flow problems
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Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Summary (algorithm for MINLP problems)

A two-step SLP for MINLP problems RSME 2017 16/25

2SLP: SLP-NTR + Classic SLP

Step 1. SLP-NTR (No Trust Region)

Step 2. Classic SLP

Features of our two-step approach

Easy to implement

Step 1 runs on the full model. No simplification needed

Step 2 “guarantees” convergence

Good practical behavior (< 5 minutes running time on Spanish network)

Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Summary (algorithm for MINLP problems)

A two-step SLP for MINLP problems RSME 2017 16/25

2SLP: SLP-NTR + Classic SLP

Step 1. SLP-NTR (No Trust Region)

Step 2. Classic SLP

Features of our two-step approach

Easy to implement

Step 1 runs on the full model. No simplification needed

Step 2 “guarantees” convergence

Good practical behavior (< 5 minutes running time on Spanish network)

Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Summary (algorithm for MINLP problems)

A two-step SLP for MINLP problems RSME 2017 16/25

2SLP: SLP-NTR + Classic SLP

Step 1. SLP-NTR (No Trust Region)

Step 2. Classic SLP

Features of our two-step approach

Easy to implement

Step 1 runs on the full model. No simplification needed

Step 2 “guarantees” convergence

Good practical behavior (< 5 minutes running time on Spanish network)

Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Summary (algorithm for MINLP problems)

A two-step SLP for MINLP problems RSME 2017 16/25

2SLP: SLP-NTR + Classic SLP

Step 1. SLP-NTR (No Trust Region)

Step 2. Classic SLP

Features of our two-step approach

Easy to implement

Step 1 runs on the full model. No simplification needed

Step 2 “guarantees” convergence

Good practical behavior (< 5 minutes running time on Spanish network)

Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Summary (algorithm for MINLP problems)

A two-step SLP for MINLP problems RSME 2017 16/25

2SLP: SLP-NTR + Classic SLP

Step 1. SLP-NTR (No Trust Region)

Step 2. Classic SLP

Features of our two-step approach

Easy to implement

Step 1 runs on the full model. No simplification needed

Step 2 “guarantees” convergence

Good practical behavior (< 5 minutes running time on Spanish network)

Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Summary (algorithm for MINLP problems)

A two-step SLP for MINLP problems RSME 2017 16/25

2SLP: SLP-NTR + Classic SLP

Step 1. SLP-NTR (No Trust Region)

Step 2. Classic SLP

Features of our two-step approach

Easy to implement

Step 1 runs on the full model. No simplification needed

Step 2 “guarantees” convergence

Good practical behavior (< 5 minutes running time on Spanish network)

Significant cost reduction with respect to operation schemes
reported by the Transmission System Operator (whose software does not

optimize)

Limitation: No bounds/gap to optimality



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems

Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems

Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems

Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere

Good performance in real size problems

MINLP stochastic problems

Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems

Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems

Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems
Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Our contribution

NLP problems

Theoretical foundation for the SLP-NTR algorithm

MINLP problems

Heuristic approach based on the SLP-NTR algorithm

Nothing deep, but we have not seen it elsewhere
Good performance in real size problems

MINLP stochastic problems
Long-term infrastructure planning under uncertainty
(prices and demands)

Implementation of a lagrangian decomposition algorithm
(progressive hedging) that uses SLP-NTR algorithm to solve
the MINLP subproblems

A two-step SLP for MINLP problems RSME 2017 17/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM user interface

A two-step SLP for MINLP problems RSME 2017 18/25

Interactive!!

Routinely used by the company



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM user interface

A two-step SLP for MINLP problems RSME 2017 18/25

Interactive!!

Routinely used by the company



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

GANESOTM user interface

A two-step SLP for MINLP problems RSME 2017 18/25

Interactive!!

Routinely used by the company



Numerical Results

1 Optimization in Gas Transmission Networks

2 (A twist on) Sequential Linear Programming Algorithms

3 Numerical Results



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Numerical results

1 Comparisons on the Spanish gas transmission network

2 Comparisons on related gas transmission problems

3 Comparisons on multicommodity flow problems

Work in progress

A two-step SLP for MINLP problems RSME 2017 19/25



Optimization in Gas Transmission Networks (A twist on) SLP Algorithms Numerical Results

Numerical results

1 Comparisons on the Spanish gas transmission network

2 Comparisons on related gas transmission problems

3 Comparisons on multicommodity flow problems

Work in progress

A two-step SLP for MINLP problems RSME 2017 19/25



Tests on the Spanish Gas Transmission Network (NLP)

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP
SLP-NTR

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum

• Algorithm convergence:
CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Algorithm convergence:

CSLP SLP-NTR 2SLP
100% 66% 100%

• 25% 2SLP outperforms CSLP

• 5% CSLP outperforms 2SLP



Tests on the Spanish Gas Transmission Network (NLP)

CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum

• Running times:
SLP-NTR � 2SLP � CSLP

• 2SLP superior performance



Tests on the Spanish Gas Transmission Network (NLP)
CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum

• Running times:
SLP-NTR � 2SLP � CSLP

• 2SLP superior performance



Tests on the Spanish Gas Transmission Network (NLP)
CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum

• Running times:
SLP-NTR � 2SLP � CSLP

• 2SLP superior performance



Tests on the Spanish Gas Transmission Network (NLP)
CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Running times:

SLP-NTR � 2SLP � CSLP

• 2SLP superior performance



Tests on the Spanish Gas Transmission Network (NLP)
CSLP
SLP-NTR
2SLP

• 75 NLP real size instances
≈ 1000 variables and constraints

• 200 iterations maximum
• Running times:

SLP-NTR � 2SLP � CSLP

• 2SLP superior performance



Tests on the Spanish Gas Transmission Network (MINLP)

Real size instance with 10 binary variables

2SLP vs CSLP-Enumeration

2SLP

CSLP-Enumeration

2SLP

CSLP-Enumeration

Next task. Designing a full set of test instances



Tests on the Spanish Gas Transmission Network (MINLP)
Real size instance with 10 binary variables

2SLP vs CSLP-Enumeration

2SLP

CSLP-Enumeration

2SLP

CSLP-Enumeration

Next task. Designing a full set of test instances



Tests on the Spanish Gas Transmission Network (MINLP)
Real size instance with 10 binary variables

2SLP vs CSLP-Enumeration

2SLP

CSLP-Enumeration

2SLP

CSLP-Enumeration

Next task. Designing a full set of test instances



Tests on the Spanish Gas Transmission Network (MINLP)
Real size instance with 10 binary variables

2SLP vs CSLP-Enumeration

2SLP

CSLP-Enumeration

2SLP

CSLP-Enumeration

Next task. Designing a full set of test instances



Tests on the Spanish Gas Transmission Network (MINLP)
Real size instance with 10 binary variables

2SLP vs CSLP-Enumeration

2SLP

CSLP-Enumeration

2SLP

CSLP-Enumeration

Next task. Designing a full set of test instances



Tests on the Belgian Gas Transmission Network
(de Wolfe and Smeers, 2000)

Slightly different model of the gas transmission problem

Small example: ≈ 50 variables and constraints

NLP formulation of the problem

NLP problem CSLP SLP-NTR 2SLP BARON Knitro

Objective function 91.0562 91.0562 91.0562 91.0562 91.0562
Computational time 0.3654 0.3570 0.3570 0.0733 0.0093

MINLP formulation of the problem
|qij |qij . The absolute values in the constraints are modeled using
binary variables that account for the sign of qij

≈ 25 binary variables and 50 additional constraints

NLP problem 2SLP BARON Knitro

Objective function 91.0562 91.0562 94.8715 (infeasible)

Computational time 0.6497 231.2602 0.0983

Next task. Designing a full set of test instances
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Tests on multicommodity flow problems (NLP)
Linear constraints and nonlinear objective function

(feasibility X)

Benchmark test sets available (Babonneau et al. 2004)

Problem |N | |E| |T | Constr. Variab. zopt Relative error

Planar problems CSLP SLP-NTR 2SLP
P30 30 150 92 2760 13800 4.445× 107 0.0074 0.0085 0.0074
P50 50 250 267 13350 66750 1.212× 108 0.0202 0.0212 0.0202
P80 80 440 543 43440 238920 1.819× 108 0.0174 0.0188 0.0174
P100 100 532 1085 108500 577220 2.291× 108 0.0212 0.0219 0.0212

Grid problems
G1 25 80 50 1250 4000 8.336× 105 0.0003 0.0054 0.0004
G2 25 80 100 2500 8000 1.727× 106 0.0006 0.0089 0.0005
G3 100 360 50 5000 18000 1.532× 106 0.0000 0.0065 0.0002
G4 100 360 100 10000 36000 3.055× 106 0.0000 0.0066 0.0000
G5 225 840 100 22500 84000 5.079× 106 0.0000 0.0069 0.0000
G6 225 840 200 45000 168000 1.051× 107 0.0001 0.0108 0.0002
G7 400 1520 400 160000 608000 2.607× 107 0.0000 0.0031 0.0000

Telecommunication-like problems
N22 14 22 23 322 506 1.871× 103 0.0131 0.0131 0.0131
N148 58 148 122 7076 18056 1.402× 105 0.0000 0.0002 0.0000

Transportation problems
S-F 24 76 528 12672 40128 3.202× 105 0.0050 0.0051 0.0050

All approaches very competitive in terms of objective function
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