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Abstract

We study impersonal exchange, and ask how agents can behavéyhioresony-
mous transactions without contracts. We analyze repeated anonymoasiraradch-
ing games, where agents observe only their own transactions. Little is kaloourt
cooperation in this setting beyond the prisoner’s dilemma. We show that redimme
can be sustained quite generally, using community enforcement and “tilging.”
The latter refers to an initial phase in which one community builds trust by net dev
ating despite a short-run incentive to cheat; the other community reciprdnageby
not punishing deviations during this phase. Trust-building is followed lopemative
play, sustained through community enforcement.
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1 Introduction

In many economic settings, impersonal exchange occursiatikence of contractual en-
forcement. Buyers and sellers trade essentially anonymotikese settings motivate the
central question of this paper. How do agents achieve catiperoutcomes and act in
good faith in transactions with strangers without formattcacts? We model impersonal
exchange as an infinitely repeated random matching gamejiaghwlayers from two dif-
ferent communities are randomly and anonymously matchege¢b other to play a two-
player game. Each player observes only his own transactidesdoes not receive any
information about the identity of his opponent or about hdayproceeds in other transac-
tions. With such “minimal information-transmission,” wekavhat payoffs can be achieved
in equilibrium. Can agents be prevented from behaving oppastically?

Two early papers biandori(1992 andEllison (1994 showed that in this setting co-
operation can be sustained for the Prisoner’s Dilemma (R@yim trigger strategies, also
known as “community enforcement” or “contagion.” If a playaces a defection, he pun-
ishes all future rivals by switching to defection forevera@t reversion). This defection
spreads the information that someone has defected, mopéepgetinfectedand start de-
fecting, and cooperation breaks down completely. The btedhreat of such a breakdown
deters players from defecting in the first place. These aegusrely critically on proper-
ties of the PD: Since its Nash equilibrium is in strictly dovant actions, punishing gives a
current gain even if it lowers continuation payoffs. In gett@ames punishing can lower
both present and future payoffs, and so it is harder to peoindentives to punish. We
establish that it is still possible to sustain a wide rangpayfoffs in equilibrium in a large
class of games, if players are sufficiently patient and thpufadion is not too small.

We show that, for stage-games with a strict Nash equilibyitna ideas of community
enforcement coupled with “trust-building” can be used tstain cooperation. In equilib-
rium, play proceeds in two blocks: an initial phase that wié“taust-building,” followed
by a cooperative phase that lasts forever, as long as noledgtels. In the initial phase,
players of one community build trust by not deviating eveoutjh they have a short-run
incentive to do so, and players in the other community recigte the trust by not starting
punishments during this phase even if they observe a dewiatihis initial phase is crucial
to sustaining cooperation in the long-run. Deviations e¢boperative phase are punished
by Nash reversion (or community enforcement).

To our knowledge, this is the first paper to sustain coopamati a random match-



ing game beyond the PD without extra informational assumngti Some papers introduce
verifiable information about past play to sustain cooperatKandori(1992 considers a
mechanism that assigns labels to players based on pastsplgjayers who have devi-
ated or have seen a deviation can be recognized. This entedsiemission of information,
and cooperation can be sustained in a specific class of gaMese recentlyDeb (2014
proves a general folk theorem in the anonymous random nmejcatting, but allows play-
ers to send unverifiable messages to their partners justebeffaying the stage-ganie.

An important feature of our equilibrium is that the strategare plausible, and play-
ers have strict incentives on and off the equilibrium patiliké recent work on games
with imperfect private monitoringEly and Valimaki, 2002 Picciong 2002 Ely, Horner
and Olszewski2005 Horner and OlszewskR006 and repeated random matching games
(Takahashi201Q Deb, 2014, we do not rely on belief-free ideas or block strategiesoAl
unlike existing literature, our strategies are robust @ngjes in the discount factor.

This paper relates to the literature on building trust iresgpd interactions (e.gshosh
and Ray(1996 andWatson(20032), which focuses on “gradual” building of trust, where
the stakes in a relationship grow over time. Our equilibridoes not feature gradualism.
Rather, we have an initial phase in which players cooperapitdehaving an incentive to
deviate, and this phase is exactly what helps sustain cabper Our model can be seen
as capturing the intuitive idea that long-term relatiopststart out by building trust.

The main challenge to sustaining cooperation through Negtrsion is that punishing
may be costly for both current and future payoffs. Our cartdion ensures that, when a
player is required to punish by Nash reversion, he beliegvasrmost players are already
playing Nash (which gives him a short-run incentive to plasN). To see the idea, suppose
that players may entertain the possibility of correlatedateons. Then, upon observing a
deviation, a player may think that all players in the rivairoounity have simultaneously
deviated and that everybody will start punishing, makingiNaeversion optimal. Yet,

For related approaches, seal Bo (2007), Hasker(2007), Okuno-Fujiwara and Postlewai(@995, and
Takahash{2010.

2Specifically,Deb (2014 uses the cheap talk messages to partially authenticaterptientities, and then
applies a block belief-free approach to achieve the tamggtibrium payoff. In contrast, this paper examines
the possibility of cooperation in the absence of any kindomfimunication. Recentlgugayg2012 201%,a)
establishes general folk theorems under imperfect privateitoring. These results do not apply here, since
our setting violates full-support monitoring and othemitigability assumptions of Sugaya’s work.

3There is also a recent literature on repeated games and auitgrenforcement on networks (see, for
instanceAli and Miller (2013, Lippert and Spagnol{?011) andNava and Piccioné2014). However, this
literature is substantively different because playersxateanonymous on a network.



this way to get the desired beliefs is not consistent withusatjal equilibrium® Without
coordinated deviations, a player who faces a deviatiory earthe game will know that
there are few affected players and Nash reversion may nopto@al. This suggests that,
to induce appropriate beliefs, Nash reversion cannot becghed in the initial periods.

Working with beliefs is fundamental to our approach. We dtgy@ew methodological
tools, using Markov chains, to analyze incentives in bdd@$ed equilibria in repeated
games with private monitoring.

The rest of the paper is organized as follows. In Sectione illustrate the strategies
and the intuition behind our main result using the prodingitce game. SectioBcontains
the model and the main result. In Sectidnwe define off-path beliefs and present our
methodology for computing beliefs. In Sectiohsnd6, we establish optimality of the
equilibrium strategies. Sectiohdiscusses robustness of our results.

2 Cooperation Beyond the PD

2.1 A negative result

We present a simple example to show that a straightforwaagitatlon of grim trigger

strategies (or contagion strategies a&andori (1992 or Ellison (1994) cannot be used
to support cooperation in general. The main difficulty istthiayers may not have the
incentive to punish deviations, since punishing may belgasboth the short-run and the
long-run.

Buyer

By By,
QH 272 _171
Seller 0, 311 0.0

Figure 1: The product-choice game.

Suppose that the product-choice game in Figuiie played by a community ofi/

40ur solution concept is a natural generalization of sedakeatyuilibrium Kreps and Wilson(1982),
which requires that off-path beliefs are the limit of the ditional beliefs obtained from a sequence of com-
pletely mixed strategy profiles converging to the strategfile under consideration. In particular, this im-
plies that player’s deviations are independent. Thereforeur setting, simultaneous deviations by multiple
players cannot be inferred from the observation of a singléadion.

SWe have not been able to construct strategies such that pkagr, at each information set, has a best
reply that is independent of his beliefs (asiandori(1992 andEllison (1994).
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buyers and a community a¥/ sellers in the repeated anonymous random matching set-
ting.? In each period, every seller is randomly matched with a bayer they play the
product-choice game. The seller can exert either hightgf€oy) or low effort (1) in the
production of his output. The buyer, without observing tekes’s choice, can buy either

a high-priced producti) or a low-priced one 8;). The buyer prefers the high-priced
product if the seller has exerted high effort. For the sedirerting low effort is a dominant
action. The efficient outcome {§) 7, By ), while the unique Nash equilibrium {§) ., By).
Hereafter, we refer t0Q),, B;) as the Nash action.

Proposition 1. Consider the product-choice game in the repeated randommmagsetting.

If M > 2 then, regardless of the discount fact@yrthere is no sequential equilibrium in
which, in every period,Q, By ) is played on the equilibrium path and the Nash action is
played off the equilibrium path.

Proof. Suppose that there is an equilibrium in which, in every peri@ 4, By ) is played
on the equilibrium path and the Nash action is played off tpaldrium path. Suppose
that a seller deviates in period 1. We argue that, for the e faces this deviation, it is
not optimal to switch taB;, from period 2 onwards. In particular, we show that playifg

in period 2 and switching t®;, from period 3 onwards gives her a higher payofiif > 2.
Since sequential equilibrium implies that deviations @fygrs must be independent from
each other (see Definition 1 in Section 3.1), the buyer wheddle deviation believes that,
with probability 1, there was no other deviation in periodHence, she believes that, in
period 2, with probability% she will face a different seller who will plag ;. Consider
this buyer’s incentives:

Short-run: The buyer's payoff in period 2 from playing; is 7+ + 281 — 2M-3 Hey
payoff if she switches t®;, is % Hence, ifM > 2, she has no short-run incentive

to switch to the Nash action.

Long-run: With probability .-, the buyer meets the deviant seller (who is already playing
Q1) in period 2. In this case, her action does not affect thieselfuture behavior,
and so her continuation payoff is the same regardless ofdtiena

With probability % the buyer meets a different seller. Note that a buyer always
prefers to face a seller playin@;. So, regardless of the buyer’s strategy, the larger

6See SectioB.1for a formal presentation of the random matching settingthadorresponding definition
of sequential equilibrium.



the number of sellers who have already switche@ tothe lower is her continuation
payoff. Hence, playing3;, in period 2 gives her a lower continuation payoff than
playing By, because actioB;, makes a new seller switch permanentlyig.

Since there is no short-run or long-run incentive to switcthe Nash action in period 2, the
buyer will not punish. Therefore, playing)x, By ) in every period on path and) ., By,)
off-path does not constitute a sequential equilibriumardtess of the discount factor[]

Propositionl states that play of the cooperative actioreireryperiod cannot be sus-
tained with grim trigger. It does not rule out the possikibf doing so with other strategies.

2.2 How to Achieve Cooperation: An lllustration

Next, we show informally how to approximate the efficient piiyn equilibrium in the
product-choice game. Secti@formalizes this construction for general games.

2.2.1 Equilibrium Strategies

Equilibrium play: Phase I: (Qg, By) is played for the firs™” periods. Phase II: For
the nextl™” periods,(Q ., By) is played.Phase lll: (Qy, By) is played thereafter.

Off-Equilibrium play: If a player faces a deviation in either Phase Il or Phase Hl, h
switches to playing the Nash actiofQ { or B;) forever. If a buyer faces a deviation
in Phase I, she continues to play as if on path for the restas®hand then switches
to playing B;, from the start of Phase Il. If a seller faces a deviation indehahe
continues to play as if on path.

The proof of Propositiorl shows that grim trigger cannot sustain cooperation because
buyer who faces a deviation at the start of the game is nohgitb punish. The main in-
sight of this paper is that “delayed grim trigger strateges work: A buyer who observes
a deviation at the start of the game delays playing the Nasbnauntil the start of Phase Il.

2.2.2 On-path incentives

For patient players, the payoff from the strategy profilelise to(2, 2). Since any short-
run profitable deviation will eventually trigger Nash resien and bring continuation pay-
offs down to zero, sufficiently patient players do not dexvibm the equilibrium path.



2.2.3 Incentive to punish deviations faced early in the game

To prevent deviations by sellers in Phase |, a buyer who f@gaa Phase | must be willing
to switch to the Nash action at the start of Phase Il. Thistwgber Nash reversion by other
players and lower continuation payoffs. We start with tweevations:

i) The optimality of Nash reversion for a buyer who faces aialgan depends on her
beliefs about how many sellers are playing the Nash actfaihd believes that most
sellers are playing Nash, then doing so herself is optinh@:Nash action would be
the stage-game best reply and the effect on her continyaipoff would be insignif-
icant. In particular, the earlier she thinks the contagi@amted, the more spread she
will think it is. This observation drives how we specify qiath beliefs: On facing a
deviation, players believe that the first deviation was bglkesin period 1.

ii) If a seller deviates in period 1 he will find it optimal togyl Nash reversion immedi-
ately. Given the strategies, this seller knows that his appowill start spreading the
contagion by playing Nash from peridd + 1 on. Further, from period” + 7" + 1
on, both buyers and sellers will be spreading the contagidrsa it will spread expo-
nentially fast. Thus, if he deviates in period 1, his condition payoff aftefl” + 7"
will be low, regardless of what he does in the remainder ofsBHaTherefore, if
Phase | is long enough, no matter how patient this sellereisyih want to make as
much profits as possible for the rest of Phase |, i.e., play

Consider now a buyer who faces a deviation in Phase |. She ali\e that a seller
deviated in period 1 and that he will play; throughout Phase I. If Phase | is long enough
she will think that, with very high probability, every buyeiill face the deviating seller
during Phase I. Thus, since all these buyers will revert telN# the start of Phase 1, Nash
reversion will also be optimal for her. Finally, since oniyeoseller is playing); during
Phase I, such a buyer would not have an incentive to starspung before Phase I

’For this deviant seller’s incentives, not only magt be large, but aIseFTTI, must be large enough. This
is important for two reasons: First, a seller who deviatgsdnod 1 will find it optimal to keep deviating and
making short-run profits in Phase |, without caring aboueptal losses in Phase Il. Second, this seller will
believe that he has infected all buyers by playi@g throughout Phase | and will be willing to play Nash
throughout Phase Il, regardless of the history he observes.



2.2.4 Role of Phase Il

Phase | ensures that a buyer who faces a deviation early igaime is willing to start
Nash punishments in Phase II. Phase Il matters only for tihaanafter some histories that
arise with low probability. Consider a buyer who fa€gs in period 1 and also in all other
periods of Phase I. In this case, the buyer realizes thatahmbt the same deviating seller
throughout Phase | and that no other buyer has faced a aevi&tiill it be optimal for her
to revert to Nash in Phase I1? The key now is that the deviatatigr does not know that he
has met the same buyer in every period, and so he will keengldlye Nash action, even
when Phase Il starts. Thus, regardless of what the buyes, dbe expects her continuation
payoff to drop at the start of Phase Ill, since contagion spllead exponentially fast from
then on. Now, if Phase Il is long enough, this buyer would &ryntake some short-term
gains during Phase ll, i.e., she would play the Nash action.

2.2.5 Nash Reversion after getting infected in Phase llI

Finally, suppose that a player faces a deviation for the tiimst in Phase Ill. He believes
that a seller deviated in period 1 and contagion has beeradipgesince then. However,
the fact that he has not faced any deviation so far may inelibett, possibly, not so many
people are infected. A crucial element of our constructethat, if both7” and?—fj are

large enough, this player believes that, with high proligbitontagion is widely spread

and most players are playing the Nash action, making Nasusiewn optimal for him.

3 Model, Definitions and Main Result

3.1 The repeated anonymous random matching setting

There ar@ M players with M > 1, divided in twocommunitiesC; = Cy = {1,2,..., M }.
In each period € N, players are randomly matched into pairs, with each playerC,
facing a playerj € C,. Thematchingis independent over time, following a uniform dis-
tribution. After being matched, each pair plays a finite {wlayer game=. Players only
observe the transactions they are personally engageaineach player only knows the
history of action profiles played in each of his stage-gaméle past. Matching is anony-
mous, i.e., a player never observes his opponent’s ideatity gets no information about
how other players have been matched or about the actiongmhysany other pair. We



refer to arbitrary players and players@h as male and to those i}, as female.

The stage gameTheaction setof ¢ are denoted byl; and A,, andA := A; x A,
denotes the set @iction profiles Generic elements are given by, a., anda, respectively.
Thestage game payoftme given byu : A — R2.

The repeated game.Given a two-player gamé&/, a community sizeV/ > 1, and a
discount factop € (0, 1), the correspondingepeated anonymous random matching game
is denoted by7Y.

Histories. The set of-periodpersonal historiess given by#! := A'. Given a playet,

a personal historji’ := {a',a?,..., a'} contains, for each period < ¢, the action profile
observed by playerin periodr. The set of all personal histories#t := | J,©, H', where
HY := {0}. Given historiesi’ € H\H andh™ € H\H’, h'h™ € H is the concatenation of
historiesh! andh™. In particular, given an action profitee A, h'a is the history obtained
as the concatenation af anda. Throughout the paper we use the woltservedo refer
to actions that a player may hagtayedor facedin his past matches.

Strategies.Given a playet € Cy, with k& € {1,2}, a (pure)strategyfor i is a mapping
o; - H — A, Let3; andX; denote the sets of strategies of playerg’inand (s,
respectively. The set aftrategy profiless given by: ! x $.

Continuation strategies. Given a playeri, for each historyh! € H\H°® and each
strategyo;, playeri’s continuation strategyiven historyh!, o;|,.:, is defined, for each
h™ € H, by o;|nt(R7) = o;(R'AT).

Outcomes and payoffs.A personal outcomer apersonal path of playor playeri is
an element ofA>°, denoting the actions played in the matches in which he wasvied.
Given an outcoméa!, a?,...) € A~ and a playei € C}, i's discounted payofin G} is
given byU;(a*,a?,...) = (1 — &) >0, 6" Lug(al).

Equilibrium. We consider a straightforward extension of sequentialibguim (Kreps
and Wilson 1982 to games of infinite length. Aystem of beliefss a functionu that as-
signs, to each information setof the game tree, a distribution of probability over its nede
or, equivalently, over the histories that may have led tbeing reached. Given a strategy
profile o, a system of beliefs is consistenif there is a sequence of completely mixed
strategy profile§ o, }.en converging pointwise t@ and such that the associated condi-
tional beliefs{., }.en converge pointwise to the system of beligfs A strategy profile is
asequential equilibriunif, after every personal history, players playing a best response
given beliefs that are consistent with playsrpersonal history.



Definition 1. A strategy profiles is asequential equilibrium if there is a system of beliefs
1 such that

i) o is sequentially rational given, i.e., for each playei and each personal histohy
playeri is best replying ab givens andu.

i) w is consistent withy.

3.2 The Main Result

Let ¥ be the class of finite two-player games with two properties:
P1. There exists atrict Nash equilibrium, denoted by:* = (a7, a}).

P2. There exists a pure action profide= (a;, az) with one-sided incentivesin which
one player has a strict incentive to deviate while the otfeer 4 strict incentive to
stick to the current action. Without loss of generality, vgsuame that player 1 has an
incentive to deviate while player 2 does not.

LetGbeagameandletc A. LetA, :=={a € A:a =a < as = ax}. Define
F, :=conv{u(a) :a € A,} N{v eR?:v > ula)}.

Our main result, Propositio@ below, says that given a gante in ¢ with a strict
Nash equilibriuma*, it is possible to approximate any payoff i- in equilibrium in the
corresponding infinitely repeated random matching ga#jie if players are sufficiently
patient and the communities are not too small. This reswérsa large class of games
that includes the PD and the product-choice game, and indidtiem F,- includes payoffs
arbitrarily close to efficiency. Note that that the set ofiaghble payoffsf,- may not be
full-dimensional: e.g,. for the product-gamé, is a one-dimensional subsetf.

In general, we do not get a folk theorem. We conjecture thambdifying our strate-
gies, it may be possible to support payoffs outside and obtain a Nash threats folk
theorem for games i (See Online Appendixg.3) for a discussion).

We now discuss assumptions P1 and P2. Since we consider dlasision, the exis-
tence of a pure Nash equilibrium is needed. We need stretnesause when a player is
asked to start Nash punishments he may think that, with seotspility, he will face an

10



opponent who is not punishing, and if the short-term ins@rttd punish were not strict, his
myopic best reply could be outside the support of the Nasbragt

P2 is a mild condition. Clas¥ excludes what we cathames with strictly aligned
interests For two-player games this means that, at each action prafpéayer has a strict
incentive to deviate if and only if his opponent also doesm@sin¥ are generic in the
class of games without strictly aligned interests with aegdash equilibriund.

Proposition 2. Let G be a game irng with a strict Nash equilibriunmz*. There exists
M € N such that, for each payoff profile € F,., eachs > 0, and eachM > M, there
existsy € (0, 1) such that there is a strategy profile in the repeated randornthirag game
G that constitutes a sequential equilibrium for eathe [4,1) and achieves a payoff
within ¢ of v.

Our equilibrium strategies constituteuaiform equilibrium(Sorin 1990: If a strategy
profile constitutes an equilibrium for a given discount €actit does so for any higher
discount factof® This is in contrast with existing literature, where stragsghave to be
fine-tuned based on the discount factor (akahash{2010 andDeb(2014).1*

While cooperation with a larger population needs a high&re do require a minimum
community sizeM for our construction. A relatively larg&/ guarantees that the off-path
beliefs induce the correct incentives to punish. Yet, theelobound) depends only on
the game~ and is independent af Thus, Propositior2 is not a limiting result in}M .

Unlike work on games with imperfect private monitoringly and Valimaki, 2002
Picciong 2002 Ely, Horner and Olszewsk2005 Horner and Olszewsk2006 and also in
repeated random matching gaméskahashi201Q Deb, 2014, we do not rely on complex
block strategies or belief-free strategies. Our stragegiee the players strict incentives on
and off the equilibrium path.

8Unlike under perfect or imperfect public monitoring, it istrstraightforward to coordinate punishments
using public information in our setting.

%We have not been able to apply our approach to games of galighed interests. We refer the reader to
the Online AppendixB.4) for an example that illustrates the difficulty with achiegicooperation in certain
games in this class. However, cooperation is not an issusnimwonly studied games in this class, like “battle
of the sexes” and “chicken,” since in these games, the sea@t® efficient payoffs is spanned by the set of
pure Nash payoffs (so we can alternate the pure Nash actiditegrwith the desired frequencies).

10This also implies that there exists a threshold discourtbfabove which our strategies are “discount
robust” in the sense dfalai and Stanford1988. Mailath and Morris(2002 also define the related notion
of “patiently strict public equilibria.”

YFurther, inEllison (1994, the severity of punishments depends on the discountrfagtich has to be
common for all players. We just need all players to be sufiittyepatient.
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3.3 Equilibrium Strategies

Let G be a game iry. Recall thata* denotes a strict Nash equilibrium 6f, and(a4, a»)
denotes a pure action profile in which only one player has eantive to deviate. When
we say that a player plays or faces ti@sh actionwe mean the corresponding component
of a*. Without loss of generality, we assume that, at action @6dil, a.), player 1 has an
incentive to deviate while player 2 does not, anddetienote playeil’s most profitable
deviation. Let the target equilibrium payoff bec F,.. We maintain the convention that
playersl and2 of the stage-game belong to communities 1 and 2, respectBelow, we
present the equilibrium strategy profile that sustaindenoted bys.

As we show in Figure, we divide the game into three phases. Phase | spans over the
first T7 periods, Phase Il spans over the néXt periods, and Phase Ill covers the rest of
the game. Phases | and Il drast-buildingphases and Phase lll is ttagget payoffphase.

Phase | Phase I Phase Il
i e
| ~ |

~~
TI T

=

-

Figure 2: Different phases of the strategy profiles.

Equilibrium play: Phase I: During the firstl” periods, action profil¢a, a.) is played.
In every period in this phase, players from Community 1 haveoatsun incentive to
deviate, but those from Community 2 do nBtase Il: During the next periods,
players play(aj, as), an action profile where players from Community 1 play their
Nash action and players from Community 2 do not. Player 2i®aet, can be any
action other tham} in the stage-game. In every period in this phase, playem fro
Community 2 have a short-run incentive to deviaRhase Ill: For the rest of the
game, the players play a sequence of pure action profilels.inthat approximates
the target payoft and such that* is not played in period™” + T" + 1.

Sinced is pure and symmetric, on path all players observe the sarsena history,
denoted by(a', a?,...) € A>.

Off-Equilibrium play: Suppose that actiony € A’ is played in period and thatu; # at.
If ¢t < T"andi = 2, thena; is non-triggering Otherwisey; Is triggering.
Any player:, conditional on having observed a histai}, can be in one of four
moods. We define below the moods and behavior in each mood.

12



Healthy. A player is healthy at! if no triggering action has been played/ih
A healthy player continues to play as if on path. In particutaplayer from
Community 1 who observes a deviation in Phase | is healthy.

Rogue. A player is rogue af! if he has played a triggering action without
having faced one before. A player from Community 1 who turrgueby
deviating in the first period of the game playsuntil the end of Phase I. Then,
he switches to the Nash action and continues to play it asdsrge does not
observe any deviation after that. We do not describe therbsgbnse of rogue
players at other histories here. We will be more specific étoof.

Infected. A player is infected ab! if he is not rogue, he has faced a triggering
action, and > T". An infected player always plays the Nash action.

Exposed.A player is exposed dt’ if she is a buyer who has faced a triggering
action andt < T'. An exposed player continues to play as if on path and
transitions to the infected mood at the end of Phase I.

We use the termnhealthyto describe a player who is not in the healthy mood. Fig-
ure 3 provides a schematic for the mood transitions and behaViwese definitions
imply that no player is in the infected mood in Phase |. Alsduger cannot turn
rogue in Phase I, since her actions are not triggering in teelfi periods.

Note that a profitable deviation by a player is punishedrqately) by the whole com-
munity, with the punishment action spreading like an epidenThis is referred to as
contagionin the existing literature. The difference between ourtsgies and contagion
(Kandori, 1992 Ellison, 1999 is that here the game starts with two initial phases in which
deviations are not punished immediately. In other worddikerthe results for the PD,
where the equilibria are based on trigger strategies, we tdelayed” trigger strategies.

3.4 On-path incentives

On-path incentives are straightforward, so we omit the &npnoof. First, non-triggering
deviations are never profitable, since they entail a loskenpresent period and have no
impact on future payoffs. Second, triggering actions starbntagion that will eventually
have all players playing the Nash action from some periodavdg: Therefore, givei/,
T', andT", there is§; € (0,1) such that, for eaclh € [4;,1), on-path deviations are

13



TRANSITIONS

o | ing ()

plays | plays plays
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Figure 3:The top half describes the events inducing transitions between the foursmbtubds
labeled H, E, I, and R denote healthy, exposed, infected, and raegpeatively. A healthy player
who simultaneously plays and faces a triggering action transitions to the ishfacted. The bottom
half describes behavior in each mood. Where needed, C1 and C2ydhegifiayer's community.

not profitable. Moreover, since Phase Il has infinite lengihen7”, T, ande, there is
d € (0,1) such that, for each € [J,, 1), the payoff associated withis within ¢ of v.

3.5 Off-path incentives - Outline of argument

Since the proof of optimality off-path is long, we first prasan outline of the approach.
The off-path incentives of a player depend only on his belédfout how spread the conta-
gion is. Thus, establishing sequential rationality reggian analysis of off-path beliefs.

The first step is to define off-path beliefs and understandtgbdating, which we do in
Sectiord. We specify the trembles on completely mixed strategiegesent two results,
Lemmal and Lemma&2, which characterize the ensuing beliefs. In particulambel is
the basis for showing that beliefs evolve as simple Markacesses that can be studied
using the appropriate transition matrices.

We then analyze off-path incentives in Secti@and6. We classify off-path histories
for a player: as follows:

H1. Histories that can be explained by a single deviation by a sef in period 1.
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a. Histories in which playergot infected in Phase Il (discussed in Sect®)n
b. Histories in which playei becomes rogue in period 1 (Sectiéri.]).

c. Other histories including those in whi¢lgets exposed in Phase | or infected in
Phase Il (SectioB.?2).

H2. Histories that cannot be explained by a single deviation by aeller in period 1.
(Section6.1.2and AppendixB.2).

Crucially, the off-path beliefs defined in Sectidnl ensure that whenever a player
observes a deviation from the equilibrium path, he attagnebability one to the set of
histories H1. In particular, Lemnibstates that exposed and infected players always assign
probability 1 to a seller having deviated in period= 1. Recall that behavior has not
been specified for players who became rogue at 1 but, since no other player ever
assigns positive probability to this event, this undergmadtion does not pose problems
(the behavior of such a rogue player does not affect the tivemof others}? Only a rogue
player can know that a history in H2 has been realized and hbawplay his best response
there. Thus, it suffices to show that players have incentw@sinish after histories in H1.

Lemmallin Section5is an important result, which presents a sufficient condito
beliefs to have incentives to punish. Informally, it statest if an infected player believes
that contagion isvidely spreadDefinition 2), then he is willing to play the Nash action
because he knows that his action cannot affect his contoruptyoff significantly. This
result reduces our problem to showing that a player, afteeing a history in H1, believes
that contagion is widely spread. We do this using the tooleldped in Sectiod.3. Beliefs
in Hla are the most complex ones, and are divided in threescase

Infection early in Phase Ill. (Section5.1) Suppose that playégets infected in period
t =T"+T" + 1. Using properties of the appropriate Markov process (LerSjnave
show that playei believes that, with high probability, everybody is unhegltThen, by
Lemmallwe have optimality of Nash reversion. Suppose now thaty gé#ing infected
in periodt¢ and switching to the Nash action, playestarts observing actions different
from the Nash action, meaning that he is not facing infectaglgss. In such a caséhas
to revise his beliefs and two effects come into play: facirtgealthy player implies that
contagion was not as spread after peritdit, at the same time, playehas further spread

2There are some “pathological” histories that can arise amefevspecial care is needed because of under-
specification. These histories involve multiple nestedpaith deviations combined with a sequence of very
low probability match realizations. They are discussed ppéndixB.2.1
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the contagion by infecting his current opponent. For theltes) Markov process we can
still show that playet believes that, with high probability, everybody is unhkeslt

Infection late in Phase lll. (Section5.2) If player i gets infected in period, late in
Phase llI, then the properties of the relevant Markov pre¢esmmad) imply that playeri
believes that, with high probability, everybody was untigalat the start of Phase IIl.
However, if after that player starts observing actions different from the Nash action, he
may no longer believe that, with high probability, everypadas infected at the start of
Phase lll. Sectioh.2 shows that even then he believes that contagion is widebasir

Infection in other parts of Phase Ill. (Section5.3) For other periods of Phase I,
we use a monotonicity argument to establish that if play&sserves a deviation, he still
believes that contagion is widely spread.

The arguments for histories in H1b and H1c are more straighigrd and are presented
in Sections6.1.1and6.2, respectively. A complete proof requires showing seqaénd-
tionality also at off-path histories in H2, which is done riipsn AppendixB.2.

4 Off-path Beliefs

4.1 Trembles and ensuing beliefs

First, we define trembles associated withthat define a sequence of completely mixed
strategy profiled o, }.eny converging (pointwise) té and such that the associated beliefs
{1n }Inen converge (pointwise) to a system of beligfs

Fix a playeri and letD + 1 be the number of actions available to playén the stage
gameG € ¢. For eachn € N, lete, := (&)". The strategy of playerin profile o,, is
denoted by, ;. Leth! be a personal history. Now, we distinguish several c&ses:

Player i is healthy or exposed ati': o,,;(h") selectss;(h') with probability (1 — ") and
every other action with probabilit%.

Player i is rogue ath': o, ;(h') selectss;(h') with probability (1 — ex/") and every other

: : Y
action with probabllltyg%.

Player i is infected ath': o, ;(h') selectss;(h') with probability (1 — /™) and every
other action with probabilit#.

135ee Sectioff.3for a discussion on alternative belief constructions.
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Clearly,{o, }.en cOnverges t@. Moreover,{ ., },en CONverges pointwise to a system
of beliefsji. By definition, i is consistent witls as required by sequential equilibrium.

The above sequence is chosen to ensure certain properties lohiting beliefs. For
instancet in (1 — &™) ensures that early deviations by healthy players are redaad
infinitely more likely than late deviations. On the contrarin (1 — s}/t) and(1 — e}/(”t))
ensures that late deviations by rogue and infected playersegarded as infinitely more
likely than early ones. By comparing — ) with (1 — /") and (1 — /™) we have
that deviations by healthy players are infinitely less fkblan deviations by rogue players,
which are themselves infinitely less likely than deviatitwysinfected players. Below we

establish the properties pfneeded to show thatis sequentially rational given.

Lemma 1. Leti be a player who is in the exposed or infected mood at sepesiod history
ht. Then, according t@, player: puts probability 1 on a seller having played a triggering
action in period 1.

Proof. See AppendiA.1. n

The essence of Lemniais that triggering actions after period 1 are so unlikely eom
pared to a triggering action in period 1, that regardlesfefikelihood of the subsequent
observations, an exposed or infected play&ill always be convinced that the first trigger-
ing action occurred in period 1. For the next result, we dedimerror as an actiom; € A;
such that iy; is a non-triggering action or ii) playeis infected and does not play the Nash
action. In particular, the actions of rogue players are nelassified as errors.

Lemma 2. Leti be a player who is in the infected mood at sarperiod historyh! and who
did not get exposed in period 1. Suppose, further, thdtas probability zero conditional
on a seller playing a triggering action in period 1 and playopeeding according te
thereafter. Then, the following statements hold:

i) If player i faced triggering actions by sellers before peridél + 2, then he assigns
probability 1 to these actions having been played by a rogue seller who #s@g
a triggering action in period 1.

i) If player i faced non-triggering actions in Phase I, then he assignéglodity 1 to
these being errors made by buyers (by definition).

iii) If player ¢ faced any other action that implies additional deviatiormsf &, then he
assigns probability 1 to these deviations being errors lbgated players.
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Proof. See AppendiA.1. m

Lemma2 implies that, when an infected playéeis at a history that cannot be explained
just by a deviation of a seller in period 1, he will believepdssible, that there have been as
many errors by infected players as needed to explain themtinistory. Those deviations
directly faced by playet and that cannot be attributed to infected players are cdviere
statements i) and ii), and will be attributed to the roguéeseand to buyers, respectively.

It is worth discussing why Lemma is not true for a playei who gets exposed in
period 1. Suppose that playeis a buyer who gets exposed in period 1 and faces off-path
actions throughout Phase I. The definition of trembles assthiat deviations by rogue
players are (infinitely) more likely than deviations by tibglplayers. Then, playerwill
start Phase Il believing that there is a rogue seller whomhsisemet in all periods of
Phase | and that she is the only infected player. Suppodeefutttat in period™” + 1 she
faces an action different from the Nash action. Then, shiebglleve that she has met the
rogue seller again and so there is no infected seller yat. period7"” + 2 she again faces
an action different from the Nash action, contrary to statetiii) in Lemmaz2, she cannot
attribute this deviation to an infected player since sheeles$ there is no such player.
Then, she will believe that she has met the rogue seller ogai@.aHistories like this one
are what we call “pathological” histories, and the assecahcentives are discussed in
AppendixB.2.1 One implication of Lemma is that no infected player other thanvill
ever assign positive probability to these pathologicatoniss.

Importantly, Lemmal and Lemm& are crucial for the computation of off-path beliefs
since they allow us to model the beliefs as Markov processes.

4.2 Computation of off-path beliefs

Recall that, giver, a player’s action only depends on his mood. Thereforehatimatters
for incentives are the moods of the players in each commuamityso the incentives of an
infected player only depend on his belief about how spreadtmtagion is#

When analyzing the beliefs of an infected playemwe use the terrgood behaviofor
actions that point towards fewer people being unhealthy. &her action i9rad behavior

e Bad behavior (b). A actiona; € A; is considered bad behavior for playgin

1Note that the beliefg contain additional information such as whether the cootagtarted slow and
then sped up or started fast, but this information is irrteor the incentives.
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periodt if one of the following holds: i)a; is a triggering action, iix; is a non-
triggering action, or iii) playey is unhealthy and; = a! = a;.*°

e Good behavior (g). A actiona; € A; is considered good behavior for a playen
periodt if it is not considered bad behavior.

We slightly abuse notation and write, for instanke:= ¢ . . . gb to denote a history in which
playeri has faced good behavior during the first 1 periods and bad behavior in periad

4.2.1 Approach to computing off-path beliefs

Suppose that | am a player who gets infected at some pefio&hase Il and that | face
a healthy player in period+ 1, i.e., k! = g...gbg. | will think that a seller deviated
in period 1 (Lemmal) and that in period™ + 7" + 1 all unhealthy buyers and sellers
played the Nash action (which is triggering in this periotherefore, period™ + 7" + 2
starts with the same number of unhealthy players in both conites. Hence, it suffices
to compute my beliefs about the number of unhealthy sellérsse beliefs are represented
by 21 € RM, wherez." is the probability of exactly: sellers being unhealthy after
periodt + 1, and must be computed using Bayes rule and conditioning onergopal
history. LetG' be the event “I was healthy after perigdand ¢/* be the random variable
corresponding to the number of unhealthy sellers afteodériThen, | have the following
information after history:**1: i) A seller deviated at period 1, s6 = (1,0,...,0), ii) for
eacht < ¢, eventG' holds, iii) since | got infected at period at least one player in the
rival community got infected in the same period, and iv) sihéaced a healthy player at
t + 1, then, for each < ¢, U' < M — 2.

To computez’™!, we compute a series of intermediate beliefsfor t < ¢ + 1. We
computez? from x! by conditioning onG? and/? < M — 2; then we compute? from 22
and so on. Note that, to comput& we do not use the information that “l was healthy at the
end of each periodl < ¢t < t.” So, at each < t, 2! represents my beliefs when | condition
on the fact that the contagion started at period 1 and thatatehimg that leads to more
than M — 2 people being unhealthy could have been realife®ut differently, at each
period, | compute my beliefs by eliminating (assigning zerobability to) the matchings

SActions in points ii) and iii) are neutral: they do not pointthe direction of more or less people being
unhealthy. These actions are equally likely to come fronithgand unhealthy players.

16The updating after periogis different, since | know that | was infectedfaand that no more thah/ — 1
people could possibly be unhealthy in the other communitii@end of period.
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| know could not have taken place. At a given period: ¢, the information that “I was
healthy at the end of perigdwith 7 < ¢ < ¢”is not used. This information is added period
by period, i.e., only at period we add the information coming from the fact that “I was
healthy at the end of period’ In the Online Appendix B.1) we show that this method
yields the correct belief'+* at periodf + 1 conditional on the entire personal histdry .

Although from periodl™ + 7" + 1 onwards the number of unhealthy sellers and buyers
coincide, this is not the case in Phases | and Il. In particiilaill be important to compute
the evolution of the number of exposed buyers in Phase I.

In some abuse of notation, when it is known that a player assigrobability to more
thank opponents being unhealthy, we work with € R*. Given beliefsz!, i* € R*, we
say thatz! first-order stochastically dominates if 2! assigns higher probability to more
people being unhealthy; i.e., for eakh {1,...,k}, S5 ot > S8 i,

1=l

4.3 Modeling beliefs with contagion matrices
4.3.1 Contagion matrices and their properties

Beliefs evolve according to Markov processes and can beestudiing appropriate tran-
sition matrices, which we cationtagion matrices A contagion matrix() describes how
contagionspreaddn a community in a given period, witfy;; denoting the probability that
state i unhealthy players” transitions to statgunhealthy players”. If we let;, denote
the set ofk x k& matrices with real entries, we say tl@te M, is a contagion matrix if it
has the following properties:

i) All the entries of@ belong to[0, 1] (they represent probabilities).
i) @ is upper triangular (being unhealthy is irreversible).

iii) All diagonal entries are strictly positive (with someqgbability, no healthy player
observes a triggering action and contagion does not spnethé icurrent period).

iv) For eachi > 1, Q;_;; > 0 (with some probability, exactly one healthy player gets
exposed or infected in the current period, unless everyimdlyeady unhealthy).

Since contagion matrices are upper triangular, their @gees correspond to the diagonal
entries. Given a matrig), let (); denote the matrix obtained by removing the lastws
and columns frond). Similarly, Qp, is the matrix obtained by removing the fikstows and
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columns and)p,; by doing both operations simultaneously. Clearly, if we perf any of
these operations on a contagion matrix, we get a new comtagabrix.

Giveny € R, let |yl :== > ;.. %i- We are interested in the limit behavior of
Yyt o= %, where() is a contagion matrix ang is a probability vector. We present
below a few results about this limit behavior for contagioatrices. The proofs are in
AppendixA.2. Given a contagion matrig € M, we define the following properties:

77777

-----

Property Q3: For each < k, Qp € M, satisfies Q1 or Q2.

Lemma 3. Let ) be a contagion matrix and be a left eigenvector associated with the
largest eigenvalue @. Then,z is either nonnegative or nonpositive.

Lemma 4. Let ) be a contagion matrix and let be its largest eigenvalue. Then, the left
eigenspace associated witrhas dimension one. That is, the geometric multiplicity of
one, irrespective of its algebraic multiplicity.

Given a contagion matrix) with largest eigenvalue,, we denote by“ the unique
nonnegative left eigenvector associated witsuich that|y©|| = 1.

Lemma 5. LetQ € M, be a contagion matrix. Lét< k and consider vectay?s ¢ RF—,

Q
If -0} y@ # 0 then, for eachj € {1,....k — 1}, 4" = ﬁ

Lemma 6. Let Q € M, be a contagion matrix satisfyin@1 or Q2. Then, for each

nonnegative vectay € R* with y; > 0, we havdim,_, % = y%. In particular, under
Q2,y? =(0,...,0,1).

Lemma 7. LetQ € M, be a contagion matrix satisfyinQ1l and Q3. Lety € R* be a
nonnegative vector. If is close enough t¢0, . .., 0, 1), then, for each € N, ' first-order
stochastically dominateg?, i.e., foreach € {1,...,k}, S2F ot > S8 49,

4.4 Relevant contagion matrices

In this section we present the main contagion matrices tieakdevant for our construction.
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4.4.1 Contagion matrix in Phase |

Let R7"+T"+1 — ¢ ... gb denote a history in which | am a player who gets infected in
periodT” + T™ + 1. Since the number of unhealthy players is the same in bothmaem
nities, it suffices to compute my beliefs about the numbembfaalthy buyersy? 7" +1,
which depends on how contagion spreads after a seller tagugrin period 1. In Phase |,
this seller continues deviating, causing buyers to get sxgoThe contagion is a Markov
process with state spag¢e, . .., M}, representing the number of exposed buyers. This cor-
responds with contagion matrbq,; € M,,, where a staté transitions tok + 1 if the rogue
seller meets a healthy buyer, which has probabﬂ%@&. With the remaining probability,
i.e., % statek remains at staté. When no confusion arises, we omit subscriptin S

Let S, be the probability that statetransitions to staté Then,

o
0 M 0
Su = ;
o 0o o M2 Z 9
M—
00 0 Ml
o 0 0 0 1

To compute my beliefs after being infected, | must also comalion the information
from my own history. Let < T"”. After observing historys?' +7"+1 = ¢ ... gb, | know
that, at the end of periot+ 1, at mostM — 1 buyers were exposed and | was healthy.
Therefore, to compute’*!, my intermediate beliefs about the number of buyers who were
exposed at the end of period- 1, i.e., about/*™!, | need to condition on the following:

i) My beliefs about/’: z?.

i) | was healthy at the end df+ 1: the eventG*+!.
If | am a buyer and condition o@**!, then | know | did not meet the rogue seller. The
transition from staté— 1 to statel then requires that the rogue seller meets a healthy
buyer, which has probabilit%, and that this healthy buyer is different from me,
which has probabilityj\}f—;ﬁl. On the other hand, if | am a seller, conditioning on
G is irrelevant, since sellers always observe good behaviong Phase I.

i) At most M — 1 buyers were exposed by the end of period 1: ¢/ < M — 1
(otherwise | would not have observedhroughout Phase ).
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Therefore, given < M, if | am a buyer, the probability that exactlybuyers are
exposed after periot+ 1, conditional on the above information, is given by:

P NG U < M — 1]at)
P(GHL AU < M —1|at)
xf—lslflleM——lil + a5

M-1 /¢ 1 M—k t :
k=1 ("L‘kflsk—l,k M—Fk+1 + xksk,k;)

P(ltJrl ’xtmGt+1 mutJrl SM—l) —

The expression for a seller would be analogous, but Witﬁwﬁ{;—il factors. Note
that we can express the transition frafrto 2! using aconditional transition matrixQ.
Let Q € M, be defined, for each pak,l € {1,...,M — 1}, by Qu = Sui=L; by
Qv = 1, and with all remaining entries beirty

Since we know that?, = %' = 0, we can work inR”~'. Recall thatQ, and S,
denote the matrices obtained fraghand.S by removing the last row and the last column

of each. The truncated matrix of conditional transitionl:mbilities@u is as follows:

M-1M

[\

S+ M1M-2 0 0

0 F MNP 0 0
QIJ: : -

0 0 NP2

0 0 0 0o o M2

We need to understand the evolution of the Markov processssceted with matrices
Qu and S*u, starting with only one player being unhealthy. Then, far Buyer case, let
Yho = (1,0,...,0) € RM~! and defing/;" as

w1 U Qu Ypo @
B — = = —.
o Qull Il Q41

Analogously, we define the Markov process for the sejlgy, by usingS‘u instead of@lj.
Therefore, my intermediate beliefs at the end of pefiédz”", would be given b)ygé if
| am a buyer and’, if | am a seller. To compute the beliefd”+7"+1, | would have to
update using the contagion matrix in Phase Il but, as will iseu$sed in SectioB, our
proof does not need to deal with it explicitly.

Suppose now that, after getting infected after histofy™?" 1 = g ... gb, during the
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nexta periods, withl < o < M — 2, | face good behavior while | play the Nash action,
leading to a history of the forrh”' +7"+1+e — ¢ gbg .@. g. Suppose that | am a buyer
(the arguments for a seller are analogous). After gettifected in periodl™ + 7" + 1, |
can believe that all players in my community are unhealthii@end of period™” +7" +1.
However, this is no longer possible, because | have obsehesdn-path action which is
played only by healthy players and, moreover, | have beestiinfg by playing the Nash
action. Thus, afteh” 7" +1+e = ¢ gbg .. g, | know that at mosfi/ — 1 — « buyers
were exposed by the end of Phase I. So, for gaghT’ and eactk > M — «, 2}, = 0.
My beliefs are no longer computed usi@gJ, but rather Witl’QaHJ. Accordingly, denote
my intermediate beliefs at the end of peridd by y%. € RM-'~< if | am a buyer and
yL. € RM-1-«if | am a seller. Below we characterize the limit behavioygf andy..

Lemma 8. For eachM > 2 and eacha € {0,1,..., M — 2}, we havelim,_,, yh. =
limy o0 Yoo = (0,...,0,1) € RM~1-o,

Proof. Since, for eactw € {0,1,..., M — 2}, the matrianHJ satisfies property Q2, the
result follows from Lemm@. ]

This result is intuitive. Since the largest diagonal entryriatrices@oéﬂj andS*aHJ is
the last one, staté/ — 1 — a is more stable than any other state. Consequently, as more
periods of contagion elapse in Phase I, sfdte- 1 — o« becomes more and more likely.

4.4.2 Contagion matrix in Phase IlI

Suppose that | get infected after observidg' = ¢...gb, witht > 7" + T" + 1. My
beliefszt! also depend on how contagion spreads in Phase Ill. The netagion matrix
is S € My, where, for each pait,l € {1,..., M}, if k£ > lorl > 2k, S, = 0; otherwise,
i.e., if £ <[ < 2k, the probability of transition to stateto statel is (see Figuré):

5 ((FoCEHa- k>!>2(2’f - DM =Dt (KD2((M — k)12

M (1= k)N2(2k — D)I(M — )IMV

Since | have observed histofy*! = ¢...gb, givent such thatl” + T" < t < t, |
know that “at most\/ — 1 people could have been unhealthy in the rival communityet th
end of periodt + 17, i.e., U™t < M — 1, and “I was healthy at the end of period- 1”
(eventG'*1). As before, letz! be my intermediate beliefs after period Since, for each
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Community 1 (Sellers) Community 2 (Buyers)

(2k —1)!
| Already unhealthy
Ik} (5 (k) a o
(E0) (E5E) @ =k Newly infected
" still healthy

(M — 1)!

Figure 4: Spread of Contagion in Phase Ill. There &# possible matchings. For stateto
transition to statd, exactly (I — k) unhealthy people from each community must m@et k)
healthy people from the other one. The number of ways of choosinglexae- k) buyers fromk
unhealthy ones iélfk). The number of ways of choosing the corresponding k) healthy sellers

that will get infected i’} ). Finally, the number of ways in which these setglof- k) people
can be matched is the number of permutation's-of people, i.e.(l —k)!. Analogously, we choose
the (I — k) unhealthy sellers who will be matched (tb— k) healthy buyers. The number of ways
in which the remaining unhealthy buyers and sellers get matched to eaclisativer- [)! and, for
the healthy ones, we hayé/ — [)!.

t <t,z%, =0, we can work withz! € RM~!. Thus, for eachh € {1,..., M — 1}, we want
to computer;*!, which is given by:
P NG N U < M — 1) |2t)
P(GHLNUHE < M — 1) |at)
Zkze{l,...,M} ﬁgklﬂj\j_:/i
Zle{l,...,M72} ( Zke{L..,,M} ngkl%) .

P(lt-‘rl ‘xt N Gt-i-l mut-‘rl S M — 1) —

Again, we can express these probabilities using the carreBpg conditional transition
matrix. LetQ € M, be defined, for each pair,l € {1,..., M — 1}, by Qu := Su 2L
by Qaar = 1; and with all remaining entries beirty Then, given a vector of beliefs at
the beginning of Phase Ill represented by a probabilityoret,, we are interested in the
evolution of the Markov process wheg&,' is defined as

gtJBI _ gtBO QlJ .
b ”ggo Qlj H

There is no need to distinguish betwegn andyt,, since in Phase Il the contagion
spreads identically in both communities. For eacht — 7" — T, i\, coincides with the
intermediate beliefs” +7"+. Below, we characterize the limit behavior gf,. Impor-
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tantly, provided thaty%,); > 0, the limit does not depend af},.
Lemma 9. Suppose thaty%,): > 0. Thenlim; . 4o = (0,0,...,0,1) € RM~1,
Proof. Since@),, satisfies property Q2, the result follows from Lemfha n

The logic behind the result is less straightforward than thaLemma8. The largest
diagonal entries of); are the first and last one&1 = Qa—1,1-1 = 5. Unlike in the
contagion matrix of Phase I, staté¢ — 1 is not the unique most stable state. Here, states
and)M —1 are equally stable, and more stable than any other statginéetch period many
states transition td/ — 1 with positive probability, while no state transitions tatgt 1, and
so the ratio% goes to infinity ag increases.

Suppose tﬁat | get infected after™! = ¢...gb and the nextv periods, withl < o <
M — 2, | face good behavior while | play the Nash action, leading tustoryh!*'+te =
g...gbg .. g. Then, | know that fewer thaf/ — 1 — «) people in each community were
unhealthy at the end of periggince, otherwise, | could not have facgih « periods after
getting infected. | have to recompute my beliefs using ttermation that, for each < ¢,
U < M —1—a. Inparticular, for each < t and eactk > M — «, x}, = 0. My beliefs are
computed using),+; and we denote my intermediate beliefs at the end of pefioty
ggi € RM~1=« (the process for seIIerggi € RM-1=2 is the same and can be omitted).

We have the Markov process that starts with a vector of lsebefthe beginning of

Phase III, represented by a probability vegigr, and such thags! is computed as

S+l g C:20z+1J
P 19he Qatyll

As before, for each < —T" —T", iji,.. coincides with the intermediate beliefé' +7" +.
We want to study the limit behavior gt,. ast goes tosc.

The extra difficulty comes from the fact that, for eachwith 1 < o < M — 2,
Qr—1-a,M-1-a < Q11 = 77, and so matrix), 1 does not satisfy property Q2. Therefore,
the intuition behind Lemma8& do not apply and, indeed, the limit beliefs do not converge to
(0,...,0,1). Yet, Q1 holds and we can rely on Lemm¢o ensure convergence.

Lemma 10. Let M > 2 anda € {1,...,M — 2}. Suppose thaty%.), > 0. Then,
lim; oo 75 = Y., Wherey, is the unique nonnegative left eigenvector associated with

— — =M
the largest eigenvalue @f,.1 such thatl| g || = 1. In particular, g2 Qaty = 2.
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Proof. Since, for eaclv € {1,..., M — 2}, the matrixQ), satisfies property Q1, with
(Qa+1))11 = =, the result follows from Lemmé. O

The result above implies that the limit &goes to infinity of the beliefs’ is indepen-
dent of 77 andT”. Given these results on off-path beliefs, we are now equippestudy
the off-path incentives of players.

5 Incentives after Getting Infected in Phase IlI

Checking incentives of players infected in Phase Il is tharhef the proof. We consider
three cases: First, players who gets infected at the st&thase 11l. Next, players who get
infected late in Phase IIl. Finally, we use a monotonicityuement on the beliefs to check
the incentives after infection in intermediate periods lmage I11.

The main idea is that an infected player will always beligvat ttontagion is widely
spread and, therefore, find it optimal to play the Nash actidacordingly, we define a
notion of “contagion being widely spread,” and establisb fweliminary results.

Definition 2. Letx € R represent a probability distribution over the number ofeaithy
people in a community, so thaf, is the probability that there afeunhealthy people. Let
p € [0,1] andr € [0, 1].

e We say that contagion tetally p-spreadgivenz if z,; > p.

M

¢ We say that contagion s, p)-spreadgiven if Z z; > pt?

j=[rM]

Note that totallyp-spread is equivalent td, p)-spread. Lemmal below relates Def-
inition 2 with the incentives of an unhealthy player, regardless @f patient he is. This
independence with respectdas very important because, given our equilibrium strategie
a high¢ is needed for on-path incentives, but may make off-pathntrees harder to sat-
isfy. Since a seller can profitably deviate throughout Pha$el™ is large sellers must be
patient so that the potential losses in Phase Il outweighpassible gains in Phase I. On
the other hand, in Phase lll, a very patient infected playay mot want to punish, since
that would spread contagion and reduce his continuationfpayemmal1 shows that if
an infected player believes that contagion is widely spréaeh he is willing to play the
Nash action because his action cannot affect his contmuathyoff significantly.

172] denotes the smallest integer not smaller thamd | z | denotes the largest integer not larger than
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Lemma 11. LetG € 4. Then, there ar@® € (0,1) andr“ € (0, 1) such that, for each
p > p“ andr > rY, the following holds for every gant&)’ with M > 2 andé € (0, 1):

An unhealthy player who, at some peribd- 7' + T", believes that the contagion is
(r,p)-spread, finds it sequentially rational to play the Nash atti the given period.

Proof. See AppendipA.3. O]

Now, suppose that, at some point in Phase Ill, | am an unheplétyer who believes
that at least one player is infected in each community. Ssgporther that | then play
the Nash action fot periods while observing only. Thus, in each period | infect a new
player and contagion keeps spreading. As the game prockwils eventually believe
that contagion igr“, p“)-spread. The lemma below shows that the number of periods
necessary for this to happen only depends on the gaared on the population sizZ€ and,
we denote it bys“(M). Since contagion spreads exponentially fast in Phaseofiffited
G, 99 (M) is some logarithmic function af/ and the following result is straightforward.

Lemma 12. LetG € ¢ andr € (0, 1). Then, there is\/ € N such that, for eacld/ > M,
we havep® (M) < (1 —7)M.

The above result is important to study incentives in Phdsbkut we also need to under-
stand how beliefs evolve before the Nash action has beeegfay“ (M) periods. Sup-
pose that | am an infected player who is computing his be&ér historyh! = g. .. gb,
with ¢t > T7 + T". Contagion matrices are used to prove that dftdressentially believe
that N — 1 people were infected at the end of period 1 and, therefore, everybody was
infected after period. Histories of the formh!™® = ¢... gbg .2. g are more involved, and
can only be explained by having at maéét- o people infected at the end of periadThus,
the largera is, the more people | believe were healthy at the end of peri@h the other
hand, we have an effect that goes in the opposite directrom periodt to periodt + «
| am infecting healthy players (I am observipgand contagion keeps spreading. A fun-
damental part of the results below consists of showing thiatsecond effect ensures that,
regardless of the value of, | will believe that contagion i¢r®, p“)-spread.

5.1 Infection at the start of Phase IlI

Let »* be a history in which | got infected in pericB’ + T + 1, i.e., h starts with
RT'HTUH1 — ¢ gb. The equilibrium strategies prescribe that | play the Nastfoa at
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t+ 1. The optimality of this action depends on my beliefsbout the number of unhealthy
players in the other community. | must believe that contaggdr, p)-spread withp > p©
andr > p“. Establishing this is the core of the proof of Propositiinelow.

Proposition 3. LetG € 4. Fix T" € NandM > 2. Lett > T' + T" + 1 and leth! be a
history that starts withh”'+7"+1 = ¢ . gb. There isT e N such that, for eact™ > T7,
if | observeh!, then it is sequentially rational for me to play the Nash actio periodt + 1.

Proof. We show that, aftek?, | believe that contagion is totally-spread withp > p©.
Then, the result follows from LemmiEl We analyze three cases.

Case 1.Suppose that! is a history of the formh ' +7"+1 = ¢... gb. By Lemmas,
taking7” large enough, the intermediate beliefs ¢ R, which coincide withy%, if |
am a buyer and witlggf(f if | am an seller, can be made arbitrarily clos€o. . .,0,1).

Suppose that | am a buyer. | will assign probability> p© to M — 1 players in my
community being exposed at the end of Phase I. Since botkhlgesid unhealthy sellers
play the Nash action in Phase IlI, | cannot learn anything fmday in Phase Il. | also
know that there were at least as many unhealthy sellers asaithi buyers by the end of
Phase II. Hence, i’ is large enough, the intermediate beliefs *7" ¢ RM~! are such
that | assign probability > p© to M — 1 players being unhealthy in each community.
Then, in periodl” + 7" + 1, with probability at leasp | got infected by an unhealthy seller
and also the last healthy seller got infected (I was the lealthy buyer). Thus, my beliefs
2T'HT"+1 ¢ RM gre such that afte”'+7"+1 | believe that contagion is totally-spread
with p > p©.

Next, suppose that | am a seller. Since no buyer infected Abase |1, the intermediate
beliefsz! with ¢ > T are computed from”" factoring in this information, which will shift
them towards “less people being unhealthy”. Yetl%@f is large enough, Lemm@&implies
that beliefst?'+7"+1 are such that | believe that contagion is totaHlgpread withy > p©.

Case 2.Suppose thak! is a history of the formh 7' +7"+1+ta — ¢ gbg .. ¢. First,
suppose that < o < M — 2. As we argued in the discussion preceding Len@naknow
that at mostM — 1 — « buyers were exposed at the end of Phase I. So, for eaci™”
and eachk > M — «, 2. = 0. Then, we can represent the beliefs at the end of period
T by y%. € RM-1=2if | am a buyer and/%. € R¥~'~if | am a seller. By Lemma,
for T large enough, these beliefs can be made arbitrarily clogg to. , 0,1) € RM-1-«,

In particular, | will assign probability > PY to M — 1 — « players in my community
being exposed at the end of Phase I. Suppose that | am a buye¢heBame arguments
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of Case 1, the intermediate belief§'+7" ¢ RM-1-= gre such that | assign probability
p > PYto M — 1 — « players being infected in each community. Thus, | got irdddh
period7” + T" 4+ 1 and at mosi\/ — « buyers (and sellers) remained healthy. Then, with
probability at leasp, in each one of the following: periods | faced one of the remaining
healthy sellers and infected him, infecting the last oneeiniqui 7’ + 7" + 1+ «. Therefore,
my beliefsz?'+7" 1+ gre such that afte”’ +7" +1+ | pelieve that contagion is totally
p-spread witlp > p©. If | am a seller, similar considerations to those in Case hassled,
Weref—f, has to be large enough.

Finally, suppose that > M — 2. In this case, by statement iii) in Lemn2al must
assign probability 1 to the following history: The seller avlieviated in period 1 met the
same buyer throughout Phases | and Il, so that Phase lledtanth only one infected
player in each community; then, | got infected in period+ 7" + 1 and | infected healthy
players in the nexd/ — 2 periods; from period™” + T + M — 1 onwards, | met infected
players who were making errors. In particular | believe ttwattagion is totallyi-spread.

Case 3. Now, consider histories where, after getting infected, $efie a sequence
of actions that may include bothandb, i.e., histories starting with” +7"+1 = ¢ ... gb
and where | faced in one or more periods after getting infected. By definitioverg
observation ob shifts my beliefs towards more people being unhealthy. &loee, since
the beliefs in the two cases above are such that, Aftdrbelieve that contagion is totally
p-spread withp > p©, the same also holds in this third case. O

5.2 Infection late in Phase Il

We now analyze histories in which | get infected in periods 77 + 7" + 1 and study
beliefs and incentives d@ggoes to infinity. We start with the result for histories of them
g ...gband then move to the most challenging case, gbg .¢. gwith1 < o < M — 2.

Proposition 4. LetG € 4. FixT' e N, T" € N,andM > 2. Lett > T" +T" + 1 and
leth = ¢g...gb. Thereist € N such that, iff > ¢ and | observé:!, then it is sequentially
rational for me to play the Nash action at periéd- 1.

Proof. First considerz'~' € RM~!, my intermediate beliefs given histofy just before
getting infected. There is a positive probability that tbgue seller who deviated in pe-
riod 1 has met the same buyer throughout the first two phasm.is,'m"{[*w > 0. Then,
when computing:'~! from z7"+7" we can apply Lemma with 7%, = 27" *7" and get
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thatlimy oo 75 = (0,0,...,0,1) € RM~1. Therefore, iff is large enough, the interme-
diate beliefsz’~!, which coincide withy',', are such that | assign probability> p© to
M — 1 being infected in each community. Then, with probability at least, in period

t 1 got infected by an unhealthy player and the last healthygslan the rival community
also got infected. Therefore, my beliefsare such that aftei’ | believe that contagion is

totally p-spread withp > p“. The result follows from Lemmal. O

Next, suppose that | get infected in period> 7' + T" + 1 and after that | face
good behavior forx periods, i.e., | observe a histohyt® of the formg. .. gbg .<. g with
1 < o < M — 2. After these histories, updating of beliefs builds upon ¢he ;. By
Lemmal0, as long as the intermediate beliefs at the start of phasgill € RM~1-<,
are such thaty%.); > 0, thenlim,_,, 75. = 7M., whereg, is such that|yM. || = 1 and
g = MyH.Qa+1.2° The difficulty comes from the fact that nogy~ # (0,...,0,1).

The core of the current section consists of establishing finaeach- € (0, 1) and each
p € (0,1),if M is large enough, | believe that contagior{iisp)-spread after historj‘*e.

In order to do so, the crucial step is to show the following:le (0,1) andm € N; then,
if M is large enough, for eadh< [r)M], there are € (r, 1) andk € [[rM], [FM|] such
that (ge)e > M™ (o ).

Two opposing forces affect how my beliefs evolve after | absg ... gbg .¢. g. On
the one hand, each observatioryafuggests that not too many people are unhealthy, mak-
ing me step back in my beliefs and assign higher weight to istages (fewer unhealthy
people). On the other hand, since | believe that contagiantest att = 1 and that it is
spreading during Phase lll, every elapsed period makes signasiore weight to higher
states (more unhealthy people). The intuition behind thgnitades of these two effects is
as follows. First, each time | obsergemy beliefs get updated with more weight assigned
to lower states and, roughly speaking, this step back iretselurns out to be of the order
of M. Second, the state arising after the most likely transition from a given states
abouty/M times more likely than the staie Then, by taking)/ large enough, we can
find 7 € (r, 1) such that, givert < [rM/], the number of “most likely transitions” needed
to get from staté: to a statet’ > |7M | is as large as needed. In turn, there will be a state
k € [[rM],|rM]] that can be made arbitrarily more likely than

BRrecall that there is no need to distinguish betwgen andy,, since in Phase Il an equal number of
players is infected in each community and contagion spriefatdically in both communities.

19n our construction, the conditiogf > 0 follows from the fact that, with positive probability, thegue
seller may meet the same buyer in all the periods in phasea$il.an
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We need some preliminaries before proving formally the abmyservations. Recall that

. g M—k—j_ (KN ((M — k)!)? M—Fk—j
(Qaryriees = Skes 37— TGNk — UM —k —H)IM! M —k

Given a staté: € {1,...,M — 2}, let tr(k) := |22 | which, for large)M, is such
that £ + tr(k) is a good approximation of the most likely transition froratetk. Next,

we temporarily switch to the case where there is a continutistates, i.e., we think of
the set of states as the interya] M]. In the continuous setting, a statec [0, M|, can

be represented as\/; wherer = z/M can be interpreted as the proportion of unhealthy

people at state. Lety € R and letf,: [0,1] — R be defined as

rM(M —rM)

i +y=(r—r)M+7.

fo(r) =

Note that allf., functions are continuous and thattt/) = | fo(r)], SO f, is the extension
to the continuous case of functiorg-fr. We want understand the likelihood of the transition
from stater M torM + fo(r)is. Letg: [0,1] — [0, 1] be defined as

g(r) == 2r —r?
The functiong is continuous and strictly increasing. Givene [0, 1], g(r) represents
the proportion of unhealthy people if, at state/, f,(r) healthy people get infected, since
rM+ fo(r) = rM+(r—r?)M = (2r—r?)M. Letg*(r) := g(g(r)) and define analogously
any other power of. Hence, for each € [0, 1], ¢"(r) represents the fraction of unhealthy
people aften steps starting at)/ when transitions are made accordingf§¢-).

Lemma 13. Let M € N anda,b € (0,1), witha > b. Then,aM + fy(a) > bM + fo(b).

Proof. Note thatuM + fy(a) —bM — fo(b) = (g9(a) — g(b))M, and the result follows from
the fact thay(-) is strictly increasing or0, 1). O

Leth]': (0,1) — (0, 00) be defined as

(rMW2((M — rM)!)? M —rM — fy(r).

) = DR — £, ()M — oM = H) M =M

o

This function is the continuous version of the transitiongeg by the matrianHJ. In
particular, giveny € R andr € |0, 1] the functionhfy(r) represents the conditional prob-

32



ability of transition from state'M to staterM + f.,(r). In some abuse of notation, we
apply the factorial function to non-integer real numbenssuich cases, the factorial can be
interpreted as the corresponding Gamma function,dle= I'(a + 1).

Lemma 14. Lety € Randr € (0,1). Then,limy,_,., Mh) (r) = co. More precisely,

. Mh,];/[(r) _ 1 .

M=oo /M r27
Proof. We prove the result in two steps.
Step 1: v = 0. Stirling’s formula implies thaﬁimn%o(e*“n”*%\/ﬁ)/n! = 1. Given
r € (0,1), to studyhl/(r) in the limit, we use the approximation = e " e/27.
Substituting and simplifying, we get the following:

(T ((CRALIO! .
M2 M) (((r —r2)M)D)2((1 —7)2M)!

M(TM)1+2TM((1 _ T)M)1+2(1—r)M(1 _ T)
\/%M%+M((1 — )2 M) H20-2M ( — TQ)M)%(rfr?)M(rzM)%JerM
VM
rV2m

Step 2: Lety € Randr € (0,1). Now,

MW (r) = M

ho'(r) _ (rPM — )((r = )M + 1)) (L —r)*?M —7)! (1 -1)°’M

W(r) (r2M)N((r = r2) M)!)((1 = r)2M)! (1—=r)2M =~

Y

Applying Stirling’s formula again, the above expressiocdiaes

1.2, 2 lia—m2m—
(P2M-7) 3T M () M) 2O IM A2y (1) 2M ) 3O MY (2 (1)
(TQM)%JFTQM ((T,_T.Z)M)1+2(r—r2)]vf ((1_7,)2M)%+(17'r)21\l (1-7r)2M—~"

To compute the limit of the above expressionlds— oo, we analyze the four fractions
above separately. Clearly,l — r)>M)/((1 —r)*M —~) — 1 asM — co. So, we restrict
attention to the first three fractions. Take the first one:

(,,,QM _ ,y)%+r2M—7

(r2M)z+r*M

7\t 7\ _
:(1_T2M)2.(1_7’2_M) ZM'(TzM_’Y) T=A1- Ay Ay,

wherelim,;_,., A; = 1 andlim;;_,, A2 = e¢~7. Similarly, the second fraction decomposes
asBj-By- Bz, wherelimy; .., B; = 1,limy; .o Bo = ¢*Y andB; = ((r—r*)M+~)%". The
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third fraction can be decomposed@sCs-Cs, wherelimy; ,., C; = 1, limy; oo Co = 77
andCs; = ((1 — r)2M — ~)~7. Thus, the limit of expressiorif asM — oo reduces to

1

. 1
A/llli\noo GV(TQM — ’7)7

N = )M AT T Ty
jin_( ((r = r*)M +7)* )
15 N2 =) (1= )M — )

1. O

We are now ready to present the results regarding the pieperftyZ, which, relying
on Lemmab, can be used to get properties of the othr vectors.

Lemma 15. Letr € (0,1) andm € N. Then, there are¢ € (r,1) and M € N with the
following property: for eachV/ > M and eacht < [rM], there isk € [[rM], [FM]]
such that(y¥, )z > M™ 1 (y)y.

Proof. Fix r € (0,1) andm € N. We start with staté, = [rM] —1. Letp := 2m+ 3 and
7 := ¢”(r). Recall that functiong, andg are such that; < 7 < 1. Let M’ be such that,
for eachM > M’', #M < M — 2. Let k be the number of unhealthy people aftesteps
according to function tr) starting from statéy,. Clearly,k > [rM] and, sincei, < rM,
Lemmal3implies thatk < 7M. Thus,k € [[rM], |FM]].

Foreachj € {1,...,p}, letk; := k;_; + tr(-). In particular,k = k,. Recall that, for
eachr € (0,1), tr(rM) = | fo(7)]. Then, for eacly € {1,...,p}, there isy; € (—1,0]

such that ttk; 1) = f,,(%=2). By Lemmalo0, g = M7 Qy. Then,

M-2

W)k = MY YR Qy)iry > MU ko (Qo ko = (T ey MEL! (1),
k=1

which, by Lemmadl4, can be approximated b%(gg{)ko if M islarge enough. Repeating
the same argument for the other intermediate states tha¢acbed in each of thesteps
we get that there i8/,0 such that, for each/ > M.,

1

Mz
(rv/2m)e

i ME m
(Tp1 )z > m(y%)ko = M

(ggl)ko > Mm+1<g%)k0'

The proof for an arbitrary state < [rM| — 1 is very similar, with the only difference
that more tharp steps might be needed to get to a state [[rM], [FM]]. Yet, the
extra number of steps makes the difference betwggh), and(y%.); even larger. Then,
it suffices to definél/ := max{ M’ maxy<x,{ Mx}}. O
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The following result is an immediate consequence of Lemfa

Corollary 1. Letr € (0,1) andm € N. Then, there are € (r,1) and M € N such that,
for eachM > M,

1
i >1—— and
! Zj\/ﬂ M
7‘]\/[ _
S (TR, L
AU

j=1 \Ypa)j

i) for eacha suchthatV/ —1 —a > |TM |,

Proof. The proof of statement i) is straightforward. Moreover, bgmimab, for each
=M .
a€{2,...,M—2}andeacly < M —1—a, (§3.); = % . Then, for eachw
i=1 Bl/4
suchthatV/ — 1 — « > |FM |, we have

S an @) S an (054,
S gy, S g,

and the proof of statement ii) is also straightforward. TheditonM —1 —a > [FM | is
important, sincg/}l, € RM-1-«, O

Y

Proposition 5. LetG € 4. FixT' € NandT” € N. Lett >t > T'+T" + 1 and let
h! be a history that starts with! = g... gb. There aref € N and M € N such that, for
eachM > MC, ift >t and | observé/, then it is sequentially rational for me to play the
Nash action at period + 1.

Proof. The logic of the proof is similar to that of Propositi@ We divide the proof in
three cases for which we show that, aftér | believe that contagion i&“, p©)-spread.
Then, the result follows from LemnmiL

The case =t, i.e.,h’ = h' = g ... gb, follows from Propositiont.

Case 1. Suppose that! is a history of the formh!™! = ¢...gbg, sot = t + 1.
Similarly to the proof of Propositiod, we are interested in my beliei$ € R, but we
start studyinge'=2 € RM—2, my intermediate beliefs given histofy right before getting
infected. There is positive probability that the rogueesellho deviated in period 1 has
met the same buyer throughout the first two phases. ThTLfiTH > 0. Then, when
computing my intermediate belief$—2 from 27" +7" ¢ RM™~2, we can apply Lemma0
with 7%, = 27" +T" and get thatim, ., 7% = 7% . Thus, iff is large enoughy’2, which
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coincides withy%,,>~7"~7" , is very close tg;% . In particular, by taking: € (0, 1), r > €,
andm = 1 in statement i) of Corollarl, we have that there aréand M’ such that, for
eacht >t and each\/ > M’,

M—2 M—2 1
—2 S N -
E Ty = ‘ § (yBl ) >1- M 2> p
Jj=[rM] j=[rM]

Now, we user’~2 to computer’.

e After periodf — 1: | computez’~" by updatingzt—2, conditioning on i) | observed
in periodt — 1 and ii) at mostM — 1 people were unhealthy aftér 1 (I observed
g att). Let z~! be the belief computed from—2 by conditioning instead on i) |
observed; in period? — 1 and ii) at mostM — 2 people are unhealthy. Clearly !
first-order stochastically dominatéé™!, in the sense of placing higher probability
on more people being unhealthy. Moreov&r,' coincides withy,' 7 ~7", which
also satisfies that_ ' 2, (70,7 ""); > p°.

e After periodi: | computez! based o'~ and conditioning on i) | observeg ii) |
infected my opponent by playing the Nash actiom; &nd iii) at most\/ people are
unhealthy aftef. Again, this updating leads to beliefs that first-order kastically
dominatei?, the beliefs we would obtain if we instead conditioned ondpserved;
and ii) at most\/ —2 people are unhealthy afterAgain, z* coincides Wlthﬁ Tt
which also satisfies thaf ' er1 (57T, > pC.

Hence, contagion i&"“, p©)-spread given'.
Case 2. Suppose that! is a history of the formh!*® = ¢...gbg .@. g, sot =

t + o. Again, we start withe'!~'=® ¢ RM-1-2 my intermediate beliefs given history
h' right before getting infected. Similarly to Case 1, relying loemmal0 with 7%. =
2T e RM-1-a we get thafim,_, 7. = 7. Thus, iff is large enoughy’—~,
which coincides withj,'~*~7"~T" is very close toj}.. Now, by takingr € (0, 1),
r > r% andm = 1 in statement ii) of Corollaryl, we have that there aré and/” such

that, for eacht > t” and eachV/ > M”, for eacho suchthatV/ — 1 —a > |[FM |,
ZLTMJ ( T “1-a— TI— TH).

i er] J

ZLTMJ( —I— 1 —a—T1— TU>'

J

G

>1-— >p.

1
M
Next, we use»“ (M), defined after Lemmal. By Lemmal2, there isM” such that, for
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eachM > M", ¢“(M) < (1 — ¥)M. Suppose that/ > M” and? > t”. We distinguish
two subcases, depending on the value of
M —1—a > |FM]: Inthiscase, ifwelet* ==t —1—a—T' —T", we have

M—1—«a M—-1—«a ZM—l—Oé(—t* )
; " —eat) (UBa);
> A= X =T
j=[rM] Jj=[rM]
M — M @ M _p*
ZJL [TJM](yBO‘) +ZLTM3+1(yBO‘) Z]L (rJM (¥a); e
S+ S Gy S @),
Ype |FM | +1 Yo Yo

M—-1-a {—1—-« el
Therefore .~ .\ @5 > p“. We can repeat the arguments of Case 1 to show that

my beliefsz* first-order stochastically dominaté—'—“ obtaining again that contagion is
(r¢, p©)-spread given'.

M —1—a < |FM]: Since¢®(M) < (1 —#)M, we haveo > M — 1 — |[FM | >
(1 —7)M > ¢%(M) we have, by definition ob“ (M), that | believe that contagion is
(r¢, p©)-spread given'.

Case 3.Now, consider histories where, after getting infected, delve a sequence of
actions that may include bothandb, i.e., histories starting with® = ¢ ... gb and where |
facedb in one or more periods after getting infected. By definitiorerg observation ob
shifts my beliefs towards more people being unhealthy. dfoee, since the beliefs in the
two cases above are such that, aftgr believe that contagion i, p“)-spread givent,
the same also holds in this third case.

To conclude the proof, just I8t/& := max{M’, M"} and{ := max{t', t"}. O

5.3 Infection in other periods of Phase |

In Section5.1 we proved that, if | get infected at the start of Phase llI, Il ielieve that
contagion is totallyp“-spread. In Sectio®.2 we proved that, if | get infected late in
Phase Ill, | will believe that contagion is totally“, p“)-spread. Next, we show that, if |
get infected in other periods of Phase Ill, my beliefs wil ih between. In some sense,
as a function of the period in which | get infected, my beli&i move “monotonically”
from the kind of beliefs characterized in Sectii to those characterized in Sectibr

Proposition 6. LetG € ¢ and letM > M. Fix T" € N. There isT} € N such that, for
eachT” > T}, itis sequentially rational for me to play the Nash actioreagach history
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in which | get infected in Phase lll.

Proof. The cases in which | get infected at the start of Phase Il atedih Phase Il are
covered by Propositio, Propositiord, and Propositiors. What remains to be shown is
that the same is true if | get infected at some intermediatege Phase I1l. We prove this
for histories in Phase IIl of the for’ = ¢ ... gbg. The proof can be extended to include
other histories, just as the proofs of the above propostigve want to compute my belief
z* afterht. We first compute the intermediate beliefs?.

Beliefs are computed using matr@(QJ in Phase | and), in Phase I1l. We know from
Section5.1 (the arguments in Propositighthat build upon Lemma) that, by taking’™”
large enough, we can make the intermediate beliéfs”"+! ¢ RM arbitrarily close to
(0,...,0,1). SinceQ satisfies Q1 and Q3, by LemnTaif | start Phase Ill with such
beliefsz? +T"+1, 412 first-order stochastically dominatgg’ . | still need to update my
beliefs fromz'—2 to 2/~ ! and then fromx!~* to zf. The arguments to show that the resulting
beliefs are such that | believe that contagiofvfs, p“)-spread are analogous to those used
when proving Case 1 in Propositidn O

6 Off-path Incentives at other histories

In this section we discuss the incentives at histories ne¢i@m in the preceding section.
For the sake of brevity, the exposition here is informal. Tieentives at the histories
discussed here are straightforward after the foregoindysisain Sections4 and5. In
Subsectiort.4, we conclude our analysis by specifying the order in whiah different
parameters of the constructial,, 77, T", and¢ are fixed.

6.1 Incentives after becoming rogue
6.1.1 A seller becomes rogue in period 1

Exposed and infected players believe that a seller becagwerm period 1. Thus, the
behavior of such a seller is important for the off-path inoes of infected players.

Recall that the equilibrium strategies prescribe that &selho turns rogue in period 1
of the game plays’ until the end of Phase | and then switches to the Nash actienda
Upon deviating in period 1, the rogue seller knows that ongbis exposed, and this buyer
will start playing the Nash action from the start of PhaseMareover, there i)' € N
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such that, if7"" > T}, this buyer will almost certainly infect all sellers durifpase Il
Then, from the start of Phase lll, all infected sellers wél fdaying the Nash action, and,
therefore, everybody will almost certainly be infectecafieriodl™” + 7" + 1. Now, given
the lengthl™ of Phase Il, there i8} € N such that, for eacthi” > 7%, the following holds:

. f—fl is large enough so that the rogue seller will have an incentikeep deviating in
Phase I, since his short-run gains in Phase | will be largar the potential losses in
Phase Il and Phase Ill. This is the case independently ofisisewnt factov < (0, 1),
and the logic is analogous to that behind Lenmiia

° IT—,II is large enough so that, even if the rogue seller faces thegatimaction many
times in Phase Il, he still beliefs that, with high probalgjli/ — 1 buyers got exposed
in Phase | and he has been repeatedly meeting the only rergdiealthy buyer in
Phase II. Thus, regardless of what he observes after begaogue in period 1, if he
plays as prescribed by the strategy from that period onwéselsvill start Phase Il

believing that, with very high probability, at most one buigehealthy:

— If he thinks that everybody is infected at the start of Phés¢hlen playing the
Nash action at the start of Phase lll is optimal. In the rechairof Phase I,
no matter what actions he faces, he will always believe thih very high
probability, everybody is infected. This is so even afteseving good behav-
ior, since after any such observation he will believe thab&gjust infected the
last healthy opponent (this argument was discussed maraftyrduring some
parts of the analysis in Sectié@).

— Even if he thinks that there is one uninfected buyer, ther#/§$ € N such
that, for each\/ > M, the probability of meeting such a buyer in the given
period is so small that the potential gain the seller mighbgdacing her when
not playing Nash would not compensate the losses when facygther buyer
(who would be playing the Nash action).

6.1.2 A player becomes rogue after period 1

The behavior of these players has not been specified bug smother player would ever
assign positive probability to such a player existing, itheghavior is irrelevant for the
incentives of other players.

39



6.2 Incentives after facing deviations in Phases | and I
6.2.1 A buyer gets exposed in Phase |

The strategy prescribes that, during Phase |, an exposexut plays the on-path action and
reverts to the Nash action at the start of Phase Il. Sinceatiens of buyers during Phase |
are non-triggering, her incentives at a given period of Bhasst depend on her expected
payoff in that period. Since the action profile played in Rhbkas one-sided incentives,
the exposed buyer could only profit by deviating from the athaction if she happened to
meet the rogue seller. Then, theréi§’ € N such that, for each/ > Mg, the probability
of meeting the rogue seller in the given period is so smatlttr@potential profit the buyer
might get by facing him when deviating would not compensagddsses when facing any
other seller. Therefore, playing as if on path during Phaseptimal for her.

Once Phase Il starts, two things can happen:

i) The buyer has observed an off-path action in every perié&thase I. Then she knows
that she has met the rogue seller in every period of Phasethahdo other buyer is
infected. Moreover, she knows that the rogue seller bediéhvat, almost certainly, he
has infected all buyers in Phase I, and is playing Nash arigpriéad the contagion
in Phase lll. Then, there 8" € N such that, for eacli™ > T3, she will have an
incentive to play Nash in Phase I, since her short-run gaiffhase Il will be larger
than the potential losses in Phase lll. This is the case emtgntly of the discount
factord € (0, 1) (the logic is analogous to that of Lemrha).

ii) The buyer has observed the on-path action at least onéhase I. In this case,
Phase Il starts with at least two infected buyers and, régssaf the actions of this
buyer, contagion would spread during this Phase Il. Thgsintentives to play Nash
and make short-run gains during Phase Il are even largeiiritthe case above.

Finally, once Phase Il starts, the buyer will believe thagrgbody is infected and so
she has the incentive to keep playing Nash. As before, oaens of good behavior
during Phase Ill would not change these beliefs, because @fery such observation the
buyer would think that she has just infected the last heafiponent.

6.2.2 A player gets infected in Phase II.

Next, consider players who get infected in Phase Il. Theegyaprescribes that these
players, buyers or sellers, should switch to play Nash frelhese players would believe
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that the contagion is widely spread, the logic being veryilainto the case of a player
getting infected at the start of Phase Ill, discussed ini@e& 1 In particular, a result
analogous to Propositiod holds: GivenT™ and M > 2, there isT, € N such that, for
eachT” > T}, it is sequentially rational for a player to play Nash afteery history in
which he got infected by observing a triggering action ing$ehi

6.2.3 A non-triggering action is played in Phase I.

The equilibrium strategy prescribes that these deviat@wasgnored. Thus, both the seller
observing this deviation and the buyer playing it beliewat this opponent will continue to

play as if on path. Given that the opponent will indeed igrtbeedeviation, the incentives

for both players coincide with the on-path ones.

6.3 Incentives after histories with multiple deviations

A complete analysis of off-path incentives requires thegtwf histories that involve mul-
tiple off-path deviations. At some of these histories batrakias not yet been specified
explicitly. Since these histories are of secondary impurgéa we discuss them in the On-
line Appendix B.2), which also contains a classification of all off-path histe that can
arise and describes the relevant arguments for the inesraiveach of them.

6.4 Choice of the parameters

To establish the intermediate results used in the proof op#sition2, we have used
bounds on the different parametevs, 77, T, andd. Thus, it is important to specify
the order in which they have to be chosen so that all the mesalt be applied.

i) Population size: M. The first parameter to be fixedig. Recollecting the different
bounds obtained fak/ we haveM & in Propositior, MS' in Section6.1.1, and M
in Section6.2.1 Then, it suffices to také/ > max{M{ MS M, 3}. Note that
M just depends on the payoffs 6f so Propositior2 is not a limiting result on\/.

i) Length of Phase II: T". Recollecting the different bounds f@r”* we haveTi" in
Section6.1.1and7}’ in Section6.2.1 Then, it suffices to také&” > max{7}", T,'}.

iii) Length of Phase I:T*. OnceT™ has been fixed, we pick’. Regarding the bounds
for 7" we havel7 in Proposition3, 77, in Propositions, 73 in Section6.1.1, and7)]
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in Section6.2.2 T must be fixed already because some of these bounds depend on

T". Then, it suffices to tak&" > max{T}, 15,13, T}}.

iv) Discount factor §. The last parameter to be chosen is the discount factor,eviobs
is twofold: to ensure that deviations from the equilibriuattpare not profitable and
to ensure that approximates the target payeff To this end, bound§, andd, are
given in SectiorB8.4. Thus, onceV/, T*, T", and the degree of approximatiemave
been chosen, it suffices to take> max{d;, d, }.°

7 Discussion

7.1 The role of calendar time

We implicitly assume that all players know when the gameetband can perfectly coor-
dinate using calendar time. Although this is a standard ate gqnnocuous assumption in
game theory, it turns out to be more substantive in our gettin

Commonly known start of the game: The fact that all players know that the game starts
at timet = 1 is important in our construction. When a player is requiregunish a devia-
tion by playing the Nash action, she believes that enougplpewe already infected which
makes the Nash action optimal. Here, we use the fact thaéaynow how long the game
has been played and can therefore deduce that enough peejpheated. An interesting
line of investigation may be to consider a model of repeatégtactions in which the start
date is not commonly known. For instance, one possible agpravould be to consider a
setting where players enter and leave the game as time srdaldl have limited informa-
tion about past history. A detailed analysis of this issuseigond the scope of this paper.
Perfectly synchronized interactions:In our setting, it is commonly known that in every
period all players participate. One could consider altermaodels in which only some
players are matched in every period, or in which matches pédee with some probabil-
ities in a continuous time setting. An analysis of this isdr&y the scope here. We think
that synchronized play is not crucial, and that a resultMkeposition2 may still hold?!

201t is worth highlighting that Lemma.1 is crucial. It states that if an unhealthy player believest th
contagion igr, p)-spread withr > ¢ andp > p® then, regardless of discount factor, he will find it optimal
to play the Nash action. This independence with respectadaligcount factod is what allows to choosé
last, and ensure that this choice does not interfere witlnethelts related to the off-path incentives.

21Some “problematic” histories of our setting would not aniseler asynchronous matching; e.g., there
could be no history in which a buyer starts Phase Il knowirgg fhe and the rogue seller have only faced
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7.2 Introduction of Noise

Since players have strict incentives, our equilibria atisb to the introduction of some
noise in the payoffs. Suppose, however, that players wansti@ned to make mistakes
with probability at least > 0 at every history. Our equilibrium construction is not robus
to this modification. Our assumption that early deviatioreslzelieved to be more likely
ensures that when players are required to punish, they thatkhe contagion has spread
enough for punishing to be optimal. If mistakes occur witkipee and equal probability
in all periods, this property is lost.

7.3 Alternative Systems of Beliefs

What is important for our delayed grim trigger strategies twkas that an infected player
believes that almost everybody was infected after Phase IcA guarantee this with our
assumption that a player who observes a triggering actibeves that some player from
Community 1 deviated in the first period of the game. However,aonstruction would
work as long as the first triggering deviation is believed awéhhappened early enough in
the game, not necessarily in the first period. We work withetkteeme case for tractability.
Our extreme belief also yields the weakest boundnWith other assumptions, for
a given game&~ € ¢ and givenT” andT", the threshold population siz& required to
sustain cooperation would be weakly greater than the tbtéste obtain. Why is this so?
Formally, on getting infected at periad let a vectorz! € RM denote my belief about
the number of people who are not healthy in the other commuaithe end of period,
wherez! denotes the probability of exactly people not being healthy. Then, my belief
z' can be expressed a$ = ', u(7)y'(7), whereu(7) is the probability | assign to
the first deviation having occurred at periedandy’(7) is my belief about the number of
people who are not healthy if | know that the first deviatiooki@lace at period. Since
contagion is not reversible, every elapsed period of contagesults in a weakly greater
number of infected people. Thus, my belief if | think the firgiection occurred at = 1
first-order stochastically dominates my belief if | thinlethirst infection happened later,
at anyt > 1, i.e., for eachr and each € {1,..., M}, M (1) > 2™ yi(7). Now
consider any belief! that | might have had with differently chosen trembles. Tdesief
will be some convex combination of the belief¢r), for~ = 1,...,t. Since we know that
y*(1) first-order stochastically dominatgqr) for all 7 > 1, it follows thaty’(1) will also

each other in Phase I.
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first-order stochastically dominafé. Therefore, the belief system in this paper is the one
for which players will think that the contagion is most wigesad at any given time.
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A Proofs Omitted in the Text

A.1 Proofs of results in Sectiord.1

Proof of Lemmad.. In order to prove a property for we need to study the sequences
{0 }nen @and{ i, }nen. Consider the following three events:

e £ :=“There has been a triggering action.”
e E':="Aseller played a triggering action in period 1.”
e BV :=“No seller played a triggering action in period 1.

For eachm € N, we useP, to denote probabilities of different events given Note that,
E' andE° are disjoint events and that™ = E' U E°. Since playei is in the exposed or
infected mood at!, P,(E™|;:) = 1 for eachn € N. We are interested i, (E*|,:) and
P,(E° ) =1 — P,(EY:). We want to prove thdim,, .., P,(E'[,:) = 1. Note that

0 t
Po(E%)  “hant  Pu(EONRY) 11— Py(E'0hY)
Pu(E'w) — BEO)  B(EYAR) (BT

and, therefore, to prove thdt,(E'|,:) converges to 1 we can equivalently prove that
lim,, oo (1 — pl)/pl = 0, wherep, = P,(E* N At).

If ¢ = 0 no player can be exposed or infected aftgrso there is nothing to prove. If
t = 1 no player can be infected aftéf and only a buyer can be exposed aftérwhich
would happen only if she has faced a triggering action inqeeti. Hence, for such a buyer
P,(E';x) = 1 for everyn € N. If t > 1 and player; has faced a triggering action in
period 1, then als®, (E|;:) = 1 for everyn € N.

Suppose now that> 1 and that playei has neither faced a triggering action in period
nor a non-triggering action ih’. The case with non-triggering actions/ihis discussed at
the end. Givenl/, t, andh!, let F*(M,t, h') denote the number of different ways to match
the 20/ players through periods to ¢. Next, we construct a lower bound fpf and an
upper bound foi — p.

We start by computing a lower bound on the probability of trestrunlikely complete
history (not just personal history) compatible with N At with the following two prop-
erties: i) the only deviation frona by a healthy or exposed player is made by a seller
in period 1 and ii) at most one player deviates frenat any given period. First, since
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matching is uniformm is the probability of the corresponding matches having been
realized. Then, since a seller deviated in peripduch a deviation had probabili%? (re-

call thatD + 1 is the number of actions available to sellers in the stagesgaBy ii), no

one else deviated in period 1, which has probability- €, )?*2. In each of the remaining

t — 1 periods, the most unlikely profile that is compatible withand ii) is that a rogue
player deviated and that no one else #idThe probability of such a profile at a period

7 is bounded below b)?}b/—r(l — e/")2M=2: the second term reflects that no other player
deviated and it represents a lower bound sihees;/™ is the probability that an infected
player does not deviate (and infected players are the ni@dy lones to do so). Thus, the

probability of the complete history under discussion isrmed below by

n+1
n

1 en t 61/T 1 -
Ly n 2M -2 < n 1— 1/nt 2M—2> >
FY(M,t hf)D( @] p e = Fl(M,t,ht)G(n> Dt

wherelim,,_,,, G(n) = 1. Since the above probability corresponds to just one of tssip
ble histories compatible witi’! N A?, we have that

1 gntl
; 7 Gn) =5
FI(M, £, ) D

1
Dy =

We do now the opposite exercise and compute an upper bourftegorabability of the
most likely complete history compatible wifli’ N 2!, Since such a history must contain a
triggering action in a period different from period 1, ths@sated probability is bounded
above byain, which is the probability of a triggering action in period & forgetting
about all other terms dealt with in the case above, sincefdahem are bounded above
by 1). Thus, we have that— p! can be bounded by

8211

1 —pl < F*(M,t, h', D)=~

pn — ( ] ) ) D 9
whereF*(M, t, ht, D) denotes the number of complete histories compatible witm A?.
Therefore, we have

1-ph _ F*(M,t,h', D) F*(M,t,ht, D)F'(M,t,ht)D'=! 2
; Gn)sit G(n) eptt’

Py i

1
F1(M,t,ht)

2?Recall that deviations by infected players are more likélgnt deviations by rogue players and that
i) requires that no healthy or exposed players deviaté ifter period 1.
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Sincelim,, .., G(n) = 1 and all other terms not including, are constant im,

which implies thatlim,, .., P,(E*|;:) = 1. Yet, one has to ensure that there exists a
complete history compatible witi’* N h! satisfying i) and ii), but this readily follows
from the fact that ther,, strategies are completely mixed (and all histories havéipes
probability of being realized).

Finally, suppose that the playehas faced some triggering action/ih These actions
can only be made by healthy or exposed players and have naimps#he future behavior
of other players. Thus, the computations of the bounds afmve! and1 — p! can be
immediately extended by requiring that the studied his®gontain the observed non-
triggering actions. Since this inclusion would be in thetdrigs associated with both*
and E°, with the same probabilities in both cases, the correspgnirms would cancel
out when computiné;Tp’li. n

Proof of Lemm&. Suppose thak! has probability zero conditional on a seller playing a
triggering action in period 1 and play proceeding accordmg thereafter. Lemma still
guarantees that playeémputs probability 1 onZ!. Yet, additional deviations fromr are
needed to explaih’.

We start with statements i) and ii). If playéeis a buyer and has faced a triggering action
before periodl™” + 2, since no seller can be in the infected mood before that petiren
either a healthy or a rogue seller made that deviation. Siew@tions by a rogue seller
become infinitely more likely as goes toxo, in the limit player: will put probability 1 on
such a deviation coming from the rogue seller. If playes a seller and has faced some
non-triggering action in Phase I, then these deviations ffaare errors by definition.

Consider now statementiii). Since playelid not get exposed in period 1, with positive
probability a buyer became exposed in period 1 and thentedesome seller in perict’ +
2. Thus, for eacln € N, playeri puts positive probability on the event “there is at least
one infected player in each community after peribd+ 1.” Suppose now that’ has
probability zero conditional on a seller playing a triggeriaction in period 1 and play
proceeding according t@ thereafter except for possibly some deviation already reml/e
by statements i) and ii). Consider the following three events

e AAd . =*pt cannot be explained with a single deviation in period 1 amdesdeviation
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covered by statements i) and ii).”
o Al :=“All additional deviations have been made by infected ptayerrors).”
o A" :=“At least one additional deviation has been made by a healthygue player.”

The arguments are now similar to those in the proof of Lemim#Ve want to show that
lim, . P,(AY:) = 1. The construction would again rely on the computation ofdow
and upper bounds fd?,(A! N At) and P, (A° N RY), respectively.

Setting aside terms that are constantiior that converge td asn goes tooo, the
lower bound onP, (A® N k') would be of the order of” (deviation by a seller in period 1)
multiplied by H;Tuz e/ (a deviation by an infected seller in each and every period
from T 4 2). Thus, this lower bound would be of the order

t t

n 1/nt n 1/n _ _n _ _t/n

Ep” II (o Zgn-”gn =g,
T=T1+2 T=1

On the other hand, the upper bound@n{ A° N k') would arise when considering that,
apart from the deviation by a seller in period 1, there way onle additional deviation,
which was made by a rogue player at peridtate deviations by rogue players are the most
likely ones). Then, an upper bound can be giver&;pyg,l/t. Hence, since the termg§ in
the two bounds cancel out and, agjoes toco, er/" becomes infinitely smaller thary/",

we have
P,(A°NAhY)

1 o 7
noe By (AL BY)
Thereforelim,, o, P, (A]:) = 1. O

=0.

A.2 Proofs of general results for contagion matrices (Sectiod.3.])

Proof of Lemma. Let \ be the largest eigenvalue and left eigenvector associated with
it. Suppose is the first coordinate of such thatr;, # 0 and assume that, > 0 (the case
xr < 0is analogous). We want to prove that> 0, for all > k. The proof is done by
induction oni — k. The caseé — k = 0 follows by assumption. Suppose that the result is
true fori — k = j, i.e.,x; = x4, > 0. We want to show that; ; = =411 > 0.

Clearly, since?) is a contagion matrix, the propertiesofind A imply that (zQ);; =
2iQiit1 + Tit1Qit1,i11 = ATiy1. Then,z;Q; i1 = (A — Qix1,4+1)xi11. By the induction
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hypothesis; > 0 and, since&) is a contagion matrixy; ;.1 > 0. Then,z,Q; ;1 > 0 and,
sinceX > Qi+1+1, We have\ > ;41,41 andx; 1 > 0. O

Proof of Lemmal. Let [ be the largest index such th@y, = A > 0, and lety be a non-
negative left eigenvector associated withWe claim that, for each < [, y; = 0. Suppose
not and leti be the largest index smaller tharsuch thaty; # 0. If i < [ — 1, we have
thaty,,, = 0 and, sinc&?; ;.1 > 0, we get(yQ);1 > 0, which contradicts thay is an
eigenvector associated with If ¢ = [ — 1, then(yQ); > Quyi + Qi—1.1Y1-1 > Quyi = Ay,
which, again, contradicts thatis an eigenvector associated with Then, we can restrict
attention to matrix;—1). Now, X is also the largest eigenvalue Qfj;1) but, by defi-
nition of /, only one diagonal entry afy;_) equals) and, hence, its multiplicity is one.
Then,z € R~V is a left eigenvector associated witifor matrix Q;_) if and only if
(0,...,0,2) € R*is a left eigenvector associated wittfor matrix Q. O

Proof of Lemm&. Letl < kandletz := (y%,...,y% ) € R*. Since a contagion matrix
is upper triangular we have that, for eaghg {1,...,k—1}, (2Qy); = (y“Q);. Therefore,
z IS a left eigenvector associated with the largest eigeevafd) which, therefore, is also

the largest eigenvalue 6f;. Then, by definitiony@ = = ﬁ O
i=1 94

Proof of Lemma. Clearly, since() is a contagion matrix, it is large enough, all the
components of/* are positive. Then, for the sake of exposition, we assumieathéhe
components of are positive. We distinguish two cases.

Q satisfies Q1.This part of the proof is a direct application of Perron-Faoins theo-
rem. First, note thaﬁ%ﬁn can be written aﬁ%. Now, using for instance Theorem 1.2
in Senetg2006, we have tha% converges to a matrix that is obtained as the product of
the right and left eigenvectors associated\toSince in our case the right eigenvector is
(1,0,...,0), % converges to a matrix that hg$ in the first row and with all other rows
being the zero vector. Therefore, the result follows fromftct thaty, > 0.

Q satisfies Q2. We show that, for each < k, lim; ,,,y! = 0. We prove this by

induction oni. Leti = 1. Then, for each € N,

t+1 t ¢ t
Y1 Quy, < Quy; < Yi

y;tfl a Zlgk szyf Qkkyii N y;tﬁ,

where the first inequality is strict becauge ; > 0 andQx_,, > 0 (Q is a contagion
matrix); the second inequality follows from Q2. Hence, tbécrz‘y’—i is strictly decreasing
k
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in t. Moreover, since all the components gflie in [0, 1], it is not hard to see that, as
far asy! is bounded away frond, the speed at which the above ratio decreases is also
bounded away from.?® Thereforelim;_.., 41 = 0. Suppose that the claim holds for each
1< j<k—1. Now,

?J§+1 _ Zlgj Qljyf < Zzgg‘ Qljyl B Z Qz; yz ij y] Z Ql] yl
y?l Zlgk szcygt Qkky}; Qrr Z/k Qkk yk Qrk yk

_j
t .
I<j I<j k

By the induction hypothesis, for ea¢h< j, the term% can be made arbitrarily small for
large enouglt. Then, the first term in the above expression can be madeailyitsmall.
Hence, it is easy to see that, for large enougthe ratio;j—z is strictly decreasing in. As
above, this can happen onlylifn, , y§ =0. [l

Proof of Lemm&. For eachi € {1...,k}, lete; denote the-th element of the canonical
basis inR*. By Q1,Q; is larger than any other diagonal entry®f Let y% be the unique
nonnegative left eigenvector associated wjth such that|y?|| = 1. Clearly,y“ > 0 and,
hence{y“, e,, ..., e} is a basis iRk, With respect to this basis, matrix is of the form

Qn 0

Now, we distinguish two cases.

Qn satisfies Q2. In this case, we can apply Lemntato Qp to get that, for each
nonnegative vector € R¥~! with z; > 0, lim;_, E Qi 7 =(0,...,0,1). Now, lety € R¥
be the vector in the statement of this result. Slgoe very close ta(0,...,0,1). Then,
using the above basis, it is clear that ay? + v, with o > 0 andv ~ (0,...,0,1). Let
t € N. Then, for each € N,

jo Ve New® Q' Moy + [vQ' | iy
ly@Q"l ly@Q"l ly@Q"l
ZRoughly speaking, this is because the stateill always get some probability from statevia the

intermediate states, and this probability will be boundedyafrom O as far as the probability of state 1 is
bounded away from 0.
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Clearly, ||yQ!| = |INay® + [|vQ!|| 22 Hva 7/l and, since all the terms are positive,

vQ!
ly@° = Il [ly@Il + @ | el = 1Nal + [lvQ]
and, hence, we have thgtis a convex comblnatlon@/IQandH QtH Sincev ~ (0,...,0,1)
and HthH (0,...,0,1), it is clear that, for each € N, o QtH first-order stochastlcally

dominatesy? in the sense of more people being unhealthy. Therefore, aladll first-
order stochastically dominaté’.

Qn satisfies Q1By Q1, the first diagonal entry @p, is larger than any other diagonal
entry. Letyr be the unique associated nonnegative left eigenvectortbathy || = 1. It
is easy to see thatn first-order stochastically dominatg$; the reason is thatn andy®
are the limit of the same contagion process, with the onkgdéhce that the state in which
only one person is unhealthy is known to have probalilityhen using obtainingr from
Qp. Clearly,y," > 0and, hence{y®, ", es, ..., e} is a basis iR, With respect to this
basis, the matrix) is of the form

Qll 0
0 Q22
00| Qp

Again, we can distinguish two cases.

e Qp satisfies Q2.In this case, we can repeat the arguments above to show'that
is a convex combination af?, y°r and %2 oo QfH Since bothyt and vatu first-order
stochastically dominatg?, * also does.

o Qp satisfies Q1.Now, we would get a vectagy°?, and the procedure would continue
until a truncated matrix satisfies Q2 or until we get a basisigénvectors, one of
them beingy® and all the others first-order stochastically dominatiffg In both
situations, the result immediately follows from the aboxguanents. ]
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A.3 Proofs of results in Sectiorb

Proof of Lemmd.l. LetG € ¢4, M > 1,4 € (0,1), andr € (0,1). Consider gamé&:}.
Let k € {1,2} and leti € C, be a player who is unhealthy after some histafywith

t > T' + T". Suppose that exactly-M/| people are infected in each community. Given
o; € %;, the payoff associated with the continuation strategy: can be decomposed as
(1 — 6)(ugy1 + V(oy,7, M, 9)), whereuz,; denotes the expected payoff in periog- 1
andV (o;,r, M, §) the (expected) sum of discounted continuation payoffs foenod? + 2
onwards. Let; be a maximizer of/(o;, 7, M, §) for givenr, M, ando. Then, define

A(r,M, ) ==V (o}, r,M,0) — V (5,1, M,0),

the difference between the (expected) sums of discountetthc@ation payoffs associated
with ¢ anda; (which prescribes to play the Nash action). We first esthlaislaim that is
a consequence of the fact that contagion spreads expadhefas during Phase lll.

Claim 1. Let G € ¢4. There isU; € R such that, for each > % eachM > 1, and
eachs € (0,1), if [rM] > 4 + 1, thenA(r, M, 6) < Ug.

Proof of Claim 1. Consider a situation in which there dreinhealthy players in each com-
munity playing the Nash action in a given peribith Phase Il and, hence, less th&h— k
healthy players. Then, Igt(k, M) be the probability that there are more tHdg® healthy
players in each of the communities at the end of petidtfe want to show that, i > 4,
thenP(k, M) < L. Clearly, P(k, M) is strictly decreasing i, so it suffices to show that
P&, M) < 1. We want to show that the probability that more thj‘égg = 4 players
remain healthy is not larger than

Recall that the transition matrix in Phase 191, M, (defined in Sectiod.4) is such

that for each paik,l € {1,..., M}, Sy, is0 unlessk < [ < 2k, in which case:

(K)*((M = k)1)?
(1= k)2(2k — DI(M — 1)IM!

(AL1P((M - 41y

St = (= (-t

and, hence, Sy, =

The above probabilities are symmetric in the sense thasitianing from 4! to & + o

is as likely as transitioning fron% to M — a. Thus, for each transition that results in
less than% new infections there is an equally likely one that delivemmhan%. Thus,
the probability that more thaﬁ’— players in each community remain healthy is not larger
thani, and soP(k, M) < i wheneverk > 4.
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Now, recall thatA(r, M,0) = V(of,r,M,d) — V(a;,7, M, ), defined in the proof
of Lemmall, is the difference between the (expected) sums of discdwuatinuation
payoffs from period + 2 onwards associated wittf anda; (which prescribes to play the
Nash action). Given thdt-A/] > & + 1, the computation behind (r, M, §) assumes that
there are, at leasty M| > % + 1 unhealthy players in each community. Thus, regardless
of the action of playet in periodt + 1, more than%” unhealthy players will be playing the
Nash action. Therefore, by the above result regarding’tie M) probabilities, there ig
such thatP([rM] — 1, M) < p < 1. We start by computing the probability of meeting a
healthy player in future periods.

e Periodt 4+ 1: Regardless of the action chosen by player i in petidtie probability
that less than half of the healthy players got infected ingaeris at mostp . Then,
the probability of meeting a healthy opponent in peried1 is, at most,

1—=r 1-7

PO+ (1 =)yt < o p(1 =) = (=) (5 +5).

e Periodt + 2: Similarly, the probability of meeting a healthy opponenperiodt + 2

~ _r o~ 1;7 i
is, at mostp(p(1 — r) + (1 — p)52) + (1 — p)2=HEPZ2 which reduces to

1l—r

R . 1—r
P21 —7) + 2p(1 — p) ?

— =15+

+(1-) .

e Periodt + 7: In general, regardless of the actions chosen by playae probability
of meeting a healthy opponent in peribd- 7 is less thar(1 — r)(3 + p)".

We turn to the computation ak(r, M, ) = V (o}, r, M,d) — V(a;,7, M, d). Suppose
the payoffs inG are such that i) the payoff loss from deviating from the stdasha* is at
least [ > 0 and ii) the maximal possible gain from not playing accordimg* against an
opponent who is not playing accordingdbis at mostn. Then, we have

[e.9]

A ML) < 3 -G + )8 — (1- ()5 +5) )07l

2 2
=1
- 1 AT T = - - 1 AN T
< D A-nG+pm<m) (S +0)
T=1 T=1

Since} + p < 1, the above series converges. Thus, if we define= m > >, (5 +p)",
the result follows. O
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We can use Claim 1 to now prove the lemma. Claim 1 captures théhi@i; once the
contagion has infected half of the population, no matter patient a player is, there is not
much to gain by slowing down the contagion (regardless otéthee of M/):

Now, suppose that playérmelieves that contagion (%, p)-spread and chooses a con-
tinuation strategy in which he does not play the Nash actigreriodt. Then, we have the
following possibilities:

i) Playeri meets an unhealthy player. This event has probability st lea player:
incurs some loss > 0 by not playing Nash, and does not slow down the contagion.

i) There are two cases in which playetan meet a healthy player:

e Case 1. At leastM people are unhealthy and playiemeets a healthy player.
This event has probability at most- r.

e Case 2. At most M people are unhealthy and playiemeets a healthy player.
This event has probability at most- p.

In both cases above playemakes some gaim in the current period and, provided
that[rM] > & + 1, at mostU in the future.

Hence, the gain from not playing the Nash action instead wfgdso is bounded above by
(1—p)(m+Ug)+ (1 —7r)(m+Ug) —rpl.

Sincem, [, andUy, just depend on the stage gatigthere exisp® € (0, 1) andr® € (0, 1)
such that, for each > p© and each- > r“, we have that the above expression is negative
and, moreover[rM| > & +1 for all M > 2 (so that we can rely on bourid;). Thus, for
such values it is sequentially rational for playe¢o play the Nash action. n
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B.1 Updating of beliefs conditional on observed histories

We validate the approach to computing beliefs discussedati®4.2. Suppose that player
i observes historjt’*! = ¢ ... gbg in Phase lll. We want to compute her beliefs at the end
of period? + 1 conditional onk/*!, namelyzi+!. We first compute a set of intermediate
beliefsz! for t < ¢ + 1. For any period < ¢, we computer’™ from 2! by conditioning
on Gt andu/tt! < M — 2. We do not use the information that “| was healthy at the end
of each period* with ¢ + 1 < ¢* < ¢.” This information is added later, period by period,
i.e., only at period we add the information that “I was healthy at the end of petidtiVe
show that this method is equivalent to conditioning on thremistory at once.

Leta € {0,..., M —2} and leth!**= denote thet+1+a)-period historyy . .. gbg ..
g. Letd' (¢") denote the event: “I faceld(g) in period¢.” Moreover, we have:

e U}, denotes the event< U' < £, i.e., the number of unhealthy sellers at the end of
periodt is at least and at most.

o B =Uly_a NG
o Bt = El NUS_,NbT.
o Foreach3 € {1,...,a — 1}, E5/8 .= EXF N UL L o0 gitiee,

t+lta . ptta t+lta ~ t+lta _ pt+lta
o I =ENU s Ny =h .

*Yale University.
fUniversity of Santiago de Compostela.



Let H' be a complete history of the contagion process up to perihet 7’ be the set of
all H' histories. Let} := {H' € H' : U' = k}. We sayH'"! = h'*1if, under H**!, |
observedi'*!. Giveng € {0,...,a},letP(i = =" k) = PUT =k peiis pees;) -
SinceE/"' T = h'*t*e, the probabilities of interest al(U' ™'+ = k | z14). We claim
that these probabilities can be obtained by starting wighptiobabilities aftet conditional
on E! and, then, let the contagion elapse one more period at a tmaitoning on the
information: “in the current period | observedand infected one more person.” Formally,
we want to show that, for eaghe {0,..., a},

2 S PGTETRPUE = i)

PU™ = k| preres) :
t+1+58 . .
ZJ S P TST ) PURE = | gt+6)

Fix 5 € {0,...,a}. For eachH!**# ¢ H{!+1+5 |et H!+1+55 denote the uniquél'™’ ¢
H'*8 that is compatible witli*+1+7 | i.e., the restriction off**'+7 to the firstt+ 3 periods.
Let F'*0 = {H!FIH6 ¢ HIT1H6 . s o prHlefy et TP = [AHHS ¢
F1H6 . {16 ¢ 17101 Clearly, theF, ™ sets define a “partition” of'+# (one or
more sets in the partition might be empty). U&f := {H'*'*0 ¢ FIF . Hi+1466 ¢

fjﬁ +. Clearly, also theF,f sets define a “partition” of"'*#. Note that, for each pair
HHHP HH6 ¢ P BB P(HHF | i) = P(H™ '™ | 404005,). Denote this
probability by P(F” jare EPY). Let|i jargy k| denote the number of ways in whic¢h
can transition to: at periodt + 1 + 3 consistently withh!*1+e = Et+1+8 Clearly, this
number is independent of the history that led fmeople being unhealthy. Then, we have
P "H7 k) = p(F? "7 B0 " k). Therefore,

PUT =k \Egﬂw) =

_ Z P(Ht+1+6 |Efj1+5) — Z P<Ht+1+5 ’EQ*HB)
Ht+1+ﬁ€’H}5C+1+ﬁ Ht+1+/3€Fkl+B

B P(Ht+1+6 N Eé+1+ﬁ) B 1 t1148

o Z P(Et+1+6) o P(EHHB) Z P(H )
Ht+1+8¢ TP “ @ Ht+1+Be Rl

Y X Pw)

=1 gt+1+6ep! P nFf



- W S E P s PUETS ) B

=1 gr+1i+6eptPnEf
M

P(E’tJrﬁ 8 t+1+,8 1+ t+1
= WZP (] )Y PUHTER )
HH1+Be P nEf
P(EL?) &
_ (t—+1+ﬂ ZP Fﬁ t+1+5 F1+6)| t+1+ﬁ k}| Z P(Ht—i—ﬁ |E;+ﬁ)
P(Ea ) Ht+8e!TF
P Et+,3 M
- ‘p<§E—t+HB > P T B P = i)
P(ESH) M 1 .
- Et+1+,8 ZP F)PU™Y =i |pres)

It is easy to see thaP(E' 1) = Z (P(ESAYSM P(i T NPttt = i|gers),
and the result follows. Similar arguments apply to his®te ' t* = ¢... gbg .~. where
playeri observes botlg andb in the « periods following the first triggering action.

B.2 Incentives after histories with multiple deviations

We now discuss different types of histories that can ariserwhultiple deviations occur.

First, consider the situation in which a rogue player, after hisahdeviation, observes
a probability zero history. His behavior has not been spatif\We only say that he will
best respond given his beliefs. Analogously to point iiijhie statement of Lemni3 this
rogue player will assign probability 1 to these deviatioesl errors by infected players.
In particular, a rogue seller who deviated in period 1 wilt helieve that contagion is
proceeding slower than if he had not observed these errors.

Second,consider histories in which a seller deviates in period 1 thieth he deviates
again during Phase |. The behavior of this rogue seller haba®n specified completely.
However, we show below that we can still check incentives.

e Consider a history of length < 7" in which a seller deviated in period 1 and in
all subsequent periods played an action other than the égsomse or the on-path
action. The best response of the seller at this history wbeldo play his most
profitable deviation until the end of Phase I. This is his lsesponse after his first
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deviation in period 1. Since any off-path action of a seltePhase | is a triggering
action, the effect of these additional deviations on caotagill be the same as if
he had played his best response. An exposed buyer who obsbivdehavior will

think that she is just facing a seller who deviated in pericahdl is continuing to
deviate. Thus, this rogue seller’s best response from thiat pnwards will remain

the same as if he had been best responding throughout. Allsoe @xposed buyers
would switch to the Nash action at the end of Phase |I.

e Consider a history of length< 7" in which a seller deviated in period 1 and in some
later periods played the on-path action. Since on-patle&tre not triggering, the
above argument can no longer be used to characterize te€sbbst response. Yet,
any exposed buyer observing an on-path action will thinksha is facing a healthy
seller while the rogue seller is continuing to infect. Simceone attaches positive
probability to such behavior by the rogue seller, not sy&wif the rogue seller’'s
behavior at such histories is not a problem for analyzingophayer’s incentives.

Third, suppose | am a healthy player who observes a triggeringraatid then devi-
ates from the prescribed off-path action. The strategiesquibe that | subsequently play
ignoring my own deviation. To see why this is optimal we byiefiscuss the most prob-
lematic case: a history in which | have been infected at abgéri- 1 late in Phase IIl and
observed a history? of the formht** = g...gbg .<. ¢. Further, suppose that, instead of
playing Nash, | have played my on-path action after beingated.

The situation is similar to the one covered by Proposifioout with the difference that,
after getting infected, | am not spreading the contagionevbbserving good behavior.
How will my beliefs evolve now? We argue below why, regardle$ the value ofy, |
will still believe that contagion is sufficiently spread fore to have the incentive to play
Nash.The argument is very similar to that of Case 1 in the psb&fropositionb.

History ht = g...gbg. Afterthis history, the argumentis completely analogouSase 1
in the proof of Propositio®. In that proof, when computing the intermediate beliefs
at the end of period it was argued that they first-order stochastically domirate
the beliefs obtained when conditioning on the followingpimhation: i) | observed
and ii) at mostM — 2 people are unhealthy aftér In particular, we did not use the
information that | had infected an opponent in peripdhich is the only difference
between the history at hand and the histories studied in Cisthé proof of Propo-



sition 5. Thus, to get the desired incentives, we can rely again ofatttghatz’ is
close toy5,, the limit of the Markov process with transition matrj}@.

History h* = h't® = g...gbg .%. g. We start with intermediate beliefs’. Regard-
less of the value of, since | am not spreading contagion (I may be meeting the same
healthy player in every period since | got infected), | wiill$hink that at most\/ —2
people were unhealthy at any period< ¢. The transition matrix i)y, andz" will
be close toy%,. To compute subsequent intermediate beli¢fs, z'2, ... z'*e,
since | know that at least two people in each community weteealthy after, |
have to use matrix)p 5, which shifts the beliefs towards more people being un-
healthy (relative to the process given &y). Therefore, the ensuing process will
move fromz! to a limit that first-order stochastically dominatg in terms of more
people being unhealthy, which ensures that | have the iiveetat play Nash.

Finally, to study the beliefs after histories in which, afteeing infected or exposed, |
alternate on-path play with the Nash action and | face lgo#md b, we would have to
combine the above arguments with those in cases 2 and 3 ofdbéqf Propositiorb.

B.2.1 Pathological histories

Finally, we discuss a class of histories that we galthological They involve multiple
nested off-path deviations combined with a sequence of \@vyprobability match re-
alizations or multiple independent deviations. Behavias hat been described at these
histories. They have virtually no effect on incentives: Vi&cdss them for completeness.
First, for pedagogical reasons, we start with an extreme exant@epecial history

Phase I. A seller deviates in period 1 and then meets the same buydt perods of
Phase I. We call these two players #pecial sellerand thespecial buyerrespec-
tively. There is no other deviation during Phase I.

Phase Il. In each and every period of Phase Il, the special selleréutthviates by playing
an action that is not the Nash action while being again maltelih the special buyer
in every period.

Checking incentives after this history is specially difficulhe main role of Phase Il
is to account for histories in which Phase | proceeds as sngbécial history. After such
histories, when Phase Il starts, only one buyer and oner sgkeunhealthy, and only the
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buyer knows it. The special seller believes that, with vaghhprobability, every buyer is
unhealthy. Since both unhealthy and healthy sellers plashMaring Phase I, the special
buyer, while playing Nash in Phase Il, will think that, witlery high probability, she is
infecting all sellers (even if she is meeting the specidésat every period). In the special
history, however, the special seller is playing somethiiffgnt from the Nash action.
Lemma2 implies that this this erroneous behavior should be atteitbto infected players.
However, the special buyer knows that there is no infectbers&ince deviations by rogue
players are more likely than deviations by healthy playses (Sectiort.1), the special
buyer will know that she is meeting the special seller (andspoeading the contagion).

For most of Phase I, the special buyer will play Nash and kaaking short run prof-
its (even though, most likely, this will spread the contaioHowever, once the end of
Phase Il approaches and she knows that no seller exceptabialsgeller is unhealthy (be-
cause she always met the special seller), she might stakirtlgi about playing differently
given that contagion is not widely spread. Now, as soon apkys something that no
other buyer (infected or healthy) would play, the specidésevill realize that this patho-
logical history has been realized (note that only the speseber has deviated from the
strategy profile so, for him, this history has positive piaibsy given his behavior).

This is a history at which the behavior of two players is n&afed and both of them
know that it has been realized. But, this is not a problem ferftiiowing reasons:

i) Since this special history is so unlikely, no seller wighdiate in period 1 hoping for
this extremely unlikely history to be realized. Furthereruf he has deviated in
period 1, he would not be deviating throughout Phase Il hppprhave met the same
buyer throughout Phase | and to be meeting her in each ang geeod of Phase 1.

ii) It does not affect the incentives of the special buyehatgtart of Phase I, since the
strategy prescribes that the rogue seller plays Nash andesattaches probability
zero to the special history being realized.

iii) Lemma 2 ensures that no other player, buyer or seller, will everggsgositive prob-
ability to the special history being realized. They will alyg explain erroneous
behavior with deviations by infected players.

The above arguments apply not only to the special histotyalso to similar histories that
involve a special buyer who observes triggering actiondlipexiods of Phase | and non-
Nash actions in most periods of Phase Il. An easier argunpgiies to similar histories in
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which, during Phase I, a rogue seller observes only off-patravior. Since deviations by
healthy and exposed buyers are equally likely, his beliefaiacontagion are unaltered.

Histories at which behavior is left unspecified for some ptagan be problematic for
the analysis of incentives if other players become awarbeasfd histories. More precisely,
underspecification is not problematic if the following h&ld=or each pair of players
and j, playerj will never assign positive probability to any history at whiglayer i’'s
behavior is unspecifiedWe call this Property B which, in particular, does not holteaf
the special history. But Lemm&ensures that no player other than the special seller and
the special buyer will assign positive probability to it.

Secondconsider histories that involve independent deviationsbitiple players. Be-
cause behavior has not been specified, if these players leeaaare of the existence of
one another, we might violate Property B. We need to consiefdilowing cases:

i) Suppose that sellerbecomes rogue in period 1 and playebecomes rogue at a
later period. Sellei can never become aware $ deviation. And, even if playef
happens to realize that there is another healthy player vaye@ a triggering action,
he will attribute it to a deviation by a seller in period 1. &nthe continuation play
of such a rogue seller is specified, this history is consistéh Property B.

i) Suppose that two playersand ; became rogue (independently) after period 1. If
any of them, say, becomes aware of the existence of another rogue playerillhe w
attribute it to a seller having deviated in period 1. Sincetrwation play for such a
rogue seller is specified, there is no problem in compuismcentives.

Note that Lemma& ensures that no infected player will ever assign positiaability to
histories with multiple rogue players.
B.2.2 Detailed outline of off-path histories and specificatin of behavior

Below we provide a list of off-path histories and discuss how address the potential
issues from not specifying behavior.

Off-path histories for a buyer ¢

i) Buyeri became rogue by playing the first triggering action of the gaBy defini-
tion of a triggering action, a buyércan become rogue by playing the first triggering



action of the game only in Phase Il or Ill. The behavior of buyis not specified ex-
plicitly at these histories. Equilibrium strategies prése that buyei best responds.
However, at these histories, Property B holds: Lemineasures that no player other
thani will ever assign positive probability to such a history lgerealized.

i) Buyer: became rogue by playing a triggering action that was not thet fifggering
action of the gameBy definition, a buyei can become rogue by playing a triggering
action only in Phase Il or Ill. The behavior of buyeis not specified at these histo-
ries. If this was not the first triggering action of the ganteert such histories must
involve two or more healthy players becoming rogue indepatig. These histories
arepathologicaland have been discusseddr2.1

iii) Buyeri got infected or exposed by facing a triggering actidine behavior of buyer
is fully specified at these histories. Buyieignores the deviation while she is in the
exposed mood and switches to the Nash action when she is infdeted mood.
However, there are again sompathologicalhistories, discussed i.2.1, where spe-
cial care is needed to check incentives. This includesni&iance, histories in which,
during Phase I, buyerobserves many instances of a seller playing actions that are
neither the on-path action nor the prescribed off-patloacti

Off-path histories for a seller z

Iv) Selleri became rogue by playing the first triggering action of the gam

(a) Histories in which sellei became rogue by playing the first triggering action
of the game in a periotl# 1. The behavior of selleris not specified explicitly
at these histories, but the situation is analogous to i. @bog., Property B
holds: Lemmal ensures that no player other thawill ever assign positive
probability to such a history being realized.

(b) Histories in which sellei became rogue by playing the first triggering action
of the game in period:1

I. Suppose that sellerdoes not further deviate during Phase I. Behavior of
selleri has been specified at these histories. With the exceptioheof t
special histories discussed 2.1, no matter what he observes or does,
his best response from Phase Il onwards will be to play thénldason.



ii. Suppose that sellei deviates further during Phase I, but does not play
the on-path action in any period of Phase I: Behavior of selleas been
specified at these histories. No matter what he observeses;, this best
response from Phase Il onwards will be to play the Nash actidrese
histories have been discussedir2.1

iii. Suppose that sellerdeviates further during Phase I, and plays the on-path
action at least once in Phase I: The behavior of seikenot specified. We
just prescribe that selleérbest responds. Notice that, after playing the on-
path action for many periods during Phase I, it may no longediimal for
the seller to keep playing his most profitable deviationdigimut Phase I.
However, Property B holds at these histories, since anyrtwige observes
an on-path action in Phase | will believe that she is facingalthy seller.

v) Selleri became rogue by playing a triggering action that was not trst firggering
action of the gameThe behavior of selleris not specified at these histories. Further,
at some of these histories, some care is needed to verifi?tbperty B holds. These
histories argpathologicaland have been discusseddr?.1.

vi) Histories in which sellet got infected by facing a triggering actiohe behavior
of selleri is fully specified at these histories. He switches to the Nesion forever
from the next period.

B.3 Can we get a (Nash Threats) Folk Theorem?

For a game € ¢ with strict Nash equilibriunu*, the setF,- does not include action
profiles where only one player is playing the Nash actipnin the product-choice game,
our construction cannot achieve payoffs clos¢lte- g, —() or (—I,1 — ¢). However, we
conjecture we can obtain a Nash threats folk theorem forglager games by modifying
our strategies by adding trust-building phases. We hogelieanformal argument below
illustrates how this might be done in the product-choice gam

Consider a feasible and individually rational target payiudit can be achieved by play-
ing short sequences 6 7, By ) (10 percent of the time) alternating with longer sequences
of (Qu, Br) (90 percent of the time). It is not possible to sustain this phyoPhase Il
with our strategies. To see why not, consider a long time aandh Phase Ill where the
prescribed action profile i€y, Br). Suppose that a buyer fac€s, for the first time in



a period of this phase followed by many periods.hf. Notice that since the action for a
buyer isBy, in this time window, she cannot infect any sellers hersdtied, with more and
more observations afy, she will ultimately be convinced that few people are indeict
Thus, it may not be optimal to keep playing Nash any more. iBtdgfferent from when the
target action iSQy, By ). In that case, a player who gets infected starts infectingepk
himself and so, after at most — 1 periods he is convinced that everyone is infected.
Consider a modification: Suppose that the target payoff pimséses alternating se-
quences ofQ g, By,) for T} periods and@y, By ) for T, = éTI periods. Now, in Phase I,
the windows of(Qy, B;) and (Qy, By) will be separated by trust-building phases. We
start the game as befor€? periods of(Q) 7, By ) andT" periods of(Q .., By ). In Phase lll,
players play(Qy, By) for T, periods, followed by a new trust-building phaseTéfperi-
ods during which(Q, By) is played. Then, players switch to playit@y, By ) for T
periods. The new phase is chosen to be short enoughi(i.&, 77) to have no significant
payoff consequences. But, it is long enough so that a playerisvimfected during th&?
period window, but thinks that very few people are infectgil, still want to play Nash to
make short-term gains during the new phastle conjecture that adding such appropriate
trust-building phases in the target payoff phase can hefmh folk theorem.

B.4 A Game outside?

Consider the two-player game in Figuse This is a game with strictly aligned interests.

L C R
—5,-5] —1,8 | 5,5
—5,—5|-2,-2]| 81
—3,—-3|—5,-5| -5, -5

=S

Figure 5: A game outsid# .

Each (pure) action profile is either a Nash equilibrium ohlqmaiyers want to deviate. The
difference with other strictly aligned interests gameshsas the battle of the sexes, is that
there is a Pareto efficient payoff, 5), that cannot be achieved as the convex combination

tFor example, think of a buyer who observes a triggering adio the first time in Phase Ill and then
observes only good behavior for a long time while continuiaglay (Qx, Br,). Even if this buyer is
convinced that very few people are infected, she knows tietcontagion has begun, and ultimately her
continuation payoff will drop. So, if there is a long enoudiape of playind@,, By ) ahead, she will play
Nash because this is the myopic best response, and woultigiiva least some short-term gains.
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of Nash payoffs. Further, since it Pareto dominates the [Jash given by B, L), it might
be possible to achieve it using Nash reversion. Note thegnga strictly aligned interests
game and an action profile, if a player plays her best repljnagher opponent’s action,
the resulting profile is a Nash equilibrium. Suppose that \aatwto achieve an equilibrium
payoff close to(5,5). Our approach does not work well because there is no ond-side
incentive profile to use in Phase I. (Both players have an ineeto deviate fromT', R)).
Suppose that we start the game with a phase in which we aimhtevactarget payoff
(5,5), with the threat that any deviation will, at some point, baighed by Nash reversion
to (—3,—3). Suppose that a player deviates in period 1. Then, the oppdmews that
no one else is infected in her community and that Nash revensill eventually occur.
Hence, both infected players will try to make short-run gdog moving to the profile that
gives thems. As more players become infected, more people are playingnd C' and
the payoff will get closer td—2, —2). Now it is not clear how the dynamics will evolve.
Further, it is hard to provide players with the incentivesnove to(—3, —3). Note that, as
long as no player playB or L, no one ever gets something belew, while B and L lead
to, at most,—3. So, a player will not switch t& unless she thinks that a many players in
the other community are already playifdout, it is not clear who would switch first.
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