Symmetry and Orthogonality in TU-Games

Julio González-Díaz¹ Estela Sánchez-Rodríguez²

¹Department of Statistics and Operations Research University of Santiago de Compostela

²Department of Statistics and Operations Research University of Vigo

February 9th, 2011

æ

2

▲圖▶ ▲ 문▶ ▲ 문▶

Allocation rules and TU games

æ

→ □ → → □ →

Allocation rules and TU games

• There is a wide number of allocation rules

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

Our objectives in this paper

• Get a better understanding of the different allocation rules:

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

Our objectives in this paper

• Get a better understanding of the different allocation rules: Shapley, nucleolus, τ -value,...

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

- Get a better understanding of the different allocation rules: Shapley, nucleolus, τ -value,...
- By studying their underlying geometric properties, mainly through the "associated" sets:

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

- Get a better understanding of the different allocation rules: Shapley, nucleolus, τ -value,...
- By studying their underlying geometric properties, mainly through the "associated" sets: Weber Set, Core, Core-Cover,...

Allocation rules and TU games

- There is a wide number of allocation rules
- There are classes of games were many of them coincide
- The literature studying the relations between the different allocation rules and the reasons for their coincidence has grown in the recent years

- Get a better understanding of the different allocation rules: Shapley, nucleolus, τ -value,...
- By studying their underlying geometric properties, mainly through the "associated" sets: Weber Set, Core, Core-Cover,...
- In particular, we develop the notions of symmetry and orthogonality in TU-games

2

(E)

2

▲圖▶ ▲ 문▶ ▲ 문▶

• We discuss several allocation rules: Shapley value, prenucleolus, tau value,...

- We discuss several allocation rules: Shapley value, prenucleolus, tau value,...
- Coincidence results \longleftrightarrow Domain of definition of each rule

- We discuss several allocation rules: Shapley value, prenucleolus, tau value,...
- Coincidence results ←→ Domain of definition of each rule
- We will use the **core** to illustrate geometric implications.

- We discuss several allocation rules: Shapley value, prenucleolus, tau value,...
- Coincidence results \longleftrightarrow Domain of definition of each rule
- We will use the **core** to illustrate geometric implications. We could have used **Weber set** or **core cover** as well

- We discuss several allocation rules: Shapley value, prenucleolus, tau value,...
- Coincidence results \longleftrightarrow Domain of definition of each rule
- We will use the **core** to illustrate geometric implications. We could have used **Weber set** or **core cover** as well
- $\Delta_i(v,S)$ denotes the contribution of i to S in game v

- We discuss several allocation rules: Shapley value, prenucleolus, tau value,...
- Coincidence results \longleftrightarrow Domain of definition of each rule
- We will use the **core** to illustrate geometric implications. We could have used **Weber set** or **core cover** as well
- $\Delta_i(v,S)$ denotes the contribution of i to S in game v
- m^{π} denotes the vector of contributions of the players given ordering π

Classic allocation rules and properties

Prenucleolus	
Nucleolus	
Shapley value	
au value	
Core-center	
Eq. division	
Eq. surplus div.	

э

+ 3 > < 3</p>

Classic allocation rules and properties

	EFF
Prenucleolus	\checkmark
Nucleolus	\checkmark
Shapley value	\checkmark
au value	\checkmark
Core-center	\checkmark
Eq. division	\checkmark
Eq. surplus div.	\checkmark

э

Classic allocation rules and properties

	\mathbf{EFF}	IR		
Prenucleolus	\checkmark	\checkmark^*		
Nucleolus	\checkmark	\checkmark		
Shapley value	\checkmark	\checkmark^*		
au value	\checkmark	\checkmark		
Core-center	\checkmark	\checkmark		
Eq. division	\checkmark	X		
Eq. surplus div.	\checkmark	\checkmark^*		

Classic allocation rules and properties

	EFF	IR	ADD	
Prenucleolus	\checkmark	\checkmark^*	X	
Nucleolus	\checkmark	\checkmark	X	
Shapley value	\checkmark	\checkmark^*	\checkmark	
au value	\checkmark	\checkmark	X	
Core-center	\checkmark	\checkmark	X	
Eq. division	\checkmark	X	\checkmark	
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	

Classic allocation rules and properties

	\mathbf{EFF}	IR	ADD	ΤI	
Prenucleolus	\checkmark	\checkmark^*	X	\checkmark	
Nucleolus	\checkmark	\checkmark	X	\checkmark	
Shapley value	\checkmark	\checkmark^*	\checkmark	\checkmark	
au value	\checkmark	\checkmark	X	\checkmark	
Core-center	\checkmark	\checkmark	X	\checkmark	
Eq. division	\checkmark	X	\checkmark	X	
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	\checkmark	

Classic allocation rules and properties

	\mathbf{EFF}	IR	ADD	ΤI	SYM	
Prenucleolus	\checkmark	\checkmark^*	X	\checkmark	\checkmark	
Nucleolus	\checkmark	\checkmark	X	\checkmark	\checkmark	
Shapley value	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	
au value	\checkmark	\checkmark	X	\checkmark	\checkmark	
Core-center	\checkmark	\checkmark	X	\checkmark	\checkmark	
Eq. division	\checkmark	X	\checkmark	X	\checkmark	
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	

Classic allocation rules and properties

	\mathbf{EFF}	IR	ADD	ΤI	SYM	WSYM	
Prenucleolus	\checkmark	\checkmark^*	X	\checkmark	\checkmark	\checkmark	
Nucleolus	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	
Shapley value	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	
au value	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	
Core-center	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	
Eq. division	\checkmark	X	\checkmark	X	\checkmark	\checkmark	
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	

Classic allocation rules and properties

	\mathbf{EFF}	IR	ADD	ΤI	SYM	WSYM	NPP
Prenucleolus	\checkmark	\checkmark^*	X	\checkmark	\checkmark	\checkmark	√*
Nucleolus	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
Shapley value	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
Core-center	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
Eq. division	\checkmark	X	\checkmark	X	\checkmark	\checkmark	X
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	X

Classic allocation rules and properties

	\mathbf{EFF}	IR	ADD	ΤI	SYM	WSYM	NPP	DPP
Prenucleolus	\checkmark	\checkmark^*	X	\checkmark	\checkmark	\checkmark	\checkmark^*	√*
Nucleolus	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Shapley value	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Core-center	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Eq. division	\checkmark	X	\checkmark	X	\checkmark	\checkmark	X	X
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	X	X

Classic allocation rules and properties

	EFF	IR	ADD	ΤI	SYM	WSYM	NPP	DPP
Prenucleolus	\checkmark	\checkmark^*	X	\checkmark	\checkmark	\checkmark	\checkmark^*	\checkmark^*
Nucleolus	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Shapley value	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Core-center	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Eq. division	\checkmark	X	\checkmark	X	\checkmark	\checkmark	X	X
Eq. surplus div.	\checkmark	\checkmark^*	\checkmark	\checkmark	\checkmark	\checkmark	X	X

2

<ロ> (四) (四) (日) (日) (日)

We start by discussing some well known implications of the classic symmetry property

< E.

- We start by discussing some well known implications of the classic symmetry property
- **2** We present a new notion of symmetry: **inverse symmetry**

- We start by discussing some well known implications of the classic symmetry property
- **2** We present a new notion of symmetry: **inverse symmetry**
- We make some concluding considerations regarding symmetry and dummy players

A first game

2

★ (日) ▶ ★ 日 ▶ ★ 日 ▶

A first game

 $\mathsf{Game}\ v$

2

◆聞♪ ◆注♪ ◆注♪
$\mathsf{Game}\ v$

•
$$N = \{1, 2, 3\}$$

2

◆聞♪ ◆注♪ ◆注♪

Game v

- $N = \{1, 2, 3\}$
- v(1) = v(2) = v(3) = 0

э

∃ → < ∃</p>

Game v

N = {1, 2, 3}
v(1) = v(2) = v(3) = 0
v(12) = v(13) = v(23) = 3

э

Game v

N = {1, 2, 3}
v(1) = v(2) = v(3) = 0
v(12) = v(13) = v(23) = 3
v(N) = 12

э

-

Game v

- N = {1, 2, 3}
 v(1) = v(2) = v(3) = 0
 v(12) = v(13) = v(23) = 3
 v(N) = 12
 - **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

Game v

- N = {1, 2, 3}
 v(1) = v(2) = v(3) = 0
 v(12) = v(13) = v(23) = 3
 v(N) = 12
 - **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

Game v

- N = {1, 2, 3}
 v(1) = v(2) = v(3) = 0
 v(12) = v(13) = v(23) = 3
 v(N) = 12
- v(N) = 12
 - **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

Symmetry:

Game v

- N = {1, 2, 3}
 v(1) = v(2) = v(3) = 0
 v(12) = v(13) = v(23) = 3
 v(N) = 12
 - **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

Symmetry:

• Two players i and j are symmetric if, for each $S\subseteq N\backslash\{i,j\},$ $\Delta_i(v,S)=\Delta_j(v,S)$

伺 ト イヨト イヨト

Game v

- N = {1, 2, 3}
 v(1) = v(2) = v(3) = 0
 v(12) = v(13) = v(23) = 3
 v(N) = 12
 - COINCIDENCE OF: Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

Symmetry:

- Two players i and j are symmetric if, for each $S\subseteq N\backslash\{i,j\},$ $\Delta_i(v,S)=\Delta_j(v,S)$
- A game is symmetric if all the players are symmetric

Game v

- N = {1, 2, 3}
 v(1) = v(2) = v(3) = 0
 v(12) = v(13) = v(23) = 3
- v(N) = 12

• COINCIDENCE OF: Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

Symmetry:

- Two players i and j are symmetric if, for each $S\subseteq N\backslash\{i,j\}$, $\Delta_i(v,S)=\Delta_j(v,S)$
- A game is symmetric if all the players are symmetric

2

< E

2

< E

Ξ

글 돈 옷 글 돈

Ξ

▶ * 문 ► * 문 ►

67

• Symmetries with respect to hyperplanes (mirror symmetries)

- Symmetries with respect to hyperplanes (mirror symmetries)
- If i and j are symmetric, the Weber set, the core, and the core cover are symmetric with respect to the hyperplane H^{ij} := {x ∈ ℝⁿ : x_i = x_j}

2

< E

An allocation rule ...

æ

< E

An allocation rule...

• is symmetric if symmetric players get the same

An allocation rule ...

- is symmetric if symmetric players get the same
- is weakly symmetric if all the players get the same in symmetric games

An allocation rule ...

- is symmetric if symmetric players get the same
- is weakly symmetric if all the players get the same in symmetric games

An allocation rule ...

- is symmetric if symmetric players get the same
- is weakly symmetric if all the players get the same in symmetric games

• For symmetric games, Weber set, core, core-cover may be different sets, but have the same mirror symmetries

An allocation rule ...

- is symmetric if symmetric players get the same
- is weakly symmetric if all the players get the same in symmetric games

- For symmetric games, Weber set, core, core-cover may be different sets, but have the same mirror symmetries
- Since most allocation rules satisfy efficiency and symmetry,

An allocation rule ...

- is symmetric if symmetric players get the same
- is weakly symmetric if all the players get the same in symmetric games

- For symmetric games, Weber set, core, core-cover may be different sets, but have the same mirror symmetries
- Since most allocation rules satisfy efficiency and symmetry, they coincide for symmetric games

An allocation rule ...

- is symmetric if symmetric players get the same
- is weakly symmetric if all the players get the same in symmetric games

- For symmetric games, Weber set, core, core-cover may be different sets, but have the same mirror symmetries
- Since most allocation rules satisfy efficiency and symmetry, they coincide for symmetric games

Lemma

Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division coincide for symmetric games

2

< 문

Im ▶ < 10</p>

$\mathsf{Game}\ w$

2

_ৰ ≣⇒

- N = {1,2,3}
 w(1) = 4, w(2) = 2, w(3) = 1
 w(12) = 9, w(13) = 8, w(23) = 6
 w(N) = 19
 - **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division, and equal surplus division

- N = {1,2,3}
 w(1) = 4, w(2) = 2, w(3) = 1
 w(12) = 9, w(13) = 8, w(23) = 6
 w(N) = 19

- N = {1,2,3}
 w(1) = 4, w(2) = 2, w(3) = 1
 w(12) = 9, w(13) = 8, w(23) = 6
 w(N) = 19

- N = {1,2,3}
 w(1) = 4, w(2) = 2, w(3) = 1
 w(12) = 9, w(13) = 8, w(23) = 6
 w(N) = 19

Why???
$$w = v + (4, 2, 1)$$

- N = {1,2,3}
 w(1) = 4, w(2) = 2, w(3) = 1
 w(12) = 9, w(13) = 8, w(23) = 6
 w(N) = 19
 - COINCIDENCE OF: Shapley value, prenucleolus, nucleolus, core-center, tau value, $\frac{1}{2}\frac{d}{d}\frac{1}{d}\frac{$

Game w

N = {1,2,3}
w(1) = 4, w(2) = 2, w(3) = 1
w(12) = 9, w(13) = 8, w(23) = 6
w(N) = 19

Why???
$$w = v + (4, 2, 1)$$

Translation invariance preserves geometric symmetries:

$\mathsf{Game}\ w$

N = {1,2,3}
w(1) = 4, w(2) = 2, w(3) = 1
w(12) = 9, w(13) = 8, w(23) = 6
w(N) = 19

• COINCIDENCE OF: Shapley value, prenucleolus, nucleolus, core-center, tau value, $\frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}$, and equal surplus division Why??? w = v + (4, 2, 1)

Translation invariance preserves geometric symmetries: Since most allocation rules satisfy translation invariance, they also coincide for games that are translations of symmetric games

2

< E

Lemma
Classic Symmetry

Lemma

Shapley value, prenucleolus, nucleolus, core-center, tau value, ¢¢µ́́́µ́ ¢µ́µ́́µ́́µ́́µ́́µ́/and equal surplus division coincide for games that are translations of symmetric games

Are there other classes of games where many solutions coincide?

2

< E

2-games

v is a 2-game if, for each $S\subseteq N,$ $v(S)=\sum_{T\subset S,\,|T|=2}v(T)$

2-games

v is a 2-game if, for each $S\subseteq N,$ $v(S)=\sum_{T\subset S,\,|T|=2}v(T)$

Proposition (Nouweland et. al 1996)

Shapley value, prenucleolus, and τ -value coincide for 2-games

2-games

v is a 2-game if, for each $S\subseteq N,$ $v(S)=\sum_{T\subset S,\,|T|=2}v(T)$

Proposition (Nouweland et. al 1996)

Shapley value, prenucleolus, and τ -value coincide for 2-games

PS-games

v is a **PS-game** if, for each $i \in N$, there is $c_i \in \mathbb{R}$ such that, for each $S \subset N \setminus \{i\}$, $\Delta_i(v, S) + \Delta_i(v, N \setminus (S \cup \{i\})) = c_i$

2-games

v is a 2-game if, for each $S\subseteq N,$ $v(S)=\sum_{T\subset S,\,|T|=2}v(T)$

Proposition (Nouweland et. al 1996)

Shapley value, prenucleolus, and τ -value coincide for 2-games

PS-games

v is a **PS-game** if, for each $i \in N$, there is $c_i \in \mathbb{R}$ such that, for each $S \subset N \setminus \{i\}$, $\Delta_i(v, S) + \Delta_i(v, N \setminus (S \cup \{i\})) = c_i$

Lemma (Kar et. al 2009)

Every 2-game is a PS-game

2-games

v is a 2-game if, for each $S\subseteq N,$ $v(S)=\sum_{T\subset S,\,|T|=2}v(T)$

Proposition (Nouweland et. al 1996)

Shapley value, prenucleolus, and τ -value coincide for 2-games

PS-games

v is a **PS-game** if, for each $i \in N$, there is $c_i \in \mathbb{R}$ such that, for each $S \subset N \setminus \{i\}$, $\Delta_i(v, S) + \Delta_i(v, N \setminus (S \cup \{i\})) = c_i$

Lemma (Kar et. al 2009)

Every 2-game is a PS-game

Proposition (Kar et. al 2009)

Shapley value and prenucleolus coincide for PS-games

医马克氏 白藻

2-games

v is a 2-game if, for each $S\subseteq N,$ $v(S)=\sum_{T\subset S,\,|T|=2}v(T)$

Proposition (Nouweland et. al 1996)

Shapley value, prenucleolus, and τ -value coincide for 2-games

PS-games

v is a **PS-game** if, for each $i \in N$, there is $c_i \in \mathbb{R}$ such that, for each $S \subset N \setminus \{i\}$, $\Delta_i(v, S) + \Delta_i(v, N \setminus (S \cup \{i\})) = c_i$

Lemma (Kar et. al 2009)

Every 2-game is a PS-game

Proposition (Kar et. al 2009)

Shapley value and prenucleolus coincide for PS-games

What drives these results?

2

- 4 回 🕨 🔺 臣 🕨 🔺 臣 🕨

$\mathsf{Game} v$

- $N = \{1, 2, 3\}$
- $\bullet \ v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1

•
$$v(N) = 0$$

3

(*) *) *) *) *)

Game v

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0

Game v

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0

Why???

$\mathsf{Game} v$

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0

¢lik/isio/h

Why??? No symmetric players

Game v

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0

Why??? No symmetric players

Inverse symmetry:

$\mathsf{Game} v$

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0

Why??? No symmetric players

Inverse symmetry:

In game v we have that, for each ordering π ,

$\mathsf{Game} v$

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0
 - **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division //and//equ/al/sun/b/us

¢lix/isilø/n

Why??? No symmetric players

Inverse symmetry:

In game v we have that, for each ordering π ,

 $m^{\pi} = -m^{-\pi}$

Game v

- $N = \{1, 2, 3\}$
- $v(\emptyset) = 0$
- v(1) = -1, v(2) = -2, v(3) = -3
- v(12) = -3, v(13) = -2, v(23) = -1
- v(N) = 0

Why??? No symmetric players

Inverse symmetry:

In game v we have that, for each ordering π ,

 $m^{\pi} = -m^{-\pi}$

2

< E

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c\in \mathbb{R}^n$ such that $m^\pi+m^{-\pi}=c$

13/30

Inverse Symmetry

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c\in \mathbb{R}^n$ such that $m^\pi+m^{-\pi}=c$

Equivalently, v is **weakly inverse symmetric**, if it is the translation of an inverse symmetric game

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c\in \mathbb{R}^n$ such that $m^\pi+m^{-\pi}=c$

Equivalently, v is **weakly inverse symmetric**, if it is the translation of an inverse symmetric game

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c \in \mathbb{R}^n$ such that $m^{\pi} + m^{-\pi} = c$

Equivalently, v is **weakly inverse symmetric**, if it is the translation of an inverse symmetric game

Weber set, core, and core-cover are symmetric with respect to the same point: **inversion or point symmetry**

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c \in \mathbb{R}^n$ such that $m^{\pi} + m^{-\pi} = c$

Equivalently, v is **weakly inverse symmetric**, if it is the translation of an inverse symmetric game

Weber set, core, and core-cover are symmetric with respect to the same point: **inversion or point symmetry** (no hyperplane symmetry)

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c \in \mathbb{R}^n$ such that $m^{\pi} + m^{-\pi} = c$

Equivalently, v is **weakly inverse symmetric**, if it is the translation of an inverse symmetric game

Weber set, core, and core-cover are symmetric with respect to the same point: **inversion or point symmetry** (no hyperplane symmetry)

• v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

• v is weakly inverse symmetric if there is $c \in \mathbb{R}^n$ such that $m^{\pi} + m^{-\pi} = c$

Equivalently, v is **weakly inverse symmetric**, if it is the translation of an inverse symmetric game

Weber set, core, and core-cover are symmetric with respect to the same point: **inversion or point symmetry** (no hyperplane symmetry)

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

Inverse symmetry

An allocation rule satisfies inverse symmetry if, given an inverse symmetric game, all the players get the same

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

Inverse symmetry

An allocation rule satisfies inverse symmetry if, given an inverse symmetric game, all the players get the same

Proposition

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

Inverse symmetry

An allocation rule satisfies inverse symmetry if, given an inverse symmetric game, all the players get the same

Proposition

Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division,/#//d/equal/supplus/division satisfy inverse symmetry

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

Inverse symmetry

An allocation rule satisfies inverse symmetry if, given an inverse symmetric game, all the players get the same

Proposition

Corollary

Shapley value, prenucleolus, nucleolus, core-center, tau value, equal division,/ź//d/equal/su/plus/division coincide for inverse symmetric games

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

Inverse symmetry

An allocation rule satisfies inverse symmetry if, given an inverse symmetric game, all the players get the same

Proposition

Corollary

v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \ldots, k)$ Interpretation: For each ordering π , the sum of the contributions of a player to π and $-\pi$ is constant across players

Inverse symmetry

An allocation rule satisfies inverse symmetry if, given an inverse symmetric game, all the players get the same

Proposition

Corollary

Symmetry properties

	SYM	WSYM	ISYM
Prenucleolus	\checkmark	\checkmark	\checkmark
Nucleolus	\checkmark	\checkmark	\checkmark
Shapley Value	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	\checkmark^*
Core center	\checkmark	\checkmark	\checkmark
Equal division	\checkmark	\checkmark	\checkmark
Equal surplus division	\checkmark	\checkmark	X

 * This property holds for superadditive games.
| | SYM | WSYM | ISYM |
|------------------------|--------------|--------------|--------------|
| Prenucleolus | \checkmark | \checkmark | \checkmark |
| Nucleolus | \checkmark | \checkmark | \checkmark |
| Shapley Value | \checkmark | \checkmark | \checkmark |
| au value | \checkmark | \checkmark | √* |
| Core center | \checkmark | \checkmark | \checkmark |
| Equal division | \checkmark | \checkmark | \checkmark |
| Equal surplus division | \checkmark | \checkmark | X |

* This property holds for superadditive games.

	SYM	WSYM	ISYM
Prenucleolus	\checkmark	\checkmark	\checkmark
Nucleolus	\checkmark	\checkmark	\checkmark
Shapley Value	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	√*
Core center	\checkmark	\checkmark	\checkmark
Equal division	\checkmark	\checkmark	\checkmark
Equal surplus division	\checkmark	\checkmark	X

* This property holds for superadditive games.

• Counter-example with 3 players and inverse symmetric core cover

	SYM	WSYM	ISYM
Prenucleolus	\checkmark	\checkmark	\checkmark
Nucleolus	\checkmark	\checkmark	\checkmark
Shapley Value	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	\checkmark^*
Core center	\checkmark	\checkmark	\checkmark
Equal division	\checkmark	\checkmark	\checkmark
Equal surplus division	\checkmark	\checkmark	X

* This property holds for superadditive games.

• Counter-example with 3 players and inverse symmetric core cover

	SYM	WSYM	ISYM
Prenucleolus	\checkmark	\checkmark	\checkmark
Nucleolus	\checkmark	\checkmark	\checkmark
Shapley Value	\checkmark	\checkmark	\checkmark
au value	\checkmark	\checkmark	\checkmark^*
Core center	\checkmark	\checkmark	\checkmark
Equal division	\checkmark	\checkmark	\checkmark
Equal surplus division	\checkmark	\checkmark	X

 * This property holds for superadditive games.

• Inverse symmetric games may have different v(i)

2

16/30

▲圖 ▶ ▲ 臣 ▶ ▲ 臣

A fourth game

$\mathsf{Game}\ w$

N = {1,2,3}
w(1) = 4, w(2) = 0, w(3) = 1
w(12) = 4, w(13) = 7, w(23) = 5
w(N) = 11

-

э

16/30

Game w

- $N = \{1, 2, 3\}$ • w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

Game w

- $N = \{1, 2, 3\}$
- w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢liµisiø/n

Why???

Game w

- N = {1, 2, 3}
 w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢lit/isio/n

Why???
$$w = v + (5, 2, 4)$$

Game w

- $N = \{1, 2, 3\}$
- w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢lit/isio/n

Why???
$$w = v + (5, 2, 4)$$

Translation invariance preserves geometric symmetries:

$\mathsf{Game}\ w$

- $N = \{1, 2, 3\}$
- w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢lix/isio/h

Why???
$$w = v + (5, 2, 4)$$

Translation invariance preserves geometric symmetries:

$\mathsf{Game}\ w$

- $N = \{1, 2, 3\}$
- w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢lix/isilø/n

Why???
$$w = v + (5, 2, 4)$$

Translation invariance preserves geometric symmetries:

$\mathsf{Game}\ w$

- $N = \{1, 2, 3\}$
- w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢lix/isilø/n

Why???
$$w = v + (5, 2, 4)$$

Translation invariance preserves geometric symmetries:

Corollary. Shapley value, prenucleolus, nucleolus, core-center, tau value,/edu/al/di//isioh//and/edu/al/sund/us/di//isioh/ coincide for weakly inverse symmetric games

$\mathsf{Game}\ w$

- $N = \{1, 2, 3\}$
- w(1) = 4, w(2) = 0, w(3) = 1
- w(12) = 4, w(13) = 7, w(23) = 5
- w(N) = 11

¢lix/isilø/n

Why???
$$w = v + (5, 2, 4)$$

Translation invariance preserves geometric symmetries:

æ

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Lemma

A game is weakly inverse symmetric if and only if it is a PS-game

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Lemma

A game is weakly inverse symmetric if and only if it is a PS-game

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Lemma

A game is weakly inverse symmetric if and only if it is a PS-game

Corollary. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**

(4 同) (4 日) (4 日)

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Lemma

A game is weakly inverse symmetric if and only if it is a PS-game

Corollary. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Lemma

A game is weakly inverse symmetric if and only if it is a PS-game

Corollary. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**

Proposition. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of weakly symmetric games

Proposition (Nouweland *et. al 1996*). Shapley value, prenucleolus, and τ -value coincide for 2-games Lemma (Kar *et. al 2009*). Every 2-game is a PS-game Proposition (Kar *et. al 2009*). Shapley value and prenucleolus coincide for PS-games

Lemma

A game is weakly inverse symmetric if and only if it is a PS-game

Corollary. There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**

2

- 《圖》 《문》 《문》

æ

伺 と く ヨ と く ヨ と

v is inverse symmetric if there is $k\in\mathbb{R}$ such that $m^{\pi}+m^{-\pi}=(k,\ldots,k)$

伺 ト イヨト イヨト

- v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$
 - inverse symmetric game \Rightarrow symmetric game

- v is inverse symmetric if there is $k \in \mathbb{R}$ such that $m^{\pi} + m^{-\pi} = (k, \dots, k)$
 - inverse symmetric game \neq symmetric game
 - symmetric game \Rightarrow inverse symmetric game

Can we go beyond with these symmetry ideas?

- v is inverse symmetric if there is $k\in\mathbb{R}$ such that $m^{\pi}+m^{-\pi}=(k,\ldots,k)$
 - inverse symmetric game \neq symmetric game
 - symmetric game \Rightarrow inverse symmetric game

A player $i \in N$ is an $\mbox{average}$ player if the average of his contributions is $\frac{v(N)}{N}$

Can we go beyond with these symmetry ideas?

- v is inverse symmetric if there is $k\in\mathbb{R}$ such that $m^{\pi}+m^{-\pi}=(k,\ldots,k)$
 - inverse symmetric game \neq symmetric game
 - symmetric game eq inverse symmetric game

A player $i \in N$ is an **average** player if the average of his contributions is $\frac{v(N)}{N}$ A game is **square** if all the players are average players

Can we go beyond with these symmetry ideas?

- v is inverse symmetric if there is $k\in\mathbb{R}$ such that $m^{\pi}+m^{-\pi}=(k,\ldots,k)$
 - inverse symmetric game \neq symmetric game
 - symmetric game eq inverse symmetric game

A player $i \in N$ is an **average** player if the average of his contributions is $\frac{v(N)}{N}$ A game is **square** if all the players are average players

• inverse symmetric game \Rightarrow square game

Can we go beyond with these symmetry ideas?

- v is inverse symmetric if there is $k\in\mathbb{R}$ such that $m^{\pi}+m^{-\pi}=(k,\ldots,k)$
 - inverse symmetric game \neq symmetric game
 - symmetric game eq inverse symmetric game

A player $i \in N$ is an **average** player if the average of his contributions is $\frac{v(N)}{N}$ A game is square if all the players are average players

- inverse symmetric game \Rightarrow square game
- symmetric game \Rightarrow square game

Player					
Order π	1	2	3	Efficiency	
123	3.5	2.5	9	15	
132	3.5	7.5	4	15	
213	4.5	1.5	9	15	
231	5.5	1.5	8	15	
312	7.5	7.5	0	15	
321	5.5	9.5	0	15	
Squareness	30	30	30	90	

2

Player					
Order π	1	2	3	Efficiency	
123	3.5	2.5	9	15	
132	3.5	7.5	4	15	
213	4.5	1.5	9	15	
231	5.5	1.5	8	15	
312	7.5	7.5	0	15	
321	5.5	9.5	0	15	
Squareness	30	30	30	90	

2

Player					
Order π	1	2	3	Efficiency	
123	3.5	2.5	9	15	
132	3.5	7.5	4	15	
213	4.5	1.5	9	15	
231	5.5	1.5	8	15	
312	7.5	7.5	0	15	
321	5.5	9.5	0	15	
Squareness	30	30	30	90	

2

Player					
Order π	1	2	3	Efficiency	
123	3.5	2.5	9	15	
132	3.5	7.5	4	15	
213	4.5	1.5	9	15	
231	5.5	1.5	8	15	
312	7.5	7.5	0	15	
321	5.5	9.5	0	15	
Squareness	30	30	30	90	

2

Example

	Player			
Order π	1	2	3	Efficiency
123	3.5	2.5	9	15
132	3.5	7.5	4	15
213	4.5	1.5	9	15
231	5.5	1.5	8	15
312	7.5	7.5	0	15
321	5.5	9.5	0	15
Squareness	30	30	30	90

2

< ∃⇒

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry -Recall that:

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry

—Recall that:

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**.

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry

—Recall that:

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**.

This allocation rule coincides with Shapley value, prenucleolus, nucleolus, tau value, and core-center

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry

—Recall that:

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**.

This allocation rule coincides with Shapley value, prenucleolus, nucleolus, tau value, and core-center

-Now:

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry

-Recall that:

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**.

This allocation rule coincides with Shapley value, prenucleolus, nucleolus, tau value, and core-center

-Now:

Proposition

The Shapley value is the unique allocation rule satisfying efficiency, translation invariance, and squareness

An allocation rule satisfies **squareness** if, given a square game, all the players get the same

Lemma: Squareness implies weak symmetry and inverse symmetry

—Recall that:

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, and **inverse symmetry** on the class of **PS-games**.

This allocation rule coincides with Shapley value, prenucleolus, nucleolus, tau value, and core-center

-Now:

Proposition

The Shapley value is the unique allocation rule satisfying efficiency, translation invariance, and squareness

All the properties are independent

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Idea: Every game is one translation away from being square

Our Characterization

Shapley's Characterization

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Idea: Every game is one translation away from being square

Our Characterization Efficiency Shapley's Characterization Efficiency

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Our Characterization		Shapley's Characterization
Efficiency	=	Efficiency
Translation invariance	\Leftarrow	Null Player $+$ Additivity

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Our Characterization		Shapley's Characterization
Efficiency	=	Efficiency
Translation invariance	\Leftarrow	Null Player $+$ Additivity
Squareness	≉	Symmetry

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Our Characterization		Shapley's Characterization
Efficiency	=	Efficiency
Translation invariance	\Leftarrow	Null Player $+$ Additivity
Squareness	⋪	Symmetry
(Squareness	\Rightarrow	Weak Symmetry)

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Idea: Every game is one translation away from being square

Our Characterization		Shapley's Characterization
Efficiency	=	Efficiency
Translation invariance	\Leftarrow	Null Player $+$ Additivity
Squareness	∌	Symmetry
(Squareness	\Rightarrow	Weak Symmetry)

Hence, squareness turns out to be much stronger than inverse symmetry, since the latter is also satisfied by prenucleolus, nucleolus, tau value, and core-center

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Idea: Every game is one translation away from being square

Our Characterization		Shapley's Characterization
Efficiency	=	Efficiency
Translation invariance	\Leftarrow	Null Player + Additivity
Squareness	$\not\Leftrightarrow$	Symmetry
(Squareness	\Rightarrow	Weak Symmetry)

Hence, squareness turns out to be much stronger than inverse symmetry, since the latter is also satisfied by prenucleolus, nucleolus, tau value, and core-center

Proposition

The Shapley value is the unique allocation rule satisfying **efficiency**, **translation invariance**, and **squareness**

Idea: Every game is one translation away from being square

Our Characterization		Shapley's Characterization
Efficiency	=	Efficiency
Translation invariance	\Leftarrow	Null Player $+$ Additivity
Squareness	∌	Symmetry
(Squareness	\Rightarrow	Weak Symmetry)

Hence, squareness turns out to be much stronger than inverse symmetry, since the latter is also satisfied by prenucleolus, nucleolus, tau value, and core-center

æ

< E

Let v^0 be the 0-normalized game associated with v

Let v^0 be the 0-normalized game associated with v

Dummy-symmetric games

A game v is ${\rm dummy-symmetric}$ if in game v^0 all the players that are not dummy are symmetric

Let v^0 be the 0-normalized game associated with v

Dummy-symmetric games

A game v is ${\rm dummy-symmetric}$ if in game v^0 all the players that are not dummy are symmetric

Unanimity games are dummy-symmetric

Let v^0 be the 0-normalized game associated with v

Dummy-symmetric games

A game v is ${\rm dummy-symmetric}$ if in game v^0 all the players that are not dummy are symmetric

Unanimity games are dummy-symmetric

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, **dummy player**, and **symmetry** on the class of dummysymmetric games.

Let \boldsymbol{v}^0 be the 0-normalized game associated with \boldsymbol{v}

Dummy-symmetric games

A game v is ${\rm dummy-symmetric}$ if in game v^0 all the players that are not dummy are symmetric

Unanimity games are dummy-symmetric

Proposition

There is a unique allocation rule satisfying **efficiency**, **translation invariance**, **dummy player**, and **symmetry** on the class of dummysymmetric games.

Corollary

Shapley value, prenucleolus, nucleolus, tau value, core-center,/edual Alvision//and/edual/surplus/division/ coincide for dummy-symmetric games

2

∃ ► < ∃ ►</p>

Additivity: $\varphi(v+w) = \varphi(v) + \varphi(w)$

3

伺 と く ヨ と く ヨ と

23/30

Additivity and Orthogonality

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$

Translation Invariance (+DP):

If w is an additive game, $\varphi(v+w)=\varphi(v)+\varphi(w)$

23/30

Additivity and Orthogonality

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$

Translation Invariance (+DP):

If w is an additive game, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Is there anything in between?

Translation Invariance (+DP):unrestrictiveIf w is an additive game, $\varphi(v+w) = \varphi(v) + \varphi(w)$

.

23/30

Additivity and Orthogonality

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$
 restrictive \rightarrow Shapley

Orthogonal Additivity

$\begin{array}{ll} \mbox{Translation Invariance (+DP):} & \mbox{unrestrictive} \\ \mbox{If w is an additive game, $\varphi(v+w)=\varphi(v)+\varphi(w)$} \end{array}$

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$
 restrictive \rightarrow Shapley

Orthogonal Additivity

Translation Invariance (+DP):unrestrictiveIf w is an additive game, $\varphi(v+w) = \varphi(v) + \varphi(w)$

Orthogonal Additivity:

If v and w are orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$
 restrictive \rightarrow Shapley

Orthogonal Additivity

Translation Invariance (+DP):unrestrictiveIf w is an additive game, $\varphi(v+w) = \varphi(v) + \varphi(w)$

Orthogonal Additivity:

If v and w are orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

We will have that if w is additive, v is orthogonal to w, so:

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$
 restrictive \rightarrow Shapley

Orthogonal Additivity

 $\begin{array}{ll} \mbox{Translation Invariance (+DP):} & \mbox{unrestrictive} \\ \mbox{If } w \mbox{ is an additive game, } \varphi(v+w) = \varphi(v) + \varphi(w) \end{array}$

Orthogonal Additivity:

If v and w are orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

We will have that if w is additive, v is orthogonal to w, so:

Additivity (+DP) \Rightarrow Orthogonal Additivity (+DP) \Rightarrow (Translation Invariance)

Additivity:
$$\varphi(v+w) = \varphi(v) + \varphi(w)$$
 restrictive \rightarrow Shapley

Orthogonal Additivity

 $\begin{array}{ll} \mbox{Translation Invariance (+DP):} & \mbox{unrestrictive} \\ \mbox{If } w \mbox{ is an additive game, } \varphi(v+w) = \varphi(v) + \varphi(w) \end{array}$

We will have that if w is additive, v is orthogonal to w, so:

Additivity $(+DP) \Rightarrow$ Orthogonal Additivity $(+DP) \Rightarrow$ (Translation Invariance)
$u_S :=$ "Unanimity game of coalition S"

æ

→ □ → → □ →

 $u_S :=$ "Unanimity game of coalition S"

 $\mathsf{Game}\ v$

æ

 $u_S :=$ "Unanimity game of coalition S"

 $\mathsf{Game}\ v$

•
$$N = \{1, 2, 3, 4\}$$

æ

 $u_S :=$ "Unanimity game of coalition S"

 $\mathsf{Game}\ v$

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$

э

-∢ ≣ →

 $u_S :=$ "Unanimity game of coalition S"

Game v

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$

 $u_S :=$ "Unanimity game of coalition S"

Game v

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$

 $u_S :=$ "Unanimity game of coalition S"

Orthogonality

Game v

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$
 - COINCIDENCE OF: Shapley value, prenucleolus, nucleolus, core-center, #a/u//#a/u#//#q/ua//div/i#i/div/#i/div/i#i/d

A D > A A P > A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

 $u_S :=$ "Unanimity game of coalition S"

 $\mathsf{Game}\ v$

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$

 $u_S :=$ "Unanimity game of coalition S"

 $\mathsf{Game}\ v$

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$

"The tent"

• **COINCIDENCE OF:** Shapley value, prenucleolus, nucleolus, core-center, *talu//tal/ue//equtal/divisioh//and/equtal/sub/divisioh/*

 $u_S :=$ "Unanimity game of coalition S"

 $\mathsf{Game}\ v$

- $N = \{1, 2, 3, 4\}$
- $v = u_{123} + u_{14}$

"The tent"

 COINCIDENCE OF: Shapley value, prenucleolus, nucleolus, core-center, tal//yal/ye//edu/al/div/isi/oh//and//edu/al/su/pl/us Al/yisi/oh/

2

◆聞♪ ◆注♪ ◆注♪

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

 $\Delta_i(v,S)\,\Delta_i(w,S)=0$

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

 $\Delta_i(v,S)\,\Delta_i(w,S)=0$

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

$$\Delta_i(v,S)\,\Delta_i(w,S) = 0$$

D(v) := "Dummy players of game v"

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

$$\Delta_i(v,S)\,\Delta_i(w,S) = 0$$

 $D(v) := ``\mathsf{Dummy \ players \ of \ game \ } v''$

Lemma

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

```
\Delta_i(v,S)\,\Delta_i(w,S)=0
```

D(v) := "Dummy players of game v"

Lemma

If the 0-normalized convex games v and w are orthogonal, then $i \notin D(v) \Rightarrow i \in D(w)$. In particular $D(v) \cup D(w) = N$

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

```
\Delta_i(v,S)\,\Delta_i(w,S) = 0
```

D(v) := "Dummy players of game v"

Lemma

If the 0-normalized convex games v and w are orthogonal, then $i \notin D(v) \Rightarrow i \in D(w)$. In particular $D(v) \cup D(w) = N$

The above lemma suggests a natural definition orthogonality for general games:

伺 と く ヨ と く ヨ と

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

 $\Delta_i(v,S)\,\Delta_i(w,S)=0$

D(v) := "Dummy players of game v"

Lemma

If the 0-normalized convex games v and w are orthogonal, then $i \notin D(v) \Rightarrow i \in D(w)$. In particular $D(v) \cup D(w) = N$

The above lemma suggests a natural definition orthogonality for general games: v and w are **orthogonal** if $D(v) \cup D(w) = N$

伺い イラト イラト

The 0-normalized convex games v and w are **orthogonal** if, for each $i \in N$ and each $S \subset N \setminus \{i\}$:

```
\Delta_i(v,S)\,\Delta_i(w,S)=0
```

D(v) := "Dummy players of game v"

Lemma

If the 0-normalized convex games v and w are orthogonal, then $i \notin D(v) \Rightarrow i \in D(w)$. In particular $D(v) \cup D(w) = N$

The above lemma suggests a natural definition orthogonality for general games: v and w are orthogonal if $D(v) \cup D(w) = N$

- 4 同 2 4 日 2 4 日 2

2

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The games u_{12} and u_{34} are orthogonal

< E

The games u_{12} and u_{34} are orthogonal

< E

26/30

Orthogonality

The games u_{12} and u_{34} are orthogonal

• The core of $u_{12} + u_{34}$ can be seen as the Cartesian product of the cores of u_{12} and u_{34}

The games u_{12} and u_{34} are orthogonal

- The core of $u_{12} + u_{34}$ can be seen as the Cartesian product of the cores of u_{12} and u_{34}
- For several allocation rules, if v and w are orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

The games u_{12} and u_{34} are orthogonal

- The core of $u_{12} + u_{34}$ can be seen as the Cartesian product of the cores of u_{12} and u_{34}
- For several allocation rules, if v and w are orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$
- If a game is sum of orthogonal games, its core is not full dimensional:

The games u_{12} and u_{34} are orthogonal

- The core of $u_{12} + u_{34}$ can be seen as the Cartesian product of the cores of u_{12} and u_{34}
- For several allocation rules, if v and w are orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$
- If a game is sum of orthogonal games, its core is not full dimensional: **The tent???**

Weak Orthogonality We can go beyond orthogonality and additivity of orthogonal games

・ 同 ト ・ 三 ト ・ 三

Weak Orthogonality We can go beyond orthogonality and additivity of orthogonal games

The 0-normalized convex games v and w are weakly orthogonal if there is $i \in N$ such that, for each $j \neq i$ and each $S \subset N \setminus \{j\}$:

 $\Delta_j(v,S)\,\Delta_j(w,S) = 0$

Weak Orthogonality We can go beyond orthogonality and additivity of orthogonal games

The 0-normalized convex games v and w are weakly orthogonal if there is $i \in N$ such that, for each $j \neq i$ and each $S \subset N \setminus \{j\}$:

$$\Delta_j(v,S)\,\Delta_j(w,S) = 0$$

Lemma

$$\Delta_j(v,S)\,\Delta_j(w,S) = 0$$

Lemma

If the 0-normalized convex games v and w are *i*-weakly orthogonal. Then, given $j \neq i$, $j \notin D(v) \Rightarrow j \in D(w)$. In particular $D(v) \cup D(w) \supset N \setminus \{i\}$.

$$\Delta_j(v,S)\,\Delta_j(w,S) = 0$$

Lemma

If the 0-normalized convex games v and w are *i*-weakly orthogonal. Then, given $j \neq i$, $j \notin D(v) \Rightarrow j \in D(w)$. In particular $D(v) \cup D(w) \supset N \setminus \{i\}$.

v and w are...

$$\Delta_j(v,S)\,\Delta_j(w,S) = 0$$

Lemma

If the 0-normalized convex games v and w are *i*-weakly orthogonal. Then, given $j \neq i$, $j \notin D(v) \Rightarrow j \in D(w)$. In particular $D(v) \cup D(w) \supset N \setminus \{i\}$.

v and w are...

• orthogonal if $|D(v) \cup D(w)| = N$

医下口 医下

$$\Delta_j(v,S)\,\Delta_j(w,S) = 0$$

Lemma

If the 0-normalized convex games v and w are *i*-weakly orthogonal. Then, given $j \neq i$, $j \notin D(v) \Rightarrow j \in D(w)$. In particular $D(v) \cup D(w) \supset N \setminus \{i\}$.

v and w are...

- orthogonal if $|D(v) \cup D(w)| = N$
- weakly orthogonal if $|D(v) \cup D(w)| \ge N-1$

伺い イヨト イヨト

Weak Orthogonality

2

P.

∃ → < ∃</p>

Weak Orthogonality

The games u_{123} and u_{14} are weakly orthogonal but not orthogonal

Weak Orthogonality

The games u_{123} and u_{14} are weakly orthogonal but not orthogonal

The games u_{123} and u_{14} are weakly orthogonal but not orthogonal

• The core of $u_{123} + u_{14}$ is full dimensional

The games u_{123} and u_{14} are weakly orthogonal but not orthogonal

- The core of $u_{123} + u_{14}$ is full dimensional
- Shapley, prenucleolus, core-center, and tau value coincide for u_{123} and u_{14} (dummy symmetric games)

The games u_{123} and u_{14} are weakly orthogonal but not orthogonal

- The core of $u_{123} + u_{14}$ is full dimensional
- Shapley, prenucleolus, core-center, and tau value coincide for u_{123} and u_{14} (dummy symmetric games)

The games u_{123} and u_{14} are weakly orthogonal but not orthogonal

- The core of $u_{123} + u_{14}$ is full dimensional
- Shapley, prenucleolus, core-center, and tau value coincide for u_{123} and u_{14} (dummy symmetric games)
- $\mathsf{Sh}(u_{123} + u_{14}) = \mathsf{Sh}(u_{123}) + Sh(u_{14}) = (0.8333, 0.3333, 0.3333, 0.5)$

•
$$\tau(u_{123} + u_{14}) = (0.8, 0.4, 0.4, 0.4)$$

2

P.

∃ → < ∃ →</p>

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation

rule

prenucleolus

nucleolus

Shapley value

tau value

core-center

equal division

equal surplus division

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation	Translation
rule	Invariance
prenucleolus	\checkmark
nucleolus	\checkmark
Shapley value	\checkmark
tau value	\checkmark
core-center	\checkmark
equal division	X
equal surplus division	\checkmark

eq

Orthogonal Additivity

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w) = \varphi(v) + \varphi(w)$

Translation Invariance	Additivity
\checkmark	X
\checkmark	X
\checkmark	\checkmark
\checkmark	X
\checkmark	X
X	\checkmark
\checkmark	\checkmark
	Translation Invariance \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark X \checkmark

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation rule	Translation Invariance	Orthogonal Additivity	Additivity
prenucleolus	\checkmark	\checkmark^*	X
nucleolus	\checkmark	\checkmark^*	X
Shapley value	\checkmark	\checkmark	\checkmark
tau value	\checkmark	X	X
core-center	\checkmark	\checkmark	X
equal division	X	\checkmark	\checkmark
equal surplus division	\checkmark	\checkmark	\checkmark

eq

Orthogonal Additivity

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation rule	Translation Invariance	Orthogonal Additivity	Additivity
prenucleolus	\checkmark	√*	X
nucleolus	\checkmark	✓*	X
Shapley value	\checkmark	\checkmark	\checkmark
tau value	\checkmark	X	X
core-center	\checkmark	\checkmark	X
equal division	X	\checkmark	\checkmark
ual surplus division	\checkmark	\checkmark	\checkmark

This property holds if one of the two games has a nonempty core.

eq

Orthogonal Additivity

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation rule	Translation Invariance	Orthogonal Additivity	Additivity
prenucleolus	\checkmark	\checkmark^*	X
nucleolus	\checkmark	\checkmark^*	X
Shapley value	\checkmark	\checkmark	\checkmark
tau value	\checkmark	X	X
core-center	\checkmark	\checkmark	X
equal division	X	\checkmark	\checkmark
ual surplus division	\checkmark	\checkmark	\checkmark

This property holds if one of the two games has a nonempty core. Example

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation rule	Translation Invariance	Orthogonal Additivity	Additivity
prenucleolus	\checkmark	\checkmark^*	X
nucleolus	\checkmark	\checkmark^*	X
Shapley value	\checkmark	\checkmark	\checkmark
tau value	\checkmark	X	X
core-center	\checkmark	\checkmark	X
equal division	X	\checkmark	\checkmark
equal surplus division	\checkmark	\checkmark	\checkmark

This property holds if one of the two games has a nonempty core.

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation rule	Translation Invariance	Orthogonal Additivity	Additivity
prenucleolus	\checkmark	√*	X
nucleolus	\checkmark	√*	X
Shapley value	\checkmark	\checkmark	\checkmark
tau value	\checkmark	X	X
core-center	\checkmark	\checkmark	X
equal division	X	\checkmark	\checkmark
equal surplus division	\checkmark	\checkmark	\checkmark

This property holds if one of the two games has a nonempty core.

Corollary. If a game is sum of weakly orthogonal dummy-symmetric games, then Shapley, prenucleolus, nucleolus, and core-center coincide

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Allocation rule	Translation Invariance	Orthogonal Additivity	Additivity
prenucleolus	\checkmark	√*	X
nucleolus	\checkmark	√*	X
Shapley value	\checkmark	\checkmark	\checkmark
tau value	\checkmark	X	X
core-center	\checkmark	\checkmark	X
equal division	X	\checkmark	\checkmark
equal surplus division	\checkmark	\checkmark	\checkmark

This property holds if one of the two games has a nonempty core.

Corollary. If a game is sum of weakly orthogonal dummy-symmetric games, then Shapley, prenucleolus, nucleolus, and core-center coincide

Orthogonal Additivity

If v and w are weakly orthogonal, $\varphi(v+w)=\varphi(v)+\varphi(w)$

Translation Invariance	Orthogonal Additivity	Additivity
\checkmark	\checkmark^*	X
\checkmark	\checkmark^*	X
\checkmark	\checkmark	\checkmark
\checkmark	X	X
\checkmark	\checkmark	X
X	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
	Translation Invariance \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark X \checkmark	Translation InvarianceOrthogonal Additivity \checkmark \checkmark^* \checkmark \checkmark^* \checkmark \checkmark^* \checkmark

This property holds if one of the two games has a nonempty core.

Corollary. If a game is sum of weakly orthogonal dummy-symmetric games, then Shapley, prenucleolus, nucleolus, and core-center coincide ... and so does any other solution satisfying efficiency, dummy player, symmetry, and orthogonal additivity

Conclusion

2

★ (日) ▶ ★ 日 ▶ ★ 日 ▶

• We have developed the notions of symmetry and orthogonality in TU games

< E

30/30

Conclusion

- We have developed the notions of symmetry and orthogonality in TU games
- This analysis allowed to identify classes of games in which different allocation rules coincide

Conclusion

- We have developed the notions of symmetry and orthogonality in TU games
- This analysis allowed to identify classes of games in which different allocation rules coincide
- We have also obtained axiomatic characterizations for these solutions concepts in these classes of games

Symmetry and Orthogonality in TU-Games

Julio González-Díaz¹ Estela Sánchez-Rodríguez²

¹Department of Statistics and Operations Research University of Santiago de Compostela

²Department of Statistics and Operations Research University of Vigo

February 9th, 2011

æ