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Julio González-D́ıaz†

Kellogg School of Management (CMS-EMS), Northwestern University
and

Research Group in Economic Analysis, University of Vigo

Estela Sánchez-Rodŕıguez
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Abstract: We follow the path initiated in Shapley (1971) and study the geometry of the core of convex

and strictly convex games. We define what we call face games and use them to study the combinatorial

complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our

results with the aid of Pascal’s triangle.
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1 Preliminaries

A cooperative n-player game with transferable utility, shortly, a TU game, is a pair (N, v),
where N is a finite set and v : 2N → R is a function assigning, to each coalition S ∈ 2N , its
worth v(S); by convention v(∅) := 0. Let Gn be the set of n-player games. Given S ⊆ N ,
let |S| be the number of players in S. For the sake of notation, we denote {i} by i.

Let (N, v) ∈ Gn. The core (Gillies, 1953), is defined by C(N, v) := {x ∈ Rn :
∑

i∈N xi =
v(N) and, for each S ⊆ N,

∑

i∈S xi ≥ v(S)}. Let BGn be the set of n-player games with
nonempty core. We say C(N, v) is full dimensional if it has dimension n − 1.

Let S ⊆ N and let Π(S) be the set of orderings (permutations) of the elements in S. For
each σS ∈ Π(S) and each i ∈ S, σS(i) denotes i’s position. We denote σN by σ. For each
i ∈ N and each σ ∈ Π(N), let Pσ(i) := {j ∈ N : σ(j) < σ(i)} be the set of predecessors of
i with respect to σ. Let (N, v) ∈ Gn and σ ∈ Π(N). The marginal vector associated with
(N, v) and σ, mσ(N, v), is defined, for each i ∈ N , by mσ

i (N, v) := v(Pσ(i) ∪ i) − v(Pσ(i)).

∗Acknowledgements. The authors are grateful to Miguel A. Meléndez-Jiménez and two anonymous
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A game (N, v) is convex if, for each i ∈ N and each S and T such that S ⊆ T ⊆ N\ {i},
v(S ∪ i) − v(S) ≤ v(T ∪ i) − v(T ). Let CGn be the set of n-player convex games. A game
(N, v) is strictly convex if, for each i ∈ N and each S and T such that S ( T ⊆ N\ {i},
v(S ∪ i) − v(S) < v(T ∪ i) − v(T ).

A (convex) polytope P is the convex hull of a finite set of points. A polytope P is
an m-polytope if its dimension is m. A hyperplane H is a supporting hyperplane for P if
H ∩ P 6= ∅ and the halfspace below H contains P . A face of a polytope P is defined as (i)
P itself, (ii) the empty set, or (iii) the intersection of P with some supporting hyperplane;
faces of dimension m are called m-faces (with the convention that dim(∅) = −1). The
0-faces, 1-faces, and (m − 1)-faces of an m-polytope P are respectively its vertices, edges,
and facets. Let F(P ) denote the set of all faces of P .

2 Core Complexity and Pascal’s Triangle

We discuss now the geometry of the cores of convex and strictly convex games. In our
exposition we mainly use the terminology in Shapley (1971) and, also, some of the results
included there. Let (N, v) ∈ BGn. For each ∅ 6= T ⊆ N , let HT be the hyperplane
HT := {x ∈ Rn :

∑

i∈T xi = v(T )} and let FT := C(N, v) ∩ HN\T . Clearly, F∅ = C(N, v);
also, let FN := C(N, v).1 Shapley (1971) and Ichiishi (1981) showed that a game is convex
if and only if the vertices of the core are the marginal vectors, i.e., C(N, v) = co{mσ(N, v) :
σ ∈ Π(N)}, where co(A) denotes the convex hull of A. Thus, for convex games, each FT

is a nonempty face of C(N, v) and we refer to FT as a T -face of C(N, v). By definition, in
each allocation in FT , coalition T receives v(N) − v(N\T ). Clearly, for each ∅ 6= T ( N ,
since both FT and FN\T lie in HN , they are parallel to each other. Now we define, for each
coalition T ⊆ N , a game (N, vFT

) that is closely related to FT .
The idea of the definition is the following. Given a convex game (N, v) and a face FT of

its core, if we restrict attention to C(N, v), then the allocations in FT are the best ones for
T and the worst ones for N\T . Coalition T always receives v(N) − v(N\T ) and coalition
N\T gets v(N\T ). Yet, there is still freedom for v(N) − v(N\T ) to be shared among the
players in T and for v(N\T ) to be shared among the ones in N\T . Next definition captures
this idea.

Definition 1. Let (N, v) ∈ BGn and T ⊆ N . The T -face game (N, vFT
) is defined, for

each S ⊆ N , by vFT
(S) := v((S ∩ T ) ∪ (N\T )) − v(N\T ) + v(S ∩ (N\T )).

Note that, if T = ∅ or T = N , then (N, vFT
) = (N, v). Besides, if S ∩ T = ∅, then

vFT
(S) = v(S). If ∅ 6= T ( N then, in the game (N, vFT

), the worths of coalitions T and
N\T are vFT

(T ) = v(N) − v(N\T ) and vFT
(N\T ) = v(N\T ), respectively. Moreover, if

(N, v) ∈ CGn, then vFT
(T ) is also the maximum payoff that coalition T can get in C(N, v);

similarly, vFT
(N\T ) is the minimum for N\T .

Lemma 1. Let (N, v) ∈ BGn and T ⊆ N . Let σ = (σN\T , σT ) and let σ̄ ∈ Π(N) be such

that it induces the orders σT and σN\T in T and N\T , respectively. Then,

(i) mσ(N, vFT
) = mσ(N, v).

(ii) mσ(N, vFT
) = mσ̄(N, vFT

).

Moreover, if (N, v) ∈ CGn then,

1Shapley (1971) defines FT as C(N, v) ∩ HT . Although Shapley’s definition might seem more natural,
ours is more convenient for the exposition below.

2



(iii) (N, vFT
) ∈ CGn.

(iv) mσ̄(N, v) ∈ FT if and only if mσ(N, v) = mσ̄(N, v). Hence, FT = co{mσ(N, v) : σ =
(σN\T , σT )}.

Proof. Since (N, vF∅
) = (N, vFN

) = (N, v), the result is trivial for T = ∅ and T = N .
Hence, let ∅ 6= T ( N .

(i) Let σ = (σN\T , σT ). We show that, for each i ∈ N , mσ
i (N, v) = mσ

i (N, vFT
).

Suppose that i ∈ N\T . Since Pσ(i) ⊂ Pσ(i) ∪ i ⊆ N\T , then v(Pσ(i) ∪ i) = vFT
(Pσ(i) ∪ i)

and v(Pσ(i)) = vFT
(Pσ(i)). Suppose that i ∈ T . In this case, N\T ⊆ Pσ(i) and it is easy

to check that, again, vFT
(Pσ(i) ∪ i) = v(Pσ(i) ∪ i) and vFT

(Pσ(i)) = v(Pσ(i)).
(ii) If σ̄ = (σN\T , σT ) the result is trivial. Let σ̄ 6= (σN\T , σT ). Then, σ̄ can be written

as (σR1
, σT1

, σR2
, σT2

, . . . , σRp
, σTq

), where T1, . . . , Tq ⊂ T , R1, . . . , Rp ⊂ N\T , and T1 and
R2 are nonempty. Let σ∗ := (σR1

, σR2
, σT1

, σT2
, . . . , σRp

, σTq
), i.e., R2 and T1 are swapped.

We show that mσ̄(N, vFT
) = mσ∗

(N, vFT
). Once the latter is proved, we get, after a finite

number of swaps, that mσ̄(N, vFT
) = mσ(N, vFT

). Clearly, the marginal vectors associated
with σ̄ and σ∗ can only differ for the players in T1 or R2. We distinguish two cases. Case 1:

i ∈ T1. Clearly, Pσ̄(i) = R1 ∪ PσT1
(i) and Pσ∗(i) = R1 ∪ R2 ∪ PσT1

(i). By the definition
of vFT

, vFT
(Pσ̄(i) ∪ i) − vFT

(Pσ̄(i)) = v(PσT1
(i) ∪ (N\T ) ∪ i) − v(PσT1

(i) ∪ (N\T )) =
vFT

(Pσ∗(i) ∪ i) − vFT
(Pσ∗(i)). Case 2: i ∈ R2. Clearly, Pσ̄(i) = R1 ∪ T1 ∪ PσR2

(i) and
Pσ∗(i) = R1 ∪ PσR2

(i). By the definition of vFT
, vFT

(Pσ̄(i) ∪ i) − vFT
(Pσ̄(i)) = v(R1 ∪

PσR2
(i) ∪ i) − v(R1 ∪ PσR2

(i)) = vFT
(Pσ∗(i) ∪ i) − vFT

(Pσ∗(i)).
(iii) We show that, for each R ⊆ S ⊆ N\i, vFT

(R ∪ i) − vFT
(R) ≤ vFT

(S ∪ i) − vFT
(S).

Suppose that i ∈ N\T . Since vFT
(S ∪ i) − vFT

(S) = v((S ∪ i) ∩ (N\T )) − v(S ∩ (N\T )),
vFT

(R∪ i)−vFT
(R) = v((R∪ i)∩ (N\T ))−v(R∩ (N\T )), and (N, v) is convex, the desired

inequality holds. Suppose that i ∈ T . Since vFT
(S ∪ i)− vFT

(S) = v((S ∩T )∪ (N\T )∪ i)−
v((S ∩ T ) ∪ (N\T )), vFT

(R ∪ i) − vFT
(R) = v((R ∩ T ) ∪ (N\T ) ∪ i) − v((R ∩ T ) ∪ (N\T )),

and (N, v) is convex, the desired inequality holds.
(iv) Since v ∈ CGn, mσ(N, v) ∈ FT and the necessity is trivial. We prove the sufficiency.

Since mσ̄(N, v) ∈ FT , then
∑

i∈T mσ̄
i = v(N)−v(N\T ) =

∑

i∈T mσ
i . By convexity, for each

i ∈ T , mσ̄
i (N, v) ≤ mσ

i (N, v) and, since
∑

i∈T mσ̄
i =

∑

i∈T mσ
i , we have that, for each i ∈ T ,

mσ̄
i (N, v) = mσ

i (N, v). Similarly, for each i ∈ N\T , mσ̄
i (N, v) = mσ

i (N, v).

Proposition 1. Let (N, v) ∈ CGn and T ⊆ N . Then, C(N, vFT
) = FT . Therefore,

C(N, v) = co{C(N, vFT
) : ∅ 6= T ( N}.

Proof. The equality C(N, vFT
) = FT is trivial for T = ∅ and T = N . Let ∅ 6= T ( N . By

Lemma 1 (i), for each σ ∈ Π(N), mσ(N, vFT
) is a vertex of C(N, vFT

) and C(N, vFT
) =

co{mσ(N, vFT
) : σ ∈ Π(N)}. Now, by Lemma 1 (ii) and (iii), C(N, vFT

) ⊆ FT and, by
Lemma 1 (ii) and (iv), FT ⊆ C(N, vFT

).

The following result is a compilation of different results in Shapley (1971).

Lemma 2. Let (N, v) be a strictly convex game. Then,

(i) mσ(N, v) = mσ̄(N, v) if and only if σ = σ̄. Hence, C(N, v) has n! vertices.

(ii) C(N, v) is full dimensional and has 2n − 2 facets, one for each ∅ 6= T ( N .

(iii) Let ∅ 6= T ( N . Then, mσ(N, v) ∈ FT if and only if σ is of the form (σN\T , σT ).

3



Remark. From the previous result, for each strictly convex game and each ∅ 6= T ( N ,
FT is a facet of C(N, v), i.e., an (n − 2)-polytope. Moreover, (i) and (iii) imply that FT

has |T |! (n − |T |)! vertices and, hence, (N, vFT
) is not strictly convex. Recall that, for each

t ∈ {0, . . . , n}, the number of t-player coalitions is
(

n

t

)

. Hence,
(

n

t

)

is also the number of
faces of C(N, v) that are associated with a coalition of size t.

Now, we introduce one more concept from Shapley (1971). Let P = {N1, . . . , Np} be a
partition of N , with p ≥ 2. The game (N, v) is decomposable with respect to P if, for each
S ⊆ N , v(S) = v(S ∩ N1) + . . . + v(S ∩ Np). That is, v is the addition of p smaller games;
each of them is referred to as a component. The following result is also a compilation of
different results in Shapley (1971).

Lemma 3. (i) A strictly convex game is indecomposable.

(ii) A decomposable game is convex if and only if each component is convex.

(iii) The core of a decomposable convex game is the cartesian product of the cores of the

components of any decomposition.

Proposition 2. Let (N, v) ∈ BGn and ∅ 6= T ( N . Then, the game (N, vFT
) is decompos-

able with respect to P = {T,N\T}.

Proof. Let S ⊆ N . Then, vFT
(S ∩ T ) = v((S ∩ T ) ∪ (N\T )) − v(N\T ) + v(∅) and vFT

(S ∩
(N\T )) = v(N\T ) − v(N\T ) + v(S ∩ (N\T )). Hence, vFT

(S ∩ T ) + vFT
(S ∩ (N\T )) =

vFT
(S).

Let (T, vT ) and (N\T, vN\T ) denote the two components of the decomposition in Propo-
sition 2. Next result is now completely straightforward.

Corollary 1. Let (N, v) be a strictly convex game and ∅ 6= T ( N . Then, (T, vT ) and

(N\T, vN\T ) are strictly convex games such that C(N, vFT
) = C(T, vT ) × C(N\T, vN\T ).

The cores in the cartesian product have dimensions |T | − 1 and |N\T | − 1, respectively.

We move now to core complexity. Two polytopes P and P ′ are combinatorially equivalent

if there is a one-to-one map f : F(P ) → F(P ′) that is inclusion preserving, i.e., F ⊆ F ′ if
and only if f(F ) ⊆ f(F ′). We define the combinatorial complexity of the core of a game as
the number of different equivalence classes there are among its facets according to the above
relation. Given a strictly convex game and a coalition ∅ 6= T ( N , all the |T |-faces are
combinatorially equivalent and, moreover, the faces FT and FN\T are also combinatorially
equivalent. Let ⌊·⌋ be the floor function, i.e., for each r ∈ R, ⌊r⌋ denotes the largest integer
not larger than r. The following corollaries are immediate from Lemma 2 and the remark
below it.

Corollary 2. Let (N, v) be a strictly convex game. Then, for each t ∈ {1, . . . , n − 1},
C(N, v) has 2

(

n

t

)

combinatorially equivalent facets and each of them can be decomposed as

the cartesian product of the cores of two strictly convex games with t and n − t players,

respectively.

Corollary 3. Let (N, v) and (N,w) be two strictly convex games. Then, C(N, v) and

C(N,w) are combinatorially equivalent. Indeed, given t ∈ {0, . . . , n}, for each T, S ⊆ N

such that |T | = |S| = t, C(N, vFT
) and C(N,wFS

) are combinatorially equivalent.

Corollary 4. Let (N, v) be a strictly convex game. Then, the combinatorial complexity of

C(N, v) is ⌊n
2 ⌋.
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In Figure 1 we illustrate, with the aid of Pascal’s triangle, the above corollaries. Given
n, below

(

n

0

)

and
(

n

n

)

, we draw the F∅ and FN faces, i.e., C(N, v). Then, for each t ∈

{1, . . . , n− 1}, the polytope below
(

n

t

)

represents one of the
(

n

t

)

combinatorially equivalent
T -facets (with |T | = t) of C(N, v) and, since FT = C(N, vFT

), it also represents the cores of
the T -face games. Remarkably, Figure 1 contains a lot of information about the geometry
of the cores of strictly convex games and, moreover, does it in a noteworthy visual way.
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Figure 1: Pascal’s triangle and core complexity

• For each n, below
(

n

n

)

and
(

n

0

)

we depict the core of an n-player strictly convex game. The core of
any other n-player strictly convex game being combinatorially equivalent to it (Corollary 3).

• For each n and each t ∈ {1, . . . , n − 1}, below each
(

n

t

)

we depict one of the
(

n

t

)

combinatorially
equivalent T -facets (with |T | = t) of C(N, v) (Corollary 2).

• For each n and each t ∈ {1, . . . , n − 1}, the facets below
(

n

t

)

and
(

n

n−t

)

are also combinatorially

equivalent to each other (Corollary 2).

• Differently form Pascal’s triangle, for each n and each t ∈ {1, . . . , n−1}, the facets below
(

n

t

)

are not

obtained through
(

n−1

t−1

)

and
(

n−1

t

)

. Instead, they are the product of two cores: the one below
(

t

t

)

and the one below
(

n−t

n−t

)

(Corollary 1). For n ≤ 5, this products are represented in the three lines

below the triangle.

• Finally, Corollary 4 is readily verified from the picture.
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