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Abstract

The main goal of this paper is to understand the reasons driving the coincidence of

different allocation rules for different classes of games. We define a new symmetry property,

reverse symmetry, and study its geometric and game theoretic implications. In particular,

we show that most classic allocation rules satisfy it. Then, we introduce and study a

notion of orthogonality between TU-games, which allows to establish a restricted additivity

property for the nucleolus. Also, in our analysis we identify different classes of games for

which all allocation rules satisfying some sets of basic properties coincide. These properties

are satisfied, among others, by the Shapley value and the nucleolus.
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1 Introduction

An important goal of cooperative game theory is to improve the understanding of the different
allocation rules and, in particular, the similarities and differences among them. Within this line
of research it is common to look for classes of games in which various allocation rules coincide.

Over the last few years, this topic has become quite active and several coincidence results
have been obtained, mainly for the Shapley value and the (pre)nucleolus, as in Kar et al. (2009)
and Chang and Tseng (2011). Part of this literature has been motivated by the study, from
a game theoretical perspective, of different operations research problems such as graph related
problems (Deng and Papadimitriou, 1994), telecommunication problems (van den Nouweland
et al., 1996), and queueing problems (Chun and Hokari, 2007; Maniquet, 2003). This research
has led to classes of cooperative games with a special structure; sometimes sufficient to get the
aforementioned coincidence results. It is worth noting that these coincidence results have also
been pursued in the power indices literature (see, for instance, Dragan (1996)).
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The main contribution of this paper is not so much to provide new classes of games where
different allocation rules coincide, but to uncover the driving factors for some already existing
classes. We follow an approach similar to that in Shapley (1971) and Maschler et al. (1979),
studying the geometric implications of different properties and how different solution concepts
behave with respect to them.

The analysis in the first part of the paper builds upon the geometric implications of different
symmetry properties. The main contribution here is not so much about the new results we get,
but to show how these geometric insights can be used to get simple proofs and generalizations of
existing results. We start with a brief overview of the implications of the classic symmetry and
then introduce the notion of reverse symmetry. Roughly speaking, a game is reverse symmetric
if, given an ordering of the players, the vectors of contributions associated with this ordering
and with the reverse one cancel out. An allocation rule satisfies reverse symmetry if all players
get the same in reverse symmetric games. We show that most classic allocation rules are reverse
symmetric. Moreover, we prove that PS-games (Kar et al., 2009), a class of games where
the prenucleolus and the Shapley value coincide, can be generated by translations of reverse
symmetric games. These games encompass several classes of games associated with operations
research problems mentioned above, such as 2-games and queueing games (Chun and Hokari,
2007; Maniquet, 2003; van den Nouweland et al., 1996). Then, we show that there is a unique
allocation rule satisfying efficiency, translation covariance, and reverse symmetry in the class of
PS-games. This delivers the coincidence of Shapley value, prenucleolus, nucleolus, core-center,
and τ value for PS-games, extending the results in Kar et al. (2009). Maybe more importantly,
we uncover the reason for this coincidence result: the underlying geometric symmetry of the
relevant set-valued solutions: core, Weber set, and core cover. Since the classic symmetry and
reverse symmetry are not logically related, we present another symmetry property, squareness,
which is a strengthening of both and that, combined with translation covariance and efficiency,
leads to a new characterization for the Shapley value.

Chang and Tseng (2011) derive a class of simple games where the Shapley value and the
nucleolus coincide and use these games as “generators” to construct two larger classes of games
with the coincidence property: those with the classic symmetry property and another one very
related to the class of PS-games, which, as we show in this paper, are also fairly symmetric.

In the second part of the paper we introduce the notion of orthogonality of TU-games and use
it to define a restricted version of the additivity property (Shapley, 1953), which is not satisfied
by many allocation rules beyond the Shapley value.1 We provide a definition of orthogonality
between TU-games that, ultimately, requires that there is at most one player who is not dummy
in any of the two games. Then, we require allocation rules to be additive with respect to (weakly)
orthogonal games. We call this property orthogonal additivity and show that it is satisfied, for
instance, by the prenucleolus and the nucleolus. Finally, we build upon this property to obtain
a new class of games where various allocation rules coincide. Again, this result can be better
understood by looking at the geometric implications of orthogonality: to some extent, the cores
(and Weber sets) associated to orthogonal games are orthogonal to each other.

One of our main results, the orthogonal additivity of prenucleolus and nucleolus, is an impor-
tant result on its own. The behavior of these two allocation rules with respect to additivity has
already been studied before. Kohlberg (1971) showed that the set of TU-games is a union of a
finite number of closed and convex cones, on each of which the nucleolus is a linear function. In
this sense, the orthogonal additivity we establish for the nucleolus implies that, in the presence
of (weak) orthogonality, the above linearity may also be preserved across cones.

Finally, we would like to emphasize that, although the formal analysis on symmetry and

1For a couple of exceptions see van den Brink (2007), where the author obtains characterizations of the
equal division and equal surplus division solutions in which, essentially, the null player property in Shapley’s
characterization is replaced with a nullifying player property (and translation covariance for equal surplus).
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orthogonality are independent of each other, both use geometric tools to get a better under-
standing of the the coincidence of allocation rules. Yet, there is another important connection
that lies in the so called tent game. The tent game is a 4-player game for which several allocation
rules coincide, and this paper started as an attempt to understand why. The last result of the
paper, Proposition 9, combines insights from symmetry and orthogonality properties to uncover
the reasons for such a coincidence.

The paper is structured as follows. In Section 2 we present the basic notations. In Section 3
we devote our analysis to the study of symmetry properties. In Section 4 we define the notion
of orthogonality of TU-games and discuss its geometric and game theoretic implications.

2 Basic notations and definitions

In this paper we cover a wide range of set-valued solutions, allocation rules, and properties, as
well as several classes of games. In order to facilitate the flow in the rest of the paper, we define
now most of the standard concepts, trying to be as concise as possible.2

A transferable utility or TU-game is a pair (N, v), where N = {1, . . . , n} is a set of players
and v : 2N → R is a function assigning, to each coalition S ⊆ N , a payoff v(S).3 By convention,
v(∅) = 0. Throughout the paper we restrict attention to games where v(N) ≥ ∑

i∈N v(i). When
no confusion arises we use i to denote {i} (e.g., v(i), v(S ∪ i), N\i,. . . ). Let Gn be the set of all
n-player TU-games. For the sake of exposition, hereafter we assume that the set N is fixed and
we use v as a shorthand for (N, v). Given S ⊆ N , let |S| be the number of players in S.

Two players i and j are symmetric if, for each S ⊆ N\{i, j}, v(S ∪ i) = v(S ∪ j). The
contribution of a player i to a coalition S ⊆ N\i is defined by ∆i(v, S) := v(S∪i)−v(S). A player
i is a null player if, for each S ⊆ N\i, ∆i(v, S) = 0. A player i is a dummy player if, for each
S ⊆ N\i, ∆i(v, S) = v(i); let D(v) denote the set of dummy players of game v. Let Π(N) denote
the set of all permutations of the elements in N and, for each π ∈ Π(N), let Pπ(i) denote the
set of predecessors of i under the ordering given by π, i.e., j ∈ Pπ(i) if and only if π(j) < π(i).
Moreover, −π represents the reverse ordering to the one given by π. Given a game v and
π ∈ Π(N), the vector of contributions associated with π, mπ(v) ∈ R

N , is defined, for each i ∈ N ,
by mπ

i (v) := ∆i(v, P
π(i)). The utopia and minimum right vectors, M(v) and M(v) are defined,

for each i ∈ N , by M i(v) := v(N)− v(N\i) and M i(v) := maxS⊆N,i∈S{v(S)−
∑

j∈S\i M j(v)},
respectively (Tijs and Lipperts, 1982).

Classes of TU-games

A game is symmetric if all players are symmetric to each other. A game v is convex if, for each
i ∈ N and each S and T such that S ⊆ T ⊆ N\i, ∆i(v, S) ≤ ∆i(v, T ). A game v is monotonic
if, for each pair S, T,⊆ N with S ⊆ T , v(S) ≤ v(T ). A game v is zero-normalized if, for each
i ∈ N , v(i) = 0. Given a game v, its zero-normalization v0 is defined, for each S ⊆ N , by
v0(S) = v(S)−∑

i∈S v(i). A game v is zero-monotonic if its zero-normalization is a monotonic
game. Given S ⊆ N , S 6= ∅, the unanimity game of coalition S, uS , is defined as follows: for
each T ⊆ N , uS(T ) := 1 if S ⊆ T and vS(T ) := 0 otherwise. A game v ∈ Gn is additive if, for
each player i ∈ N and each coalition S ⊆ N\i, v(S) + v(i) = v(S ∪ i); in particular, for each
S ⊆ N , v(S) =

∑

i∈S v(i).

2Some references on the topic are Peters (2008) and González-Dı́az et al. (2010).
3We use ⊂ for strict set inclusions and ⊆ for weak set inclusions.
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Allocations, sets of allocations, and allocation rules

Given x ∈ R
n and S ⊆ N , x(S) :=

∑

i∈S xi. A (feasible) allocation is a vector x ∈ R
n such that

x(N) ≤ v(N). An allocation rule defined on some domain Ω ⊆ Gn is a function that, for each
game v ∈ Ω, selects an allocation.

An allocation x is efficient if x(N) = v(N); x is individually rational if, for each i ∈ N ,
xi ≥ v(i); x is coalitionally rational if for each S ⊂ N , x(S) ≥ v(S).

The set of preimputations is the set of all efficient allocations. The set of imputations is the
set of all efficient and individually rational allocations. The core is the set of all efficient and
coalitionally rational allocations (Gillies, 1953). The Weber set is the convex hull of the set of
vectors of contributions (Weber, 1988). The core cover is the set of all efficient allocations in
which every player receives at least his minimum right and at most his utopia payoff (Tijs and
Lipperts, 1982).

Given an allocation x and a coalition S ⊆ N , the excess of S with respect to x is e(S, x) :=
v(S) − x(S). The vector of ordered excesses θ(x) is constructed by arranging the excesses
corresponding to the coalitions in 2N\{∅, N} in non-increasing order. We use ≺L and �L to
compare vectors with respect to the lexicographic ordering. The prenucleolus, PNu(v), is the
unique allocation in the set {x : x is a preimputation and, for each preimputation y, θ(x) �L

θ(y)} (Maschler et al., 1979). The nucleolus, Nu(v), is the unique allocation in the set {x : x is
an imputation and, for each imputation y, θ(x) �L θ(y)} (Schmeidler, 1969).

The Shapley value, Sh(v), is the average of the n! vectors of contributions (Shapley, 1953).
The τ value of a game with a nonempty core cover, τ(v), is the unique efficient point on the line
segment joining M(v) and M(v) (Tijs, 1981). The core-center of a game with a nonempty core,
corecenter(v), is the center of gravity of the core (González-Dı́az and Sánchez-Rodŕıguez, 2007).
The equal division and the equal surplus division solutions, ED(v) and ESD(v), assign, to each
i ∈ N , EDi(v) := v(N)/n and ESDi(v) := v(i) +

(

v(N) −∑

j∈N v(j)
)

/n, respectively (see, for
instance, van den Brink (2007)).

Properties

Let ϕ be an allocation rule: ϕ is efficient, eff, if it always selects efficient allocations; ϕ is
individually rational, ir, if it always selects individually rational allocations; ϕ satisfies additivity,
add, if for each two games (N, v) and (N,w), ϕ(v + w) = ϕ(v) + ϕ(w); ϕ satisfies translation
covariance, tc, if for each two games (N, v) and (N,w), and each α = (α1, . . . , αn) ∈ R

n such
that for each S ⊆ N , w(S) = v(S)+

∑

i∈S αi, then ϕ(N,w) = ϕ(N, v)+α; ϕ is symmetric, sym,
if for each pair {i, j} of symmetric players, ϕi(v) = ϕj(v); ϕ is weakly symmetric, wsym, if for
each symmetric game and each pair {i, j} of players, ϕi(v) = ϕj(v); ϕ satisfies the null player
property, npp, if for each null player i, ϕi(N, v) = 0; ϕ satisfies the dummy player property,
dpp, if for each dummy player i, ϕi(N, v) = v(i). In Table 1 we present a summary of how
the different allocation rules that we discuss in this paper behave with respect to the standard
properties.

3 Symmetry properties and geometric implications

3.1 Classic symmetry

We start by discussing some straightforward implications of the classic definition of symmetry,
probably familiar to most of the readers. Yet, it is convenient to undergo this discussion to
facilitate the contextualization of the new symmetry property that we introduce in Section 3.2.
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eff ir add tc sym wsym npp dpp

Prenucleolus X X
* X X X X X

*
X

*

Nucleolus X X X X X X X X

Shapley value X X* X X X X X X

τ value X X X X X X X X

Core-center X X X X X X X X

Equal division X X X X X X X X

Equal surplus division X X
*

X X X X X X
* This property holds if we restrict attention to zero-monotonic games; which ensures that the imputa-

tions set is nonempty and, further, that the prenucleolus and the nucleolus coincide.

Table 1: Allocation rules and properties.

Lemma 1. In the class of symmetric games, any allocation rule satisfying eff and wsym

coincides with the equal division solution.

Next, we look at symmetry properties from the geometric point of view. First, we define a
pair of standard symmetry notions for sets. Let A ⊆ R

n. The set A has reflection symmetry
with respect to hyperplane H if, for each x ∈ A, the mirror image of x with respect to H belongs
to A.The set A has inversion or point symmetry if there is y ∈ R

n such that, for each x ∈ A, the
mirror image of x with respect to y belongs to A. Formally, x ∈ A if and only if −x+ 2y ∈ A.

1 2

3
Imp. Set

Core

(a) A game with two players that are symmetric.

1 2

3
Imp. Set

Core

(b) A symmetric game.

Figure 1: Geometric implications of symmetries.

Given two players i and j, we define the hyperplane Hij := {x ∈ R
n : xi = xj}. In general, if

i and j are symmetric in a given game, most classic sets of allocations are reflection symmetric
with respect to Hij . Figure 1(a) represents the imputations set and core of a game in which
players 2 and 3 are symmetric, leading to a core symmetric with respect to hyperplane H23.4

Lemma 2. Let v ∈ Gn. If players i and j are symmetric then, the core, the Weber set, and the
core cover are reflection symmetric with respect to hyperplane Hij.

Given a symmetric game, Lemma 2 implies that the equal division solution is the center of
gravity of the core, the Weber set, and the core cover. From the geometric point of view, one can
go a bit beyond symmetric games and still preserve symmetric sets. When taking a translation
of a given game, the above sets are translated in the same way. Since reflection symmetries
are preserved by translations, the respective centers of gravity also coincide for games that are
translations of symmetric games. This is summarized in the following well known result.

4Although throughout the paper we use the core to illustrate and motivate our analysis, in most of the figures
we could have also used the Weber set or the core cover.
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Lemma 3. Let v ∈ Gn be the translation of a symmetric game. Then, any allocation rule
satisfying eff, wsym, and tc coincides with the equal surplus division solution.

3.2 Reverse symmetry

In this section we define a symmetry property that delivers new coincidence results and, in
particular, allows to get a better understanding of some already existing ones. The main con-
tribution lies in the tool, reverse symmetry, that was not identified by previous works and that
allows to get cleaner intuitions and very simple proofs of the coincidence results.

Definition 1. A game v ∈ Gn is reverse symmetric if there is k ∈ R such that, for each
π ∈ Π(N), mπ +m−π = (k, . . . , k).

In a reverse symmetric game, for each player and each ordering in which his contribution is
“good” with respect to utility level k, there is another ordering (the reverse one) in which his
contribution is as “bad” as “good” was before. That is, there is a symmetry across players in
the sense that their contributions across orderings even up. Thus, it is sensible to consider the
following property for allocation rules.

Definition 2. An allocation rule satisfies reverse symmetry, rsym, if all players get the same
in reverse symmetric games.

The combination of eff and rsym implies that all players get v(N)/n in an reverse symmetric
game. We show below that, with the exception of the equal surplus division solution, all the
allocation rules under study satisfy reverse symmetry. First, we study the geometric implications
of this property. In Figure 2 we show the imputations set and the core of two reverse symmetric
games. Clearly, both cores have a symmetric structure, but they exhibit no reflection symmetry
with respect to the Hij hyperplanes. Instead, both of them are inversion symmetric. We define
now a strengthening of the reverse symmetry property that is helpful for the ensuing analysis.

1 2

3
Imp. Set

Core

(a) A reverse symmetric game with 3 players.

1

2

3

4

Imp. Set

Core

(b) A reverse symmetric game with 4 players.

Figure 2: Two reverse symmetric games.

Definition 3. A game v ∈ Gn is strongly reverse symmetric if, for each π ∈ Π(N), mπ+m−π =
0, i.e., mπ = −m−π.

Note that we can transform an reverse symmetric in a strongly reverse symmetric game via
the translation with vector (−k/2, . . . ,−k/2).

Lemma 4. If v ∈ Gn is a strongly reverse symmetric game, then v(N) = 0. Moreover, for each
S ⊂ N , v(S) = v(N\S).
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Proof. Let π ∈ Π(N). Then, v(N) = mπ(N) and, further, 2v(N) = mπ(N) + m−π(N) = 0.
Therefore, v(N) = 0. Now, let S ⊂ N and let π ∈ Π(N) be an ordering in which the players in
S go first (and then, in −π, the players in N\S go first). Therefore, we have v(S) = mπ(S) and
v(N\S) = m−π(N\S). Now, we get that v(S) = v(N\S), since

0 = v(N) = mπ(N) = mπ(S) +mπ(N\S) = v(S)−m−π(N\S) = v(S)− v(N\S).

Proposition 1. If v ∈ Gn is a strongly reverse symmetric game, then the core and the Weber
set are inversion symmetric with respect to the allocation (0, . . . , 0). If, moreover, v is zero-
monotonic, also the core cover is inversion symmetric with respect to (0, . . . , 0).

Proof. A set is inversion symmetric with respect to the origin if, for each element x in the set,
also −x belongs to the set. By Lemma 4, for each S ⊂ N , v(S) = v(N\S) and v(N) = 0.

For the Weber set note that this set is the convex hull of the vectors of contributions and,
for each such vector, say mπ, m−π = −mπ. Let x ∈ C(v) and suppose −x /∈ C(v). By
efficiency, x(N) = v(N) = 0 and so −x(N) = 0 = v(N). Then, there is S ⊂ N such that
v(S) > −x(S). Hence, v(N\S) = v(S) > −x(S) = −(v(N) − x(N\S)) = x(N\S), which
contradicts that x ∈ C(v). Suppose now that v is zero-monotonic and so we have that, for each
S ⊆ T , v(S) +

∑

j∈T\S v(j) ≤ v(T ). Let i ∈ N . Then, 0 = v(N) ≥ v(i) + v(N\i) = 2v(i), so

v(i) ≤ 0. Also, M i = v(N)− v(N\i) = 0− v(i) = −v(i) ≥ 0. Finally,

M i = max
S⊆N,i∈S

{v(S)−
∑

j∈S\i

M j(v)} = max
S⊆N,i∈S

{v(N\S) +
∑

j∈S\i

v(j)}.

By zero-monotonicity, for each S ⊂ N with i ∈ S, v(N\S) + ∑

j∈S\i v(j) ≤ v(N\i). Thus,

the above maximum is attained when S = {i} and takes the value v(N\i) = v(i). Therefore,
M = −(v(1), . . . , v(n)) and M = (v(1), . . . , v(n)), from which it is straightforward to check that
the core cover is inversion symmetric with respect to (0, . . . , 0).

Proposition 2. Let v ∈ Gn be a strongly reverse symmetric game. Then, the Shapley value, the
prenucleolus, the nucleolus, the core-center, and the equal division solution select the allocation
(0, . . . , 0).5If, moreover, v is zero-monotonic, also the τ value selects (0, . . . , 0).

Proof. The Shapley value is the average of the vectors of contributions. For each ordering π,
since v is reverse symmetric, mπ +m−π = 0, so the average across all orderings is (0, . . . , 0).

By Lemma 4, for each S ⊂ N , v(S) = v(N\S). Let x be an efficient allocation and let S ⊂ N .
Then, x(S) = v(N) − x(N\S) = −x(N\S) and, hence, e(S, x) = v(S) − x(S) = v(N\S) +
x(N\S) = e(N\S,−x). Therefore, θ(x) = θ(−x). In particular, θ(PNu(v)) = θ(−PNu(v)); but
the prenucleolus is the unique allocation minimal with respect to the ordering �L, so PNu(v) =
−PNu(v) = (0, . . . , 0). The argument for the nucleolus is analogous.

The core-center is the center of gravity of the core, which we have shown is (0, . . . , 0). By
definition, the equal division solution also delivers (0, . . . , 0). If the game is zero-monotonic,
the τ value is the unique efficient allocation in the line joining M = (v(1), . . . , v(n)) and M =
−(v(1), . . . , v(n)), i.e., (0, . . . , 0).

Corollary 1. The Shapley value, the prenucleolus, the nucleolus, the core-center, and the equal
division solution satisfy rsym. Moreover, the τ value satisfies rsym for zero-monotonic games.

5The statement for the core-center only applies to games where the core is nonempty. Since v is strongly
reverse symmetric, nonemptyness of the core is equivalent to require that, for each S ⊂ N , v(S) ≤ 0.
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Proof. The result is trivially true for the equal division solution. Now, recall that an reverse
symmetric game with respect to constant k can be transformed into a strongly reverse symmetric
game using the translation with respect to the vector (−k/2, . . . ,−k/2). Hence, since all the
allocation rules apart from equal division satisfy tc, the result follows from Proposition 2.

sym wsym rsym

Prenucleolus X X X

Nucleolus X X X

Shapley Value X X X

τ value X X X
*

Core-center X X X

Equal division X X X

Equal surplus division X X X

* This property holds for zero-monotonic games.

Table 2: Allocation rules and symmetry properties.

Table 2 summarizes the behavior of the allocation rules we are considering in this paper
with respect to the different symmetry properties. The example below illustrates that the equal
surplus division solution does not satisfy rsym and that zero-monotonicity is needed for the τ
value.

Example 1. Let v ∈ G3 be the reverse symmetric game defined by v(N) = v(3) = v(12) = 0,
v(1) = v(23) = −1, v(2) = v(13) = −2. This game is not zero-monotonic. The utopia vector
is M = (1, 2, 0) and the minimum rights vector is M = (−1,−1, 0). The τ value is τ(v) =
(−0.2, 0.2, 0). The equal surplus division solution is ESD(v) = (0,−1, 1). It is worth noting
that, for three player games, the core and the core cover coincide (Tijs and Lipperts, 1982) and,
therefore, although the core of v, and so the core cover as well, is inversion symmetric with
respect to (0, . . . , 0), the τ value is not selecting this allocation, the center of symmetry. ✸

Example 2. Zero-monotonicity is not enough to recover rsym for the equal surplus division
solution. Let v ∈ G3 be the game defined by v(N) = v(3) = v(12) = 0, v(1) = v(2) = v(23) =
v(13) = −3. This game is reverse symmetric and zero-monotonic and ESD(v) = (−1,−1, 2). ✸

As we did with the classic symmetry, we present a result that combines rsym with eff and
tc to get a class of games in which most allocation rules coincide. The proof is straightforward.

Proposition 3. Let v ∈ Gn be the translation of a reverse symmetric game. Then, all the
allocation rules satisfying eff, rsym, and tc select the same allocation.

Note that, with respect to Proposition 2, this result only leaves out the equal division solution,
which does not satisfy tc. It is now natural to wonder how large the above class of games is.
What we show below is that it coincides exactly with the class of PS-games.

Definition 4. A game v ∈ Gn is a PS-game if there is c ∈ R
n such that, for each i ∈ N and

each S ⊆ N\i, we have that ∆i(v, S) + ∆i(v,N\(S ∪ i)) = ci.

These games were introduced in Kar et al. (2009) as an example of a class of games where
Shapley value and prenucleolus coincide. They showed they encompass, for instance, the queue-
ing games defined in Maniquet (2003) and those in Chun (2006); the coincidence of different
allocation rules for the latter had already been studied in Chun and Hokari (2007).
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Proposition 4. A game v ∈ Gn is a PS-game if and only if it is the translation of a reverse
symmetric game.

Proof. First of all note that a game is the translation of a reverse symmetric game if and only
if there is c ∈ R

n such that, for each π ∈ Π(N), mπ +m−π = c.

“⇒” Let v be a PS-game. By definition, there is c ∈ R
n such that, for each i ∈ N and each

S ⊆ N\i, ∆i(v, S) + ∆i(v,N\(S ∪ i)) = ci. Now, let π ∈ Π(N) and i ∈ N . Then,

mπ
i (v) = ∆i(v, P

π(i)) = −∆i(v,N\(Pπ(i) ∪ i)) + ci = −∆i(v, P
−π(i)) + ci = −m−π

i (v) + ci,

so mπ
i (v) +m−π

i (v) = ci and v is the translation of a reverse symmetric game.

“⇐” Let v be the translation of a reverse symmetric game. Let i ∈ N and S ⊆ N\i. Let
π ∈ Π(N) be an ordering in which Pπ(i) = S. Then,

∆i(v, S) = ∆i(v, P
π(i)) = mπ

i (v) = −m−π
i (v) + ci =

= −∆i(v, P
−π(i)) + ci = −∆i(v,N\(S ∪ i)) + ci,

so ∆i(v, S) + ∆i(v,N\(S ∪ i)) = ci and v is a PS-game.

Corollary 2. Let v ∈ Gn be a PS-game. Then, all the allocation rules satisfying eff, rsym,
and tc select the same allocation.

Proof. Immediate from the combination of Propositions 3 and 4.

In view of the last two results, Proposition 3 can be seen as an extension of the coincidence
result for the Shapley value and the prenucleolus in Kar et al. (2009). Maybe more importantly,
our approach has uncovered the elements driving the coincidence of the different allocation rules
for the games in this class: PS-games are translations of reverse symmetric games.

3.3 Beyond symmetry and reverse symmetry: squareness

So far we have presented two classes of games where most classic allocation rules coincide. Both
build upon symmetry properties but there is no logical relation between them. We introduce
now another symmetry property that implies both wsym and rsym and study its implications.
Let v ∈ Gn. A player i ∈ N is an average player if his average contribution is v(N)/n, i.e.,
∑

π∈Π(N) m
π
i /n! = v(N)/n. A game v ∈ Gn is square if all the players are average players. Since

in a square game all the players are average players or, put differently, their contributions even
up, it seems natural to consider the following property: An allocation rule satisfies squareness,
sq, if all players get the same in square games.

Example 3. Consider the game v given by v(1) = 3.5, v(2) = 1.5, v(3) = 0, v(12) = 6,
v(13) = 7.5, v(23) = 9.5, and v(N) = 15. Table 3 shows the vectors of contributions of v and
their sum, which is equal across players and so v is a square game. ✸

It is easy to check that symmetric and reverse symmetric games are square games. Further,
as we show in the proof of Proposition 5 below, every game in Gn can be transformed in a
square game by using a translation. Then, since being square is a relatively mild requirement
on a game, one should expect sq to be a strong requirement on an allocation rule. Actually,
replacing rsym with sq in the properties of Proposition 4 and Corollary 2 has a dramatic effect.

Proposition 5. In Gn, the Shapley value is the unique allocation rule satisfying eff, tc, and
sq. Moreover, if n ≥ 3, each of the above properties is logically independent of the other two.

This version: September 11, 2013
9



Player

Order π 1 2 3 Eff.

123 3.5 2.5 9 15

132 3.5 7.5 4 15

213 4.5 1.5 9 15

231 5.5 1.5 8 15

312 7.5 7.5 0 15

321 5.5 9.5 0 15

Squareness 30 30 30 90

Table 3: Vectors of contributions in
the square game of Example 3.

Our Shapley’s

Characterization Characterization

Efficiency = Efficiency

Translation covariance ⇐ Null player + Additivity

Squareness 6⇔ Symmetry

Table 4: Characterizations’ comparison.

Proof. We already know that the Shapley value satisfies eff and tc and, since it gives each
player his average contribution, it trivially satisfies sq as well. We show now that every game
in Gn is one translation away from being square. Let v ∈ Gn and, for each i ∈ N , let m̄i :=
∑

π∈Π(N) m
π
i (v)/n!, that is, m̄ is the vector of average contributions. Now, let w be the game

obtained from v after translating using vector −m̄. Clearly, w is a square game. Hence, by sq

and eff, all players get w(N)/n in game w and, by tc, player i gets w(N)/n+ m̄i in game v.
Independence: If we drop eff, Sh(v) + (1, . . . , 1) satisfies tc and sq; if we drop tc, equal

division satisfies eff and sq; if we drop sq, the prenucleolus satisfies eff and tc.

In Table 4 we compare this new characterization with the classic one in Shapley (1953). On
the one hand, we replace add and dpp with the much weaker property of tc. On the other
hand, we include a symmetry requirement with a broader scope, sq instead of sym.

3.4 Dummy players and symmetry

To conclude this section we present a last class of “symmetric” games along with a couple of
straightforward results. We come back to this class of games when we discuss the motivation
and implications of the orthogonality notions defined in Section 4.

Definition 5. A game v ∈ Gn is dummy-symmetric if in its zero-normalization, v0, each pair
of players that are not dummy are symmetric.

An important subclass of dummy-symmetric games is the class of unanimity games. In the
unanimity game of coalition S, all the players in S are symmetric to each other and all the
players outside S are dummy players. The next two results are now straightforward.

Proposition 6. Let v ∈ Gn be a dummy-symmetric game. Then, all the allocation rules
satisfying eff, dpp, sym, and tc select the same allocation.

Corollary 3. The Shapley value, the nucleolus, the τ value, and the core-center coincide for
dummy symmetric games. If, moreover, the games are zero-monotonic, also the prenucleolus
coincides with them.

Geometrically, the Weber set, the core, and the core cover of dummy symmetric games
are as symmetric as they are for symmetric games. In general, these sets are full dimensional
in R

n−1 (not in R
n because of the efficiency constraint). However, when there are dummy

players, these sets become degenerate (a dummy player i always gets v(i)) and they look like
the corresponding sets in the game where the dummy players have been left out. Thus, there
are enough reflection symmetries to pin down the center of gravity of the set as the intersection
of the Hij hyperplanes.
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4 Orthogonality in TU-games

In this section we keep studying the coincidence of different allocation rules from a geometrical
point of view, but with a different angle. We introduce the notion of orthogonality of TU-
games and show that most allocation rules satisfy additivity with respect to orthogonal games.
We present below an example for which several allocation rules coincide. The reasons for this
become clear at the end of this section, where Proposition 9 builds upon both symmetry and
orthogonality notions to obtain a coincidence result that includes the tent game as a particular
case.

4.1 A motivating example: the tent game

Consider the game v ∈ G4 defined as the sum of the unanimity games u123 and u14. This game
has some symmetries (players 2 and 3 are symmetric) but does not fall into any of the categories
discussed in the previous section. Therefore, none of the coincidence results presented there
applies to this game. Although we know that most allocation rules coincide for the dummy
symmetric games u123 and u14, there is no result that tells whether or not they still coincide for
the game v = u123+u14. In this example we get that Sh(v) = PNu(v) = Nu(v) = corecenter(v) =
(5/6, 1/3, 1/3, 1/2), the sum of what these allocation rules would select for the two unanimity
games, but τ(v) = (4/5, 2/5, 2/5, 2/5). Then, even if we have lost the coincidence with the
τ value, there may be something special about game v. In Figure 3(a) we have depicted the
imputations set and the core of v. It resembles a tent and, therefore, we refer to this game as the
tent game from now onwards. Clearly, the core of v is fairly symmetric and, further, it somehow
looks like the Cartesian product of C(u123) (a triangle) and C(u12) (a segment); there seems to
be some orthogonality between the segments joining the two triangular faces of the core and the
two triangles. In the rest of this section we uncover what is so special about games like v.

1

2

3

4

Imp. Set

Core

(a) The game v = u123 + u14.

1

2

3

4

Imp. Set

Core

(b) The game v = u12 + u34.

1 2

3
Imp. Set

Core

(c) The game v = u12 + u13.

Figure 3: Sums of games that, under our definitions, are (weakly) orthogonal.

4.2 Orthogonality

A vector α ∈ R
n can be seen as an additive game in which the worth of each coalition S is

just α(S). Now, dpp implies that in an additive game each player i gets v(i) and, hence, the
combination of add and dpp implies tc. Similarly, an allocation rule that satisfies dpp and tc

satisfies additivity when one of the involved games is an additive game. This restricted version
of additivity is quite natural. One of the main criticisms to the standard additivity property is
that it does not allow for any kind of synergies or externalities when adding two games together.
However, additive games, where all the players are dummy players, generate no synergies when
being added to other games and so imposing additivity when these games are involved does not
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seem very restrictive. The idea of the orthogonality notion we define in this paper is to go one
step beyond additive games and identify other situations where it is natural to assume that the
two games being added generate no synergies to one another. The main contribution in this
section is to introduce an orthogonal additivity property that lies in between add and tc and
that is satisfied by most classic allocation rules.

It is natural to consider that two games v and w are orthogonal if, whenever a contribution
of a player in v is different from 0, the corresponding contribution in w is 0, i.e., for each
i ∈ N and each S ⊆ N\i, ∆i(v, S)∆i(w, S) = 0. This idea has very strong implications for the
relation between the dummy players of games v and w. We present now our general definition
of orthogonality and then elaborate on its connections with the products ∆i(v, S)∆i(w, S).

Definition 6. Two games v and w in Gn are orthogonal if |D(v)∪D(w)| = n. They are weakly
orthogonal if |D(v) ∪D(w)| ≥ n− 1.

The notion of weak orthogonality is crucial for our approach, since orthogonality is too
strong for the tent game. There we had the games u123 and u14, which are not orthogonal
because player 1 is not a dummy player in any of them. Actually, if a game is the sum of
orthogonal games, the core and the Weber set will be degenerate since they will lie in the
hyperplanes {x ∈ R

n : x(D(v)) = w(N)} and {x ∈ R
n : x(D(w)) = v(N)}. Figure 3(b) shows

the (degenerate) core of the sum of two orthogonal games: u12 and u34. The core is a rectangle,
the Cartesian product of the two segments corresponding with the cores of u12 and u34.

6 Weak
orthogonality can account for games that have a full dimensional Weber set or core.

Lemma 5. Let v and w be two zero-normalized convex games. Then, v and w are orthogonal
if and only if, for each i ∈ N and each S ⊆ N\i, ∆i(v, S)∆i(w, S) = 0. Similarly, v and w are
i-weakly orthogonal if for each j 6= i and each S ⊆ N\j, ∆j(v, S)∆j(w, S) = 0.

Proof. We only present the proof for orthogonal games, since the one for weakly orthogonal
games is analogous. “⇒” Straightforward.

“⇐” Let i /∈ D(v). Then, there is S ⊆ N\i such that ∆i(v, S) 6= 0. Suppose that i /∈ D(w).
Then, there is S′ ⊆ N\i such that ∆i(w, S

′) 6= 0. Then, by convexity, ∆i(v, S
′ ∪ S) 6= 0 and

∆i(w, S
′ ∪ S) 6= 0, which contradicts the orthogonality of v and w.

The above result implies that two convex games v and w are orthogonal if, for each i ∈ N
and each S ⊆ N\i, (∆i(v, S)−v(i)) (∆i(w, S)−w(i)) = 0. According to our discussion earlier in
this section, one can somewhat say that there is not much room for “synergies” when adding two
orthogonal games or even two weakly orthogonal games. This motivates the following definition.

Definition 7. An allocation rule ϕ satisfies orthogonal additivity, add⊥, if for each pair of
weakly orthogonal games v and w, ϕ(v + w) = ϕ(v) + ϕ(w).

Since the Shapley value, the equal division solution, and the equal surplus division solutions
satisfy additivity, they also satisfy add⊥. The rest of this section is devoted to study how other
allocation rules behave with respect to add⊥. Once these results are established, we will have
uncovered the reasons underlying the coincidence of the different allocation rules for the tent
game, since the games u123 and u14 are weakly orthogonal. The example below shows that the
τ value does not satisfy add⊥, not even for orthogonal convex games.

6It is worth noting that orthogonality is related to the notion of decomposability introduced in Shapley (1971).
Roughly speaking, a convex game is decomposable if and only if it is the sum of orthogonal games. Further, it
is not hard to check that two zero-normalized games that are weakly orthogonal are also disjoint in the sense of
van den Brink et al. (2006) and, therefore, orthogonal additivity will typically be weaker than disjoint additivity.
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Example 4. Let v and w be following two orthogonal zero-normalized convex games in G5.
In game v, D(v) = {4, 5}, v(12) = 4, v(13) = v(23) = 0, and v(123) = 12; in game w,
D(w) = {1, 2, 3} and w(45) = 4; the remaining coalitions are formed adding dummy players, so
the worth of each of them can be trivially computed. The corresponding τ values are τ(v) =
(4.5, 4.5, 3, 0, 0), τ(w) = (0, 0, 0, 2, 2), and τ(v + w) = (4.8, 4.8, 3.2, 1.6, 1.6) 6= τ(v) + τ(w). ✸

We present now some extra notations. Hereafter, given two weakly orthogonal games v and
w, we assume, without loss of generality, that N\1 ⊆ D(v) ∪ D(w), i.e., player 1 is the only
player that may not be dummy in any of the two games. Let Nv := N\D(v) and Nw :=
N\(D(w)\D(v)). So defined, given two weakly orthogonal games v and w, Nv ∪Nw = N and
Nv∩Nw ⊆ {1}. Given S ⊆ N , we define Sv := S∩Nv and Sw := S∩Nw. Since all the solution
concepts under consideration satisfy tc we often restrict to zero-normalized games. Suppose
that v and w are zero-normalized weakly orthogonal games and let z be an efficient allocation
in game v + w. Then, we associate with z one allocation for v and one allocation for w; zv and
zw respectively. They are defined as follows. For each i /∈ Nv, zvi := 0 and, for each i ∈ Nv,
i 6= 1, zvi := zi; z

v
1 := v(N)−zv(N\1). Similarly, for each i /∈ Nw, zwi := 0 and, for each i ∈ Nw,

i 6= 1, zwi := zi; z
w
1 := w(N) − zw(N\1). Clearly, the efficiency of z ensures that z = zv + zw.

Moreover, so defined, also zv and zw are efficient in v and w, respectively. Note that weak
orthogonality is crucial to be able to uniquely define the allocations zv and zw above, since we
can use efficiency to pin down the share of z1 between zv1 and zw1 .

4.3 Orthogonality: the core and the core-center

Since both the core and the core-center satisfy tc, throughout this section we assume, without
loss of generality, that the games under consideration are zero-normalized.

We show below that, in some sense, the orthogonality between two games translates into a
more geometrical orthogonality of their cores. Let v and w be two orthogonal games with a
nonempty core, let x1 and x2 be two allocations in C(v), and let y1 and y2 be two allocations in
C(w). Then, the vectors x1−x2 and y1−y2 are orthogonal to each other, i.e., (x1−x2)(y1−y2) =
0. To see this, let i ∈ N and recall that, since v and w are orthogonal, D(v) ∪ D(w) = N . If
i ∈ D(v), for each x ∈ C(v), xi = v(i) and, hence, x1

i − x2
i = 0 and (x1 − x2)i(y

1 − y2)i = 0. An
analogous argument applies if i ∈ D(w). Given a game v with a nonempty core, let Vol(C(v)) :=
∫

C(v)
dx denote the volume of C(v) (in the highest dimensional space in which it has a nonempty

interior).7 Then, the previous discussion leads to the following result for orthogonal games.

Lemma 6. Let v and w be two orthogonal games with a nonempty core. Then,

Vol(C(v + w)) = Vol(C(v)) ·Vol(C(w)).

Proof. Since C(v) and C(w) are orthogonal in the sense described above, we can find orthogonal
subspaces V and W of Rn such that C(v) ⊂ V and C(w) ⊂ W . Then, by Fubini’s theorem,

Vol(C(v+w)) =

∫

C(v+w)

dx =

∫

C(v)

∫

C(w)

dydz =

∫

C(v)

dy

∫

C(w)

dz = Vol(C(v))Vol(C(w)).

The above result suffices to show that the core-center is additive with respect to orthogonal
games. Proposition 7 below is a particular case of Proposition 8, which establishes the result
for weakly orthogonal games. Yet, we present a separate proof of this result because it helps to
illustrate that “full” orthogonality allows for simpler arguments.

7If the core is a singleton we define its (0-dimensional) volume to be 1.
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Proposition 7. Let v and w be two orthogonal games with a nonempty core. Then, we have
that corecenter(v + w) = corecenter(v) + corecenter(w).

Proof. By definition, the core-center of a game v is the expectation of the uniform distribution
defined over C(v). Then,

corecenter(v + w) =

∫

C(v+w)
xdx

Vol(C(v + w))
=

∫

C(v+w)
xvdx+

∫

C(v+w)
xwdx

Vol(C(v + w))
.

Then, by the orthogonality between C(v) and C(w),

∫

C(v+w)

xvdx =

∫

C(v)

xVol(C(w))dx and

∫

C(v+w)

xwdx =

∫

C(w)

xVol(C(v))dx,

and, therefore,

corecenter(v + w) =

∫

C(v)
xVol(C(w))dx+

∫

C(w)
xVol(C(v))dx

Vol(C(v + w))

=
Vol(C(v))Vol(C(w))

(

corecenter(v) + corecenter(w)
)

Vol(C(v + w))
Lem. 6
= corecenter(v) + corecenter(w).

However, some extra work is needed for weakly orthogonal games since Lemma 6 may not
hold anymore. Just consider the game v = u12 + u13, whose core is represented in Figure 3(c).
The core of u12 is the line joining (1, 0, 0) and (0, 1, 0) and the core of u13 is the line joining
(1, 0, 0) and (0, 0, 1). Both have length

√
2. Thus, Vol(C(v))Vol(C(w)) = 2. Yet, the area of

C(v+w) is not the product of the lengths of the two lines, but the product of the base and the
height of the rhomboid. In this case, this area coincides with half the area of the imputations
set, an equilateral triangle with edges of length 2

√
2. Hence, Vol(C(v + w)) =

√
3 < 2.

In general, given two games v and w with a nonempty core and given x ∈ C(v) and y ∈ C(w),
we have that x + y ∈ C(v + w), i.e., C(v) + C(w) ⊆ C(v + w).8 When working with weakly
orthogonal games the reverse inclusion also holds.

Lemma 7. Let v and w be two weakly orthogonal games with a nonempty core. Then,

C(v) + C(w) = C(v + w).

Proof. “⊆” (always true, no orthogonality needed) Let x ∈ C(v) and y ∈ C(w) and suppose
x+y /∈ C(v+w). Then, since x+y is efficient in v+w, there is S ⊂ N such that v(S)+w(S) >
x(S) + y(S) so, either v(S) > x(S) or w(S) > y(S) and we have a contradiction, since both x
and y are core elements of v and w, respectively.

“⊇” Let x ∈ C(v +w). We claim that xv ∈ C(v) and xw ∈ C(w), which, since x = xv + xw,
suffices to prove the result. Suppose that xv /∈ C(v). Then, there is S ⊂ Nv such that
v(S) > xv(S). We distinguish two cases.

1 /∈ S: Since S ⊂ Nv, (v + w)(S) = v(S) + w(S) = v(S) > xv(S) = x(S), which contradicts
that x ∈ C(v + w).

1 ∈ S: Now, (v+w)(S∪Nw) = v(S)+w(Nw) > xv(S)+w(Nw) = xv(S)+xw(Nw) = x(S∪Nw),
which again contradicts that x ∈ C(v + w).

8The operation A+B denotes the Minkowski sum of the sets A and B, i.e., A+B := {a+ b : a ∈ A, b ∈ B}.
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Therefore, xv ∈ C(v). The argument for xw is analogous.

The following lemma shows that an even stronger property holds: different allocations in
C(v) can never be combined with allocations in C(w) to get the same allocation in C(v + w);
that is, C(v + w) is the “direct sum” of C(v) and C(w). Put differently, each allocation in
C(v + w) can be uniquely decomposed as the sum of two allocations in C(v) and C(w).

Lemma 8. Let v and w be two weakly orthogonal games. If x1, x2 ∈ C(v) and y1, y2 ∈ C(w)
are such that x1 + y1 = x2 + y2, then x1 = x2 and y1 = y2.

Proof. Suppose x1 6= x2. Since x1(N) = x2(N) = v(N), there are i, j with i 6= j such that
x1
i 6= x2

i and x1
j 6= x2

j . Thus, we can assume, without loss of generality, that i 6= 1. Since

i) the core satisfies dpp, ii) both x1 and x2 belong to C(v), and iii) x1
i 6= x2

i , we have that
i /∈ D(v). Then, since i 6= 1, i ∈ D(w). Using again dpp, we have y1i = y2i = w(i). Therefore,
x1
i + y1i = x1

i + w(i) 6= x2
i + w(i) = x2

i + y2i , which contradicts that x1 + y1 = x2 + y2. Thus,
x1 = x2. The argument to show that y1 = y2 is analogous.

Proposition 8. Let v and w be two weakly orthogonal games with a nonempty core. Then,
corecenter(v + w) = corecenter(v) + corecenter(w).

Proof. Let i ∈ D(w). We show now that corecenter(v+w)i = corecenter(v)i +corecenter(w)i =
corecenter(v)i. By Lemma 8, if we let

⊔

denote the disjoint union of sets,

C(v + w) =
⊔

a∈C(v)

(a+ C(w)).

Roughly speaking, all the elements of C(v) are used the same number of times to form elements
of C(v + w). Since i ∈ D(w), for each y ∈ C(w), yi = 0. Hence, the expected value of the
i-th component of an allocation in C(v + w) coincides with the expected value of the same
component in C(v), i.e., corecenter(v + w)i = corecenter(v)i. Similarly, we can show that, for
each i ∈ D(v), corecenter(v + w)i = corecenter(v)i + corecenter(w)i = corecenter(w)i. If v and
w are orthogonal we are done, since D(v) ∪D(w) = N . If they are just weakly orthogonal, the
equality of the remaining coordinate is pin down by efficiency.

In the above proof, in some sense, the extra degree of freedom allowed under weak orthog-
onality is controlled by the efficiency constraint. If two games are weakly orthogonal, we use
orthogonality to pin down all payoffs but one, which is pin down by efficiency. This is also crucial
for the orthogonal additivity of the prenucleolus and the nucleolus, which we discuss below.

4.4 Orthogonality: the prenucleolus and the nucleolus

Theorem 1. Let v and w be two weakly orthogonal games in Gn such that at least one of them
has a nonempty core. Then, PNu(v + w) = PNu(v) + PNu(w).

As we argued in the Introduction, this result adds to the literature on the additivity of the
nucleolus. In this context, Kohlberg (1971, Theorem 3) showed the following. Suppose that
games v and w are such that the most “unhappy” coalitions according to Nu(v) and Nu(w)
coincide, the second most “unhappy” ones also coincide, and so on. Then, Nu(αv + βw) =
αNu(v)+βNu(w). Theorem 1 implies that linearity can also hold under conditions independent
from those in Kohlberg (1971). We need to go over some preliminaries to prove Theorem 1. Given
a game v, an efficient allocation x, and α ∈ R, let Dv(α, x) = {S ⊆ N\{∅} : ev(S, x) ≥ α}. A
side-payment is a vector y ∈ R

n such that y(N) = 0. Below we prove Theorem 1 building upon
the following version of Kohlberg’s criterion (Peters, 2008, Theorem 19.5).9

9This version is just the adaptation of the approach taken in Kohlberg (1971) for the nucleolus.
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Theorem 2. Let v ∈ Gn and let x be an efficient allocation. Then, the following two statements
are equivalent:

i) x = PNu(v).

ii) For each α ∈ R such that Dv(α, x) 6= ∅ and for each side-payment y with y(S) ≥ 0 for
every S ∈ Dv(α, x), we have y(S) = 0 for every S ∈ Dv(α, x).

Corollary 4. Let v ∈ Gn, i ∈ N and α = θv1(PNu(v)).

i) There is S ∈ Dv(α,PNu(v)) such that i ∈ S.

ii) Unless Dv(α,PNu(v)) = {N}, there is S ∈ Dv(α,PNu(v)) such that i /∈ S.

Proof. i) Suppose that there is i ∈ N such that, for each S ∈ Dv(α,PNu(v)), i /∈ S. Then, we
can violate condition ii) in Theorem 2 by defining a side-payment in which player i transfers
some (possibly very small) utility to the players in N\i.

ii) Suppose that Dv(α,PNu(v)) 6= {N} and that there is i ∈ N such that, for each S ∈
Dv(α,PNu(v)), i ∈ S. Let S ∈ Dv(α,PNu(v)), S 6= N . Let j ∈ N\S. Then, we we can violate
condition ii) in Theorem 2 by defining a side-payment in which player j transfers some (possibly
very small) utility to player i.

Proof of Theorem 1. Let v and w be two weakly orthogonal games. Since the prenucleolus
satisfies tc, npp and the reduced game property (Sobolev, 1975),10 we may assume with out
loss of generality that v and w are zero-normalized (all dummies are null players), and that
D(v) ∩D(w) = ∅, so v + w has no dummy players. For each efficient allocation x,

ev+w(S, x) = v(S) + w(S)− x(S) = v(S)− xv(S) + w(S)− xw(S) = ev(S, xv) + ew(S, xw),

but, clearly, ev(S, xv) = ev(Sv, xv) and ew(S, xw) = ew(Sw, xw). Hence,

ev+w(S, x) = ev(Sv, xv) + ew(Sw, xw).

In particular, the above implies that θv+w
1 (x) = maxS⊆N ev(Sv, xv) + maxS⊆N ew(Sw, xw).

Now, suppose that game v is the one with a nonempty core. Let x̄ = PNu(v + w) and
z̄ = PNu(v) + PNu(w), so z̄v = PNu(v) and z̄w = PNu(w). We divide the proof in several
claims. The first ones crucially exploit the nonemptyness of the core of v.

Claim 1: maxS⊆N ev(Sv, x̄v) ≤ 0. Suppose that maxS⊆N ev(Sv, x̄v) > 0. Let x̂ = z̄v +
x̄w. Since v has a nonempty core, the prenucleolus belongs to it and, thus, maxS⊆N ev(Sv, z̄v) =
ev(Nv, z̄v) = 0. Therefore, we get a contradiction with the fact that x̄ = PNu(v + w), since

θv+w
1 (x̄) = max

S⊆N
ev(Sv, x̄v) + max

S⊆N
ew(Sw, x̄w) > max

S⊆N
ev(Sv, z̄v) + max

S⊆N
ew(Sw, x̄w) = θv+w

1 (x̂).

Claim 2: x̄w = z̄w = PNu(w). Suppose, on the contrary, that x̄w 6= PNu(w). Then, we
can apply Theorem 2 to the restriction of the game w to the players in Nw. Thus, by negating
statement ii) in Theorem 2 we obtain: i) an excess α ∈ R, ii) a side-payment y ∈ R

n such that
y(S) ≥ 0 for all S ∈ Dw(α, x̄w) and yi = 0 for each i ∈ D(w), and iii) a coalition T ⊂ Nw,
T ∈ Dw(α, x̄w) such that y(T ) > 0. By Claim 1 we have that, for each S ∈ Dv+w(α, x̄),

α ≤ ev+w(S, x̄) = ev(Sv, x̄v) + ew(Sw, x̄w) ≤ ew(Sw, x̄w). (1)

Therefore, Sw ∈ Dw(α, x̄w). This implies that the side-payment y is such that, for each S ∈
Dv+w(α, x̄), y(S) ≥ 0. Now, we distinguish two cases:

10We could as well rely on the less standard strong null player property (see, for instance, Peleg and Sudhölter
(2003)).
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1 ∈ T . Let S = T ∪ Nv. Then, ev+w(S, x̄) = ev(Nv, x̄v) + ew(T, x̄w) = ew(T, x̄w) ≥ α. Thus,
S ∈ Dv+w(α, x̄) and we have y(S) = y(T ) +

∑

i∈Nv∩D(w) yi = y(T ) > 0.

1 /∈ T . Now, ev+w(T, x̄) = ev(∅, x̄v) + ew(T, x̄w) = ew(T, x̄w) ≥ α. Thus, T ∈ Dv+w(α, x̄) and
y(T ) > 0.

In both cases we can apply Theorem 2 to reach a contradiction with the fact that x̄ = PNu(v+w).

Claim 3: x̄v = z̄v = PNu(v). If the core of w is nonempty we can repeat the arguments
of Claim 2, interchanging the roles of v and w. Otherwise, let β = maxS⊆N ew(Sw, x̄w) =
θw1 (x̄

w) = θw1 (z̄
w) < 0. By Corollary 4, since x̄w = z̄w = PNu(w), there are R ⊂ Nw and

R̂ ⊂ Nw, with 1 ∈ R and 1 /∈ R̂, such that both R and R̂ belong to Dw(β, x̄w). The proof now
is analogous to that of Claim 2, with coalition R playing the role of Nv when 1 ∈ T , R̂ playing
the role of ∅ when 1 /∈ T , and with α+ β instead of just α in Eq. (1).

The combination of Claims 2 and 3 establishes that x̄ = z̄.

Corollary 5. Let v and w be two weakly orthogonal zero-monotonic games in Gn such that at
least one of them has a nonempty core. Then, Nu(v + w) = Nu(v) + Nu(w).

Proof. Follows immediately from Theorem 1 and the fact that the nucleolus and the prenucleolus
coincide for zero-monotonic games.

We present below an example that illustrates that the nonemptyness condition for the core
of one of the two games in Theorem 1 cannot be dropped.

Example 5. Let v and w be two orthogonal zero-normalized and zero-monotonic games in
G7 defined as follows. In game v, D(v) = {4, 5, 6, 7}, v(12) = v(13) = v(23) = 3, and
v(123) = 4; in game w, D(w) = {1, 2, 3} and w(46) = w(47) = w(56) = w(57) = 2, w(45) =
w(67) = w(456) = w(457) = w(467) = w(567) = 3, and w(4567) = 4; the remaining coali-
tions are formed adding dummy players, so the worth of each of them can be trivially com-
puted. The corresponding values for the prenucleolus and the nucleolus are PNu(v) = Nu(v) =
(4/3, 4/3, 4/3, 0, 0, 0, 0), PNu(w) = Nu(w) = (0, 0, 0, 1, 1, 1, 1), and PNu(v + w) = Nu(w + w) =
(3/2, 3/2, 3/2, 7/8, 7/8, 7/8, 7/8) 6= PNu(v) + PNu(w) = Nu(v) + Nu(w).

In game v + w in this example, according to the nucleolus and the prenucleolus, coalition
{1, 2, 3} gets 4.5 > 4 = v(123) and coalition {4, 5, 6, 7} gets 3.5 < 4 = w(4567). With respect to
the allocation Nu(v)+Nu(w), in order to minimize the vector of ordered excesses, the four players
in {4, 5, 6, 7} “transfer” some utility to the players in {1, 2, 3}; by doing so, since |{4, 5, 6, 7}| >
|{1, 2, 3}|, the coalitions containing players {1, 2, 3} are made “happier” than “unhappier” the
coalitions containing players {4, 5, 6, 7} which, in this example, suffices to improve the vector of
excesses according to the lexicographic order. ✸

The next example shows that zero-monotonicity cannot be dropped either to get the orthog-
onal additivity of the nucleolus: even if one of the two orthogonal games has a nonempty core,
the nucleolus may fail to satisfy add⊥ if the other one is not zero-monotonic.

Example 6. Let v and w be two zero-normalized orthogonal games in G5 defined as follows.
In game v, D(v) = {4, 5}, v(12) = v(13) = −10 v(23) = 10, and v(123) = 5; in game w,
which has a nonempty core, D(w) = {1, 2, 3} and w(45) = 20; the remaining coalitions are
formed adding dummy players, so the worth of each of them can be trivially computed. The
corresponding values for the nucleolus are Nu(v) = (0, 5/2, 5/2, 0, 0) and Nu(w) = (0, 0, 0, 10, 10).
We argue now that Nu(v) + Nu(w) = (0, 5/2, 5/2, 10, 10) cannot be the nucleolus of v + w. In
the vector θ(Nu(v) + Nu(w)), the largest excess is 5, and corresponds to coalitions {2, 3} and
{2, 3, 4, 5}. Therefore, we can get an imputation that dominates lexicographically Nu(v)+Nu(w)
by transferring some utility from coalition {4, 5} to coalition {2, 3}. ✸
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4.5 Orthogonal additivity and the coincidence of allocation rules

Table 5 summarizes the results for tc and add, along with our findings for add⊥. In the next
result, which is now straightforward, we use add⊥ to present a last coincidence result which
combines symmetry and orthogonality properties and, in particular, applies to the tent game.

tc add⊥ add

Prenucleolus X X
*

X

Nucleolus X X
*

X

Shapley Value X X X

τ value X X X

Core-center X X X

Equal division X X X

Equal surplus division X X X

* At least one of the two games must have a nonempty core

and, for the nucleolus, both must be zero-monotonic.

Table 5: Allocation rules and orthogonal additivity.

Proposition 9. Let v ∈ Gn and let i ∈ N . Suppose that v = v1 + . . . + vp, where the games
v1, . . . , vp are dummy symmetric and (pairwise) i-weakly orthogonal, with all of them having
a nonempty core. Then, the Shapley value, the prenucleolus, the nucleolus, and the corecenter
coincide for game v, and so does any allocation rule satisfying eff, sym, dpp, and add⊥.

Acknowledgements. We are grateful to Mikel Álvarez-Mozos, Gustavo Bergantiños, Juan Vidal, and two

anonymous referees for helpful comments. We acknowledge the financial support of the Spanish Ministry for

Science and Innovation through projects ECO2008-03484-C02-02, MTM2011-27731-C03, and from the Xunta de

Galicia through project INCITE09-207-064-PR.

References

van den Brink, R. 2007. Null or nullifying players- The difference between the Shapley value
and equal division solutions. Journal of Economic Theory 136 767–775.

van den Brink, R., G. van der Laan, V. Vasil’ev. 2006. Distributing Dividends in Games with
Ordered Players. Tech. Rep. Tinbergen Discussion Paper 06/114-1, Tinbergen Institute and
Free University, Amsterdam.

Chang, C., Y.-C. Tseng. 2011. On the coincidence property. Games and Economic Behavior 71
304–314.

Chun, Y. 2006. A pessimistic approach to the queueing problem. Mathematical Social Sciences
51 171–181.

Chun, Y., T. Hokari. 2007. On the coincidence of the Shapley value and the Nucleolus in
queueing problems. Seoul Journal of Economics 20 223–237.

Deng, X., C. Papadimitriou. 1994. On the complexity of cooperative solution concepts. Mathe-
matics of Operations Research 19 257–266.

This version: September 11, 2013
18



Dragan, I. 1996. On some relationships between the Shapley value and the Banzhaf value.
Libertas Matematica 16 31–42.

Gillies, D. B. 1953. Some Theorems on n-Person Games. Ph.D. thesis, Princeton.
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