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Abstract

We model the role of commitment in noncooperative games by means of what we

call unilateral commitments. We study their impact within the framework of repeated

games with complete information. To do so, we revisit the main folk theorems for re-

peated games with complete information and check up to what extent the assumptions

needed in the classic models can be relaxed in the model with unilateral commitments.

KEYWORDS: repeated games, unilateral commitments, delegation games, folk theo-
rems, complete information.

1 Introduction

The impact of different kinds of commitments in noncooperative models has been widely
studied in game theoretical literature. Most of the contributions within this issue have been
devoted to study delegation models; situations in which the players are represented by agents
who play on their behalf. The concept of delegation, as well as other approaches to the idea
of commitment, was already discussed in Schelling (1960). There has been an extensive
research in the topic of delegation; see, for instance, Vickers (1985), Fershtman (1985),
Sklivas (1987), and, more recently, Fershtman et al. (1991) and Caillaud et al. (1995). The
model we present here is specially close to that in Fershtman et al. (1991). What they do is
the following. To each 2-player strategic game, they associate a delegation game in which
the agents play the original game on behalf of their principals. There is a first stage in which
each principal, simultaneously and independently, provides his agent with a compensation
scheme. In the second stage, the compensation schemes become common knowledge and
the agents play the original game and have the payoffs given by the compensation schemes.
Their main result is a folk theorem which, roughly speaking, states that if the original game
has a Nash equilibrium, then every Pareto optimal allocation can be achieved as a subgame
perfect equilibrium of the delegation game.

In this paper we study another model with commitments, not far from that of delegation,
but with several differences. We begin with a motivation and then we informally introduce
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the model. There are many strategic situations in real life in which one of the players gets
rid of some of his strategies: a department that makes the commitment of not hiring its
own graduate students; a firm announcing a limited edition of a certain product; a party
announcing, during the election campaign, that they are not going to make certain alliances
regardless of the final result of the election;. . . We model these situations by what we call
unilateral commitments (UC). This is not the first time that unilateral commitments are
studied in literature (see, for instance, Fáıña-Med́ın et al. (1998) and Garćıa-Jurado et al.
(2000)). To each n-player strategic game we associate its UC-extension as follows. There
is a first stage in which each player, simultaneously and independently, chooses a subset of
his set of strategies, i.e., he makes a commitment. In the second stage, the commitments
become common knowledge and the players play the original game with the restrictions
given by the respective commitments.

After the latter (informal) presentation of our model, we can stress some similarities and
differences with the model in Fershtman et al. (1991). We do not have principals and agents,
i.e., we have the same players in the two stages of our game. Nonetheless, our model is very
close to that of delegation; consider the UC-extension of a game in which the strategies of
player 1 belong to A1 and he commits to play only strategies in Ac

1. Suppose, for simplicity,
that all the payoffs of the original game are positive. This situation can be seen as a
delegation game in which the principal chooses the following compensation scheme for his
agent: (i) if the agent plays a strategy within Ac

1, then he receives some fixed proportion of
his principal’s payoff and (ii) if he plays some strategy not in Ac

1 then he receives some fixed
negative payoff. It is worth to mention that, as far as the model in Fershtman et al. (1991) is
concerned, the compensation schemes are restricted to functions that are weakly monotonic
on the payoff received by the principal. On the contrary, the compensation scheme we have
defined to “imitate” our commitment can be non-monotonic and, moreover, it can depend
not only on the payoffs but also on the specific strategies leading to them. Anyhow, the
monotonicity assumption in Fershtman et al. (1991) responded to technical reasons and it
seems natural that the principal can sign “non-monotonic contracts” with his agent if both
of them agree upon. One more similarity between the two models is the following: in the
delegation game, the contracts are public and have to be respected and, in our model, we
take the same assumptions for the commitments.

From the discussion above, we can conclude that our model with unilateral commitments
can be seen as a particular family of delegation games; a family in which only some specific
compensation schemes are possible. Hence, in an economic situation in which there is
room for the contracts needed for the delegation games, there is also room for the kind of
commitments we define in this paper (always taking into account that we work within a
complete information framework). Moreover, recall that in this paper we model n-player
games and not only 2-player situations as it is common in the delegation games literature.

We devote this paper to study the implications of unilateral commitments within the
framework of repeated games with complete information. In Garćıa-Jurado et al. (2000) it
is shown that, if unilateral commitments are possible, no assumption is needed in order to
get the Nash folk theorem; but there is no result concerning subgame perfection. Under
a slightly different framework, we show that, when unilateral commitments are possible,
it is easier to find both Nash and subgame perfect equilibria supporting the “cooperative”
payoffs of the original game; indeed, most of the folk theorems do not need any assumption
at all when unilateral commitments are considered. Differently, from the point of view of
optimization theory, since the Pareto optimal allocations represent the social optima of the
problem at hand, the results we present in this paper say that under mild assumptions such
optima can be supported by both Nash and subgame perfect equilibria.

The structure of this paper is as follows. In Section 2 we introduce the background
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concepts, the definition of a new equilibrium concept for extensive games, and the definition
of the model with unilateral commitments. In Section 3 we present some folk theorems for
repeated games when unilateral commitments are possible. In addition, we compare our
results with those without unilateral commitments. Finally, we conclude in Section 4.

2 Notation

A strategic game G is a triplet (N, A, ϕ), where:

• N := {1, . . . , n} is the set of players,

• A :=
∏

i∈N Ai and Ai is the set of player i’s strategies,

• ϕ := (ϕ1, . . . , ϕn) and ϕi : A → R is the payoff function of player i.

We assume that, for each i ∈ N , the sets Ai are compact topological spaces and
the functions ϕi are continuous. Let a−i be a strategy profile for the players in N\{i}
and A−i the set of such profiles. For each i ∈ N and each a−i ∈ A−i, let µi(a−i) :=
maxai∈Ai

{ϕi(a−i, ai)}. Note that the µi functions are continuous. Also, for each i ∈ N ,
let vi := mina−i∈A−i

{µi(a−i)}. The vector v := {v1, . . . , vn} is the minimax payoff vector.
Let F be the set of feasible payoffs, F := co{ϕ(a) : a ∈ A}. Now, for each i ∈ N , let
p−i ∈ argmina−i∈A−i

{µi(a−i)}.
To avoid confusion with the strategies of the repeated game, in what follows we refer

to the strategies ai ∈ Ai and the strategy profiles a ∈ A of the stage game as actions and
action profiles, respectively.

Next, given a game G = (N, A, ϕ), we define the repeated game G(δ, T ); the T -fold
repetition of G with discount parameter δ ∈ (0, 1]. A history at stage t ∈ {1, . . . , T} is
defined as follows:

i) for t = 1, an element of A0 = {∗}, where ∗ is any element not belonging to
⋃

k∈N
Ak.

ii) for t ∈ {2, . . . , T}, an element of At−1.

The set of all histories is H :=
⋃T

t=1 At−1. In the repeated game we assume perfect
monitoring, i.e., each player can choose his action in the current stage in the light of
all actions taken by all players in all previous stages. Hence, let G(δ, T ) be the triplet
(N, S, ϕδ,T ), where:

• The set of players N remains the same.

• S :=
∏

i∈N Si is the set of strategy profiles, where Si := AH
i , i.e., the set of mappings

from H to Ai. Let σ = (σ1, . . . , σn) ∈ S and h ∈ H ; then, we denote the action
profile (σ1(h), . . . , σn(h)) by σ(h). A strategy profile σ ∈ S recursively determines
the sequence of action profiles π(σ) ∈ AT as follows: π1(σ) := σ(∗) and, for each t ∈
{2, . . . , T}, πt(σ) = σ(π1(σ), . . . , πt−1(σ)). We refer to π(σ) as the path determined
by σ.

• The payoff function ϕδ,T is defined as follows. Let σ ∈ S. Then, player i’s payoff in
G(δ, T ) is his average discounted stage payoff:

ϕ
δ,T
i (σ) :=

1 − δ

1 − δT

T
∑

t=1

δt−1ϕi(π
t(σ)).1

1If there are no discounts (i.e., if δ = 1), we have ϕ1,T

i
(σ) := (1/T )

∑T
t=1

ϕi(πt(σ)).
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Finally, recall that, from our definitions, we only use pure actions. If mixed actions are
to be taken into account for a given game, then we just define a new game having them as
pure actions. Hence, for the moment, we are implicitly assuming that, when working with
mixed actions, they are observable; i.e., the players do not only observe the realization of
a mixed action, but also the randomization process that leads to such a realization. We
discuss a little bit more on the observability of mixed actions later on; indeed, we show that
that assumption is not needed.

2.1 Virtually Subgame Perfect Equilibrium

A repeated game with perfect monitoring can be represented as an extensive game and, more
specifically, as a multi-stage game with observed actions.2 Subgame perfect equilibrium
(Selten, 1965), shortly SPE, is probably the most important equilibrium concept within
this class of games. Its main target is to disregard those Nash equilibria which are only
possible if some players give credit to irrational plans of others. More formally, a SPE is a
Nash equilibrium which, moreover, induces a Nash equilibrium in every subgame.3

In this Section we introduce a new equilibrium concept for extensive games which is
essential for this paper: the virtually subgame perfect equilibrium, shortly VSPE. This equi-
librium concept has the same effect as subgame perfection, but it only concentrates on those
subgames which are relevant for a given strategy profile; relevant in the sense that they are
reachable if exactly one player deviates from the strategy profile in any subgame which has
already been classified as relevant. Despite of being based on the same idea, SPE and VSPE
are different concepts, the latter existing in many games which do not have SPE. Hence,
VSPE is especially useful when dealing with extensive games having large trees. There are
many extensive games without SPE, but still, they can have sensible equilibria. This is the
case when the non-existence of SPE is because some subgames which are irrelevant for a
certain strategy profile do not have Nash equilibria.

Let Γ be an extensive game and σ a strategy profile. Let Γx denote the subgame of Γ
that begins at the single-node information set x. Let σx be the restriction of σ to Γx. Now,
a subgame Γx is σ-relevant if either (i) Γx = Γ, or (ii) there are a player i, a strategy σ′

i,
and a σ-relevant subgame Γy such that node x is reached by (σ−i, σ

′

i)y .

Definition 1. Let Γ be an extensive game. The strategy profile σ is a virtually subgame
perfect equilibrium of Γ if for each σ-relevant subgame Γx, then σx is a Nash equilibrium
of Γx.

Let SPE(Γ) and VSPE(Γ) denote the sets of SPE and VSPE of game Γ, respectively. By
definition, for each extensive game Γ, we have SPE(Γ) ⊆ VSPE(Γ). However, the reciprocal
is not true as the following example illustrates.

Example 1. Consider the extensive game depicted in Figure 1. Let σ =
(

(D1, a
i
1), (D2, a

i
2)

)

,
with i ∈ {1, 2}. Clearly, since the subgame that begins after playing (U1, U2) is not σ-
relevant, σ is a VSPE. However, this game does not have any SPE (in pure strategies).
Moreover, the equilibrium σ is a sensible one.

Next, we point out one more relation between SPE and VSPE. Let Γ be an extensive
game. Let σ and σ̂ be two strategy profiles of Γ. Now, let σ̄ be the strategy profile which
consists of playing in accordance with σ̂ in all the subgames which are not σ-relevant and
in accordance with σ elsewhere. Then, the following statements hold:

2We model extensive games following the framework used in Kreps and Wilson (1982), except for the
fact that we consider that the set of nodes may be infinite.

3Refer to van Damme (1991) for a deep analysis of the classic equilibrium concepts in n-person games.
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Figure 1: A game without SPE, but with VSPE.

i) The payoffs associated with σ and σ̄ coincide (they define the same path).

ii) If σ ∈ VSPE(Γ), then σ̄ ∈ VSPE(Γ).

iii) If σ ∈ VSPE(Γ) and σ̂ ∈ SPE(Γ), then σ̄ ∈ SPE(Γ).

Remark. In this paper we study a special family of multistage games with observed
actions. The main reason why we need the concept of VSPE is the following: the extensive
games we deal with in this paper are such that the actions available to the players at each
node need not be convex sets. Hence, we cannot apply the classic results for the existence
of subgame perfect equilibria.

2.2 Unilateral Commitments

The main objective of this paper is to study the effect of unilateral commitments on the
appearing of constructive behavior in repeated games. Given a game G, the corresponding
game with unilateral commitments consists of adding an initial stage to G; in this new
stage each player can commit not to play certain strategies of game G. Moreover, these
commitments are made simultaneously and unilaterally. The fact that the commitments
have to be unilateral is quite important; if players could condition their commitments on
the commitments of the others, then we would somehow be in a cooperative model, and
hence, the players could easily achieve in equilibrium the cooperative payoffs of the game.

The problem of unilateral commitments, henceforth UC, has already been tackled in
Garćıa-Jurado et al. (2000). They obtained a Nash folk theorem for finitely repeated games
with UC. In this paper we deepen a little bit more in the impact of UC in the assumptions
needed for the folk theorems. Next, following Garćıa-Jurado et al. (2000), we formally
define the UC-extension of a game.

Given a game G = (N, A, ϕ), we define the UC-extension of G, U(G), as follows. There is
a preliminary stage in which players choose, simultaneously and independently, a nonempty
subset of their sets of strategies. Formally, each player i ∈ N chooses Ac

i ⊆ Ai, where Ac
i

has to be a compact set. This election is interpreted as a commitment to play strategies
only in Ac

i . Then, this preliminary stage ends and the commitments of the players, Ac,
are made public, i.e., they become common knowledge. Finally, a reduced version of game
G in which players have to respect their commitments is played. Note that, as we have
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already pointed out, this kind of commitments are unilateral because we do not allow them
to be conditional on the other players’ commitments. The compactness assumption for the
sets Ac

i responds, as usually, to technical reasons; it ensures that the subgames starting
after the stage of commitments belong to the class of games defined at the beginning of
this Section. Note that, in the particular case in which the sets of strategies of the game
under consideration are finite, the compactness requirement imposes no restriction at all.
Throughout the rest of this Section, with a slight abuse of notation, given a set A, we use
2A to denote the set of non-empty and compact subsets of A. Now, U(G) := (N, AU , ϕU ),
where:

• The set of players N remains the same.

• AU :=
∏

i∈N AU
i , where AU

i is the set of all couples (Ac
i , αi) such that

i) Ac
i ⊆ Ai, Ac

i 6= ∅,

ii) αi :
∏

j∈N 2Aj −→ Ai and, for each Ac ∈
∏

j∈N 2Aj , αi(A
c) ∈ Ac

i .

• The payoff associated with a strategy profile (Ac, α) is ϕU (Ac, α) := ϕ(α(Ac)).

3 The Folk Theorems

The appearing of constructive behavior in repeated games has been widely treated in the
game theoretical literature.4 Given a game G, the classical Nash folk theorem for finitely
repeated games (Benôıt and Krishna, 1987) states that if the game G is such that, for each
player i, there is a Nash equilibrum that gives i something strictly better than his minimax
payoff, then every feasible and individually rational payoff of G can be approximated by a
Nash equilibrium of G(δ, T ) for big enough T and δ close enough to 1. Recently, González-
Dı́az (2006) introduced a new condition, namely that the game G is decomposable as a
complete minimax-bettering ladder; this new condition, besides being weaker than the
former, turned out to be both necessary and sufficient for the finite horizon Nash folk
theorem.

Next, we state and prove a Nash folk theorem for finitely repeated games with unilateral
commitments. This result, Theorem 1, is a variation of the main result in Garćıa-Jurado
et al. (2000) to place it within our framework. More precisely, here we deal with utilities
instead of with preferences, we allow for discounts, and we consider the set F instead of the
set {ϕ(a) : a ∈ A}.

Theorem 1. Let G = (N, A, ϕ) and let v be its minimax payoff vector. Let u ∈ F , u > v.
Then, for each ε > 0, there are δ0 ∈ (0, 1) and T0 ∈ N such that for each δ ∈ [δ0, 1] and
each T ≥ T0, the game U(G(δ, T )) has a Nash equilibrium payoff w such that ‖w − u‖ < ε.

Proof. Let G = (N, A, ϕ). Let u ∈ F and let ε > 0 be small enough so as to ensure that
for each i ∈ N , ui − ε > vi. Since u ∈ F , there are T ′ ∈ N and a sequence of action

profiles {at}T ′

t=1 such that ‖ 1
T ′

∑T ′

t=1 ϕ(at) − u‖ < ε
3 . Now, by a continuity argument, there

is δ′ ∈ (0, 1) such that for each δ ∈ [δ′, 1], ‖ 1−δ

1−δT ′

∑T ′

t=1 δt−1ϕ(at) − u‖ < 2ε
3 . Now, for

each T ∈ N and each δ ∈ (0, 1], let σ∗ be the strategy profile of G(δ, T ) in which players
successively play the actions in {at}T ′

t=1; formally, σ∗ prescribes for each stage k, the action
amod(k,T ′), where mod(k, T ′) is the remainder of the division of k by T ′. Finally, there is
T ′′ ∈ N be such that for each T ≥ T ′′ and each δ ∈ [δ′, 1], ‖ϕδ,T (σ∗) − u‖ < ε.

4Refer to Benôıt and Krishna (1999) for a complete survey on the topic.
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Now, for each δ ∈ (0, 1] and each T ∈ N, let G(δ, T ) = (N, S, ϕδ,T ). We define the
following strategy profile (S̄c, ᾱ) of U(G(δ, T )):

i) For each i ∈ N , S̄c
i := “If everybody plays according to σ∗ in the first stage, then I

will play according to σ∗ forever”.

ii) For each i ∈ N and each Sc ∈
∏

j∈N 2Sj , we define ᾱi(S
c) as follows:

• If Sc = S̄c:

– i plays according to σ∗ in the first stage.

– If everybody plays according to σ∗ in the first stage, then i plays according
to σ∗ forever.

– If in the first stage only player j 6= i has deviated from σ∗, then, i plays
(p−j)i forever.

– Otherwise, i plays ad libitum.

• If Sc = (Sc
j , S̄

c
−j), where j 6= i and Sc

j 6= S̄c
j : i plays (p−j)i forever.

• Otherwise: i plays ad libitum.

Now, since for each T ≥ T ′′ and each δ ∈ [δ′, 1], ‖ϕδ,T (σ∗) − u‖ < ε, we also have that

for each i ∈ N , ϕ
δ,T
i (σ∗) > ui − ε > vi. The payoff of a deviating player i in game G(δ, T ) is

bounded by 1−δ
1−δT

(

µi(a
1
−i)+

∑T
t=2 δt−1vi

)

. Hence, by increasing T and δ we can also ensure
that the latter payoff is as close to vi as we want. In particular, we can ensure that it is
below ui − ε.

Hence, we already have proved that there are T0 and δ0 such that for each δ ∈ [δ0, 1]
and each T ≥ T0, the strategy profile (S̄c, ᾱ) is a Nash equilibrium of U(G(δ, T )) whose
payoff w is such that ‖w − u‖ < ε.

Remark. Note that even if we work with the mixed extension of a given game, we can
still define the sequence {at}T ′

t=1 using pure strategies. By doing so, there is no need to play
mixed actions in the equilibrium path constructed in the previous proof. Hence, whether we
assume or not that mixed actions are observable does not affect the proof of Theorem 1.

Remark. If instead of writing u ∈ F = co{ϕ(a) : a ∈ A} in the statement of Theorem 1
we write u ∈ {ϕ(a) : a ∈ A}, then we can obtain an exact folk theorem instead of an
approximate one. This is because if u ∈ {ϕ(a) : a ∈ A}, then we can take an action a ∈ A

with payoff u instead of the sequence whose payoff approximates u.
The main purpose for the rest of this Section is to state and prove a subgame per-

fect folk theorem with UC. The trick of the proof of Theorem 1, in which the strategies
corresponding with many subgames were defined ad libitum, does not work for subgame
perfection. Moreover, when dealing with UC, we face extremely large game trees. They
have many subgames, some of which may correspond to senseless commitments. Thus, we
need to use the VSPE concept instead of the classical SPE. Theorem 1 says that, when UC
are possible, no condition is needed for the Nash folk theorem to hold. Note that the Nash
equilibrium profile (S̄c, ᾱ) defined in the proof of Theorem 1 is neither a SPE nor a VSPE;
this is because, in general, the punishments to a player who deviates from the commitment
are not credible. Now, Proposition 1 shows that not only the proof of Theorem 1 fails when
we write VSPE instead of Nash equilibrium, but also the result itself is false.

Proposition 1. The counterpart of Theorem 1 for VSPE does not hold.
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L R
U 10,11 1,10
D 11,0 0,1

Figure 2: A counterexample for Proposition 1

Proof. We do the proof by means of an example. Let G = (N, A, ϕ) be the game defined
in Figure 2. The game G does not have a Nash equilibrium. Moreover, v = (1, 1) and
ϕ(U, L) = (10, 11) > v. However, for each T ∈ N and each δ ∈ (0, 1], U(G(δ, T )) does not
have a VSPE. Suppose, on the contrary, that there are δ ∈ (0, 1] and T ∈ N such that
(Sc, α) is a VSPE of U(G(δ, T )). If Sc contains a unique element, then one of the players
can change his commitment to no commitment at all (i.e., Sc

i = Si if i is such a player) and
deviate from the strategy in the final stage. Hence, there is a last stage in which, according
to the path defined by (Sc, α), one of the players is free to play any action. Let t be that
stage and assume that, following the path of (Sc, α), player 1 can play both U and D at
stage t (a similar reasoning can be done if, instead, we take player 2). Moreover, let x∗ be
the corresponding single-node of G(δ, T ).

Now, let player 2 deviate to the strategy (S̄c
2, ᾱ2) defined as follows: (i) S̄c

2 := “from
stage t + 1 on, I play according to the path defined by (Sc, α)” and (ii) for each Ŝc

1 ∈
2S1 , ᾱ2(Ŝ

c
1, S̄

c
2) := α2(S

c). Let y be the single-node reached after (Sc
1, S̄

c
2) is played. By

definition, U(G(δ, T ))y is a relevant subgame. Let now player 1 deviate, in U(G(δ, T ))y, to

the strategy ᾱ1 defined as follows: for each Ŝc
2 ∈ 2S2 , ᾱ1(S

c
1, Ŝ

c
2) := α1(S

c). The subgame
U(G(δ, T ))y is such that, when playing according to (ᾱ1, ᾱ2), the single-node x∗ of G(δ, T )
is reached again at stage t. Hence, the subgame beginning at the corresponding single-
node of U(G(δ, T )), namely x, is relevant for (Sc, α). According to the commitments, both
players can choose their two actions at x and, from the stage t+1 on, player 2’s actions are
determined by the commitment. Now, it is immediate to check that the relevant subgame
U(G(δ, T ))x does not have any Nash equilibrium. Hence, (Sc, α) cannot be a VSPE.

In the counterexample we used in the proof above, we defined a game G with no Nash
equilibrium. Moreover, for each T ∈ N and each δ ∈ (0, 1], the game G(δ, T ) did not have
any Nash equilibrium. On the other hand, we have the following positive result concerning
the existence of VSPE for games with UC.

Proposition 2. Let G = (N, A, ϕ) and let ā ∈ A be a Nash equilibrium of G. Then, the
game U(G) has a VSPE (Āc, ᾱ) with payoff ϕ(ā).

Proof. Let (Āc, ᾱ) be such that for each i ∈ N , we have

i) Āc
i = {āi},

ii) for each j 6= i and each Ac
j ∈ 2Aj , ᾱi(Ā

c
−j , A

c
j) = āi. Finally, for each Ac

i ∈ 2Ai ,

ᾱi(Ā
c
−i, A

c
i ) = âi, where âi ∈ argmaxai∈Āc

i
{ϕi(ā−i, ai)}.

It is immediate to check that each such strategy profile (Āc, ᾱ) is a VSPE of U(G).

In view of Proposition 2, it is clear that every Nash folk theorem for finitely repeated
games can be easily adapted to provide a subgame perfect folk theorem for finitely repeated
games with UC. More precisely, the necessary and sufficient condition for the Nash folk
theorem in González-Dı́az (2006), “that the game is decomposable as a complete minimax-
bettering ladder”, is a sufficient condition for the VSPE folk theorem with UC. The former
condition implies among other things, the existence of a Nash equilibrium in the stage game
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G. Indeed, if the game G does not have any Nash equilibrium, then none of the finitely
repeated games G(δ, T ) has (because of the last stage). We show in Example 2 that, even
if the game G does not have any Nash equilibrium, we can still have existence of VSPE in
the finitely repeated game with UC.

Example 2. Let G = (N, A, ϕ) be the game where A1 = {U, D}, A2 = {L, M, R}, and
whose payoffs are defined in Figure 3.

L M R
U 10,10 0,1 1,0
D 11,0 1,1 0,2

Figure 3: A game without Nash equilibria

The game G does not have a Nash equilibrium. Moreover, v = (1, 2). Now, for each
T ∈ N and each δ ∈ (0, 1], the payoff (10, 10) can be supported by a VSPE of U(G(δ, T )) =
(N, SU , ϕU ). To check this assertion, consider the strategy profile (S̄c, ᾱ) of U(G(δ, T ))
defined as follows: (i) S̄c

1 := “I play U in every stage”, (ii) S̄c
2 := “I never play R”, and

(iii) for each i ∈ {1, 2} and each Sc
i ∈ 2Si , ᾱ(S̄c

−i, S
c
i ) consists of playing, at each stage,

the unique Nash equilibrium of the corresponding one stage game. Then, (S̄c, ᾱ) is a VSPE
and ϕU (S̄c, ᾱ) = (10, 10).

Proposition 2 says that we can use the UC to make actions credible, even actions that
in the original game could be dominated. On the other hand, Example 2 shows that we
can use the UC to go further than that. Hence, some more research is needed to find new
sufficient conditions for the VSPE folk theorem. Now, we present a new theorem, a result
which, with the aid of Proposition 2, is straightforward.

Theorem 2. Let G = (N, A, ϕ) and let v be its minimax payoff vector. Let u ∈ F , u > v.
Then, for each ε > 0, there are δ0 ∈ (0, 1) and T0 ∈ N such that for each δ ∈ [δ0, 1] and
each T ≥ T0, the game U(U(G(δ, T ))) has a VSPE with payoff w such that ‖w − u‖ < ε.

Proof. Immediate from the combination of Theorem 1 and Proposition 2.

Theorem 2 implies that, when two stages of commitments are possible, any feasible and
individually rational payoff of the original game can be achieved as a VSPE of the repeated
game with UC. No assumption is needed for the original game, not even the existence of a
Nash equilibrium.

Next, we briefly discuss the impact of Theorem 2 within the delegation framework
discussed in the Introduction. First, from the point of view of our model with UC, the
game U(U(G(δ, T ))) can be difficult to motivate. It is true that we get a very strong result
for the set of equilibrium payoffs of this game, but the fact that we allow for commitments
on commitments might have unnatural features in some models. The point is that, when we
introduced UC, we emphasized the fact that they were unilateral, i.e., the commitments of
one player could not be conditional on the other players’ commitments; if we allow for two
stages of commitments, then we are indirectly allowing for commitments on commitments,
and hence, we achieve the same payoffs we could get with a cooperative model. On the other
hand, if we reassess the delegation situation corresponding with our UC model, and we do
it in a similar way to that in the Introduction, then we have the following interpretation
for the two stages of commitments. Consider a situation in which two firms are engaged
in a competitive situation. Initially, the players are the presidents, and hence, in the first
stage each president signs a contract with his principal in which the latter is committed not
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to play certain strategies and he will be paid proportionally to the payoff he finally gets.
Then, in a second stage, a similar contract is signed between each principal and his agent.
Finally, the agents play the original game but honoring the commitments. This situation
has some important differences with the one stage situation: (i) the commitments that the
president includes in the contract in the first stage can take into account the commitments
that the principal will make with the agent at stage two, i.e., the contract between each
president and his principal also commits the latter on the commitments he can sign with
his agent, (ii) in the second stage the principals, being consistent with the commitments
of their contract with the principals and in view of the commitments made by the rivals,
choose a new commitment for the agents, and (iii) finally, the agents have to play being
consistent with all the previous commitments. The hierarchical delegation model we have
just described is quite natural and it is not difficult to think of real life situations with these
sub-delegation structures. Hence, if such situations also correspond to some repeated game,
then Theorem 2 says that, regardless of the properties of the underlying stage game, the
“cooperative” (collusive) payoffs can be supported as a VSPE in the game with two stages
of commitments.

4 Final Remarks

Infinitely Repeated Games

Although we have not formally introduced the model with infinitely repeated games, all the
definitions can be immediately extended to encompass also this family of games; basically,
replacing T by ∞ in the definition of history and in the subsequent ones. Now, within
this new framework, Proposition 2 still carries over. Now, recall that the classic Nash folk
theorem for infinitely repeated games (see, for instance, Fudenberg and Maskin (1986))
states that, if the discount is close enough to 1, every feasible and individually rational
payoff can be approximated as a Nash equilibrium of the infinitely repeated game. Hence,
if we combine this classic result with Proposition 2 we get the following Corollary:

Corollary 1. Let G = (N, A, ϕ) and let v be its minimax payoff vector. Let u ∈ F , u > v.
Then, for each ε > 0, there is δ0 ∈ (0, 1) such that for each δ ∈ [δ0, 1] the game U(G(δ,∞))
has a VSPE with payoff w such that ‖w − u‖ < ε.

Proof. It is immediate from the combination of Proposition 2 with the classic Nash folk
theorem for infinitely repeated games.

The State of Art

Table 1 summarizes the results we have proved in this paper along with the classic folk
theorems for repeated games with complete information. In particular, it shows the strength
of Proposition 2, that allows to obtain many folk theorems for repeated games with UC
as immediate corollaries of the classic ones. Hence, by looking at Table 1, one easily
understands the strength of UC within this framework. Note that all the cells in the Table
contain necessary and sufficient conditions, all of them but the one corresponding with
the virtual subgame perfect folk theorem for finitely repeated games with UC; some more
research is still needed concerning this case.

Conclusions

In this paper we have deepened in the literature of commitments. More specifically, we have
studied the impact of UC in the folk theorems for repeated games.
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Without UC 1 stage of UC
2 stages
of UC

Nash Theorem None None None
Infinite Horizon (Fudenberg and Maskin, 1986) (Prop. 2) (Prop. 2)

(Virtual) Perfect Th. Non-Equivalent Utilities None None
Infinite Horizon (Abreu et al., 1994) (Cor. 1) (Prop. 2)

Nash Theorem Minimax-Bettering Ladder None None
Finite Horizon (González-Dı́az, 2006) (Garćıa-Jurado et al., 2000) (Prop. 2)

(Virtual) Perfect Th. Recursively-distinct Minimax-Bettering Ladder None
Finite Horizon Nash payoffs (Smith, 1995) (Prop. 2, only sufficient) (Th. 2)

Table 1: Necessary and Sufficient conditions for the folk theorems

We want to emphasize again the following fact. Because of the way we have modeled
UC, it could seem that they are very far from the more standard models of commitment via
delegation. But, as we pointed out in the Introduction and in the discussion of Theorem 2,
UC can be used to model situations in which there is a principal who signs a contract with
his agent with three features: (i) The agent has committed not play certain strategies, (ii)
among the remaining ones his payoff is proportional to that of the principal, i.e., the agent
can be thought of as a shareholder of the firm, and (iii) contracts are enforceable (everything
is verifiable).

Moreover, we have shown that UC have very strong implications within the literature
of repeated games with complete information. They lead to new folk theorems in which the
assumptions needed for the classic results have been notably relaxed. Although we have
presented our main results for pure strategies, we have also shown that everything can be
extended to models with mixed strategies (without assuming observability of mixed actions).
Moreover, as we pointed out in the remarks of Theorem 1, we can present exact folk theorems
(as opposed to approximated) just replacing the set feasible set F with {ϕ(a) : a ∈ A}.

Finally, there are several open questions that should be tackled in the future. One of
them is to refine the conditions for the finite horizon perfect folk theorem with UC. There
is another important issue where some research is needed: the impact of UC in repeated
games with incomplete information.
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