Rankings and Tournaments: A new approach

Julio González-Díaz

Kellogg School of Management (CMS-EMS) Northwestern University and Research Group in Economic Analysis Universidad de Vigo

(joint with Miguel Brozos-Vázquez, Marco Antonio Campo-Cabana, and José Carlos Díaz-Ramos)

Outline

Outline

2 The model

Main Goal

Main Goal

Rank the participants in a tournament

Main Goal

Rank the participants in a tournament

Rating vs. Ranking

Main Goal

Rank the participants in a tournament

Rating vs. Ranking

Rating vs. Ranking

Applications

• Rankings of web pages: Google

Rating vs. Ranking

- Rankings of web pages: Google
- Rankings of scientific journals

Rank the participants in a tournament

Rating vs. Ranking

- Rankings of web pages: Google
- Rankings of scientific journals
- Rankings in sports

Main Goal

Rank the participants in a tournament

Rating vs. Ranking

- Rankings of web pages: Google
- Rankings of scientific journals
- Rankings in sports
- Ranking social alternatives

Main Goal

Rank the participants in a tournament

Rating vs. Ranking

- Rankings of web pages: Google
- Rankings of scientific journals
- Rankings in sports
- Ranking social alternatives
- Ranking candidates in labor markets

Example

Example

Ranking Scientific Journals

Example

Ranking Scientific Journals

• $a_{ij} :=$ "number of citations received by *i* from *j*"

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

$$r_i^1 := \sum_j \frac{a_{ij}}{\sum_k a_{kj}}$$

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Initially, we can regard all journals as equally strong: $r^0:=(1,\ldots,1)$

$$r_i^1 := \sum_j \frac{a_{ij}}{\sum_k a_{kj}}$$

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Initially, we can regard all journals as equally strong: $r^0:=(1,\ldots,1)$

$$r^1_{i} := \sum_j rac{a_{ij}}{\sum_k a_{kj}} = \sum_j rac{a_{ij}}{\sum_k a_{kj}} r^0_{j}$$

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Initially, we can regard all journals as equally strong: $r^0:=(1,\ldots,1)$

$$r^1_{oldsymbol{i}} := \sum_j rac{a_{ij}}{\sum_k a_{kj}} = \sum_j rac{a_{ij}}{\sum_k a_{kj}} r^0_{oldsymbol{j}}$$

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Initially, we can regard all journals as equally strong: $r^0:=(1,\ldots,1)$

$$r^1_{oldsymbol{i}} := \sum_j rac{a_{ij}}{\sum_k a_{kj}} = \sum_j rac{a_{ij}}{\sum_k a_{kj}} r^0_{oldsymbol{j}}$$

$$r_i^2 := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^1$$

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Initially, we can regard all journals as equally strong: $r^0:=(1,\ldots,1)$

$$r^1_{oldsymbol{i}} := \sum_j rac{a_{ij}}{\sum_k a_{kj}} = \sum_j rac{a_{ij}}{\sum_k a_{kj}} r^0_{oldsymbol{j}}$$

$$r_i^2 := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^1 \quad \dots \quad \dots$$

Ranking Scientific Journals

- $a_{ij} :=$ "number of citations received by *i* from *j*"
- $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the citations made by j received by i"

Initially, we can regard all journals as equally strong: $r^0:=(1,\ldots,1)$

$$r^1_{oldsymbol{i}} := \sum_j rac{a_{ij}}{\sum_k a_{kj}} = \sum_j rac{a_{ij}}{\sum_k a_{kj}} r^0_{oldsymbol{j}}$$

$$r_i^2 := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^1 \quad \dots \quad r_i^\infty := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

$$r_i^\infty := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

Example: Ranking Scientific Journals (cont)

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$

• r^{∞} is just the solution of a linear system of equations

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$

- $\bullet~r^\infty$ is just the solution of a linear system of equations
- ${\, \bullet \,}$ The ranking induced by r^∞ is independent of r^0

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$

- $\bullet~r^\infty$ is just the solution of a linear system of equations
- $\bullet\,$ The ranking induced by r^∞ is independent of r^0
- Stochastic interpretation

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$

- r^{∞} is just the solution of a linear system of equations
- $\bullet\,$ The ranking induced by r^∞ is independent of r^0
- Stochastic interpretation
- This is the idea of the invariant method (Pinski and Marin, 1976)

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$

- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Stochastic interpretation
- This is the idea of the invariant method (Pinski and Marin, 1976)
- The invariant method is the core of Google's PageRank method (Page et al., 1998)

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$

- r^{∞} is just the solution of a linear system of equations
- $\bullet\,$ The ranking induced by r^∞ is independent of r^0
- Stochastic interpretation
- This is the idea of the invariant method (Pinski and Marin, 1976)
- The invariant method is the core of Google's PageRank method (Page et al., 1998)
- Characterized axiomatically by Palacios-Huerta and Volij (2004)

Outline

Primitives

Primitives

A tournament is given by:

Primitives

A tournament is given by:

• A set of n players (denoted by N)

Primitives

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them

Primitives

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0,$ $b_2\geq 0,$ $b_1+b_2=1$

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0$, $b_2\geq 0$, $b_1+b_2=1$
- $a_{ij} :=$ "number of points achieved by *i* against *j*"

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0,$ $b_2\geq 0,$ $b_1+b_2=1$
- $a_{ij} :=$ "number of points achieved by *i* against *j*"

Should we use the invariant method?

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0,$ $b_2\geq 0,$ $b_1+b_2=1$
- $a_{ij} :=$ "number of points achieved by *i* against *j*"

Should we use the invariant method? NO

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0,$ $b_2\geq 0,$ $b_1+b_2=1$
- $a_{ij} :=$ "number of points achieved by *i* against *j*"

Should we use the invariant method? NO: match, victory, loss

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0,$ $b_2\geq 0,$ $b_1+b_2=1$
- a_{ij} := "number of points achieved by i against j"

Should we use the invariant method? NO: match, victory, loss

Before, it was not bad to cite another journal. Now, this represents a loss

A tournament is given by:

- A set of n players (denoted by N)
- The pairwise results of a number of matches among them (contained in an $n \times n$ matrix A)
- The result of each individual match is a pair (b_1,b_2) with $b_1\geq 0$, $b_2\geq 0$, $b_1+b_2=1$
- $a_{ij} :=$ "number of points achieved by *i* against *j*"

Should we use the invariant method? NO: match, victory, loss

• Before, it was not bad to cite another journal. Now, this represents a loss • $\frac{a_{ij}}{\sum_k a_{kj}}$ = "percentage of the points lost by j that were against i"

Assumptions

Extra notations

Assumptions

Extra notations

• $M := A + A^t =$ "matches matrix"

Extra notations

- $M := A + A^t =$ "matches matrix"
- $m_{ij} =$ "total number of matches between i and j"

Extra notations

•
$$M := A + A^t =$$
 "matches matrix"

•
$$m_{ij} =$$
 "total number of matches between i and j "

•
$$s_i := rac{\sum_j a_{ij}}{\sum_j m_{ij}} =$$
 "average score of player i "

Extra notations

•
$$M := A + A^t =$$
 "matches matrix"

•
$$m_{ij} =$$
 "total number of matches between i and j "

•
$$s_i := rac{\sum_j a_{ij}}{\sum_j m_{ij}} =$$
 "average score of player i "

Assumptions

\bullet A is nonnegative

Extra notations

•
$$M := A + A^t =$$
 "matches matrix"

•
$$m_{ij} =$$
 "total number of matches between i and j "

•
$$s_i := rac{\sum_j a_{ij}}{\sum_j m_{ij}} =$$
 "average score of player i "

Assumptions

• A is nonnegative

•
$$a_{ii} = 0$$

Extra notations

- $M := A + A^t =$ "matches matrix"
- $\bullet \ m_{ij} =$ "total number of matches between i and j "

•
$$s_i := rac{\sum_j a_{ij}}{\sum_j m_{ij}} =$$
 "average score of player i "

- A is nonnegative
- $a_{ii} = 0$
- M is irreducible (no incomparable sub-tournaments)

Extra notations

- $\bullet \ M:=A+A^t= \ \text{``matches matrix''}$
- $\bullet \ m_{ij} =$ "total number of matches between i and j "

•
$$s_i := rac{\sum_j a_{ij}}{\sum_j m_{ij}} =$$
 "average score of player i "

- A is nonnegative
- $a_{ii} = 0$
- M is irreducible (no incomparable sub-tournaments)
- $0 < s_i < 1$

Outline

2 The model

Tournaments

Ranking methods for tournaments

• Scores ranking (axiomatized by Rubinstein, 1980)

- Scores ranking (axiomatized by Rubinstein, 1980)
- Fair bets (Pinsky and Narin, 1976; axiomatized in Sluztky and Volij, 2005 and 2006)

- Scores ranking (axiomatized by Rubinstein, 1980)
- Fair bets (Pinsky and Narin, 1976; axiomatized in Sluztky and Volij, 2005 and 2006)
- Maximum likelihood approach (Bradley and Terry, 1952)

- Scores ranking (axiomatized by Rubinstein, 1980)
- Fair bets (Pinsky and Narin, 1976; axiomatized in Sluztky and Volij, 2005 and 2006)
- Maximum likelihood approach (Bradley and Terry, 1952)
- Recursive performance (this paper)

Ranking methods for tournaments

- Scores ranking (axiomatized by Rubinstein, 1980)
- Fair bets (Pinsky and Narin, 1976; axiomatized in Sluztky and Volij, 2005 and 2006)
- Maximum likelihood approach (Bradley and Terry, 1952)
- Recursive performance (this paper)

Examples

Ranking methods for tournaments

- Scores ranking (axiomatized by Rubinstein, 1980)
- Fair bets (Pinsky and Narin, 1976; axiomatized in Sluztky and Volij, 2005 and 2006)
- Maximum likelihood approach (Bradley and Terry, 1952)
- Recursive performance (this paper)

Examples

The Scores Ranking

The scores ranking

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

Characterization for Round Robin (Rubinstein, 1980)

Anonymity

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

- Anonymity
- Responsiveness with respect to the beating relation

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

- Anonymity
- Responsiveness with respect to the beating relation
- Independence of irrelevant matches

The Scores Ranking

The scores ranking

Rank the players according to the vector s

- Anonymity
- Responsiveness with respect to the beating relation
- Independence of irrelevant matches !?!?

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

- Anonymity
- Responsiveness with respect to the beating relation
- Independence of irrelevant matches !?!?

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

Characterization for Round Robin (Rubinstein, 1980)

- Anonymity
- Responsiveness with respect to the beating relation
- Independence of irrelevant matches !?!?

Problems

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

Characterization for Round Robin (Rubinstein, 1980)

- Anonymity
- Responsiveness with respect to the beating relation
- Independence of irrelevant matches !?!?

Problems

Many ties

The Scores Ranking

The scores ranking

Rank the players according to the vector \boldsymbol{s}

Characterization for Round Robin (Rubinstein, 1980)

- Anonymity
- Responsiveness with respect to the beating relation
- Independence of irrelevant matches !?!?

Problems

- Many ties
- Only makes sense for Round-Robin tournaments (because of IIA).

The Fair-Bets Method

Invariant method:
$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{kj}} r_j^{\infty}$$
The Fair-Bets Method

Invariant method:
$$r^\infty_i := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r^\infty_j$$

The invariant method rewards victories without punishing for losses

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

The fair-bets method

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

The fair-bets method

• $\frac{a_{ij}}{\sum_k a_{ki}}$ = "points of i against j relative to i's total number of losses"

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

- The fair-bets method
 - $\frac{a_{ij}}{\sum_k a_{ki}}$ = "points of i against j relative to i's total number of losses"

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

- The fair-bets method
 - $\frac{a_{ij}}{\sum_k a_{ki}}$ = "points of i against j relative to i's total number of losses"

$$r_i^1 := \sum_j \frac{a_{ij}}{\sum_k a_{ki}}$$

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

- The fair-bets method
 - $\frac{a_{ij}}{\sum_k a_{ki}}$ = "points of i against j relative to i's total number of losses"

$$r_i^1 := \sum_j rac{a_{ij}}{\sum_k a_{ki}} = \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^0$$

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

- The fair-bets method
 - $\frac{a_{ij}}{\sum_k a_{ki}}$ = "points of i against j relative to i's total number of losses"

$$r_i^1 := \sum_j rac{a_{ij}}{\sum_k a_{ki}} = \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^0$$
 "ratio victories/losses of i "

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

- The fair-bets method
 - $\frac{a_{ij}}{\sum_k a_{ki}}$ = "points of *i* against *j* relative to *i*'s total number of losses"

$$r_i^1 := \sum_j rac{a_{ij}}{\sum_k a_{ki}} = \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^0$$
 "ratio victories/losses of i "
 $r_i^2 := \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^1$

The Fair-Bets Method

Invariant method:
$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{kj}} r_j^\infty$$

The invariant method rewards victories without punishing for losses

- The fair-bets method
 - $\frac{a_{ij}}{\sum_{k} a_{ki}}$ = "points of *i* against *j* relative to *i*'s total number of losses"

Initially, we can regard all players as equally strong: $r^0 := (1, ..., 1)$

$$r_i^1 := \sum_j rac{a_{ij}}{\sum_k a_{ki}} = \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^0$$
 "ratio victories/losses of i "

 $r_i^2 := \sum_i rac{a_{ij}}{\sum_k a_{ki}} r_j^1$ "victories against stronger opponents have more weight" "all losses have the same weight"

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

• r^{∞} is just the solution of a linear system of equations

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

 $\bullet~r^\infty$ is just the solution of a linear system of equations

• The ranking induced by r^∞ is independent of r^0

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

- $\bullet\ r^\infty$ is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Bets' interpretation

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

- $\bullet\ r^\infty$ is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Bets' interpretation

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Bets' interpretation

Characterization (Sluzki and Volij, 2005)

Responsiveness with respect to the beating relation

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

- r^∞ is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Bets' interpretation

- Responsiveness with respect to the beating relation
- Anonymity

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Bets' interpretation

- Responsiveness with respect to the beating relation
- Anonymity
- Quasi-flatness preservation

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Bets' interpretation

- Responsiveness with respect to the beating relation
- Anonymity
- Quasi-flatness preservation
- Negative responsiveness to losses

The Fair-Bets Method

$$r_i^{\infty} := \sum_j \frac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

The Fair-Bets Method

$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^\infty$$

Problem

The Fair-Bets Method

$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^\infty$$

Problem

• Asymmetric treatment of victories with respect to losses (because of negative responsiveness to losses)

The Fair-Bets Method

$$r_i^\infty := \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^\infty$$

Problem

- Asymmetric treatment of victories with respect to losses (because of negative responsiveness to losses)
- Violates the axiom:

The Fair-Bets Method

$$r_i^{\infty} := \sum_j rac{a_{ij}}{\sum_k a_{ki}} r_j^{\infty}$$

Problem

- Asymmetric treatment of victories with respect to losses (because of negative responsiveness to losses)
- Violates the axiom:

The ranking proposed for A is the inverse of the one proposed for A^t

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

Completely different approach

• Assume that there is a distribution function F such that the expected score of a player with strength r_i in a match against a player with strength r_j is given by $F(r_i - r_j)$.

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

- Assume that there is a distribution function F such that the expected score of a player with strength r_i in a match against a player with strength r_j is given by F(r_i - r_j).
- The function F is called rating function

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

- Assume that there is a distribution function F such that the expected score of a player with strength r_i in a match against a player with strength r_j is given by F(r_i - r_j).
- The function F is called rating function
- Bradley and Terry (1952) took the (standard) logistic distribution: $F(r_i-r_j)=\frac{e^{r_i}}{e^{r_i}+e^{r_j}}$

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

- Assume that there is a distribution function F such that the expected score of a player with strength r_i in a match against a player with strength r_j is given by F(r_i - r_j).
- The function F is called rating function
- Bradley and Terry (1952) took the (standard) logistic distribution: $F(r_i - r_j) = \frac{e^{r_i}}{e^{r_i} + e^{r_j}} \quad (F(0) = 1/2, \lim_{d \to +\infty} F(d) = 1, \lim_{d \to -\infty} F(d) = 0)$

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

- Assume that there is a distribution function F such that the expected score of a player with strength r_i in a match against a player with strength r_j is given by F(r_i - r_j).
- The function F is called rating function
- Bradley and Terry (1952) took the (standard) logistic distribution: $F(r_i - r_j) = \frac{e^{r_i}}{e^{r_i} + e^{r_j}} \quad (F(0) = 1/2, \lim_{d \to +\infty} F(d) = 1, \lim_{d \to -\infty} F(d) = 0)$
- The specific distribution can be chosen depending on the discipline

The Maximum Likelihood Approach Paired comparison analysis (Statistics)

- Assume that there is a distribution function F such that the expected score of a player with strength r_i in a match against a player with strength r_j is given by F(r_i - r_j).
- The function F is called rating function
- Bradley and Terry (1952) took the (standard) logistic distribution: $F(r_i - r_j) = \frac{e^{r_i}}{e^{r_i} + e^{r_j}} \quad (F(0) = 1/2, \lim_{d \to +\infty} F(d) = 1, \lim_{d \to -\infty} F(d) = 0)$
- The specific distribution can be chosen depending on the discipline
- In chess tournaments also a logistic distribution has proved to fit the observed data quite well

The Maximum Likelihood Approach

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

• Excellent asymptotic properties

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

- Excellent asymptotic properties
- The ranking proposed for A is the inverse of the one proposed for A^t

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

Excellent asymptotic properties

• The ranking proposed for A is the inverse of the one proposed for A^t Problems:

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

- Excellent asymptotic properties
- The ranking proposed for A is the inverse of the one proposed for A^t

Problems:

• Typically reduces to solve a nonlinear system of equations (high computational cost)

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

- Excellent asymptotic properties
- $\bullet\,$ The ranking proposed for A is the inverse of the one proposed for A^t

Problems:

- Typically reduces to solve a nonlinear system of equations (high computational cost)
- Even mild misspecifications on the function ${\cal F}$ may lead to severe asymptotic bias

Given a tournament A and a rating function F, choose the vector of ratings r under which the probability of A being realized, when the matches in M are played, is maximized

Select the ratings under which A has maximum likelihood

Properties:

- Excellent asymptotic properties
- The ranking proposed for ${\cal A}$ is the inverse of the one proposed for ${\cal A}^t$

Problems:

- Typically reduces to solve a nonlinear system of equations (high computational cost)
- Even mild misspecifications on the function ${\cal F}$ may lead to severe asymptotic bias
- What about non-asymptotic behavior?

Outline

2 The model

3 Ranking Methods

Idea

-WE LIKE

-WE LIKE

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

-WE LIKE

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

Maximum-Likelihood: The idea of using the rating function to reward results according to their statistic relevance

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

Maximum-Likelihood: The idea of using the rating function to reward results according to their statistic relevance (F is non-linear)

-WE LIKE

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

Maximum-Likelihood: The idea of using the rating function to reward results according to their statistic relevance (F is non-linear)

-WE DO NOT LIKE

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

Maximum-Likelihood: The idea of using the rating function to reward results according to their statistic relevance (F is non-linear)

-WE DO NOT LIKE

Fair-Bets: Asymmetric treatment of victories with respect to losses (formalized through the axiom concerning A and A^t)

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

Maximum-Likelihood: The idea of using the rating function to reward results according to their statistic relevance (F is non-linear)

-WE DO NOT LIKE

Fair-Bets: Asymmetric treatment of victories with respect to losses (formalized through the axiom concerning A and A^t) Maximum-Likelihood: The problems derived from the non-linearity of the system to be solved

Fair-Bets: The iterative method (linear system) to use all the information of the tournament

Maximum-Likelihood: The idea of using the rating function to reward results according to their statistic relevance (F is non-linear)

-WE DO NOT LIKE

Fair-Bets: Asymmetric treatment of victories with respect to losses (formalized through the axiom concerning A and A^t) Maximum-Likelihood: The problems derived from the non-linearity of the system to be solved (lack of robustness on F, computation costs)

Recursive Performance

• Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}} =$ "percentage of the games played by i that were against j "

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}} =$ "percentage of the games played by i that were against j "

The recursive performance method

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}}$ = "percentage of the games played by i that were against j"

The recursive performance method

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}} =$ "percentage of the games played by i that were against j "

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i)$$

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ii}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}} =$ "percentage of the games played by i that were against j "

The recursive performance method

$$\mathbf{r_i^1} := \sum_{j} \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_{j} \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r_j^0}}_{j} + \underbrace{F^{-1}(s_i)}_{j}$$

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ii}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}} =$ "percentage of the games played by i that were against j "

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{average opponent}}$$

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ii}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}}$ = "percentage of the games played by i that were against j"

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

- Suppose that player i achieves a score of $s_{ij} = \frac{a_{ij}}{m_{ij}}$ against j
- $F^{-1}(s_{ij})$ represents the difference of strength between i and j given by these results
- $\frac{m_{ij}}{\sum_k m_{ik}} =$ "percentage of the games played by i that were against j "

The recursive performance method

Initially, we can regard all players as equally strong: $r^0:=(1,\ldots,1)$

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

 $r_i^1 =$ "performance of i"

Recursive Performance

The recursive performance method

$$\mathbf{r}_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r}_j^0}_{\mathbf{v}_j} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

average opponent

Recursive Performance

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

Recursive Performance

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

$$r_i^2 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^1 + F^{-1}(s_i)$$

Recursive Performance

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

$$r_i^2 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^1 + F^{-1}(s_i) \dots$$

Recursive Performance

The recursive performance method

$$r_i^1 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} + F^{-1}(s_i) = \underbrace{\sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^0}_{\text{average opponent}} + \underbrace{F^{-1}(s_i)}_{\text{exhibited strength}}$$

$$r_i^2 := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^1 + F^{-1}(s_i) \dots r_i^\infty := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^\infty + F^{-1}(s_i)$$

$$\boldsymbol{r_i^{\infty}} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} \boldsymbol{r_j^{\infty}} + F^{-1}(s_i)$$

Recursive Performance

$$\mathbf{r}_i^{\infty} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r}_j^{\infty} + F^{-1}(s_i)$$

• The recursive performance is well defined

$$\mathbf{r}_i^{\infty} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r}_j^{\infty} + F^{-1}(s_i)$$

- The recursive performance is well defined
- r^{∞} is just the solution of a linear system of equations

$$\mathbf{r}_i^{\infty} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r}_j^{\infty} + F^{-1}(s_i)$$

- The recursive performance is well defined
- $\bullet\ r^\infty$ is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0

$$\mathbf{r_i^{\infty}} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r_j^{\infty}} + F^{-1}(s_i)$$

- The recursive performance is well defined
- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^{∞} is independent of r^0
- Symmetric treatment of victories and losses. The ranking proposed for A is the inverse of the ranking proposed by A^t
Recursive Performance

$$r_i^{\infty} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} r_j^{\infty} + F^{-1}(s_i)$$

- The recursive performance is well defined
- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Symmetric treatment of victories and losses. The ranking proposed for A is the inverse of the ranking proposed by A^t
- ${\ensuremath{\, \circ }}$ The proposed rating is robust in F

Recursive Performance

$$\mathbf{r}_i^{\infty} := \sum_j \frac{m_{ij}}{\sum_k m_{ik}} \mathbf{r}_j^{\infty} + F^{-1}(s_i)$$

- The recursive performance is well defined
- r^{∞} is just the solution of a linear system of equations
- The ranking induced by r^∞ is independent of r^0
- Symmetric treatment of victories and losses. The ranking proposed for A is the inverse of the ranking proposed by A^t
- The proposed rating is robust in F
- According to the proposed rating, the performance of each player coincides with his own rating

Round Robin

When restricting attention to round robin tournaments we get:

Round Robin

When restricting attention to round robin tournaments we get:

 $\mathsf{Scores} = \mathsf{Maximum} \ \mathsf{Likelihood} = \mathsf{Recursive} \ \mathsf{Performance} \neq \mathsf{Fair} \ \mathsf{Bets}$

Some numeric examples

Some numeric examples

 A_1

 $\left(\begin{array}{cccc} 0 & 1 & 0.9 & 0.9 \\ 1 & 0 & 0.9 & 0 \\ 0.1 & 0.1 & 0 & 0 \\ 0.1 & 0 & 0 & 0 \end{array} \right)$

(av.scores)RP FB ML 0.71.0101.0990.7030.6331.0371.0990.7030.1-1.017-1.0990.0780.1-1.0310.078-1.099

Some numeric examples

	A_1					$(av.scores \ S$	⁾ RP	ML	FB
1	0	1	0.9	0.9		0.7	1.010	1.099	0.703
1	1	0	0.9	0		0.633	1.037	1.099	0.703
	0.1	0.1	0	0		0.1	-1.017	-1.099	0.078
l	0.1	0	0	0		0.1	-1.031	-1.099	0.078
						(av scores)		
		A	$_2$			$(av.scores \ S$) RP	ML	FB
(0	A 1	l ₂ 90	0.9)	(av.scores S 0.892) RP 1.127	ML 1.099	FB 0.703
($0 \\ 1$	A 1 0	l ₂ 90 0.9	$\begin{array}{c} 0.9 \\ 0 \end{array}$)	(av.scores 8 0.892 0.633	⁾ RP 1.127 0.971	ML 1.099 1.099	FB 0.703 0.703
($\begin{array}{c} 0 \\ 1 \\ 10 \end{array}$	A 1 0 0.1	$ \begin{array}{c} 1_2 \\ 90 \\ 0.9 \\ 0 \end{array} $	$\begin{array}{c} 0.9 \\ 0 \\ 0 \end{array}$		(av.scores) 0.892 0.633 0.1) RP 1.127 0.971 -1.049	ML 1.099 1.099 -1.099	FB 0.703 0.703 0.078

Some numeric examples

A_1					$(av.scores \ S$) RP	ML	FB
1	0	1	0.9	0.9	0.7	1.010	1.099	0.703
	1	0	0.9	0	0.633	1.037	1.099	0.703
	0.1	0.1	0	0	0.1	-1.017	-1.099	0.078
(0.1	0	0	0 /	0.1	-1.031	-1.099	0.078
					(av.scores) חח	N 4 I	FD
,		A	2	,	s	RP	IVIL	FB
(0	1	90	0.9	0.892	1.127	1.099	0.703
	1	0	0.9	0	0.633	0.971	1.099	0.703
	10	0.1	0	0	0.1	-1.049	-1.099	0.078
(0.1	0	0	0 /	0.1	-1.048	-1.099	0.078
					(av.scores)		
		A	3		s	´ RP	ML	FB
1	0	0.9	90	0.9 \	0.891	1.087	1.055	0.637
	1.1	0	0.9	0	0.667	1.082	1.227	0.764
	10	0.1	0	0	0.1	-1.085	-1.140	0.071
	0.1	0	0	0 /	0.1	-1.084	-1.142	0.070

Directions for future research

Directions for future research

• Axiomatic analysis of the recursive performance ranking method

Directions for future research

- Axiomatic analysis of the recursive performance ranking method
- Develop comparative studies of the different ranking methods in applied settings

Rankings and Tournaments: A new approach

Julio González-Díaz

Kellogg School of Management (CMS-EMS) Northwestern University and Research Group in Economic Analysis Universidad de Vigo

(joint with Miguel Brozos-Vázquez, Marco Antonio Campo-Cabana, and José Carlos Díaz-Ramos)

A_1					$(av.scores) \ S$	++	++	++
1	0	1	0.9	0.9	0.7			
	1	0	0.9	0	0.633			
0).1	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	-2		$(av.scores) \ S$	++	++	++
1	0	1	90	0.9 \	0.892			
1	1	0	0.9	0	0.633			
1	10	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	3		$(av.scores) \\ s$	++	++	++
1	0	0.9	90	0.9 \	0.891			
1	1.1	0	0.9	0	0.667			
	10^{-1}	0.1	0	0	0.1			

A_1					$(av.scores) \ S$	++	++	++
1	0	1	0.9	0.9	0.7			
	1	0	0.9	0	0.633			
0).1	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	-2		$(av.scores) \ S$	++	++	++
1	0	1	90	0.9 \	0.892			
1	1	0	0.9	0	0.633			
1	10	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	3		$(av.scores) \\ s$	++	++	++
1	0	0.9	90	0.9 \	0.891			
1	1.1	0	0.9	0	0.667			
	10^{-1}	0.1	0	0	0.1			

A_1					$(av.scores) \ S$	++	++	++
1	0	1	0.9	0.9	0.7			
	1	0	0.9	0	0.633			
0).1	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	-2		$(av.scores) \ S$	++	++	++
1	0	1	90	0.9 \	0.892			
1	1	0	0.9	0	0.633			
1	10	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	3		$(av.scores) \\ s$	++	++	++
1	0	0.9	90	0.9 \	0.891			
1	1.1	0	0.9	0	0.667			
	10^{-1}	0.1	0	0	0.1			

A_1					$(av.scores) \ S$	++	++	++
1	0	1	0.9	0.9	0.7			
	1	0	0.9	0	0.633			
0).1	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	-2		$(av.scores) \ S$	++	++	++
1	0	1	90	0.9 \	0.892			
1	1	0	0.9	0	0.633			
1	10	0.1	0	0	0.1			
\ 0).1	0	0	0 /	0.1			
				,				
		A	3		$(av.scores) \\ s$	++	++	++
1	0	0.9	90	0.9 \	0.891			
1	1.1	0	0.9	0	0.667			
	10^{-1}	0.1	0	0	0.1			

<i>A</i> 1					(av.scores)	++	++	++
1	0	1	0.9	0.9 \	0.7	1.010	1.099	0.703
1	1	0	0.9	0	0.633	1.037	1.099	0.703
	0.1	0.1	0	0	0.1	-1.017	-1.099	0.078
	0.1	0	0	0 /	0.1	-1.031	-1.099	0.078
`				/				
					(av.scores)			
		A	1_2		s	++	++	++
1	0	1	90	0.9	0.892	1.127	1.099	0.703
	1	0	0.9	0	0.633	0.971	1.099	0.703
	10	0.1	0	0	0.1	-1.049	-1.099	0.078
	0.1	0	0	0 /	0.1	-1.048	-1.099	0.078
					(av.scores)			
		A	3		s	++	++	++
1	0	0.9	90	0.9	0.891	1.087	1.055	0.637
	1.1	0	0.9	0	0.667	1.082	1.227	0.764
	10	0.1	0	0	0.1	-1.085	-1.140	0.071
	0.1	0	0	0 /	0.1	-1.084	-1.142	0.070

<i>A</i> 1					(av.scores)	++	++	++
1	0	1	0.9	0.9 \	0.7	1.010	1.099	0.703
1	1	0	0.9	0	0.633	1.037	1.099	0.703
	0.1	0.1	0	0	0.1	-1.017	-1.099	0.078
	0.1	0	0	0 /	0.1	-1.031	-1.099	0.078
`				,				
					(av.scores)			
		A	1_2		s	++	++	++
1	0	1	90	0.9	0.892	1.127	1.099	0.703
	1	0	0.9	0	0.633	0.971	1.099	0.703
	10	0.1	0	0	0.1	-1.049	-1.099	0.078
	0.1	0	0	0 /	0.1	-1.048	-1.099	0.078
					(av.scores)			
		A	3		s	++	++	++
1	0	0.9	90	0.9	0.891	1.087	1.055	0.637
	1.1	0	0.9	0	0.667	1.082	1.227	0.764
	10	0.1	0	0	0.1	-1.085	-1.140	0.071
	0.1	0	0	0 /	0.1	-1.084	-1.142	0.070

		A	1		$(av.scores) \ S$	RP	ML	FB
1	0	1	0.9	0.9	0.7	1.010	1.099	0.703
	1	0	0.9	0	0.633	1.037	1.099	0.703
	0.1	0.1	0	0	0.1	-1.017	-1.099	0.078
	0.1	0	0	0 /	0.1	-1.031	-1.099	0.078
		A	2		(av.scores)	RP	MI	FB
1	Ο	1	 	00)	0 802	1 1 97	1 000	0 703
1	1	1	30	0.3	0.092	1.121	1.033	0.703
	1	0	0.9	0	0.633	0.971	1.099	0.703
	10	0.1	0	0	0.1	-1.049	-1.099	0.078
	0.1	0	0	0 /	0.1	-1.048	-1.099	0.078
					(av.scores)			
		A	3		s	RP	ML	FR
1	0	0.9	90	0.9	0.891	1.087	1.055	0.637
	1.1	0	0.9	0	0.667	1.082	1.227	0.764
	10	0.1	0	0	0.1	-1.085	-1.140	0.071
	0.1	0	0	0 /	0.1	-1.084	-1.142	0.070