Performing Best when it Matters Most: Evidence from professional tennis

Julio González-Díaz 1 $\,$ Olivier Gossner 2 $\,$ Brian Rogers 3

¹Research Group in Economic Analysis Universidad de Vigo

²London School of Economics University of London

³Kellogg School of Management Northwestern University

October 16th, 2009

E

2

▲圖▶ ▲ 문▶ ▲ 문▶

• This paper belongs to a growing literature aiming at incorporating insights from psychology into (behavioral) economics

- This paper belongs to a growing literature aiming at incorporating insights from psychology into (behavioral) economics
- In particular, part of this literature tries to understand how economic agents react to different forms of pressure

- This paper belongs to a growing literature aiming at incorporating insights from psychology into (behavioral) economics
- In particular, part of this literature tries to understand how economic agents react to different forms of pressure
- Note that a perfectly rational agent's performance should be unaffected by changes in pressure or in the stakes (importance of the situation)

- This paper belongs to a growing literature aiming at incorporating insights from psychology into (behavioral) economics
- In particular, part of this literature tries to understand how economic agents react to different forms of pressure
- Note that a perfectly rational agent's performance should be unaffected by changes in pressure or in the stakes (importance of the situation)
- This literature acknowledges the fact that these changes may affect an agent's ability to play optimally

2

▲圖▶ ▲ 문▶ ▲ 문▶

Questions we want to address

2

伺き イヨト イヨト

Questions we want to address

Is there heterogeneity in the abilities of the agents to perform best when it matters most?

Questions we want to address

- Is there heterogeneity in the abilities of the agents to perform best when it matters most?
- Ooes this heterogeneity have a significant impact on the success of the agents?

Questions we want to address

- Is there heterogeneity in the abilities of the agents to perform best when it matters most?
- Ooes this heterogeneity have a significant impact on the success of the agents?

Why?

Questions we want to address

- Is there heterogeneity in the abilities of the agents to perform best when it matters most?
- Ooes this heterogeneity have a significant impact on the success of the agents?

Why?

This heterogeneity should be taken into account when designing contracts and providing incentives

2

▲御▶ ▲ 臣▶ ▲ 臣▶

• J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars"

Ξ

・ 同 ト ・ ヨ ト ・ ヨ ト

• J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)

э

伺 と く ヨ と く ヨ と

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"

э

・ 同 ト ・ ヨ ト ・ ヨ ト

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"

Women's performance decreases under pressure and male's performance remains unchanged (Tennis)

・ 同 ト ・ ヨ ト ・ ヨ ト

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"

Women's performance decreases under pressure and male's performance remains unchanged (Tennis) Heterogeneity?

伺 と く ヨ と く ヨ と

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"

Women's performance decreases under pressure and male's performance remains unchanged (Tennis) Heterogeneity?

• T. J. Dohmen (2006) "Do professionals choke under pressure?"

伺 と く ヨ と く ヨ と

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"

Women's performance decreases under pressure and male's performance remains unchanged (Tennis) Heterogeneity?

• T. J. Dohmen (2006) "Do professionals choke under pressure?"

The performance of soccer players unaffected by changes in the stakes but they choke under (favorable) social pressure (Soccer/Penalty kicks)

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"

Women's performance decreases under pressure and male's performance remains unchanged (Tennis) Heterogeneity?

• T. J. Dohmen (2006) "Do professionals choke under pressure?" The performance of soccer players unaffected by changes in the stakes but they choke under (favorable) social pressure (Soccer/Penalty kicks)

• Apesteguia and Palacios-Huerta (2009) "Psychological Pressure in Competitive Environments"

・ 同 ト ・ ヨ ト ・ ヨ ト

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"
 Women's performance decreases under pressure and male's performance remains unchanged (Tennis)
 Heterogeneity?

• T. J. Dohmen (2006) "Do professionals choke under pressure?" The performance of soccer players unaffected by changes in the stakes but they choke under (favorable) social pressure (Soccer/Penalty kicks)

• Apesteguia and Palacios-Huerta (2009) "Psychological Pressure in Competitive Environments" Better performance at high stake situations when you have a better prospect; choking under "negative pressure" (Soccer/Penalty shoot-outs)

・ 同 ト ・ ヨ ト ・ ヨ ト

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments" Women's performance decreases under pressure and male's performance

remains unchanged (Tennis) Heterogeneity?

• T. J. Dohmen (2006) "Do professionals choke under pressure?" The performance of soccer players unaffected by changes in the stakes but they choke under (favorable) social pressure (Soccer/Penalty kicks)

• Apesteguia and Palacios-Huerta (2009) "Psychological Pressure in Competitive Environments" Better performance at high stake situations when you have a better prospect; choking under "negative pressure" (Soccer/Penalty shoot-outs)

• Ariely et al (2009) "Large Stakes and Big Mistakes"

- 4 同 2 4 日 2 4 日 2

<ロ> (四) (四) (日) (日) (日)

Related Literature

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"
 Women's performance decreases under pressure and male's performance remains unchanged (Tennis)
 Heterogeneity?

• T. J. Dohmen (2006) "Do professionals choke under pressure?" The performance of soccer players unaffected by changes in the stakes but they choke under (favorable) social pressure (Soccer/Penalty kicks)

• Apesteguia and Palacios-Huerta (2009) "Psychological Pressure in Competitive Environments" Better performance at high stake situations when you have a better prospect; choking under "negative pressure" (Soccer/Penalty shoot-outs)

• Ariely et al (2009) "Large Stakes and Big Mistakes"

Detrimental effect of exceptionally high incentives (field experiment/India)

- J. Brown (2009) "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars" Detrimental performance of the agents in the presence of superstars (Golf/Tiger Woods)
- D. Paserman (2008) "Gender Differences in Performance in Competitive Environments"
 Women's performance decreases under pressure and male's performance remains unchanged (Tennis)
 Heterogeneity?
- T. J. Dohmen (2006) "Do professionals choke under pressure?" The performance of soccer players unaffected by changes in the stakes but they choke under (favorable) social pressure (Soccer/Penalty kicks)
- Apesteguia and Palacios-Huerta (2009) "Psychological Pressure in Competitive Environments" Better performance at high stake situations when you have a better prospect; choking under "negative pressure" (Soccer/Penalty shoot-outs)
- Ariely et al (2009) "Large Stakes and Big Mistakes"
- Detrimental effect of exceptionally high incentives (field experiment/India)

Fairly recent literature

伺き イヨト イヨト

We look at the behavior of professional tennis players

-

We look at the behavior of professional tennis players Findings:

-

We look at the behavior of professional tennis players Findings:

• There is heterogeneity in agent's reactions to changes in the importance of the situation.

We look at the behavior of professional tennis players

Findings:

There is heterogeneity in agent's reactions to changes in the importance of the situation. What changes is the importance of the points of a tennis match

We look at the behavior of professional tennis players

Findings:

- There is heterogeneity in agent's reactions to changes in the importance of the situation. What changes is the importance of the points of a tennis match
- This heterogeneity has a significant impact on an agent's career.

We look at the behavior of professional tennis players

Findings:

- There is heterogeneity in agent's reactions to changes in the importance of the situation. What changes is the importance of the points of a tennis match
- This heterogeneity has a significant impact on an agent's career. What we measure is the impact of the ability to perform best when it matters the most on the ratings/rankings of elite tennis players

Real-life scenarios

2

□ > < E > < E >

Real-life scenarios

Financial traders

- Trading decisions must be made quickly and repeatedly
- Some decisions will involve a steeper risk/reward tradeoff
- Similar for some corporate managers

Real-life scenarios

Financial traders

- Trading decisions must be made quickly and repeatedly
- Some decisions will involve a steeper risk/reward tradeoff
- Similar for some corporate managers

Political campaigning

- U.S. presidential candidates campaign for years
- Many decisions to make, performances to give, along the way
- Some (nationally televised debates) have far more impact than others; some states are hugely influential
- Choking in an important performance/debate may mean losing the election

Critical Ability

2

<□> < 三> < 三>

Critical Ability

Two different types of skill

æ

→ Ξ → → Ξ

Two different types of skill

Standard ability: Some agents may be generally better and making the correct decision

- + ≣ →

Two different types of skill

- Standard ability: Some agents may be generally better and making the correct decision
- Critical ability: Some agents may be better than others "under pressure" at crucial moments

• • = • • = •

Two different types of skill

- Standard ability: Some agents may be generally better and making the correct decision
- Critical ability: Some agents may be better than others "under pressure" at crucial moments

6/31

Critical Ability

Two different types of skill

- Standard ability: Some agents may be generally better and making the correct decision
- Critical ability: Some agents may be better than others "under pressure" at crucial moments

For the critical ability

• Is it an issue of resource allocation?

Two different types of skill

- Standard ability: Some agents may be generally better and making the correct decision
- Critical ability: Some agents may be better than others "under pressure" at crucial moments

- Is it an issue of resource allocation?
- Is it a matter of psychological ability to handle pressure?

Two different types of skill

- Standard ability: Some agents may be generally better and making the correct decision
- Critical ability: Some agents may be better than others "under pressure" at crucial moments

- Is it an issue of resource allocation?
- Is it a matter of psychological ability to handle pressure?

Two different types of skill

- Standard ability: Some agents may be generally better and making the correct decision
- Critical ability: Some agents may be better than others "under pressure" at crucial moments

- Is it an issue of resource allocation?
- Is it a matter of psychological ability to handle pressure?

Data from professional tennis matches

• Elite, trained, highly motivated agents

- Elite, trained, highly motivated agents
- In a tournament, each agent plays many consecutive points

- Elite, trained, highly motivated agents
- In a tournament, each agent plays many consecutive points
 - Unambiguous data available on point outcomes

- Elite, trained, highly motivated agents
- In a tournament, each agent plays many consecutive points
 - Unambiguous data available on point outcomes
 - Points differ substantially in terms of their significance

- Elite, trained, highly motivated agents
- In a tournament, each agent plays many consecutive points
 - Unambiguous data available on point outcomes
 - Points differ substantially in terms of their significance
- ⇒ High-quality information the context and on players' performance

Outline

2 Tennis and point importance

э

-

Data & Methodology

Results

Structure of a tennis match

Scoring structure

Ξ

-

-∢ ≣ →

Scoring structure

• Player's objective is to win the match.

- Player's objective is to win the match.
- These tennis matches consists of best of five sets.

- Player's objective is to win the match.
- These tennis matches consists of best of five sets.
- A set is won by winning 6 games (win by two, tie-break).
 - 12-point tie break is first player to win 7 points, win by two.

- Player's objective is to win the match.
- These tennis matches consists of best of five sets.
- A set is won by winning 6 games (win by two, tie-break).
 - 12-point tie break is first player to win 7 points, win by two.
- A game is won by winning 4 points (win by two, no tie-break).

- Player's objective is to win the match.
- These tennis matches consists of best of five sets.
- A set is won by winning 6 games (win by two, tie-break).
 - 12-point tie break is first player to win 7 points, win by two.
- A game is won by winning 4 points (win by two, no tie-break).
- Players alternate service games, with the first server chosen randomly.

Scoring structure

- Player's objective is to win the match.
- These tennis matches consists of best of five sets.
- A set is won by winning 6 games (win by two, tie-break).
 - 12-point tie break is first player to win 7 points, win by two.
- A game is won by winning 4 points (win by two, no tie-break).
- Players alternate service games, with the first server chosen randomly.

Implication

Scoring structure

- Player's objective is to win the match.
- These tennis matches consists of best of five sets.
- A set is won by winning 6 games (win by two, tie-break).
 - 12-point tie break is first player to win 7 points, win by two.
- A game is won by winning 4 points (win by two, no tie-break).
- Players alternate service games, with the first server chosen randomly.

Implication

Points are not all equally important

æ

Defining the importance variable: PiM

Differences in point importances are essential for our analysis

Differences in point importances are essential for our analysis Notion of importance

• The state of a match, θ , is given by the current score and server

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities p_1 , p_2

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂
- Thus one can compute $P(i \text{ wins match } | \theta)$

Differences in point importances are essential for our analysis Notion of importance

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂
- Thus one can compute $P(i \text{ wins match } | \theta)$

The **importance** of the point at state θ is: $P(i \text{ wins match } | \theta, i \text{ wins at } \theta) - P(i \text{ wins match } | \theta, i \text{ loses at } \theta)$

Differences in point importances are essential for our analysis Notion of importance

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂
- Thus one can compute $P(i \text{ wins match } | \theta)$

The **importance** of the point at state θ is:

 $P(i \text{ wins match } | \theta, i \text{ wins at } \theta) - P(i \text{ wins match } | \theta, i \text{ loses at } \theta)$

• Morris (1977), Klaassen and Magnus (2001), and Paserman (2008)

・吊り ・ラト ・ラト

Differences in point importances are essential for our analysis Notion of importance

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂
- Thus one can compute $P(i \text{ wins match } | \theta)$

The **importance** of the point at state θ is:

 $P(i \text{ wins match } | \theta, i \text{ wins at } \theta) - P(i \text{ wins match } | \theta, i \text{ loses at } \theta)$

• Morris (1977), Klaassen and Magnus (2001), and Paserman (2008)

・吊り ・ラト ・ラト

Differences in point importances are essential for our analysis Notion of importance

- The state of a match, θ , is given by the current score and server
- Assume points are won *i.i.d.* conditional on the server with probabilities *p*₁, *p*₂
- Thus one can compute $P(i \text{ wins match } | \theta)$

The **importance** of the point at state θ is:

 $P(i \text{ wins match } | \theta, i \text{ wins at } \theta) - P(i \text{ wins match } | \theta, i \text{ loses at } \theta)$

• Morris (1977), Klaassen and Magnus (2001), and Paserman (2008)

・吊り ・ラト ・ラト

-

э

• **PiM** is the importance of the point in the match

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game
- GiS is the importance of the game in the set

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game
- GiS is the importance of the game in the set
- SiM is the importance of the set in the match

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game
- GiS is the importance of the game in the set
- SiM is the importance of the set in the match

 $\begin{aligned} & \mathsf{Proposition} \\ & PiM = PiG \cdot GiS \cdot SiM \end{aligned}$

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game
- GiS is the importance of the game in the set
- SiM is the importance of the set in the match

Proposition (Thanks i.i.d!) $PiM = PiG \cdot GiS \cdot SiM$

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game
- GiS is the importance of the game in the set
- SiM is the importance of the set in the match

Proposition (Thanks i.i.d!) $PiM = PiG \cdot GiS \cdot SiM$

- **PiM** is the importance of the point in the match
- PiG is the importance of the point in the game
- GiS is the importance of the game in the set
- SiM is the importance of the set in the match

Proposition (Thanks i.i.d!) $PiM = PiG \cdot GiS \cdot SiM$

The formulas for PiG, GiS, and SiM are easy to derive

- **PiM** is the importance of the point in the match
- **PiG** is the importance of the point in the game
- GiS is the importance of the game in the set
- SiM is the importance of the set in the match

Proposition (Thanks i.i.d!) $PiM = PiG \cdot GiS \cdot SiM$

The formulas for **PiG**, **GiS**, and **SiM** are easy to derive (from p_1 and p_2)

<ロ> (四) (四) (三) (三) (三)

2

999

<ロ> (四) (四) (日) (日) (日)

2

Break Point variable

$s_2 \backslash s_1$	0	15	30	40
0	0	0	0	0
15	0	0	0	0
30	0	0	0	0
40	0	0	1	0

∃ → < ∃ →</p>

P.

Ξ

Break Point variable

$s_2 \backslash s_1$	0	15	30	40
0	0	0	0	0
15	0	0	0	0
30	0	0	0	0
40	0	0	1	0

PiG variable

(Average serving percentage in our data set: $p_1 = 0.63$)

$s_2 \backslash s_1$	0	15	30	40
0	.24	.18	.10	.03
15	.34	.31	.22	.09
30	.39	.45	.44	.25
40	.30	.47	.75	.44

Break Point variable

$s_2 \backslash s_1$	0	15	30	40
0	0	0	0	0
15	0	0	0	0
30	0	0	0	0
40	0	0	1	0

PiG variable

(Average serving percentage in our data set: $p_1 = 0.63$)

$s_2 \backslash s_1$	0	15	30	40
0	.24	.18	.10	.03
15	.34	.31	.22	.09
30	.39	.45	.44	.25
40	.30	.47	.75	.44

Without using GiS and SiM!!

Break Point variable

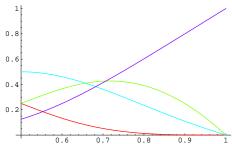
$s_2 \backslash s_1$	0	15	30	40
0	0	0	0	0
15	0	0	0	0
30	0	0	0	0
40	0	0	1	0

PiG variable

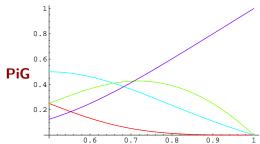
(Average serving percentage in our data set: $p_1 = 0.63$)

$s_2 \backslash s_1$	0	15	30	40
0	.24	.18	.10	.03
15	.34	.31	.22	.09
30	.39	.45	.44	.25
40	.30	.47	.75	.44

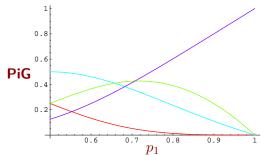
Without using GiS and SiM!! (Recall: $PiM = PiG \cdot GiS \cdot SiM$)


Ξ

• By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point


- By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point
- How do we get the variables p_1 and p_2 ?

- By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point
- How do we get the variables p_1 and p_2 ?
- Why do not use 0.63, the average serving percentage in our data set?


- By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point
- How do we get the variables p_1 and p_2 ?
- Why do not use 0.63, the average serving percentage in our data set?

- By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point
- How do we get the variables p_1 and p_2 ?
- Why do not use 0.63, the average serving percentage in our data set?

- By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point
- How do we get the variables p_1 and p_2 ?
- Why do not use 0.63, the average serving percentage in our data set?

- By now you might be somewhat convinced that **PiM** is a reasonable measure of the importance of a point
- How do we get the variables p_1 and p_2 ?
- Why do not use 0.63, the average serving percentage in our data set?

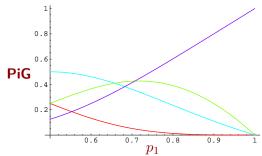


Figure: Red: 30-0, Turquoise: deuce, Green: 0-30, Purple: 0-40

Motivation

Data & Methodology

Results

2

- ∢ ≣ →

AP ► < E

Computing p_1 and p_2

æ

Computing p_1 and p_2

• Main analysis: US Open data set

• Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analsysis: Pre-US Open tournaments

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S						
Federer-R						
Nadal-S						
Nadal-R						
Roddick-S						
Roddick-R						

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0				
Federer-R	0	0				
Nadal-S			0	0		
Nadal-R			0	0		
Roddick-S					0	0
Roddick-R					0	0

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0		0	
Federer-R	0	0		0		0
Nadal-S	0		0	0	0	
Nadal-R		0	0	0		0
Roddick-S	0		0		0	0
Roddick-R		0		0	0	0

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0

Pre-US Open tournaments

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0

• Standard maximum likelihood techniques:

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0

Standard maximum likelihood techniques: We get 6 ratings

・ 同 ト ・ ヨ ト ・ ヨ ト

Computing p_1 and p_2

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0

• Standard maximum likelihood techniques: We get 6 ratings $p_1 = f(r_{1_S} - r_{2_R})$ (*f* is given by the likelihood function)

Computing p_1 and p_2

- Main analysis: US Open data set (For each match, we need p_1 and p_2 to compute PiM variable)
- Preliminary analysis: Pre-US Open tournaments (We use them to get the probabilities)

Pre-US Open tournaments	
-------------------------	--

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0

• Standard maximum likelihood techniques: We get 6 ratings $p_1 = f(r_{1_S} - r_{2_R})$ $p_2 = f(r_{2_S} - r_{1_R})$ (*f* is given by the likelihood function)

Data & Methodology

Results

Defining PiM variable

● ▶ ★ 臣 ▶ ★ 臣

2

Motivation

Data & Methodology

Results

Defining PiM variable

• We finally have all the ingredients to define PiM

► < Ξ >

Defining PiM variable

- We finally have all the ingredients to define PiM
- Results robust to variations in the way to compute p_1 and p_2

1995 U.S. Open Finals: Agassi vs. Sampras

Point I

1995 U.S. Open Finals: Agassi vs. Sampras

 $\bullet\,$ The winner earns \$575,000, the loser earns \$287,500

Point I

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

• Sampras is serving at 40-0

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

- Sampras is serving at 40-0
- He's down 2 games to 3 (so attempting to stay on serve)

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

- Sampras is serving at 40-0
- He's down 2 games to 3 (so attempting to stay on serve)
- He's leading 2 sets to none

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

- Sampras is serving at 40-0
- He's down 2 games to 3 (so attempting to stay on serve)
- He's leading 2 sets to none
- $PiM = 8 \cdot 10^{-4}$
- \$380 in current dollars is at stake

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

- Sampras is serving at 40-0
- He's down 2 games to 3 (so attempting to stay on serve)
- He's leading 2 sets to none
- $PiM = 8 \cdot 10^{-4}$
- \$380 in current dollars is at stake

Point II

• Sampras is serving at 30-40

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

- Sampras is serving at 40-0
- He's down 2 games to 3 (so attempting to stay on serve)
- He's leading 2 sets to none
- $PiM = 8 \cdot 10^{-4}$
- \$380 in current dollars is at stake

- Sampras is serving at 30-40
- It's 2-2 in the first set

1995 U.S. Open Finals: Agassi vs. Sampras

- The winner earns \$575,000, the loser earns \$287,500
- Compute from the match $p_A = .65$ and $p_S = .72$

Point I

- Sampras is serving at 40-0
- He's down 2 games to 3 (so attempting to stay on serve)
- He's leading 2 sets to none
- $PiM = 8 \cdot 10^{-4}$
- \$380 in current dollars is at stake

- Sampras is serving at 30-40
- It's 2-2 in the first set
- PiM = .13
- \$64000 in current dollars is at stake

The importance variable: PiM

< E

æ

The importance variable: PiM

• Depends on the players' relative abilities

The importance variable: PiM

- Depends on the players' relative abilities
- Closer matches have more points with higher importance

The importance variable: PiM

- Depends on the players' relative abilities
- Closer matches have more points with higher importance
- As players' abilities become different, almost all points converge to zero importance

2

< E

< E

Main Objectives

The goals

The goals

• We want to identify, for each player, a serving ability, a returning ability, and a critical ability

The goals

• We want to identify, for each player, a serving ability, a returning ability, and a critical ability

The goals

- We want to identify, for each player, a serving ability, a returning ability, and a **critical ability**
- We want see if there is heterogeneity across players for each of these variables

The goals

- We want to identify, for each player, a serving ability, a returning ability, and a **critical ability**
- We want see if there is heterogeneity across players for each of these variables
- If so, we want to see how these abilities (especially the critical ability) help explain differences in success

The goals

- We want to identify, for each player, a serving ability, a returning ability, and a **critical ability**
- We want see if there is heterogeneity across players for each of these variables
- If so, we want to see how these abilities (especially the critical ability) help explain differences in success

The data set

• Point by point data from 12 U.S. Open tournaments, 1994-2006

The goals

- We want to identify, for each player, a serving ability, a returning ability, and a **critical ability**
- We want see if there is heterogeneity across players for each of these variables
- If so, we want to see how these abilities (especially the critical ability) help explain differences in success

- Point by point data from 12 U.S. Open tournaments, 1994-2006
- Focus on men singles matches

The goals

- We want to identify, for each player, a serving ability, a returning ability, and a critical ability
- We want see if there is heterogeneity across players for each of these variables
- If so, we want to see how these abilities (especially the critical ability) help explain differences in success

- Point by point data from 12 U.S. Open tournaments, 1994-2006
- Focus on men singles matches
- 1009 matches; 223140 points

<□> < 三> < 三>

2

We can only observe relative abilities

伺下 イヨト イヨト

Ξ

We can only observe relative abilities

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0

► < Ξ</p>

▶ < ∃ >

Ξ

We can only observe relative abilities

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0
won \setminus lost	Ricardo-S	Ricardo-R	Julio-S	Julio-R	M.Angel-S	M.Angel-R
won ∖ lost Ricardo-S	Ricardo-S 0	Ricardo-R 0	Julio-S 0	Julio-R 12	M.Angel-S 0	M.Angel-R 8
	Ricardo-S 0 0	Ricardo-R 0 0	Julio-S 0 9		M.Angel-S 0 6	M.Angel-R 8 0
Ricardo-S	Ricardo-S 0 0 0	Ricardo-R 0 0 7	Julio-S 0 9 0		M.Angel-S 0 6 0	M.Angel-R 8 0 11
Ricardo-S Ricardo-R	Ricardo-S 0 0 0 16	Ricardo-R 0 0 7 0	Julio-S 0 9 0 0		M.Angel-S 0 6 0 4	M.Angel-R 8 0 11 0
Ricardo-S Ricardo-R Julio-S	0 0 0	Ricardo-R 0 7 0 1	Julio-S 0 9 0 0 0		M.Angel-S 0 6 0 4 0	M.Angel-R 8 0 11 0 0

Ξ

伺下 イヨト イヨト

We can only observe relative abilities

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0
won \setminus lost	Ricardo-S	Ricardo-R	Julio-S	Julio-R	M.Angel-S	M.Angel-R
won \ lost Ricardo-S	Ricardo-S 0	Ricardo-R 0	Julio-S 0	Julio-R 12	M.Angel-S 0	M.Angel-R 8
	Ricardo-S 0 0	Ricardo-R 0 0	Julio-S 0 9		M.Angel-S 0 6	M.Angel-R 8 0
Ricardo-S	Ricardo-S 0 0 0	Ricardo-R 0 0 7	Julio-S 0 9 0		M.Angel-S 0 6 0	M.Angel-R 8 0 11
Ricardo-S Ricardo-R	Ricardo-S 0 0 0 16	Ricardo-R 0 0 7 0	Julio-S 0 9 0 0		M.Angel-S 0 6 0 4	M.Angel-R 8 0 11 0
Ricardo-S Ricardo-R Julio-S	0 0 0	Ricardo-R 0 7 0 1	Julio-S 0 9 0 0 0 0		M.Angel-S 0 6 0 4 0	M.Angel-R 8 0 11 0 0

• We can say: "Federer is better than Nadal"

э

伺 と く ヨ と く ヨ と

We can only observe relative abilities

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0
won \setminus lost	Ricardo-S	Ricardo-R	Julio-S	Julio-R	M.Angel-S	M.Angel-R
won \ lost Ricardo-S	Ricardo-S 0	Ricardo-R 0	Julio-S 0	Julio-R 12	M.Angel-S 0	M.Angel-R 8
	Ricardo-S 0 0	Ricardo-R 0 0	Julio-S 0 9		M.Angel-S 0 6	M.Angel-R 8 0
Ricardo-S	Ricardo-S 0 0 0	Ricardo-R 0 0 7	Julio-S 0 9 0		M.Angel-S 0 6 0	M.Angel-R 8 0 11
Ricardo-S Ricardo-R	Ricardo-S 0 0 0 16	Ricardo-R 0 0 7 0	Julio-S 0 9 0 0		M.Angel-S 0 6 0 4	M.Angel-R 8 0 11 0
Ricardo-S Ricardo-R Julio-S	0 0 0	Ricardo-R 0 7 0 1	Julio-S 0 9 0 0 0 0		M.Angel-S 0 6 0 4 0	M.Angel-R 8 0 11 0 0

• We can say: "Federer is better than Nadal"

• We can say: "Roddick is worse than the average player in the data set"

伺 ト イヨト イヨト

We can only observe relative abilities

won \setminus lost	Federer-S	Federer-R	Nadal-S	Nadal-R	Roddick-S	Roddick-R
Federer-S	0	0	0	12	0	8
Federer-R	0	0	9	0	6	0
Nadal-S	0	7	0	0	0	11
Nadal-R	16	0	0	0	4	0
Roddick-S	0	1	0	5	0	0
Roddick-R	6	0	11	0	0	0
won \setminus lost	Ricardo-S	Ricardo-R	Julio-S	Julio-R	M.Angel-S	M.Angel-R
won \ lost Ricardo-S	Ricardo-S 0	Ricardo-R 0	Julio-S 0	Julio-R 12	M.Angel-S 0	M.Angel-R 8
	Ricardo-S 0 0	Ricardo-R 0 0	Julio-S 0 9		M.Angel-S 0 6	M.Angel-R 8 0
Ricardo-S	Ricardo-S 0 0 0	Ricardo-R 0 0 7	Julio-S 0 9 0		M.Angel-S 0 6 0	M.Angel-R 8 0 11
Ricardo-S Ricardo-R	Ricardo-S 0 0 0 16	Ricardo-R 0 0 7 0	Julio-S 0 9 0 0		M.Angel-S 0 6 0 4	M.Angel-R 8 0 11 0
Ricardo-S Ricardo-R Julio-S	0 0 0	Ricardo-R 0 7 0 1	Julio-S 0 9 0 0 0 0		M.Angel-S 0 6 0 4 0	M.Angel-R 8 0 11 0 0

• We can say: "Federer is better than Nadal"

- We can say: "Roddick is worse than the average player in the data set"
- We cannot say: Federer is very good

・ 同 ト ・ ヨ ト ・ ヨ ト

Data & Methodology

Results

The more, the better??

Pooling

Final data set

-

Ξ

Data & Methodology

The more, the better??

Having more data may not be beneficial for the analysis

Pooling

Final data set

< ∃ >

Having more data may not be beneficial for the analysis

Identifiability may be a problem

Pooling

Having more data may not be beneficial for the analysis

Identifiability may be a problem

• Each added player requires to estimate three more variables

Pooling

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better

Pooling

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better

Pooling

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better
- If a player only plays unequal matches we may not get enough variability in **PiM** variable to identify his **critical ability**

Pooling

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better
- If a player only plays unequal matches we may not get enough variability in **PiM** variable to identify his **critical ability**

Pooling

• We pool all US-Open tournaments together (connectedness)

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better
- If a player only plays unequal matches we may not get enough variability in **PiM** variable to identify his **critical ability**

Pooling

- We pool all US-Open tournaments together (connectedness)
- No room for intertemporal effects

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better
- If a player only plays unequal matches we may not get enough variability in **PiM** variable to identify his **critical ability**

Pooling

- We pool all US-Open tournaments together (connectedness)
- No room for intertemporal effects

Final data set

• We take the maximal subset of our data set in which all the remaining players play, at least, 5 matches

Having more data may not be beneficial for the analysis

Identifiability may be a problem

- Each added player requires to estimate three more variables
- The more connected the players are, the better
- If a player only plays unequal matches we may not get enough variability in **PiM** variable to identify his **critical ability**

Pooling

- We pool all US-Open tournaments together (connectedness)
- No room for intertemporal effects

Final data set

- We take the maximal subset of our data set in which all the remaining players play, at least, 5 matches
- We end up with 94 players and about 110000 points

프 () (프)

Results

2

-

Towards our first regression

Results

Towards our first regression

Computing importance of points

Results

Towards our first regression

Computing importance of points

• For each match, we already have p_1 and p_2

Computing importance of points

- ullet For each match, we already have p_1 and p_2
- Compute **PiG**, **GiS**, **SiM** for each score.

Computing importance of points

- ullet For each match, we already have p_1 and p_2
- Compute **PiG**, **GiS**, **SiM** for each score.
- Use them to compute **PiM** for each score, which is what we focus on.

Results

2

-

Towards our first regression

What should determine the outcome of a point?

What should determine the outcome of a point?

• The server's serving ability

What should determine the outcome of a point?

- The server's serving ability
- The returner's returning ability

What should determine the outcome of a point?

- The server's serving ability
- The returner's returning ability
- Both players' critical abilities

What should determine the outcome of a point?

- The server's serving ability
- The returner's returning ability
- Both players' critical abilities

So we want to estimate coefficients of

What should determine the outcome of a point?

- The server's serving ability
- The returner's returning ability
- Both players' critical abilities

So we want to estimate coefficients of

• Server dummy variables

What should determine the outcome of a point?

- The server's serving ability
- The returner's returning ability
- Both players' critical abilities

So we want to estimate coefficients of

- Server dummy variables
- Returner dummy variables

What should determine the outcome of a point?

- The server's serving ability
- The returner's returning ability
- Both players' critical abilities

So we want to estimate coefficients of

- Server dummy variables
- Returner dummy variables
- Critical ability slope dummy variables

Results

2

< E

Regression specification

• Suppose we have a point at score θ .

Results

Regression specification

- Suppose we have a point at score θ .
- Nadal (N) serves

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

Results

Regression specification

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) =$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\big($

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\text{Nadal wins} | \theta) = \Phi(\beta_N^S)$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi \big(\qquad \beta_N^S + \beta_N^C \cdot PiM(\theta)$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi \big(\qquad \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R \big)$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi \big(\qquad \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta) \big)$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

We want to identify the β parameters:

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

We want to identify the β parameters: $P(\text{server wins point } p \mid \theta) = \Phi\left(\beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)\right)$

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

We want to identify the β parameters: $P(\text{server wins point } p | \theta) = \Phi(\beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM))$ Discrete Response Model (Logit regression with two outcomes) Dependent variable y:

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

We want to identify the β parameters: $P(\text{server wins point } p | \theta) = \Phi(\beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM))$ Discrete Response Model (Logit regression with two outcomes) Dependent variable y:

• y = 1 if "server wins point"

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

We want to identify the β parameters: $P(\text{server wins point } p | \theta) = \Phi(\beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM))$ Discrete Response Model (Logit regression with two outcomes) Dependent variable y:

- y = 1 if "server wins point"
- y = 0 otherwise

- Suppose we have a point at score θ .
- Nadal (N) serves
- Federer (F) returns

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$

We want to identify the β parameters: $P(\text{server wins point } p | \theta) = \Phi(\beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM))$ Discrete Response Model (Logit regression with two outcomes) Dependent variable y:

- y = 1 if "server wins point"
- y = 0 otherwise

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

2

◆聞♪ ◆注♪ ◆注♪

Demeaning PiM

$$P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot PiM(\theta) - \beta_F^R - \beta_F^C \cdot PiM(\theta)\right)$$

3

Demeaning PiM

$$P(\mathsf{Nadal wins} \,|\, \theta) = \Phi \left(\beta_0 + \beta_N^S + \beta_N^C \cdot \underline{PiM(\theta)} - \beta_F^R - \beta_F^C \cdot \underline{PiM(\theta)}\right)$$

• PiM is defined as a positive variable

• • = • • =

Ξ

$$P(\mathsf{Nadal wins} \,|\, \theta) = \Phi \left(\beta_0 + \beta_N^S + \beta_N^C \cdot \underline{PiM(\theta)} - \beta_F^R - \beta_F^C \cdot \underline{PiM(\theta)}\right)$$

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general

$$P(\mathsf{Nadal wins} \,|\, \theta) = \Phi \left(\beta_0 + \beta_N^S + \beta_N^C \cdot \underline{PiM(\theta)} - \beta_F^R - \beta_F^C \cdot \underline{PiM(\theta)}\right)$$

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general We do not want this!!

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general
- We want critical ability to imply winning more important points and less unimportant points

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general
- We want critical ability to imply winning more important points and less unimportant points
- We have to demean PiM

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general
- We want critical ability to imply winning more important points and less unimportant points
- We have to demean PiM

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot \underline{PiM(\theta)} - \beta_F^R - \beta_F^C \cdot \underline{PiM(\theta)}\right)$

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general
- We want critical ability to imply winning more important points and less unimportant points
- We have to demean PiM

 $\mathsf{PiM}_{\mathsf{Demeaned}}(\theta) = \mathsf{PiM}(\theta) - \mathsf{mean}(\mathsf{PiM}(\theta))$

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general
- We want critical ability to imply winning more important points and less unimportant points
- We have to demean PiM at the match level $PiM_{Demeaned}(\theta) = PiM(\theta) - mean(PiM(\theta))$

 $P(\mathsf{Nadal\ wins}\,|\,\theta) = \Phi\left(\beta_0 + \beta_N^S + \beta_N^C \cdot \underline{PiM(\theta)} - \beta_F^R - \beta_F^C \cdot \underline{PiM(\theta)}\right)$

- PiM is defined as a positive variable
- Having a positive critical ability (β_N^C) implies winning more points in general
- We want critical ability to imply winning more important points and less unimportant points
- We have to demean PiM at the match level $PiM_{Demeaned}(\theta) = PiM(\theta) - mean(PiM(\theta))$

After the demeaning, the critical ability does not affect the average probability of winning a point

・ 同 ト ・ ヨ ト ・ ヨ ト ……

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving Returning Critical (PiM)				

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving	0^{***}			
Returning	0***			
Critical (PiM)	0.06^{*}			

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving	0***	0***		
Returning	0***	0***		
Critical (PiM)	0.06^{*}			
Critical (BP)		0.79		

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving	0^{***}	0***	0***	
Returning	0***	0***	0***	
Critical (PiM)	0.06^{*}			
Critical (BP)		0.79		
Critical (PiM-0.63)			0.38	
, , , , , , , , , , , , , , , , , , ,				

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving	0***	0^{***}	0***	
Returning	0***	0***	0***	
Critical (PiM)	0.06^{*}			
Critical (BP)		0.79		
Critical (PiM-0.63)			0.38	
Point id (demeaned)				

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving	0***	0***	0***	0^{***}
Returning	0***	0***	0***	0^{***}
Critical (PiM)	0.06^{*}			0.01***
Critical (BP)		0.79		
Critical (PiM-0.63)			0.38	
Point id (demeaned)				0.0002***

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

Joint significance tests

	p-value	p-value	p-value	p-value
Serving	0***	0***	0***	0^{***}
Returning	0***	0***	0***	0^{***}
Critical (PiM)	0.06^{*}			0.01***
Critical (BP)		0.79		
Critical (PiM-0.63)			0.38	
Point id (demeaned)				0.0002***

• There is heterogeneity in serving and returning abilities

Data & Methodology

Results

Results of the first regression

$$y = \beta_0 + \sum_{i=1}^n (\beta_i^S \delta_i^S + \beta_i^R \delta_i^R + \beta_i^C \delta_i^C \cdot PiM)$$

PiM represents demeaned PiM

94*3=282 variables. We do not run tests at the individual level

	p-value	p-value	p-value	p-value
Serving	0^{***}	0***	0***	0^{***}
Returning	0***	0***	0***	0^{***}
Critical (PiM)	0.06^{*}			0.01***
Critical (BP)		0.79		
Critical (PiM-0.63)			0.38	
Point id (demeaned)				0.0002***

- There is heterogeneity in serving and returning abilities
- It seems there is also heterogeneity in critical abilities

Top 25	Serving	Point Estimate	Returning	Point Estimate	Critical	Point Estimate	ATP Rating	log(rating)
1	A.RODDICK	0.268	L.HEWITT	-0.457	T.ROBREDO	6.026	P.SAMPRAS	8.109
2	P.SAMPRAS	0.203	R.FEDERER	-0.485	A.CORRETJA	4.491	R.FEDERER	8.077
3	R.KRAJICEK	0.145	K.KUCERA	-0.5	J.FERRERO	2.892	M.STICH	7.856
4	R.FEDERER	0.065	A.AGASSI	-0.519	A.COSTA	2.631	L.HEWITT	7.813
5	M.MIRNYI	0.036	J.BJORKMAN	-0.534	M.ROSSET	1.434	A.AGASSI	7.78
6	M.STICH	0.017	M.YOUZHNY	-0.549	M.ZABALETA	1.43	A.RODDICK	7.779
7	A.AGASSI	0.	N.ESCUDE	-0.558	G.POZZI	1.324	Y.KAFELNIKOV	7.766
8	P.RAFTER	-0.002	Y.KAFELNIKOV	-0.562	R.SCHUETTLER	1.257	G.KUERTEN	7.742
9	G.RUSEDSKI	-0.005	D.NALBANDIAN	-0.574	A.RODDICK	1.043	T.MUSTER	7.702
10	N.ESCUDE	-0.024	G.CORIA	-0.577	G.IVANISEVIC	0.872	J.FERRERO	7.583
11	G.KUERTEN	-0.04	J.BLAKE	-0.582	B.BLACK	0.841	P.RAFTER	7.573
12	L.HEWITT	-0.047	P.KORDA	-0.587	M.WOODFORDE	0.799	R.NADAL	7.523
13	M.LARSSON	-0.047	A.RODDICK	-0.603	B.KARBACHER	0.762	P.KORDA	7.431
14	M.SAFIN	-0.081	G.CANAS	-0.617	P.SAMPRAS	0.655	T.HENMAN	7.407
15	B.BECKER	-0.087	D.HRBATY	-0.634	L.HEWITT	0.637	C.MOYA	7.377
16	T.MARTIN	-0.087	P.RAFTER	-0.638	N.ESCUDE	0.569	D.NALBANDIAN	7.37
17	J.BLAKE	-0.092	V.SPADEA	-0.651	A.MEDVEDEV	0.261	A.CORRETJA	7.293
18	X.MALISSE	-0.101	H.LEE	-0.655	P.RAFTER	0.151	M.SAFIN	7.281
19	W.ARTHURS	-0.104	S.SARGSIAN	-0.664	S.DOSEDEL	0.098	B.BECKER	7.264
20	M.ZABALETA	-0.112	J.COURIER	-0.674	M.SAFIN	0.096	R.KRAJICEK	7.236
21	M.DAMM	-0.121	M.ZABALETA	-0.678	W.ARTHURS	0.009	G.CORIA	7.22
22	J.COURIER	-0.134	T.ENQVIST	-0.68	A.AGASSI	0.	J.COURIER	7.192
23	D.NALBANDIAN	-0.135	A.CLEMENT	-0.683	R.FEDERER	-0.196	C.PIOLINE	7.188
24	R.GINEPRI	-0.135	T.HAAS	-0.685	C.PIOLINE	-0.236	T.ROBREDO	7.168
25	J.FERRERO	-0.139	M.SAFIN	-0.689	T.MARTIN	-0.238	A.MEDVEDEV	7.16

Ξ

-

Ξ

• How much serving, returning, and critical abilities explain of a player's success?

- How much serving, returning, and critical abilities explain of a player's success?
- We regress on ATP ratings and rankings

- How much serving, returning, and critical abilities explain of a player's success?
- We regress on ATP ratings and rankings

 $\mathbf{ATP}_{\mathbf{rating}} = \alpha_0 + \alpha_1 \cdot \mathbf{Serving} + \alpha_2 \cdot \mathbf{Returning} + \alpha_3 \cdot \mathbf{Critical}$

- How much serving, returning, and critical abilities explain of a player's success?
- We regress on ATP ratings and rankings

 $\mathbf{ATP}_{\mathbf{rating}} = \alpha_0 + \alpha_1 \cdot \mathbf{Serving} + \alpha_2 \cdot \mathbf{Returning} + \alpha_3 \cdot \mathbf{Critical}$

 $\mathsf{ATP}_{\mathsf{ranking}} = \alpha_0 + \alpha_1 \cdot \mathsf{Serving} + \alpha_2 \cdot \mathsf{Returning} + \alpha_3 \cdot \mathsf{Critical}$

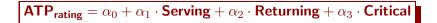
- How much serving, returning, and critical abilities explain of a player's success?
- We regress on ATP ratings and rankings

 $\mathbf{ATP}_{\mathbf{rating}} = \alpha_0 + \alpha_1 \cdot \mathbf{Serving} + \alpha_2 \cdot \mathbf{Returning} + \alpha_3 \cdot \mathbf{Critical}$

 $\mathsf{ATP}_{\mathsf{ranking}} = \alpha_0 + \alpha_1 \cdot \mathsf{Serving} + \alpha_2 \cdot \mathsf{Returning} + \alpha_3 \cdot \mathsf{Critical}$

Actually, log(ratings) and log(rankings)

- How much serving, returning, and critical abilities explain of a player's success?
- We regress on ATP ratings and rankings


 $\mathbf{ATP}_{\mathbf{rating}} = \alpha_0 + \alpha_1 \cdot \mathbf{Serving} + \alpha_2 \cdot \mathbf{Returning} + \alpha_3 \cdot \mathbf{Critical}$

 $\mathsf{ATP}_{\mathsf{ranking}} = \alpha_0 + \alpha_1 \cdot \mathsf{Serving} + \alpha_2 \cdot \mathsf{Returning} + \alpha_3 \cdot \mathsf{Critical}$

Actually, log(ratings) and log(rankings)

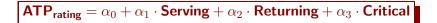
correlations	log(rating)	Serving	Returning	Critical
log(rating)	1	-	-	-
Serving	0.57	1	-	-
Returning	0.39	0.26	1	-
Critical	0.38	0.34	0.20	1

$\mathbf{ATP}_{\mathbf{rating}} = \alpha_0 + \alpha_1 \cdot \mathbf{Serving} + \alpha_2 \cdot \mathbf{Returning} + \alpha_3 \cdot \mathbf{Critical}$

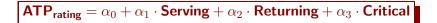
Technical problems

Technical problems

• What regression to run? OLS?

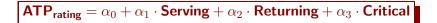

Technical problems

- What regression to run? OLS?
- Serving, Returning, and Critical are estimated variables


Technical problems

- What regression to run? OLS?
- Serving, Returning, and Critical are estimated variables
- Their errors may be correlated

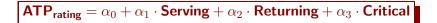
Technical problems


- What regression to run? OLS?
- Serving, Returning, and Critical are estimated variables
- Their errors may be correlated
- Standard OLS may lead to wrong confidence intervals

Technical problems

- What regression to run? OLS?
- Serving, Returning, and Critical are estimated variables
- Their errors may be correlated
- Standard OLS may lead to wrong confidence intervals

What do we do?



Technical problems

- What regression to run? OLS?
- Serving, Returning, and Critical are estimated variables
- Their errors may be correlated
- Standard OLS may lead to wrong confidence intervals

What do we do?

• We run a standard OLS

Technical problems

- What regression to run? OLS?
- Serving, Returning, and Critical are estimated variables
- Their errors may be correlated
- Standard OLS may lead to wrong confidence intervals

What do we do?

- We run a standard OLS
- We check robustness of results via GLS and bootstrap

(*) *) *) *) *)

29/31

	No controls	Some controls	More controls	
(Intercept)				
Serving				
Returning				
Critical				
			• • • • • • • • • • • • • • • • • • •	- 不同下 不同下
Performing Bes	t when it Matters I	Most J. Gonzále	ez-Díaz, B. Rogers, a	and O. Gossner

	No controls	Some controls	More controls
(Intercept)	7.86***		
	(0.20)		
Serving	1.48^{***}		
	(0.29)		
Returning	0.78***		
	(0.27)		
Critical	0.036**		
	(0.016)		
			< • • • • • •
Performing Best	when it Matters M	Aost J. Gonzále	ez-Díaz, B. Rogers,

	No controls	Some controls	More controls												
(Intercept)	7.86***	7.32***													
	(0.20)	(0.15)													
Serving	1.48***	1.22^{***}													
	(0.29)	(0.29)													
Returning	0.78^{***}	0.77^{***}													
	(0.27)	(0.29)													
Critical	0.036**	0.031^{**}													
	(0.016)	(0.016)													
Endurance (via pointid)		66.85													
		(52.63)													
			< □ > < @	<≡>	() 中 () 中	- 不同 - 不同	(本語) 本語)	◆ ● ◆ ● ◆		×≣× ₹≣×	- 《田》《田》 :	- 《田》《田》 :			×≣× ≡
Performing Best	when it Matters N	J. Gonzálo	ez-Díaz, B. Rogers, a	and O. Gos	and O. Gossner										

	No controls	Some controls	More controls
(Intercept)	7.86***	7.32***	6.14
	(0.20)	(0.15)	(20)
Serving	1.48^{***}	1.22^{***}	1.23^{***}
	(0.29)	(0.29)	(0.33)
Returning	0.78^{***}	0.77^{***}	0.87^{***}
	(0.27)	(0.29)	(0.33)
Critical	0.036^{**}	0.031^{**}	0.034^{**}
	(0.016)	(0.016)	(0.016)
Endurance (via pointid)		66.85	53.75
		(52.63)	(56.45)
Birth year			0.00056
			(0.001)
Height			0.00065
			(0.0077)
Lefty			0.098
			(0.12)
GDP			-0.0000003
			(0.000002)
Bollettieri			0.15
			(0.13)
USA			-0.18
			(0:13) < 🗗
Performing Best	when it Matters N	Aost J. Gonzále	ez-Díaz, B. Rogers,

æ

	Coefficient in R2	Standard deviation	Impact
Serving			
Returning			
Critical			

æ

	Coefficient in R2	Standard deviation	Impact
Serving	1.48		
Returning	0.78		
Critical	0.036		

	Coefficient in R2	Standard deviation	Impact
Serving	1.48	0.15	
Returning	0.78	0.15	
Critical	0.036	2.56	

-

Ξ

	Coefficient in R2	Standard deviation	Impact
Serving	1.48	0.15	0.22
Returning	0.78	0.15	0.12
Critical	0.036	2.56	0.09

-

Ξ

Conclusions

- There is heterogeneity in agent's reactions to changes in the importance of the situation.
- This heterogeneity has a significant impact on an agent's career.

Performing Best when it Matters Most: Evidence from professional tennis

Julio González-Díaz 1 $\,$ Olivier Gossner 2 $\,$ Brian Rogers 3

¹Research Group in Economic Analysis Universidad de Vigo

²London School of Economics University of London

³Kellogg School of Management Northwestern University

October 16th, 2009

E