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Julio González D́ıaz The core-center



Basic Definitions

Cooperative game (with transferable utility)
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A cooperative TU game is a pair (N, v) where:

N = {1, . . . , n} is the set of players

v is the characteristic function,
v : 2n −→ R

S 7−→ v(S)

Allocation rule

An allocation rule on a domain Ω is a function ϕ such that

ϕ : Ω −→ R
n

(N, v) 7−→ ϕ(N, v)
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Julio González D́ıaz The core-center



The Core-Center: Definition

Let U(A) be the uniform distribution defined over A

Let E(P) be the expectation of P

The Core-Center (González-D́ıaz and Sánchez Rodŕıguez, 2003):
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Let v be a balanced game

The core-center, µ(v), is center of gravity of C(v):
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Let U(A) be the uniform distribution defined over A

Let E(P) be the expectation of P
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Julio González D́ıaz The core-center



The Core-Center: Continuity

Continuity
ϕ : Ω ⊆ R

2
n

−→ R
n

v 7−→ ϕ(v)
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Theorem
The Core-Center is a continuous allocation rule
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Let i ∈ N . If for each S ⊆ N\{i},

w(S ∪ {i}) − w(S) ≥ v(S ∪ {i}) − v(S), then ϕi(N, w) ≥ ϕi(N, v)

• w(T ) > v(T ) and for each S 6= T , w(S) = v(S)
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For each i ∈ T , ϕi(N, w) ≥ ϕi(N, v)

Aggregate mononicity NOT SATISFIED

T = N implies that for each i ∈ N , ϕi(N, w) ≥ ϕi(N, v)
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∑

i∈T ϕi(w) ≥
∑

i∈T ϕi(v)
Core-Center ⇐⇒ Nucleolus
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The Core-Center: Specific Properties
A Fairness Property

x ∈ R
n is impartial with respect to P if for each pair i, j ∈ N ,

DSP

i (x) = DSP

j (x)

Lemma
Let v be a balanced game. Take U(C(v))
Then, the core-center is the unique efficient allocation which is

impartial with respect to U(C(v))
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Let v be a balanced game. Let T ∈ N .
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Superadditivity: If S ∩ T = ∅, then v(S ∪ T ) ≥ v(S) + v(T )

Let v be a balanced game. Let T ∈ N . Let k ∈ [v(T ), v(N) − v(N\T )]

v(S) =

{

k T = S

v(S) otherwise.
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An Additivity Property

Superadditivity: If S ∩ T = ∅, then v(S ∪ T ) ≥ v(S) + v(T )

Let v be a balanced game. Let T ∈ N . Let k ∈ [v(T ), v(N) − v(N\T )]

v(S) =

{

max{v(S), v(S\T ) + k} T ⊆ S

v(S) otherwise.

v(S) =

{

max{v(S), v(S\(N\T )) + v(N) − k} N\T ⊆ S

v(S) otherwise.

Definition
ϕ is a T -solution if for each pair v, v “cut”
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Superadditivity: If S ∩ T = ∅, then v(S ∪ T ) ≥ v(S) + v(T )

Let v be a balanced game. Let T ∈ N . Let k ∈ [v(T ), v(N) − v(N\T )]

v(S) =

{

max{v(S), v(S\T ) + k} T ⊆ S

v(S) otherwise.

v(S) =

{

max{v(S), v(S\(N\T )) + v(N) − k} N\T ⊆ S

v(S) otherwise.

Definition
ϕ is a T -solution if for each pair v, v

ϕ(v) = αϕ(v) + (1 − α)ϕ(v)

where α ∈ [0, 1]
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Definition
ϕ is a T -solution if for each pair v, v

ϕ(v) = αϕ(v) + (1 − α)ϕ(v)

where α ∈ [0, 1]

Definition
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The Core-Center: Specific Properties
An Additivity Property

Definition
ϕ is a T -solution if for each pair v, v

ϕ(v) = αϕ(v) + (1 − α)ϕ(v)

where α ∈ [0, 1]

Definition
Dissection of a game v: G(v) = {v1, v2, . . . , vr}

Definition
ϕ is an RT -solution if:

1 ϕ is a T -solution.
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The Core-Center: Specific Properties
An Additivity Property

Definition
ϕ is a T -solution if for each pair v, v

ϕ(v) = αϕ(v) + (1 − α)ϕ(v)

where α ∈ [0, 1]

Definition
Dissection of a game v: G(v) = {v1, v2, . . . , vr}

Definition
ϕ is an RT -solution if:

1 ϕ is a T -solution.

2 Translation Invariance
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Let v′ and v′′ be two balanced games such that belong to some

dissection of v
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Let v be a balanced game

Let v′ and v′′ be two balanced games such that belong to some

dissection of v

ϕ satisfies fair additivity with respect to the core if:

1 ϕ is a RT -solution.
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The Core-Center: Specific Properties
An Additivity Property

Balanced Games

3

s

C(v)

k
21

3 C(v)

C(v)Definition
Let v be a balanced game

Let v′ and v′′ be two balanced games such that belong to some

dissection of v

ϕ satisfies fair additivity with respect to the core if:

1 ϕ is a RT -solution.

2 C(v′) = C(v′′) implies that αv(v
′) = αv(v

′′).
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Extended Weak Symmetry

Definition
ϕ satisfies Weak Symmetry if for any symmetric game

ϕi(N, v) − ϕj(N, v) = 0 ∀i, j ∈ N

Definition
ϕ satisfies Extended Weak Symmetry if for any quasi symmetric game

ϕi(N, v) − ϕj(N, v) = v({i}) − v({j}) ∀i, j ∈ N

Weak Symmetry + Translation Invariance = Extended Weak Symmetry
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Julio González D́ıaz The core-center



The Characterization

Theorem
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The Characterization

Theorem
Let ϕ be an allocation rule satisfying

Efficiency

Continuity

Extended Weak Symmetry

Fair Additivity with respect to the core.

Then, for each v ∈ BG, ϕ(v) coincides with the core-center.

The axioms are independent
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Julio González D́ıaz The core-center



The Characterization
Sketch of the Proof

Step 1
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Step 2
Continuity + Fair Additivity

Julio González D́ıaz The core-center



A Natural Selection from the Core of a TU game:
The Core-Center

Julio González D́ıaz
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Previous concepts

Utopia vector, M(v) ∈ R
N :

for each i ∈ N, Mi(v) := v(N) − v(N\{i})

Minimum right vector, M(v) ∈ R
N :

for each i ∈ N, mi(v) := max
S⊆N, i∈S

{v(S) −
∑

j∈S\{i}

Mj(v)}

Core cover:

CC(v) := {x ∈ R
N :

∑

i∈N

xi = v(N), m(v) ≤ x ≤ M(v)}

A game v is compromise admissible if CC(v) 6= ∅
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The τ -value or compromise-value (Tijs, 1982):

τ(v) := “point on the line segment between m(v) and M(v) that

is efficient with respect to v(N)”,

τ(v) = λm(v) + (1 − λ)M(v), λ ∈ [0, 1] is such that
X

i∈N

τi = v(N)

By definition, CC(v) is a convex polytope

The τ
∗-value, González-D́ıaz et al. (2003):

τ∗(v) := “center of gravity of the edges of the core-cover”
(multiplicities for the edges have to be taken into account)

By definition, τ(v) ∈ CC(v) and τ∗(v) ∈ CC(v)
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