Essentializing Equilibrium Concepts

Julio González-Díaz

Research Group in Economic Analysis Universidad de Vigo

(joint with Federica Briata, Ignacio García-Jurado and Fioravante Patrone)

February 2th, 2009

Initial Motivation The example that lead to this research

Initial Motivation The example that lead to this research

Repeated games

• Take the finitely repeated prisoner's dilemma

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

Repeated games WITH COMMITMENTS

Add a stage 0 to the repeated game

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

- Add a stage 0 to the repeated game
- Players can make unilateral commitments

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

- Add a stage 0 to the repeated game
- Players can make unilateral commitments each player says, for each possible history, what are the actions available for him in the stage game taking place after that history

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

- Add a stage 0 to the repeated game
- Players can make unilateral commitments each player says, for each possible history, what are the actions available for him in the stage game taking place after that history
- Commitments are public and enforceable

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

- Add a stage 0 to the repeated game
- Players can make unilateral commitments each player says, for each possible history, what are the actions available for him in the stage game taking place after that history
- Commitments are public and enforceable
- Can we get a folk theorem in this setting?

- Take the finitely repeated prisoner's dilemma
- (Defect, Defect) in every period is the unique SPE (and NE)

Repeated games WITH COMMITMENTS

- Add a stage 0 to the repeated game
- Players can make unilateral commitments each player says, for each possible history, what are the actions available for him in the stage game taking place after that history
- Commitments are public and enforceable
- Can we get a folk theorem in this setting?

Adding commitments greatly increases the size of the game tree

Initial Motivation The example that lead to this research

A strategy profile

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

"Strategies": On path I play Coop. After any deviation I switch to Defect forever

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

"Strategies": On path I play Coop. After any deviation I switch to Defect forever

This profile leads to (Coop,Coop) being played forever

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

"Strategies": On path I play Coop. After any deviation I switch to Defect forever

This profile leads to (Coop,Coop) being played forever

Is this a SPE (of the game with commitments)?

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

"Strategies": On path I play Coop. After any deviation I switch to Defect forever

This profile leads to (Coop,Coop) being played forever

Is this a SPE (of the game with commitments)?

Why not?

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

"Strategies": On path I play Coop. After any deviation I switch to Defect forever

This profile leads to (Coop,Coop) being played forever

Is this a SPE (of the game with commitments)?

Why not?

No deviation is profitable

Commitments: "If we play (Coop,Coop) in period 1, I will play (Coop,Coop) forever"

"Strategies": On path I play Coop. After any deviation I switch to Defect forever

This profile leads to (Coop,Coop) being played forever

Is this a SPE (of the game with commitments)?

Why not?

- No deviation is profitable
- Threats are credible

Our strategy is only defined for a very small part of the histories

Our strategy is only defined for a very small part of the histories

Our strategy is only defined for a very small part of the histories

How can we know if it is part of a SPE or not?

• Do we need to fully describe the strategy to know if it is part of a SPE?

Our strategy is only defined for a very small part of the histories

- Do we need to fully describe the strategy to know if it is part of a SPE?
- Do we need to check all the subgames to know if it is part of a SPE?

Our strategy is only defined for a very small part of the histories

- Do we need to fully describe the strategy to know if it is part of a SPE?
- Do we need to check all the subgames to know if it is part of a SPE?
- What if we plug-in some equilibrium behavior after histories where for which behavior has not been specified?

Our strategy is only defined for a very small part of the histories

- Do we need to fully describe the strategy to know if it is part of a SPE?
- Do we need to check all the subgames to know if it is part of a SPE?
- What if we plug-in some equilibrium behavior after histories where for which behavior has not been specified?
- Can this be done?

Initial Motivation The example that lead to this research

• We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

• For general extensive games (with perfect recall)

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

- For general extensive games (with perfect recall)
- For different equilibrium concepts

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

- For general extensive games (with perfect recall)
- For different equilibrium concepts

Simple exercise?

- We think that our partial description of the strategy should be sufficient to know if the behavior it describes is part of a SPE
- The behavior in many subgames is irrelevant to know if what we have described is part of a SPE
- We have described the essential part of the strategy

In this paper we try to give formalism to these words

- For general extensive games (with perfect recall)
- For different equilibrium concepts

Simple exercise?

Outline

- 2 Definitions and Results
 - Preliminary notations
 - Main definitions
 - Results

Outline

- Definitions and Results
 Preliminary notations
 Main definitions
 - Results

3 An Example

Motivation

Motivation

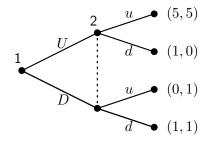
What do we mean by essentialize?

Equilibrium concept: SPE

Motivation

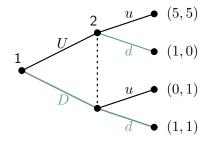
What do we mean by essentialize?

Equilibrium concept: SPE (Extensive) Game: $G = (\Gamma, h)$



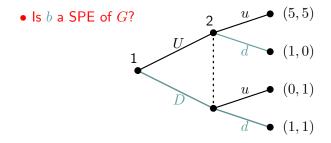
Motivation

What do we mean by essentialize?



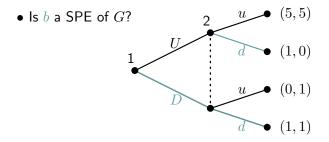
Motivation

What do we mean by essentialize?



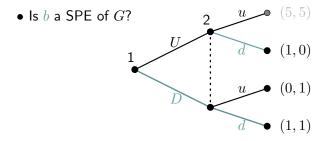
Motivation

What do we mean by essentialize?



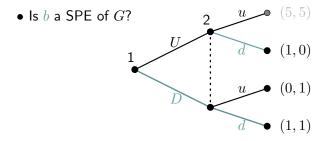
Motivation

What do we mean by essentialize?



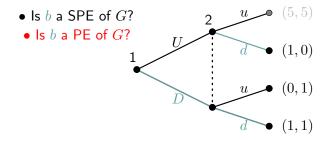
Motivation

What do we mean by essentialize?



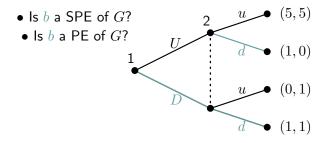
Motivation

What do we mean by essentialize?



Motivation

What do we mean by essentialize?

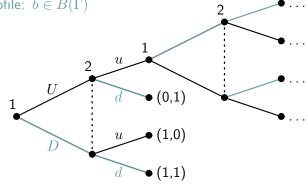


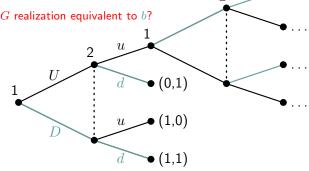
Motivation

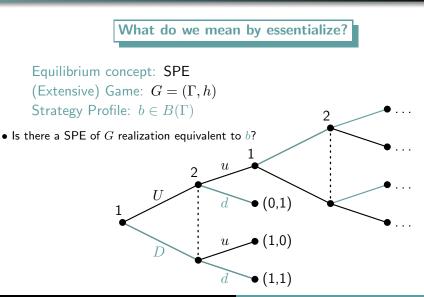
What do we mean by essentialize?

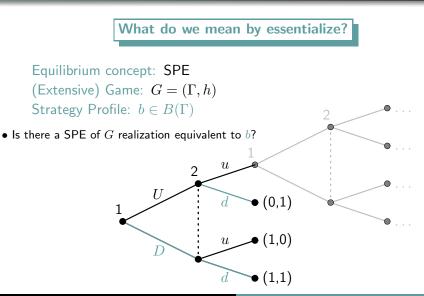
Motivation

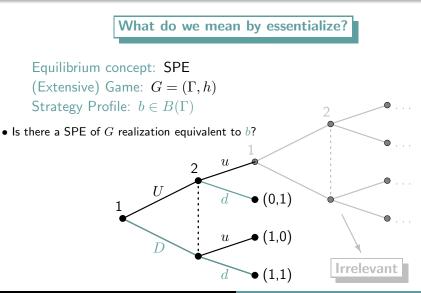
What do we mean by essentialize?





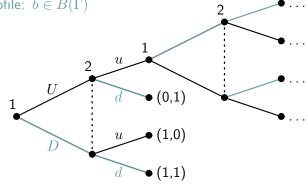




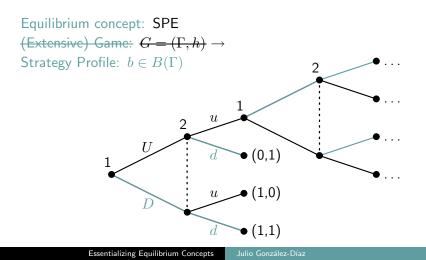


Motivation

What do we mean by essentialize?



Motivation



Motivation

What do we mean by essentialize?

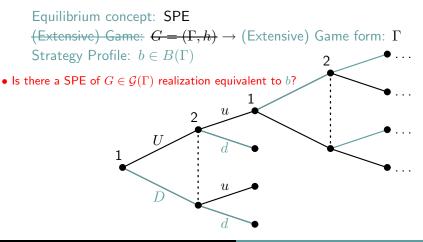
Equilibrium concept: SPE (Extensive) Game: $C = (\Gamma, h) \rightarrow$ (Extensive) Game form: Γ Strategy Profile: $b \in B(\Gamma)$ u. . U(0,1) . . . (1,0) u(1,1) d

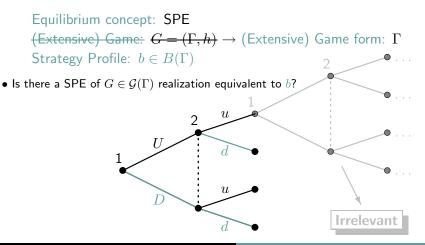
Motivation

What do we mean by essentialize?

Equilibrium concept: SPE (Extensive) Game: $C = (\Gamma, h) \rightarrow$ (Extensive) Game form: Γ Strategy Profile: $b \in B(\Gamma)$ uU. . ud

Motivation





Motivation

What do we mean by essentialize?

Given an equilibrium concept EC, an (extensive) game form Γ and a (behavior) strategy profile *b*, identify *W*, a minimal collection of information sets of Γ , with the following property:

What do we mean by essentialize?

Given an equilibrium concept EC, an (extensive) game form Γ and a (behavior) strategy profile *b*, identify *W*, a minimal collection of information sets of Γ , with the following property:

Given a game G with game form Γ and $b \in EC(G)$, then, whatever changes are made in the payoffs and strategies outside W, the outcome of b will be an equilibrium outcome in the resulting game

What do we mean by essentialize?

Given an equilibrium concept EC, an (extensive) game form Γ and a (behavior) strategy profile *b*, identify *W*, a minimal collection of information sets of Γ , with the following property:

Given a game G with game form Γ and $b \in EC(G)$, then, whatever changes are made in the payoffs and strategies outside W, the outcome of b will be an equilibrium outcome in the resulting game

W is said to be an essential collection for EC, Γ and b

What do we mean by essentialize?

Given an equilibrium concept EC, an (extensive) game form Γ and a (behavior) strategy profile *b*, identify *W*, a minimal collection of information sets of Γ , with the following property:

Given a game G with game form Γ and $b \in EC(G)$, then, whatever changes are made in the payoffs and strategies outside W, the outcome of b will be an equilibrium outcome in the resulting game

W is said to be $\frac{the}{an}$ essential collection for EC, Γ and b

Motivation

Motivation

What do we mean by essentialize?

• Very natural intuition for inessential (irrelevant):

Motivation

What do we mean by essentialize?

 Very natural intuition for inessential (irrelevant): reached after "(simultaneous) multilateral deviations"

Motivation

- Very natural intuition for inessential (irrelevant): reached after "(simultaneous) multilateral deviations"
- Appropriate definition of essential collection

Motivation

- Very natural intuition for inessential (irrelevant): reached after "(simultaneous) multilateral deviations"

Motivation

- Very natural intuition for inessential (irrelevant): reached after "(simultaneous) multilateral deviations"
- Appropriate definition of essential collection ← main difficulty?

Related literature

Related literature

??

Essentializing Equilibrium Concepts Julio González-Díaz

Outline

2 Definitions and Results

- Preliminary notations
- Main definitions
- Results

3 An Example

Preliminary notations Main definitions Results

Preliminary notations Main definitions Results

Preliminary notations

• Finite extensive form games (with perfect recall)

Preliminary notations Main definitions Results

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$
- Information sets $U(\Gamma)$

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$
- Information sets $U(\Gamma)$ (partition of $X(\Gamma)$)

Preliminary notations

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$
- Information sets $U(\Gamma)$ (partition of $X(\Gamma)$)

Closed collection of information sets

Preliminary notations

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$
- Information sets $U(\Gamma)$ (partition of $X(\Gamma)$)

Closed collection of information sets

A collection of information sets W is closed if, for each information set $v \in W$,

Preliminary notations

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$
- Information sets $U(\Gamma)$ (partition of $X(\Gamma)$)

Closed collection of information sets

A collection of information sets W is closed if, for each information set $v \in W,$ if $u \prec v,$

Preliminary notations

- Finite extensive form games (with perfect recall)
- Game form Γ , strategies $B(\Gamma)$, games $\mathcal{G}(\Gamma)$
- Nodes $X(\Gamma)$, terminal nodes $Z(\Gamma)$
- Information sets $U(\Gamma)$ (partition of $X(\Gamma)$)

Closed collection of information sets

A collection of information sets W is closed if, for each information set $v\in W,$ if $u\prec v,$ then $u\in W$

Preliminary notations Main definitions Results

Preliminary notations Main definitions Results

Preliminary notations Main definitions Results

Preliminary notations

 $\bullet~$ Let W be a collection of inf. sets

Preliminary notations Main definitions Results

- $\bullet~$ Let W be a collection of inf. sets
- $b = (b_W, b'_{-W})$

Preliminary notations Main definitions Results

- Let W be a collection of inf. sets
- $b = (b_W, b'_{-W})$
- $G \otimes^W G' = (G_W, G'_{-W})$

Preliminary notations Main definitions Results

- $\bullet~$ Let W be a collection of inf. sets
- $b = (b_W, b'_{-W})$ • $G \otimes^W G' = (G_W, G'_W)$ 2 . . u2 UuE d

Preliminary notations Main definitions Results

- Let W be a collection of inf. sets
- $b = (b_W, b'_{-W})$ • $G \otimes^W G' = (G_W, G'_W)$ 0 u2 W۲ uГ d

Motivation	
Definitions and Results	Main definitions
An Example	

Sufficient collections

Sufficient collections

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

 ${\ensuremath{\, \bullet \,}} \ W$ contains the path of b

Sufficient collections

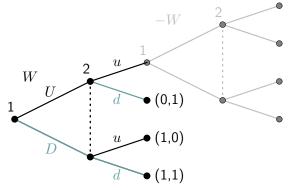
- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$.

Sufficient collections

- $\bullet \ W$ contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

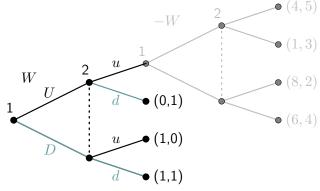
Sufficient collections

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$



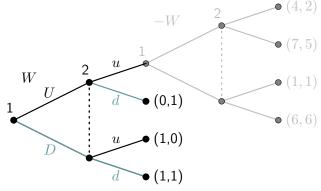
Sufficient collections

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$



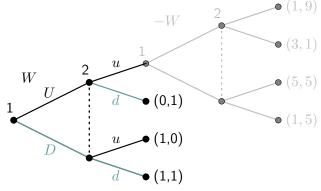
Sufficient collections

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$



Sufficient collections

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$



Sufficient collections

- $\bullet \ W$ contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

- $\bullet \ W$ contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

Lemma

The intersection of sufficient collections is a sufficient collection

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

- $\bullet \ W$ contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

Lemma

The intersection of sufficient collections is a sufficient collection

Lemma

The intersection of closed collections is a closed collection

Sufficient collections

- $\bullet \ W$ contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

- $\bullet \ W$ contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

What do we mean by essentialize?

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

What do we mean by essentialize?

The essential collection (for EC, Γ and b) is the unique minimal sufficient collection (for EC, Γ and b)

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

What do we mean by essentialize?

The essential collection (for EC, Γ and b) is the unique minimal closed sufficient collection (for EC, Γ and b)

Sufficient collections

A collection of information sets W is sufficient for EC, Γ and b if

- W contains the path of b
- Let $G, G' \in \mathcal{G}(\Gamma)$ be such that $b \in EC(G)$. Then, there is $\bar{b} \in EC(G \otimes^W G')$ such that $b_W = \bar{b}_W$

What do we mean by essentialize?

The essential collection (for EC, Γ and b) is the unique minimal closed sufficient collection (for EC, Γ and b)

• To essentialize an equilibrium concept EC is to find a map that assigns, to each pair (Γ, b) , the essential collection $W_{\text{EC}}(\Gamma, b)$

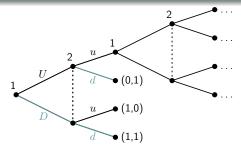
Reduced Game

• Given $G = (\Gamma, h)$ and W

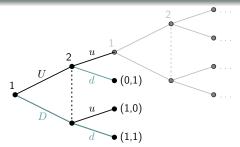
- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$

Motivation Definitions and Results An Example Results

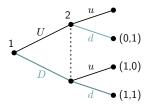
- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



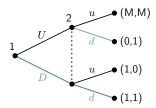
- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$

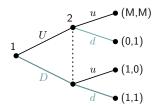


- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



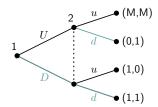
Reduced Game

- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



• Is there $b' \in EC(G)$ realization equivalent to b?

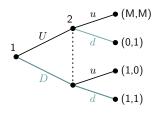
- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

Reduced Game

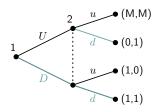
- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

Equivalent if W is essential (for EC, Γ and b)

- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



Equivalent if W is essential

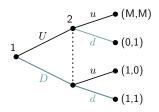
(for EC, Γ and b)

- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

Lemma

Let W be sufficient for EC, Γ , and b. Then, if $b_W \in EC(G_W)$, then there is $\overline{b} \in EC(G)$ that is realization equivalent to b

- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



Equivalent if W is essential

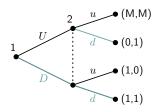
(for EC, Γ and b)

- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

Lemma

Let W be sufficient for EC, Γ , and b. Then, if $b_W \in EC(G_W)$, then there is $\overline{b} \in EC(G)$ that is realization equivalent to b

- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



Equivalent if W is essential

(for EC, Γ and b)

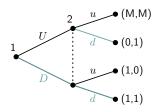
- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

Lemma

Let W be sufficient for EC, Γ , and b. Then, if $b_W \in EC(G_W)$, then there is $\overline{b} \in EC(G)$ that is realization equivalent to b

We can study the reduced game instead of the whole game

- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



Equivalent if W is essential

(for EC, Γ and b)

- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

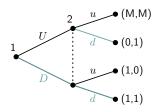
Lemma

Let W be sufficient for EC, Γ , and b. Then, if $b_W \in EC(G_W)$, then there is $\overline{b} \in EC(G)$ that is realization equivalent to b

We can study the reduced game instead of the whole game

• Significant difference for the repeated games example

- Given $G = (\Gamma, h)$ and W
- We define the reduced game: $G_W = (\Gamma_W, h')$



Equivalent if W is essential

(for EC, Γ and b)

- Is there $b' \in EC(G)$ realization equivalent to b?
- Is the restriction of b to G_W in $EC(G_W)$?

Lemma

Let W be sufficient for EC, Γ , and b. Then, if $b_W \in EC(G_W)$, then there is $\overline{b} \in EC(G)$ that is realization equivalent to b

We can study the reduced game instead of the whole game

Motivation Definitions and Results An Example Preliminary notations Main definitions Results

Virtual equilibrium concepts

Motivation Pre Definitions and Results An Example Res

Preliminary notations Main definitions Results

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

• b is a virtual EC if $b_W \in EC(G_W)$,

Motivation Definitions and Results

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

• b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual:

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then,

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b

Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b

- What if $EC(G) = \emptyset$?
- Games in pure strategies
- Non-compact sets of strategies

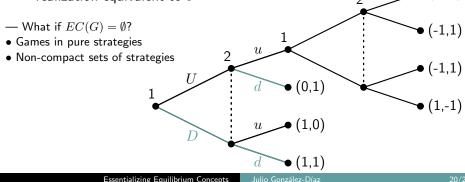
Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b 2 (1,-1)



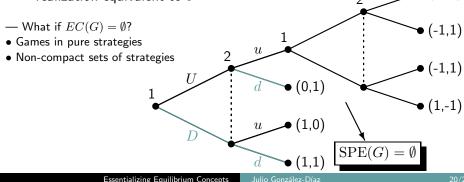
Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b 2 (1,-1)



Virtual equilibrium concepts

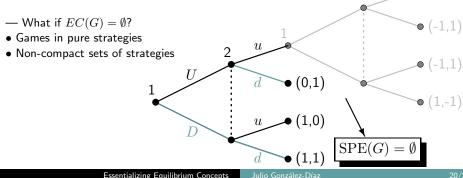
Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

• (1,-1)

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b 2



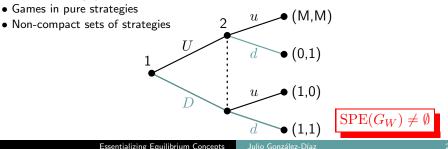
Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b



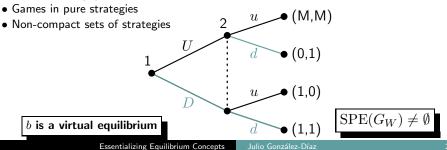
Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b



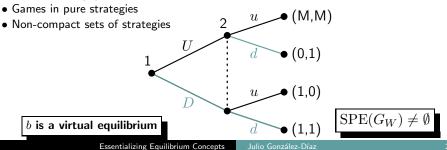
Virtual equilibrium concepts

Let $b \in B(\Gamma)$ and let W be the essential collection for EC, Γ , and b

- b is a virtual EC if $b_W \in EC(G_W)$, or, equivalently
- b is a virtual EC if there is $b' \in EC(G)$ such that $b_W = b'_W$

Reason for the name virtual: $EC(G) \subset VEC(G)$

Let $EC(G) \neq \emptyset$. Then, if $b \in VEC(G)$, there is $\overline{b} \in EC(G)$ realization equivalent to b



Preliminary notatio Main definitions Results

Essentializing equilibrium concepts

Preliminary notation Main definitions **Results**

Essentializing equilibrium concepts

Closedness requirement??

Motivation Preliminary no Definitions and Results An Example Results

Essentializing equilibrium concepts

Nash equilibrium

The essential collection consists of all the information sets that can be reached after a unilateral deviation from \boldsymbol{b}

Motivation Definitions and Results Results

Essentializing equilibrium concepts

Nash equilibrium

The essential collection consists of all the information sets that can be reached after a unilateral deviation from b

Subgame perfect equilibrium

Motivation Definitions and Results Results

Essentializing equilibrium concepts

Nash equilibrium

The essential collection consists of all the information sets that can be reached after a unilateral deviation from b

Subgame perfect equilibrium

A subgame is relevant if it can be reached through a series of unilateral deviations from b at other subgames

Essentializing equilibrium concepts

Nash equilibrium

The essential collection consists of all the information sets that can be reached after a unilateral deviation from b

Subgame perfect equilibrium

A subgame is relevant if it can be reached through a series of unilateral deviations from b at other subgames An information set belongs to the essential collection if it can be reached after a unilateral deviation from b at a relevant subgame

Essentializing equilibrium concepts

Nash equilibrium

The essential collection consists of all the information sets that can be reached after a unilateral deviation from b

Subgame perfect equilibrium

A subgame is relevant if it can be reached through a series of unilateral deviations from b at other subgames An information set belongs to the essential collection if it can be reached after a unilateral deviation from b at a relevant subgame

Perfect equilibrium

Every information set belongs to the essential collection

Essentializing equilibrium concepts

Nash equilibrium

The essential collection consists of all the information sets that can be reached after a unilateral deviation from b

Subgame perfect equilibrium

A subgame is relevant if it can be reached through a series of unilateral deviations from b at other subgames An information set belongs to the essential collection if it can be reached after a unilateral deviation from b at a relevant subgame

Perfect equilibrium

Every information set belongs to the essential collection

The more demanding the EC, the larger the essential collections

Motivation Preliminar Definitions and Results Main defin An Example Results

Preliminary notation Main definitions Results

Belief-based equilibrium concepts

Motivation Preliminary nota Definitions and Results Main definitions An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

Motivation Preliminary notati Definitions and Results An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

Motivation Preliminary notati Definitions and Results Main definitions An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

- An assessment (b,μ) is a weak perfect Bayesian equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - ${f 0}~\mu$ is calculated using Bayes rule in the path of b

Motivation Preliminary notation Definitions and Results Main definitions An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

- An assessment (b,μ) is a weak perfect Bayesian equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - ${f 0}~\mu$ is calculated using Bayes rule in the path of b
- An assessment (b,μ) is a sequential equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - **2** μ is consistent with b

Motivation Preliminary notation Definitions and Results Main definitions An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

—An assessment (b,μ) is sequentially rational if, given $\mu,$ all players are best replying at all information sets

- An assessment (b,μ) is a weak perfect Bayesian equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - ${f 0}~\mu$ is calculated using Bayes rule in the path of b
- An assessment (b,μ) is a sequential equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - **2** μ is consistent with b

Let f assign, to each strategy profile, a set of admissible beliefs.

Motivation Preliminary notatie Definitions and Results An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

—An assessment (b,μ) is sequentially rational if, given $\mu,$ all players are best replying at all information sets

- An assessment (b,μ) is a weak perfect Bayesian equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - ${f 0}~\mu$ is calculated using Bayes rule in the path of b
- An assessment (b,μ) is a sequential equilibrium if
 - **(** b, μ) is sequentially rational
 - **2** μ is consistent with b

Let f assign, to each strategy profile, a set of admissible beliefs.

- An assessment (b,μ) is a sequentially rational under f if
 - $\textcircled{O} (b,\mu) \text{ is sequentially rational}$
 - **2** μ belongs to f(b)

Motivation Preliminary notation Definitions and Results An Example Results

Belief-based equilibrium concepts

An *assessment* is a pair (b, μ) , where b is a behavior strategy profile and μ is a system of beliefs.

- An assessment (b,μ) is a weak perfect Bayesian equilibrium if
 - $\textcircled{0} (b,\mu) \text{ is sequentially rational}$
 - $\textcircled{0} \mu \text{ is calculated using Bayes rule in the path of } b$
- An assessment (b,μ) is a sequential equilibrium if
 - $\textcircled{O} (b,\mu) \text{ is sequentially rational}$
 - **2** μ is consistent with b
- Let f assign, to each strategy profile, a set of admissible beliefs.
- An assessment (b,μ) is a sequentially rational under f if
 - $\textcircled{O} (b,\mu) \text{ is sequentially rational}$
 - **(2)** μ belongs to f(b)

Motivation P Definitions and Results An Example R

Preliminary notation Main definitions **Results**

Essentializing (belief based) equilibrium concepts

Motivation Preli Definitions and Results An Example Resu

Preliminary notatior Main definitions Results

Essentializing (belief based) equilibrium concepts

Sequential rationality

Every information set belongs to the essential collection

Motivation Prelimina Definitions and Results An Example Results

Essentializing (belief based) equilibrium concepts

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

(1) μ is calculated using Bayes rule in the path of b

Preliminary notations Main definitions Results

Essentializing (belief based) equilibrium concepts

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- **②** according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Preliminary notations Main definitions Results

Essentializing (belief based) equilibrium concepts

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- **②** according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- O according to $\mu,$ a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- ② according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- (2) according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

$\textcircled{0} \ \mu \text{ is consistent with } b$

② according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- ② according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- $\textcircled{0} \ \mu \text{ is consistent with } b$
- **②** according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Our approach applies to equilibrium concepts that are sequentially rational under some \boldsymbol{f}

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- (2) according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- $\textcircled{0} \ \mu \text{ is consistent with } b$
- **②** according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

The more demanding the EC, the larger the essential collections

Sequential rationality

Every information set belongs to the essential collection

Weak perfect Bayesian equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- μ is calculated using Bayes rule in the path of b
- (2) according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

Sequential equilibrium

An information set \boldsymbol{u} belongs to the essential collection for \boldsymbol{b} if there is $\boldsymbol{\mu}$ such that:

- $\textcircled{0} \ \mu \text{ is consistent with } b$
- **②** according to μ , a node in u is reached with positive probability with a series of unilateral deviations from b

The more demanding the EC, the smaller the essential collections

Inclusions of essential collections

Inclusions of essential collections

 $W_{\rm NE} \subset W_{\rm SPE}$

Inclusions of essential collections

$W_{\rm NE} \subset W_{\rm SPE}$ $W_{\rm SE} \subset W_{\rm WPBE}$

Inclusions of essential collections

$W_{\rm NE} \subset W_{\rm SPE} \subset W_{\rm SE} \subset W_{\rm WPBE}$

Inclusions of essential collections

$W_{\rm NE} \subset W_{\rm SPE} \subset W_{\rm SE} \subset W_{\rm WPBE} \subset W_{\rm SR} = W_{\rm PE} = U$

Motivation Definitions and Results An Example

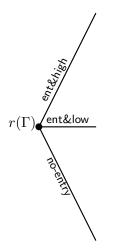
Outline

- Definitions and Results
 Preliminary notations
 Main definitions
 - Results

Licensing Auction

Players

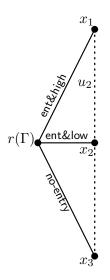
- Foreign Firm
- Government Official
- Local Firm

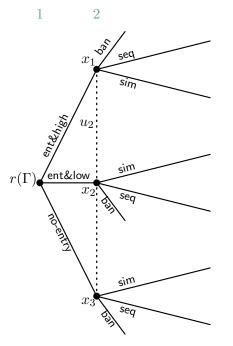


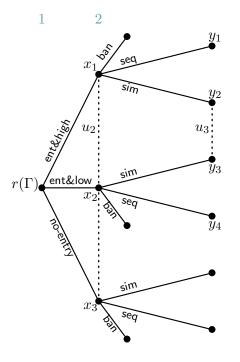
1

Players

- Foreign Firm
- Overnment Official
- Local Firm

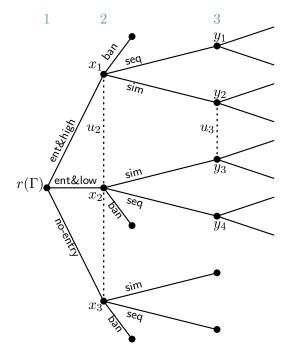






Players

- Foreign Firm
- Q Government Official
- 🗿 Local Firm

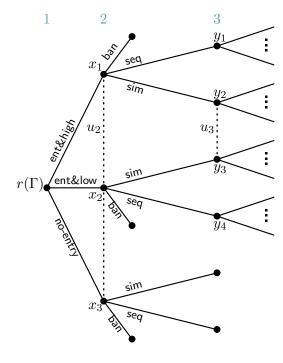


Players

- Foreign Firm
- Q Government Official

Licensing Auction

Local Firm

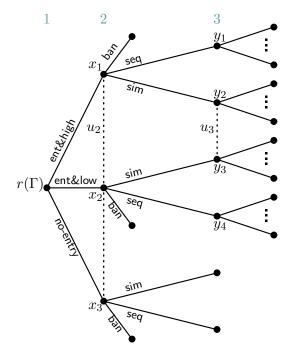


Players

- Foreign Firm
- ② Government Official

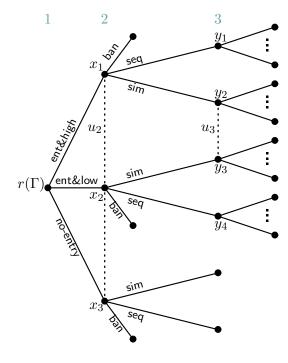
Licensing Auction

Local Firm



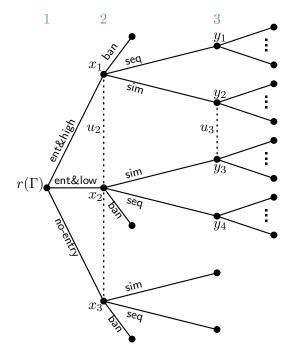
Players

- Foreign Firm
- Q Government Official
- Local Firm



Players

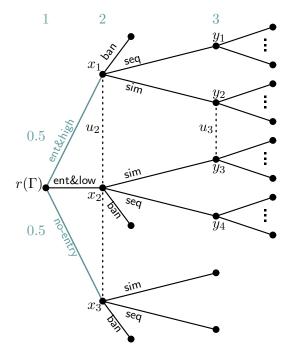
- Foreign Firm
- Q Government Official
- Local Firm



Players

- Foreign Firm
 - Government Official
- Iocal Firm

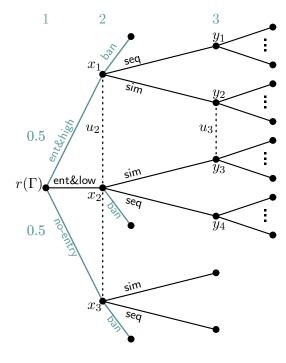
Features



Players

- Foreign Firm
 - Government Official
- Local Firm

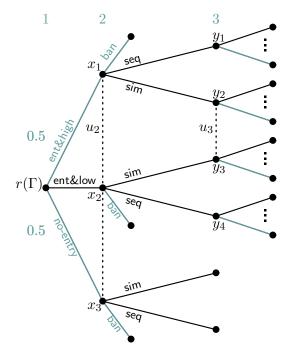
Features



Players

- Foreign Firm
 - Government Official
- Local Firm

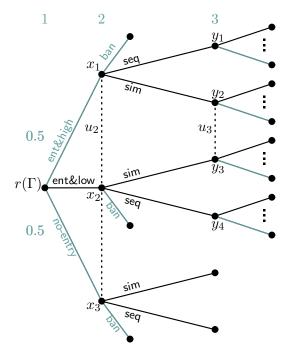
Features



Players

- Foreign Firm
 - Government Official
- Iocal Firm

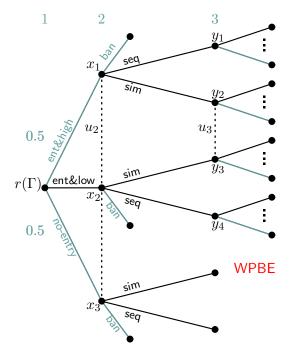
Features



Players

- Foreign Firm
 - Government Official
- Iocal Firm

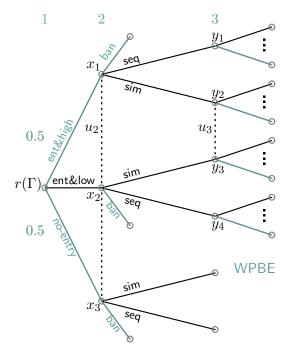
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Iocal Firm

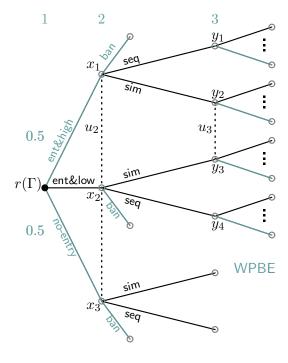
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

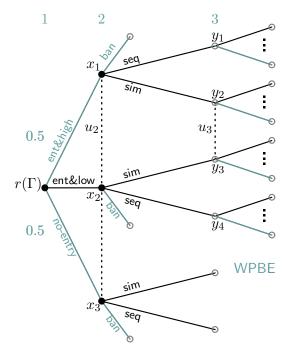
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

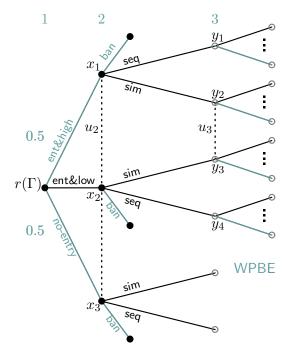
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

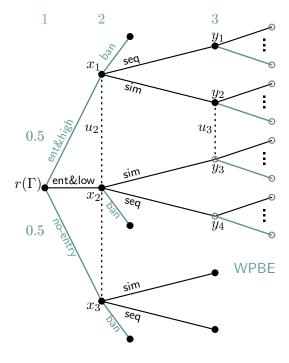
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

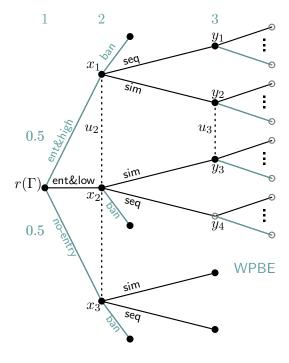
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- 🗿 Local Firm

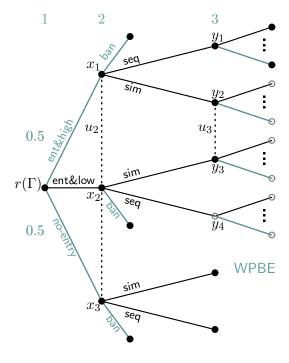
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

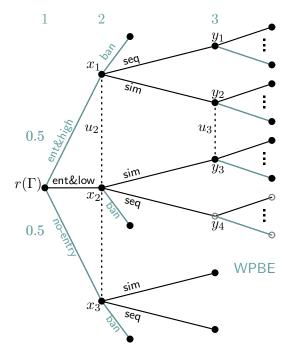
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

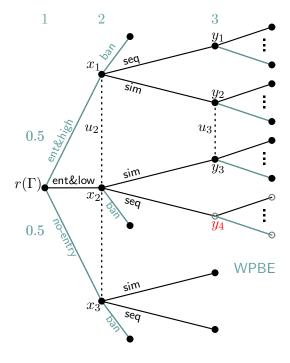
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Iocal Firm

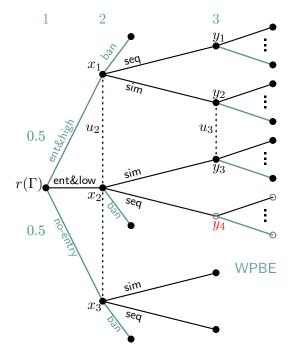
- Strategies
- Essential collections



Players

- Foreign Firm
 - Government Official
- Local Firm

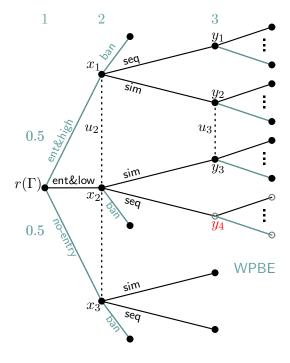
- Strategies
- Essential collections



Players

- 🚺 Foreign Firm
- Government Official
- Iocal Firm

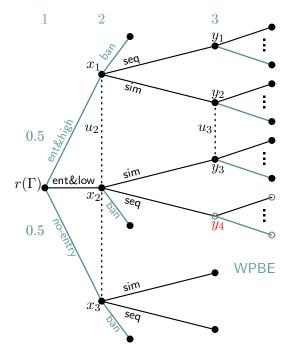
- Strategies
- Essential collections
- Reduced game



Players

- Foreign Firm
- Government Official
- Scale Local Firm

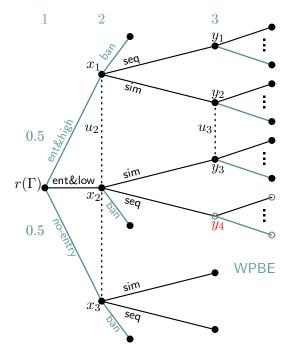
- Strategies
- Essential collections
- Reduced game
- Structural robustness



Players

- Foreign Firm
- Government Official
- Iocal Firm

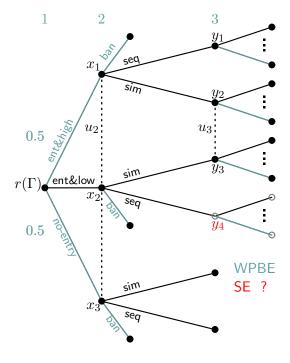
- Strategies
- Essential collections
- Reduced game
- Structural robustness
- Partial specifications



Players

- Foreign Firm
- Government Official
- Local Firm

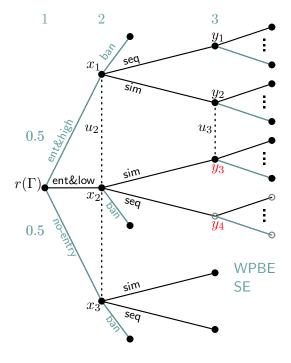
- Strategies
- Essential collections
- Reduced game
- Structural robustness
- Partial specifications
- Virtual equilibria



Players

- Foreign Firm
- Government Official
- 3 Local Firm

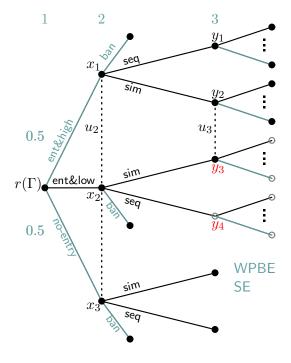
- Strategies
- Essential collections
- Reduced game
- Structural robustness
- Partial specifications
- Virtual equilibria



Players

- Foreign Firm
- Government Official
- 3 Local Firm

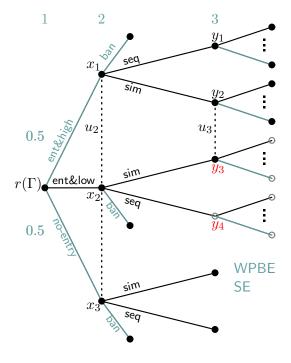
- Strategies
- Essential collections
- Reduced game
- Structural robustness
- Partial specifications
- Virtual equilibria



Players

- Foreign Firm
- Government Official
- 3 Local Firm

- Strategies
- Essential collections
- Reduced game
- Structural robustness
- Partial specifications
- Virtual equilibria



Players

- Foreign Firm
- Government Official
- 3 Local Firm

- Strategies
- Essential collections
- Reduced game
- Structural robustness
- Partial specifications
- Virtual equilibria

Essentializing Equilibrium Concepts

Julio González-Díaz

Research Group in Economic Analysis Universidad de Vigo

(joint with Federica Briata, Ignacio García-Jurado and Fioravante Patrone)

February 2th, 2009