A Natural Selection from the Core of a TU game: The Core-Center

Julio González Díaz

Department of Statistics and Operations Research Universidade de Santiago de Compostela

June 21th, 2005

< ロ > (四 > (四 > (四 > (四 >))) (四 >) (ص >) (

Outline

<ロ> <同> <同> < 回> < 回>

The Core-Center: Definition and Properties

Cooperative game (with transferable utility) A cooperative TU game is a pair (N, v) where:

- A cooperative TU game is a pair (N, v) where:
 - $N = \{1, \ldots, n\}$ is the set of players

- A cooperative TU game is a pair (N, v) where:
 - $N = \{1, \ldots, n\}$ is the set of players
 - $\bullet v$ is the characteristic function,

Cooperative game (with transferable utility)

A cooperative TU game is a pair (N, v) where:

- $N=\{1,\ldots,n\}$ is the set of players
- v is the characteristic function,

v

Cooperative game (with transferable utility)

A cooperative TU game is a pair $\left(N,v\right)$ where:

- $N=\{1,\ldots,n\}$ is the set of players
- v is the characteristic function,

v

Allocation rule

A cooperative TU game is a pair (N, v) where:

- $N=\{1,\ldots,n\}$ is the set of players
- v is the characteristic function,

Allocation rule

An allocation rule on a domain Ω is a function φ such that

v

A cooperative TU game is a pair (N, v) where:

- $N=\{1,\ldots,n\}$ is the set of players
- v is the characteristic function,

Allocation rule

An allocation rule on a domain Ω is a function φ such that

$$\begin{array}{cccc} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (N,v) & \longmapsto & \varphi(N,v) \end{array}$$

v

A cooperative TU game is a pair (N, v) where:

•
$$N = \{1, \dots, n\}$$
 is the set of players

• v is the characteristic function,

Allocation rule

An allocation rule on a domain Ω is a function φ such that

$$\begin{array}{cccc} \varphi : & \Omega & \longrightarrow & \mathbb{R}^n \\ & (N,v) & \longmapsto & \varphi(N,v) \end{array}$$

v

For simplicity, we denote a game (N, v) by v

Fix a game v and an allocation $x \in \mathbb{R}^n$

Fix a game v and an allocation $x \in \mathbb{R}^n$

• x is efficient if $\sum_{i=1}^{n} x_i = v(N)$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$,

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$,

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of a v is the set of all efficient and stable allocations

 $C(v) := \{ x \in \mathbb{R}^n :$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

$$C(v) := \{ x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) \}$$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

$$C(v) := \{x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) \text{ and, for each } S \subseteq N, \sum_{i \in S} x_i \ge v(S)\}$$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

$$C(v) := \{ x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) \text{ and, for each } S \subseteq N, \sum_{i \in S} x_i \ge v(S) \}$$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of a v is the set of all efficient and stable allocations

$$C(v) := \{ x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) \text{ and, for each } S \subseteq N, \sum_{i \in S} x_i \ge v(S) \}$$

A game v is balanced if $C(v) \neq \emptyset$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of a v is the set of all efficient and stable allocations

$$C(v) := \{ x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) \text{ and, for each } S \subseteq N, \sum_{i \in S} x_i \ge v(S) \}$$

A game v is balanced if $C(v) \neq \emptyset$

Fix a game v and an allocation $x \in \mathbb{R}^n$

- x is efficient if $\sum_{i=1}^{n} x_i = v(N)$
- x is individually rational if for each $i \in N$, $x_i \ge v(i)$
- x is stable if for each $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$

The Core (Gillies, 1953):

The core of a v is the set of all efficient and stable allocations

$$C(v) := \{ x \in \mathbb{R}^n : \sum_{i \in N} x_i = v(N) \text{ and, for each } S \subseteq N, \sum_{i \in S} x_i \ge v(S) \}$$

A game v is balanced if $C(v) \neq \emptyset$

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

<ロ> <同> <同> < 回> < 回>

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

イロン イヨン イヨン イヨン

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Weber Set

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Weber Set & Shapley Value

.

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

イロン イヨン イヨン イヨン

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Core-Cover
$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Core-Cover & τ -value

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

イロン イヨン イヨン イヨン

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Core

▲圖 → ▲ 臣 → ▲ 臣 →

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Core & Core-Center

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

イロン イヨン イヨン イヨン

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Weber Set & Shapley Value

Core-Cover & τ -value

Core & Core-Center

$$v = \begin{cases} v(1) = 0 \quad v(2) = 0 \quad v(3) = 0\\ v(12) = 1 \quad v(13) = 4 \quad v(23) = 7\\ v(123) = 15 \end{cases}$$

Core = Core Cover = Weber Set

Weber Set & Shapley Value Core-Cover & τ-value

Core & Core-Center

The Core-Center: Definition

$\bullet~ {\rm Let}~ U(A)$ be the uniform distribution defined over A

• Let U(A) be the uniform distribution defined over A • Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

Let U(A) be the uniform distribution defined over A
Let E(ℙ) be the expectation of ℙ

The Core-Center (González-Díaz and Sánchez Rodríguez, 2003):

- Let U(A) be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

The **Core-Center** (González-Díaz and Sánchez Rodríguez, 2003): Let v be a balanced game

- $\bullet \ \mbox{Let} \ U(A)$ be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of $\mathbb P$

Let v be a balanced game The core-center, $\mu(v),$ is center of gravity of C(v):

- $\bullet \ \mbox{Let} \ U(A)$ be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

Let v be a balanced game The core-center, $\mu(v),$ is center of gravity of C(v):

- $\bullet \ \mbox{Let} \ U(A)$ be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of $\mathbb P$

Let v be a balanced game The core-center, $\mu(v),$ is center of gravity of $C(v)\colon$

C(v)

- $\bullet \ \mbox{Let} \ U(A)$ be the uniform distribution defined over A
- Let $E(\mathbb{P})$ be the expectation of \mathbb{P}

Let v be a balanced game The core-center, $\mu(v),$ is center of gravity of C(v):

U(C(v))

- Let $U({\cal A})$ be the uniform distribution defined over ${\cal A}$
- Let $E(\mathbb{P})$ be the expectation of $\mathbb P$

Let v be a balanced game The core-center, $\mu(v),$ is center of gravity of C(v):

E(U(C(v)))

- Let $U({\cal A})$ be the uniform distribution defined over ${\cal A}$
- Let $E(\mathbb{P})$ be the expectation of $\mathbb P$

Let v be a balanced game The core-center, $\mu(v),$ is center of gravity of C(v):

 $\mu(v) := E\big(U(C(v))\big)$

• Efficiency

• Efficiency

• Individual rationality

- Efficiency
- Stability

• Individual rationality

The Core-Center: Basic Properties

- Efficiency
- Stability

- Individual rationality
- Dummy player

- Efficiency
- Stability
- Symmetry

- Individual rationality
- Dummy player

- Efficiency
- Stability
- Symmetry

- Individual rationality
- Dummy player
- Translation invariance

- Efficiency
- Stability
- Symmetry
- Scale invariance

- Individual rationality
- Dummy player
- Translation invariance

- Efficiency
- Stability
- Symmetry
- Scale invariance

- Individual rationality
- Dummy player
- Translation invariance
- ...

Continuity

 $\begin{array}{ll} \text{Continuity} \\ \varphi : & \Omega \subseteq \mathbb{R}^{2^n} \end{array}$

 $\begin{array}{ccc} \text{Continuity} \\ \varphi : & \Omega \subseteq \mathbb{R}^{2^n} & \longrightarrow & \mathbb{R}^n \end{array}$

Julio González Díaz

Julio González Díaz The core-center

 \bullet Take a pair of games v and w

 \bullet Take a pair of games v and w

Strong monotonicity

 \bullet Take a pair of games v and w

$$\begin{split} & \text{Strong monotonicity} \\ & \text{Let } i \in N. \text{ If for each } S \subseteq N \backslash \{i\}, \\ & w(S \cup \{i\}) - w(S) \geq v(S \cup \{i\}) - v(S), \end{split}$$

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 \bullet Take a pair of games v and w

Strong monotonicity

- Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$
- w(T) > v(T) and for each $S \neq T$, w(S) = v(S)

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T) \ \text{and for each} \ S \neq T, \ w(S) = v(S)$

Coalitional monotonicity For each $i \in T$,

 \bullet Take a pair of games v and w

Strong monotonicity

NOT SATISFIED

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicity For each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T, \ w(S) = v(S)$

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

 \bullet Take a pair of games v and w

Strong monotonicity

 $\begin{array}{l} \mbox{Let } i \in N. \mbox{ If for each } S \subseteq N \setminus \{i\}, \\ w(S \cup \{i\}) - w(S) \geq v(S \cup \{i\}) - v(S), \mbox{ then } \varphi_i(N,w) \geq \varphi_i(N,v) \end{array}$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

 $\begin{array}{l} \mbox{Coalitional monotonicity} \\ \mbox{For each } i \in T, \ \varphi_i(N,w) \geq \varphi_i(N,v) \end{array}$

Aggregate mononicity

NOT SATISFIED

 \bullet Take a pair of games v and w

Strong monotonicity

 $\begin{array}{l} \mbox{Let } i \in N. \mbox{ If for each } S \subseteq N \setminus \{i\}, \\ w(S \cup \{i\}) - w(S) \geq v(S \cup \{i\}) - v(S), \mbox{ then } \varphi_i(N,w) \geq \varphi_i(N,v) \end{array}$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

 $\label{eq:coalitional monotonicity} \ensuremath{\mathsf{For}}\ \mbox{each}\ i\in T,\ \varphi_i(N,w)\geq \varphi_i(N,v)$

Aggregate mononicity

T = N implies that for each $i \in N$,

U SC INVESSIBALE DE COMPOSITILA

NOT SATISFIED

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

Coalitional monotonicityNOT SATISFIEDFor each $i \in T$, $\varphi_i(N, w) \ge \varphi_i(N, v)$

Aggregate mononicity

T=N implies that for each $i\in N$, $arphi_i(N,w)\geq arphi_i(N,v)$

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

Aggregate mononicity

NOT SATISFIED

NOT SATISFIED

T=N implies that for each $i\in N$, $\varphi_i(N,w)\geq \varphi_i(N,v)$

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

Aggregate mononicity

NOT SATISFIED

NOT SATISFIED

T=N implies that for each $i\in N$, $\varphi_i(N,w)\geq \varphi_i(N,v)$

Weak coalitional monotonicity

 \bullet Take a pair of games v and w

Strong monotonicity

 $\begin{array}{l} \mbox{Let } i \in N. \mbox{ If for each } S \subseteq N \setminus \{i\}, \\ w(S \cup \{i\}) - w(S) \geq v(S \cup \{i\}) - v(S), \mbox{ then } \varphi_i(N,w) \geq \varphi_i(N,v) \end{array}$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T, \ w(S) = v(S)$

Aggregate mononicity

NOT SATISFIED

NOT SATISFIED

T=N implies that for each $i\in N$, $\varphi_i(N,w)\geq \varphi_i(N,v)$

Weak coalitional monotonicity $\sum_{i \in T} \varphi_i(w) \ge \sum_{i \in T} \varphi_i(v)$

 \bullet Take a pair of games v and w

Strong monotonicity

Let $i \in N$. If for each $S \subseteq N \setminus \{i\}$, $w(S \cup \{i\}) - w(S) \ge v(S \cup \{i\}) - v(S)$, then $\varphi_i(N, w) \ge \varphi_i(N, v)$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T, \ w(S) = v(S)$

Aggregate mononicity

NOT SATISFIED

NOT SATISFIED

T=N implies that for each $i\in N,$ $\varphi_i(N,w)\geq \varphi_i(N,v)$

Weak coalitional monotonicity $\sum_{i \in T} \varphi_i(w) \geq \sum_{i \in T} \varphi_i(v)$

SATISFIED!!!

 \bullet Take a pair of games v and w

Strong monotonicity

 $\begin{array}{l} \mbox{Let } i \in N. \mbox{ If for each } S \subseteq N \setminus \{i\}, \\ w(S \cup \{i\}) - w(S) \geq v(S \cup \{i\}) - v(S), \mbox{ then } \varphi_i(N,w) \geq \varphi_i(N,v) \end{array}$

 $\bullet \ w(T) > v(T)$ and for each $S \neq T$, w(S) = v(S)

Aggregate mononicity

NOT SATISFIED

NOT SATISFIED

T=N implies that for each $i\in N,$ $\varphi_i(N,w)\geq \varphi_i(N,v)$

Weak coalitional monotonicity $\sum_{i \in T} \varphi_i(w) \ge \sum_{i \in T} \varphi_i(v)$

SATISFIED!!!

U SCC

 $\exists \rightarrow$

≣≯

U SC INTWESSIDADE DE COMPUSTELA

<ロ> <同> <同> < 回> < 回>

U SC INTWESSEDADE DE SANTIAGO DE COMPOSITELA

U SC INVERSIDADE DE CONPUSTELA

U SC INTWESSEDADE DE COMPOSITELA

<ロ> <同> <同> < 回> < 回>

$$DS_2(x) = \frac{\int_B |x_i - y_i| dy}{\int_B |x_i - y_i| dy}$$

$$DS_2(x) = \frac{\int_B |x_i - y_i| dy}{\int_A |x_i - y_i| dy}$$

$$DS_2(x) = \frac{\int_B |x_i - y_i| dy}{\int_A |x_i - y_i| dy}$$

Uniform Distribution

The Core-Center: Specific Properties A Fairness Property

The Core-Center: Specific Properties A Fairness Property

The Core-Center: Specific Properties A Fairness Property

 $x \in \mathbb{R}^n$

The Core-Center: Specific Properties A Fairness Property

 $x\in \mathbb{R}^n$

 \mathbb{P}

$x \in \mathbb{R}^n$ is impartial with respect to $\mathbb P$

 $DS_i^{\mathbb{P}}(x) = DS_j^{\mathbb{P}}(x)$

$$DS_i^{\mathbb{P}}(x) = DS_j^{\mathbb{P}}(x)$$

Lemma Let v be a balanced game.

$$DS_i^{\mathbb{P}}(x) = DS_j^{\mathbb{P}}(x)$$

Lemma

Let v be a balanced game. Take U(C(v))

$$DS_i^{\mathbb{P}}(x) = DS_j^{\mathbb{P}}(x)$$

Lemma

Let v be a balanced game. Take U(C(v))Then, the core-center is the unique efficient allocation which is impartial with respect to U(C(v))

Superadditivity:

Superadditivity: If $S \cap T = \emptyset$, then

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T \in N$.

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T \in N$. Let $k \in [v(T), v(N) - v(N \setminus T)]$

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} k & T = S \\ v(S) & \text{otherwise.} \end{cases}$$

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

$$\underline{v}(S) = \left\{ \begin{array}{ll} \max\{v(S), v(S \backslash (N \backslash T)) + v(N) - k\} & N \backslash T \subseteq S \\ v(S) & \text{otherwise.} \end{array} \right.$$

Definition φ is a T-solution

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

$$\underline{v}(S) = \left\{ \begin{array}{ll} \max\{v(S), v(S \backslash (N \backslash T)) + v(N) - k\} & N \backslash T \subseteq S \\ v(S) & \text{otherwise.} \end{array} \right.$$

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v} "cut"

Superadditivity: If $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

Let v be a balanced game. Let $T\in N.$ Let $k\in [v(T),v(N)-v(N\backslash T)]$

$$\overline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus T) + k\} & T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

$$\underline{v}(S) = \begin{cases} \max\{v(S), v(S \setminus (N \setminus T)) + v(N) - k\} & N \setminus T \subseteq S \\ v(S) & \text{otherwise.} \end{cases}$$

 $\begin{array}{l} \text{Definition} \\ \varphi \text{ is a } \mathcal{T} \text{-solution if for each pair } \overline{v}, \ \underline{v} \end{array}$

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0,1]$

 $\begin{array}{l} \text{Definition} \\ \varphi \text{ is a } \mathcal{T}\text{-solution if for each pair } \overline{v}, \ \underline{v} \end{array}$

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha)\varphi(\underline{v})$$

where $\alpha \in [0,1]$

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha)\varphi(\underline{v})$$

where $\alpha \in [0,1]$

Definition Dissection of a game v:

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha)\varphi(\underline{v})$$

where $\alpha \in [0,1]$

Definition Dissection of a game $v: \mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha) \varphi(\underline{v})$$

where $\alpha \in [0,1]$

Definition Dissection of a game v: $\mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition φ is an \mathcal{RT} -solution if:

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha)\varphi(\underline{v})$$

where $\alpha \in [0,1]$

Definition Dissection of a game v: $\mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition φ is an \mathcal{RT} -solution if:

• φ is a T-solution.

Definition φ is a \mathcal{T} -solution if for each pair \overline{v} , \underline{v}

$$\varphi(v) = \alpha \varphi(\overline{v}) + (1 - \alpha)\varphi(\underline{v})$$

where $\alpha \in [0,1]$

Definition

Dissection of a game v: $\mathcal{G}(v) = \{v_1, v_2, \dots, v_r\}$

Definition

- φ is an $\mathcal{RT}\text{-solution}$ if:
 - () φ is a T-solution.
 - **2** Translation Invariance

The Core-Center: Specific Properties

Balanced Games

Definition

Let v be a balanced game Let v' and v'' be two balanced games such that belong to some dissection of v

Definition

Let v be a balanced game

Let v' and v'' be two balanced games such that belong to some dissection of v

 φ satisfies fair additivity with respect to the core if:

Definition

(

Let v be a balanced game

Let v' and v'' be two balanced games such that belong to some dissection of v

 φ satisfies fair additivity with respect to the core if:

$${f 0}\,\,arphi$$
 is a ${\cal RT}$ -solution.

Definition

Let v be a balanced game

Let v' and v'' be two balanced games such that belong to some dissection of v

 φ satisfies fair additivity with respect to the core if:

$$oldsymbol{0}$$
 $arphi$ is a \mathcal{RT} -solution.

$$\ \ \, \bigcirc \ \ \, C(v')=C(v'') \ \ \, \text{implies that} \ \ \alpha_v(v')=\alpha_v(v'').$$

Table of Properties	Shapley	Nucleolus	Core-Center

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency			
Individual Rationality			
Continuity			
Dummy Player			
Symmetry			
Translation and Scale Invariance			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity			
Coalitional Monotonicity			
Aggregate Monotonicity			
Weak Coalitional Monotonicity			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	Х

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)			
Consistency (Hart/Mas-Collel)			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	Х
Consistency (Davis/Maschler)	Х	\checkmark	Х
Consistency (Hart/Mas-Collel)			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	Х
Consistency (Davis/Maschler)	Х	\checkmark	Х
Consistency (Hart/Mas-Collel)	\checkmark	Х	X

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	Х	\checkmark	X
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Impartiality w.r.t. the core			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	Х
Coalitional Monotonicity	\checkmark	Х	Х
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	Х
Consistency (Davis/Maschler)	X	\checkmark	Х
Consistency (Hart/Mas-Collel)	\checkmark	Х	Х
Impartiality w.r.t. the core	X	X	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	Х
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	X	\checkmark	Х
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Impartiality w.r.t. the core	X	Х	\checkmark
Additivity w.r.t. the core			

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	X	\checkmark	X
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Impartiality w.r.t. the core	X	X	\checkmark
Additivity w.r.t. the core	Х	Х	\checkmark

Table of Properties	Shapley	Nucleolus	Core-Center
Efficiency	\checkmark	\checkmark	\checkmark
Individual Rationality	\checkmark	\checkmark	\checkmark
Continuity	\checkmark	\checkmark	\checkmark
Dummy Player	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Translation and Scale Invariance	\checkmark	\checkmark	\checkmark
Stability	Х	\checkmark	\checkmark
Strong Monotonicity	\checkmark	Х	X
Coalitional Monotonicity	\checkmark	Х	X
Aggregate Monotonicity	\checkmark	Х	X
Weak Coalitional Monotonicity	\checkmark	\checkmark	\checkmark
Additivity	\checkmark	Х	X
Consistency (Davis/Maschler)	Х	\checkmark	X
Consistency (Hart/Mas-Collel)	\checkmark	Х	X
Impartiality w.r.t. the core	X	X	\checkmark
Additivity w.r.t. the core	Х	X	\checkmark

A Characterization of the Core-center

Extended Weak Symmetry

$$v(S \cup \{i\}) - v(S \cup \{j\}) = 0$$

$$v(S\cup\{i\})-v(S\cup\{j\})=0$$

$$v(S\cup\{i\})-v(S\cup\{j\})=0$$

 $\begin{array}{l} \text{Definition} \\ i,j \in N \text{ are q-symmetric if} \end{array}$

$$v(S \cup \{i\}) - v(S \cup \{j\}) = v(\{i\}) - v(\{j\})$$

$$v(S \cup \{i\}) - v(S \cup \{j\}) = 0$$

 $\begin{array}{l} \text{Definition} \\ i,j \in N \text{ are q-symmetric if} \end{array}$

$$v(S \cup \{i\}) - v(S \cup \{j\}) = v(\{i\}) - v(\{j\})$$

Definition v symmetric

$$v(S\cup\{i\})-v(S\cup\{j\})=0$$

 $\begin{array}{l} \text{Definition} \\ i,j \in N \text{ are q-symmetric if} \end{array}$

$$v(S \cup \{i\}) - v(S \cup \{j\}) = v(\{i\}) - v(\{j\})$$

Definition

v symmetric if any two players i and j in N are symmetric

$$v(S \cup \{i\}) - v(S \cup \{j\}) = 0$$

 $\begin{array}{l} \text{Definition} \\ i,j \in N \text{ are q-symmetric if} \end{array}$

$$v(S \cup \{i\}) - v(S \cup \{j\}) = v(\{i\}) - v(\{j\})$$

Definition

 \boldsymbol{v} symmetric if any two players \boldsymbol{i} and \boldsymbol{j} in N are symmetric

v is quasi symmetric

$$v(S \cup \{i\}) - v(S \cup \{j\}) = 0$$

Definition $i, j \in N$ are q-symmetric if

$$v(S \cup \{i\}) - v(S \cup \{j\}) = v(\{i\}) - v(\{j\})$$

Definition

v symmetric if any two players i and j in N are symmetric

 \boldsymbol{v} is quasi symmetric if any two players \boldsymbol{i} and \boldsymbol{j} in N are q-symmetric

Extended Weak Symmetry

Extended Weak Symmetry

Definition φ satisfies Weak Symmetry

Definition φ satisfies Weak Symmetry if for any symmetric game

Definition

 φ satisfies Weak Symmetry if for any symmetric game

$$\varphi_i(N,v) - \varphi_j(N,v) = 0 \quad \forall i, j \in N$$

Definition φ satisfies Weak Symmetry if for any symmetric game

$$\varphi_i(N, v) - \varphi_j(N, v) = 0 \quad \forall i, j \in N$$

Definition φ satisfies Extended Weak Symmetry

Definition φ satisfies Weak Symmetry if for any symmetric game

$$\varphi_i(N, v) - \varphi_j(N, v) = 0 \quad \forall i, j \in N$$

Definition

 φ satisfies Extended Weak Symmetry if for any quasi symmetric game

Definition φ satisfies Weak Symmetry if for any symmetric game

$$\varphi_i(N, v) - \varphi_j(N, v) = 0 \quad \forall i, j \in N$$

Definition

 φ satisfies Extended Weak Symmetry if for any quasi symmetric game

$$\varphi_i(N,v) - \varphi_j(N,v) = v(\{i\}) - v(\{j\}) \quad \forall i, j \in N$$

Definition φ satisfies Weak Symmetry if for any symmetric game

$$\varphi_i(N, v) - \varphi_j(N, v) = 0 \quad \forall i, j \in N$$

Definition

 φ satisfies Extended Weak Symmetry if for any quasi symmetric game

$$\varphi_i(N,v) - \varphi_j(N,v) = v(\{i\}) - v(\{j\}) \quad \forall i, j \in N$$

The Characterization

The Characterization

Theorem

Theorem Let φ be an allocation rule satisfying

Theorem Let φ be an allocation rule satisfying

• Efficiency

Let φ be an allocation rule satisfying

- Efficiency
- Continuity

Let φ be an allocation rule satisfying

- Efficiency
- Continuity
- Extended Weak Symmetry

Let φ be an allocation rule satisfying

- Efficiency
- Continuity
- Extended Weak Symmetry
- Fair Additivity with respect to the core.

Let φ be an allocation rule satisfying

- Efficiency
- Continuity
- Extended Weak Symmetry
- Fair Additivity with respect to the core.

Then, for each $v \in BG$,

Let φ be an allocation rule satisfying

- Efficiency
- Continuity
- Extended Weak Symmetry
- Fair Additivity with respect to the core.

Then, for each $v \in BG$, $\varphi(v)$ coincides with the core-center.

Let φ be an allocation rule satisfying

- Efficiency
- Continuity
- Extended Weak Symmetry
- Fair Additivity with respect to the core.

Then, for each $v \in BG$, $\varphi(v)$ coincides with the core-center.

The axioms are independent

<ロ> <同> <同> < 回> < 回>

イロン イヨン イヨン イヨン

US

USC

- 4 回 2 - 4 □ 2 - 4 □

- 4 回 > - 4 回 > - 4 回 >

・日・ ・ヨ・ ・ヨ・

A Natural Selection from the Core of a TU game: The Core-Center

Julio González Díaz

Department of Statistics and Operations Research Universidade de Santiago de Compostela

June 21th, 2005

< ロ > (四 > (四 > (四 > (四 >))) (四 >) (ص >) (

個 と く き と く き と

個 と く き と く き と

• Utopia vector, $M(v) \in \mathbb{R}^N$:

個 と く き と く き と

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$,

1≣ ≯

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

э

(本部) (本語) (本語)

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

御 と くきと くきと
• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$,

御 と くきと くきと

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

$$\text{for each } i \in N, \quad m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$$

米部 とくほと くほど

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

$$\text{for each } i \in N, \quad m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$$

• Core cover:

_ ∢ ≣ →

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each $i \in N$, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

}

• Core cover:

 $CC(v) := \{x \in \mathbb{R}^N :$

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

}

• Core cover:

$$CC(v) := \{ x \in \mathbb{R}^N : \sum_{i \in N} x_i = v(N),$$

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

• Core cover:

$$CC(v) := \{x \in \mathbb{R}^N : \sum_{i \in N} x_i = v(N), \ m(v) \le x \le M(v)\}$$

∃ >

• Utopia vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $M_i(v) := v(N) - v(N \setminus \{i\})$

• Minimum right vector, $M(v) \in \mathbb{R}^N$:

for each
$$i \in N$$
, $m_i(v) := \max_{S \subseteq N, \ i \in S} \{v(S) - \sum_{j \in S \setminus \{i\}} M_j(v)\}$

• Core cover:

$$CC(v) := \{ x \in \mathbb{R}^N : \sum_{i \in N} x_i = v(N), \ m(v) \le x \le M(v) \}$$

• A game v is compromise admissible if $CC(v) \neq \emptyset$

The τ -value or compromise-value (Tijs, 1982):

- ∢ ≣ →

The τ -value or compromise-value (Tijs, 1982):

 $\tau(v):=$ "point on the line segment between m(v) and M(v) that is efficient with respect to v(N) ",

 $\tau(v) = \lambda m(v) + (1 - \lambda)M(v),$

$$\tau(v) = \lambda m(v) + (1 - \lambda)M(v), \quad \lambda \in [0, 1] \text{ is such that } \sum_{i \in N} \tau_i = v(N)$$

$$au(v) = \lambda m(v) + (1 - \lambda)M(v), \quad \lambda \in [0, 1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

$$au(v) = \lambda m(v) + (1 - \lambda)M(v), \quad \lambda \in [0, 1] ext{ is such that } \sum_{i \in N} au_i = v(N)$$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003):

 $au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003): $\tau^*(v) :=$ "center of gravity of the edges of the core-cover"

 $au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003): $\tau^*(v) :=$ "center of gravity of the edges of the core-cover" (multiplicities for the edges have to be taken into account)

 $au(v) = \lambda m(v) + (1-\lambda)M(v), \quad \lambda \in [0,1] ext{ is such that } \sum_{i \in N} au_i = v(N)$

• By definition, CC(v) is a convex polytope

The τ^* -value, González-Díaz et al. (2003): $\tau^*(v) :=$ "center of gravity of the edges of the core-cover" (multiplicities for the edges have to be taken into account)

• By definition, $\tau(v) \in CC(v)$ and $\tau^*(v) \in CC(v)$

Results

P1: Let v be such that

個 と く き と く き と

P1: Let v be such that

$$v(N) - \sum_{j \in N} m_j(v)$$

個 と く き と く き と

$$M_i(v) - m_i(v)$$
 $v(N) - \sum_{j \in N} m_j(v)$

□ > < E > < E >

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

▶ < Ξ >

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem If v satisfies P1,

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

$$M_i(v) - m_i(v) \leq v(N) - \sum_{j \in N} m_j(v)$$

Theorem

If v satisfies P1, then $\tau(v) = \tau^*(v)$

∃ >

