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Abstract

We study impersonal exchange, and ask how agents can behave honestly in anony-

mous transactions without contracts. We analyze repeated anonymous random match-

ing games, where agents observe only their own transactions. Little is knownabout

cooperation in this setting beyond the prisoner’s dilemma. We show that cooperation

can be sustained quite generally, using community enforcement and “trust-building.”

The latter refers to an initial phase in which one community builds trust by not devi-

ating despite a short-run incentive to cheat; the other community reciprocatestrust by

not punishing deviations during this phase. Trust-building is followed by cooperative

play, sustained through community enforcement.
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1 Introduction

In many economic settings, impersonal exchange occurs in the absence of contractual en-

forcement. Buyers and sellers trade essentially anonymously. These settings motivate the

central question of this paper: How do agents achieve cooperative outcomes and act in

good faith in transactions with strangers without formal contracts? We model impersonal

exchange as an infinitely repeated random matching game, in which players from two dif-

ferent communities are randomly and anonymously matched toeach other to play a two-

player game. Each player observes only his own transactions: He does not receive any

information about the identity of his opponent or about how play proceeds in other transac-

tions. With such “minimal information-transmission,” we ask what payoffs can be achieved

in equilibrium. Can agents be prevented from behaving opportunistically?

Two early papers byKandori(1992) andEllison (1994) showed that in this setting co-

operation can be sustained for the Prisoner’s Dilemma (PD) by grim trigger strategies, also

known as “community enforcement” or “contagion.” If a player faces a defection, he pun-

ishes all future rivals by switching to defection forever (Nash reversion). This defection

spreads the information that someone has defected, more people getinfectedand start de-

fecting, and cooperation breaks down completely. The credible threat of such a breakdown

deters players from defecting in the first place. These arguments rely critically on proper-

ties of the PD: Since its Nash equilibrium is in strictly dominant actions, punishing gives a

current gain even if it lowers continuation payoffs. In general games punishing can lower

both present and future payoffs, and so it is harder to provide incentives to punish. We

establish that it is still possible to sustain a wide range ofpayoffs in equilibrium in a large

class of games, if players are sufficiently patient and the population is not too small.

We show that, for stage-games with a strict Nash equilibrium, the ideas of community

enforcement coupled with “trust-building” can be used to sustain cooperation. In equilib-

rium, play proceeds in two blocks: an initial phase that we call “trust-building,” followed

by a cooperative phase that lasts forever, as long as nobody deviates. In the initial phase,

players of one community build trust by not deviating even though they have a short-run

incentive to do so, and players in the other community reciprocate the trust by not starting

punishments during this phase even if they observe a deviation. This initial phase is crucial

to sustaining cooperation in the long-run. Deviations in the cooperative phase are punished

by Nash reversion (or community enforcement).

To our knowledge, this is the first paper to sustain cooperation in a random match-
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ing game beyond the PD without extra informational assumptions. Some papers introduce

verifiable information about past play to sustain cooperation. Kandori (1992) considers a

mechanism that assigns labels to players based on past play,so players who have devi-

ated or have seen a deviation can be recognized. This enablestransmission of information,

and cooperation can be sustained in a specific class of games.1 More recently,Deb(2014)

proves a general folk theorem in the anonymous random matching setting, but allows play-

ers to send unverifiable messages to their partners just before playing the stage-game.2

An important feature of our equilibrium is that the strategies are plausible, and play-

ers have strict incentives on and off the equilibrium path. Unlike recent work on games

with imperfect private monitoring (Ely and V̈alimäki, 2002; Piccione, 2002; Ely, Hörner

and Olszewski, 2005; Hörner and Olszewski, 2006) and repeated random matching games

(Takahashi, 2010; Deb, 2014), we do not rely on belief-free ideas or block strategies. Also,

unlike existing literature, our strategies are robust to changes in the discount factor.

This paper relates to the literature on building trust in repeated interactions (e.g.,Ghosh

and Ray(1996) andWatson(2002)), which focuses on “gradual” building of trust, where

the stakes in a relationship grow over time. Our equilibriumdoes not feature gradualism.

Rather, we have an initial phase in which players cooperate despite having an incentive to

deviate, and this phase is exactly what helps sustain cooperation. Our model can be seen

as capturing the intuitive idea that long-term relationships start out by building trust.3

The main challenge to sustaining cooperation through Nash reversion is that punishing

may be costly for both current and future payoffs. Our construction ensures that, when a

player is required to punish by Nash reversion, he believes that most players are already

playing Nash (which gives him a short-run incentive to play Nash). To see the idea, suppose

that players may entertain the possibility of correlated deviations. Then, upon observing a

deviation, a player may think that all players in the rival community have simultaneously

deviated and that everybody will start punishing, making Nash reversion optimal. Yet,

1For related approaches, seeDal Bó (2007), Hasker(2007), Okuno-Fujiwara and Postlewaite(1995), and
Takahashi(2010).

2Specifically,Deb(2014) uses the cheap talk messages to partially authenticate player identities, and then
applies a block belief-free approach to achieve the target equilibrium payoff. In contrast, this paper examines
the possibility of cooperation in the absence of any kind of communication. Recently,Sugaya(2012, 2019b,a)
establishes general folk theorems under imperfect privatemonitoring. These results do not apply here, since
our setting violates full-support monitoring and other identifiability assumptions of Sugaya’s work.

3There is also a recent literature on repeated games and community enforcement on networks (see, for
instance,Ali and Miller (2013), Lippert and Spagnolo(2011) andNava and Piccione(2014)). However, this
literature is substantively different because players arenot anonymous on a network.
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this way to get the desired beliefs is not consistent with sequential equilibrium.4 Without

coordinated deviations, a player who faces a deviation early in the game will know that

there are few affected players and Nash reversion may not be optimal. This suggests that,

to induce appropriate beliefs, Nash reversion cannot be prescribed in the initial periods.5

Working with beliefs is fundamental to our approach. We develop new methodological

tools, using Markov chains, to analyze incentives in belief-based equilibria in repeated

games with private monitoring.

The rest of the paper is organized as follows. In Section2, we illustrate the strategies

and the intuition behind our main result using the product-choice game. Section3 contains

the model and the main result. In Section4, we define off-path beliefs and present our

methodology for computing beliefs. In Sections5 and6, we establish optimality of the

equilibrium strategies. Section7 discusses robustness of our results.

2 Cooperation Beyond the PD

2.1 A negative result

We present a simple example to show that a straightforward adaptation of grim trigger

strategies (or contagion strategies as inKandori (1992) or Ellison (1994)) cannot be used

to support cooperation in general. The main difficulty is that players may not have the

incentive to punish deviations, since punishing may be costly in both the short-run and the

long-run.

Buyer
BH BL

Seller
QH 2, 2 −1, 1
QL 3,−1 0, 0

Figure 1: The product-choice game.

Suppose that the product-choice game in Figure1 is played by a community ofM

4Our solution concept is a natural generalization of sequential equilibrium Kreps and Wilson(1982),
which requires that off-path beliefs are the limit of the conditional beliefs obtained from a sequence of com-
pletely mixed strategy profiles converging to the strategy profile under consideration. In particular, this im-
plies that player’s deviations are independent. Therefore, in our setting, simultaneous deviations by multiple
players cannot be inferred from the observation of a single deviation.

5We have not been able to construct strategies such that everyplayer, at each information set, has a best
reply that is independent of his beliefs (as inKandori(1992) andEllison (1994)).
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buyers and a community ofM sellers in the repeated anonymous random matching set-

ting.6 In each period, every seller is randomly matched with a buyerand they play the

product-choice game. The seller can exert either high effort (QH) or low effort (QL) in the

production of his output. The buyer, without observing the seller’s choice, can buy either

a high-priced product (BH) or a low-priced one (BL). The buyer prefers the high-priced

product if the seller has exerted high effort. For the seller, exerting low effort is a dominant

action. The efficient outcome is(QH , BH), while the unique Nash equilibrium is(QL, BL).

Hereafter, we refer to(QL, BL) as the Nash action.

Proposition 1. Consider the product-choice game in the repeated random matching setting.

If M > 2 then, regardless of the discount factorδ, there is no sequential equilibrium in

which, in every period,(QH , BH) is played on the equilibrium path and the Nash action is

played off the equilibrium path.

Proof. Suppose that there is an equilibrium in which, in every period, (QH , BH) is played

on the equilibrium path and the Nash action is played off the equilibrium path. Suppose

that a seller deviates in period 1. We argue that, for the buyer who faces this deviation, it is

not optimal to switch toBL from period 2 onwards. In particular, we show that playingBH

in period 2 and switching toBL from period 3 onwards gives her a higher payoff ifM > 2.

Since sequential equilibrium implies that deviations of players must be independent from

each other (see Definition 1 in Section 3.1), the buyer who faced the deviation believes that,

with probability 1, there was no other deviation in period 1.Hence, she believes that, in

period 2, with probabilityM−1
M

she will face a different seller who will playQH . Consider

this buyer’s incentives:

Short-run: The buyer’s payoff in period 2 from playingBH is −1
M

+ 2(M−1)
M

= 2M−3
M

. Her

payoff if she switches toBL is M−1
M

. Hence, ifM > 2, she has no short-run incentive

to switch to the Nash action.

Long-run: With probability 1
M

, the buyer meets the deviant seller (who is already playing

QL) in period 2. In this case, her action does not affect this seller’s future behavior,

and so her continuation payoff is the same regardless of her action.

With probability M−1
M

, the buyer meets a different seller. Note that a buyer always

prefers to face a seller playingQH . So, regardless of the buyer’s strategy, the larger

6See Section3.1for a formal presentation of the random matching setting andthe corresponding definition
of sequential equilibrium.
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the number of sellers who have already switched toQL, the lower is her continuation

payoff. Hence, playingBL in period 2 gives her a lower continuation payoff than

playingBH , because actionBL makes a new seller switch permanently toQL.

Since there is no short-run or long-run incentive to switch to the Nash action in period 2, the

buyer will not punish. Therefore, playing(QH , BH) in every period on path and(QL, BL)

off-path does not constitute a sequential equilibrium, regardless of the discount factor.

Proposition1 states that play of the cooperative action ineveryperiod cannot be sus-

tained with grim trigger. It does not rule out the possibility of doing so with other strategies.

2.2 How to Achieve Cooperation: An Illustration

Next, we show informally how to approximate the efficient payoff in equilibrium in the

product-choice game. Section3 formalizes this construction for general games.

2.2.1 Equilibrium Strategies

Equilibrium play: Phase I: (QH , BH) is played for the firstT I periods. Phase II: For

the nextT II periods,(QL, BH) is played.Phase III: (QH , BH) is played thereafter.

Off-Equilibrium play: If a player faces a deviation in either Phase II or Phase III, he

switches to playing the Nash action (QL or BL) forever. If a buyer faces a deviation

in Phase I, she continues to play as if on path for the rest of Phase I and then switches

to playingBL from the start of Phase II. If a seller faces a deviation in Phase I, he

continues to play as if on path.

The proof of Proposition1 shows that grim trigger cannot sustain cooperation becausea

buyer who faces a deviation at the start of the game is not willing to punish. The main in-

sight of this paper is that “delayed grim trigger strategies” can work: A buyer who observes

a deviation at the start of the game delays playing the Nash action until the start of Phase II.

2.2.2 On-path incentives

For patient players, the payoff from the strategy profile is close to(2, 2). Since any short-

run profitable deviation will eventually trigger Nash reversion and bring continuation pay-

offs down to zero, sufficiently patient players do not deviate from the equilibrium path.
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2.2.3 Incentive to punish deviations faced early in the game

To prevent deviations by sellers in Phase I, a buyer who facesQL in Phase I must be willing

to switch to the Nash action at the start of Phase II. This willtrigger Nash reversion by other

players and lower continuation payoffs. We start with two observations:

i) The optimality of Nash reversion for a buyer who faces a deviation depends on her

beliefs about how many sellers are playing the Nash action. If she believes that most

sellers are playing Nash, then doing so herself is optimal: the Nash action would be

the stage-game best reply and the effect on her continuationpayoff would be insignif-

icant. In particular, the earlier she thinks the contagion started, the more spread she

will think it is. This observation drives how we specify off-path beliefs: On facing a

deviation, players believe that the first deviation was by a seller in period 1.

ii) If a seller deviates in period 1 he will find it optimal to play Nash reversion immedi-

ately. Given the strategies, this seller knows that his opponent will start spreading the

contagion by playing Nash from periodT I +1 on. Further, from periodT I +T II +1

on, both buyers and sellers will be spreading the contagion and so it will spread expo-

nentially fast. Thus, if he deviates in period 1, his continuation payoff afterT I + T II

will be low, regardless of what he does in the remainder of Phase I. Therefore, if

Phase I is long enough, no matter how patient this seller is, he will want to make as

much profits as possible for the rest of Phase I, i.e., playQL.7

Consider now a buyer who faces a deviation in Phase I. She will believe that a seller

deviated in period 1 and that he will playQL throughout Phase I. If Phase I is long enough

she will think that, with very high probability, every buyerwill face the deviating seller

during Phase I. Thus, since all these buyers will revert to Nash at the start of Phase II, Nash

reversion will also be optimal for her. Finally, since only one seller is playingQL during

Phase I, such a buyer would not have an incentive to start punishing before Phase II.

7For this deviant seller’s incentives, not only mustT I be large, but alsoT
I

T II must be large enough. This
is important for two reasons: First, a seller who deviates inperiod 1 will find it optimal to keep deviating and
making short-run profits in Phase I, without caring about potential losses in Phase II. Second, this seller will
believe that he has infected all buyers by playingQL throughout Phase I and will be willing to play Nash
throughout Phase II, regardless of the history he observes.
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2.2.4 Role of Phase II

Phase I ensures that a buyer who faces a deviation early in thegame is willing to start

Nash punishments in Phase II. Phase II matters only for incentives after some histories that

arise with low probability. Consider a buyer who facesQL in period 1 and also in all other

periods of Phase I. In this case, the buyer realizes that she has met the same deviating seller

throughout Phase I and that no other buyer has faced a deviation. Will it be optimal for her

to revert to Nash in Phase II? The key now is that the deviatingseller does not know that he

has met the same buyer in every period, and so he will keep playing the Nash action, even

when Phase III starts. Thus, regardless of what the buyer does, she expects her continuation

payoff to drop at the start of Phase III, since contagion willspread exponentially fast from

then on. Now, if Phase II is long enough, this buyer would try to make some short-term

gains during Phase II, i.e., she would play the Nash action.

2.2.5 Nash Reversion after getting infected in Phase III

Finally, suppose that a player faces a deviation for the firsttime in Phase III. He believes

that a seller deviated in period 1 and contagion has been spreading since then. However,

the fact that he has not faced any deviation so far may indicate that, possibly, not so many

people are infected. A crucial element of our construction is that, if bothT I and T I

T II are

large enough, this player believes that, with high probability, contagion is widely spread

and most players are playing the Nash action, making Nash reversion optimal for him.

3 Model, Definitions and Main Result

3.1 The repeated anonymous random matching setting

There are2M players, withM > 1, divided in twocommunities,C1 = C2 = {1, 2, . . . ,M}.

In each periodt ∈ N, players are randomly matched into pairs, with each playeri ∈ C1

facing a playerj ∈ C2. Thematchingis independent over time, following a uniform dis-

tribution. After being matched, each pair plays a finite two-player gameG. Players only

observe the transactions they are personally engaged in, i.e., each player only knows the

history of action profiles played in each of his stage-games in the past. Matching is anony-

mous, i.e., a player never observes his opponent’s identity, and gets no information about

how other players have been matched or about the actions chosen by any other pair. We
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refer to arbitrary players and players inC1 as male and to those inC2 as female.

The stage game.Theaction setsof G are denoted byA1 andA2, andA := A1 × A2

denotes the set ofaction profiles. Generic elements are given bya1, a2, anda, respectively.

Thestage game payoffsare given byu : A → R
2.

The repeated game.Given a two-player gameG, a community sizeM > 1, and a

discount factorδ ∈ (0, 1), the correspondingrepeated anonymous random matching game

is denoted byGM
δ .

Histories. The set oft-periodpersonal historiesis given byHt := At. Given a playeri,

a personal historyht := {a1, a2, . . . , at} contains, for each periodτ ≤ t, the action profile

observed by playeri in periodτ . The set of all personal histories isH :=
⋃∞

t=0Ht, where

H0 := {∅}. Given historiesht ∈ H\H0 andhτ ∈ H\H0, hthτ ∈ H is the concatenation of

historiesht andhτ . In particular, given an action profilea ∈ A, hta is the history obtained

as the concatenation ofht anda. Throughout the paper we use the wordobservedto refer

to actions that a player may haveplayedor facedin his past matches.

Strategies.Given a playeri ∈ Ck, with k ∈ {1, 2}, a (pure)strategyfor i is a mapping

σi : H → Ak. Let Σ1 andΣ2 denote the sets of strategies of players inC1 andC2,

respectively. The set ofstrategy profilesis given byΣM
1 × ΣM

2 .

Continuation strategies. Given a playeri, for each historyht ∈ H\H0 and each

strategyσi, player i’s continuation strategygiven historyht, σi|ht , is defined, for each

hτ ∈ H, byσi|ht(hτ ) = σi(h
thτ ).

Outcomes and payoffs.A personal outcomeor apersonal path of playfor playeri is

an element ofA∞, denoting the actions played in the matches in which he was involved.

Given an outcome(a1, a2, . . .) ∈ A∞ and a playeri ∈ Ck, i’s discounted payoffin GM
δ is

given byUi(a
1, a2, . . .) = (1− δ)

∑∞
t=1 δ

t−1uk(a
t).

Equilibrium. We consider a straightforward extension of sequential equilibrium (Kreps

and Wilson, 1982) to games of infinite length. Asystem of beliefsis a functionµ that as-

signs, to each information setw of the game tree, a distribution of probability over its nodes

or, equivalently, over the histories that may have led tow being reached. Given a strategy

profile σ, a system of beliefsµ is consistentif there is a sequence of completely mixed

strategy profiles{σn}n∈N converging pointwise toσ and such that the associated condi-

tional beliefs{µn}n∈N converge pointwise to the system of beliefsµ. A strategy profile is

a sequential equilibriumif, after every personal history, playeri is playing a best response

given beliefs that are consistent with playeri’s personal history.
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Definition 1. A strategy profileσ is asequential equilibrium if there is a system of beliefs

µ such that

i) σ is sequentially rational givenµ, i.e., for each playeri and each personal historyh,

playeri is best replying ath givenσ andµ.

ii) µ is consistent withσ.

3.2 The Main Result

Let G be the class of finite two-player games with two properties:

P1. There exists astrict Nash equilibrium , denoted bya∗ = (a∗1, a
∗
2).

P2. There exists a pure action profilêa = (â1, â2) with one-sided incentives, in which

one player has a strict incentive to deviate while the other has a strict incentive to

stick to the current action. Without loss of generality, we assume that player 1 has an

incentive to deviate while player 2 does not.

Let G be a game and let
¯
a ∈ A. Let A

¯
a := {a ∈ A : a1 =

¯
a1 ⇐⇒ a2 =

¯
a2}. Define

F
¯
a := conv{u(a) : a ∈ A

¯
a} ∩ {v ∈ R

2 : v > u(
¯
a)}.

Our main result, Proposition2 below, says that given a gameG in G with a strict

Nash equilibriuma∗, it is possible to approximate any payoff inFa∗ in equilibrium in the

corresponding infinitely repeated random matching gameGM
δ , if players are sufficiently

patient and the communities are not too small. This result covers a large class of games

that includes the PD and the product-choice game, and in bothof themFa∗ includes payoffs

arbitrarily close to efficiency. Note that that the set of achievable payoffsFa∗ may not be

full-dimensional: e.g,. for the product-game,Fa∗ is a one-dimensional subset ofR
2.

In general, we do not get a folk theorem. We conjecture that, by modifying our strate-

gies, it may be possible to support payoffs outsideFa∗ and obtain a Nash threats folk

theorem for games inG (See Online Appendix (B.3) for a discussion).

We now discuss assumptions P1 and P2. Since we consider Nash reversion, the exis-

tence of a pure Nash equilibrium is needed. We need strictness because when a player is

asked to start Nash punishments he may think that, with some probability, he will face an
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opponent who is not punishing, and if the short-term incentive to punish were not strict, his

myopic best reply could be outside the support of the Nash action.8

P2 is a mild condition. ClassG excludes what we callgames with strictly aligned

interests. For two-player games this means that, at each action profile, a player has a strict

incentive to deviate if and only if his opponent also does. Games inG are generic in the

class of games without strictly aligned interests with a pure Nash equilibrium.9

Proposition 2. Let G be a game inG with a strict Nash equilibriuma∗. There exists

¯
M ∈ N such that, for each payoff profilev ∈ Fa∗ , eachε > 0, and eachM ≥

¯
M , there

exists
¯
δ ∈ (0, 1) such that there is a strategy profile in the repeated random matching game

GM
δ that constitutes a sequential equilibrium for eachδ ∈ [

¯
δ, 1) and achieves a payoff

within ε of v.

Our equilibrium strategies constitute auniform equilibrium(Sorin, 1990): If a strategy

profile constitutes an equilibrium for a given discount factor, it does so for any higher

discount factor.10 This is in contrast with existing literature, where strategies have to be

fine-tuned based on the discount factor (e.g.Takahashi(2010) andDeb(2014)).11

While cooperation with a larger population needs a higherδ, we do require a minimum

community sizeM for our construction. A relatively largeM guarantees that the off-path

beliefs induce the correct incentives to punish. Yet, the lower bound
¯
M depends only on

the gameG and is independent ofε. Thus, Proposition2 is not a limiting result inM .

Unlike work on games with imperfect private monitoring (Ely and V̈alimäki, 2002;

Piccione, 2002; Ely, Hörner and Olszewski, 2005; Hörner and Olszewski, 2006) and also in

repeated random matching games (Takahashi, 2010; Deb, 2014), we do not rely on complex

block strategies or belief-free strategies. Our strategies give the players strict incentives on

and off the equilibrium path.

8Unlike under perfect or imperfect public monitoring, it is not straightforward to coordinate punishments
using public information in our setting.

9We have not been able to apply our approach to games of strictly aligned interests. We refer the reader to
the Online Appendix (B.4) for an example that illustrates the difficulty with achieving cooperation in certain
games in this class. However, cooperation is not an issue in commonly studied games in this class, like “battle
of the sexes” and “chicken,” since in these games, the set of Pareto efficient payoffs is spanned by the set of
pure Nash payoffs (so we can alternate the pure Nash action profiles with the desired frequencies).

10This also implies that there exists a threshold discount factor above which our strategies are “discount
robust” in the sense ofKalai and Stanford(1988). Mailath and Morris(2002) also define the related notion
of “patiently strict public equilibria.”

11Further, inEllison (1994), the severity of punishments depends on the discount factor, which has to be
common for all players. We just need all players to be sufficiently patient.
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3.3 Equilibrium Strategies

Let G be a game inG . Recall thata∗ denotes a strict Nash equilibrium ofG, and(â1, â2)

denotes a pure action profile in which only one player has an incentive to deviate. When

we say that a player plays or faces theNash action, we mean the corresponding component

of a∗. Without loss of generality, we assume that, at action profile (â1, â2), player 1 has an

incentive to deviate while player 2 does not, and leta′1 denote player1’s most profitable

deviation. Let the target equilibrium payoff bev ∈ Fa∗ . We maintain the convention that

players1 and2 of the stage-game belong to communities 1 and 2, respectively. Below, we

present the equilibrium strategy profile that sustainsv, denoted bȳσ.

As we show in Figure2, we divide the game into three phases. Phase I spans over the

first T I periods, Phase II spans over the nextT II periods, and Phase III covers the rest of

the game. Phases I and II aretrust-buildingphases and Phase III is thetarget payoffphase.

1 TI
Phase I

TI + TII
Phase II

· · ·∞
Phase III

︸ ︷︷ ︸

T I

︸ ︷︷ ︸

T II

Figure 2: Different phases of the strategy profiles.

Equilibrium play: Phase I: During the firstT I periods, action profile(â1, â2) is played.

In every period in this phase, players from Community 1 have a short-run incentive to

deviate, but those from Community 2 do not.Phase II: During the nextT II periods,

players play(a∗1, a2), an action profile where players from Community 1 play their

Nash action and players from Community 2 do not. Player 2’s action a2 can be any

action other thana∗2 in the stage-game. In every period in this phase, players from

Community 2 have a short-run incentive to deviate.Phase III: For the rest of the

game, the players play a sequence of pure action profiles inAa∗ that approximates

the target payoffv and such thata∗ is not played in periodT I + T II + 1.

Sinceσ̄ is pure and symmetric, on path all players observe the same personal history,

denoted by(ā1, ā2, . . .) ∈ A∞.

Off-Equilibrium play: Suppose that actionai ∈ Ai is played in periodt and thatai 6= āti.

If t ≤ T I andi = 2, thenai is non-triggering. Otherwise,ai is triggering.

Any player i, conditional on having observed a historyht, can be in one of four

moods. We define below the moods and behavior in each mood.
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• Healthy. A player is healthy atht if no triggering action has been played inht.

A healthy player continues to play as if on path. In particular, a player from

Community 1 who observes a deviation in Phase I is healthy.

• Rogue. A player is rogue atht if he has played a triggering action without

having faced one before. A player from Community 1 who turns rogue by

deviating in the first period of the game playsa′1 until the end of Phase I. Then,

he switches to the Nash action and continues to play it as longas he does not

observe any deviation after that. We do not describe the bestresponse of rogue

players at other histories here. We will be more specific in the proof.

• Infected. A player is infected atht if he is not rogue, he has faced a triggering

action, andt ≥ T I. An infected player always plays the Nash action.

• Exposed.A player is exposed atht if she is a buyer who has faced a triggering

action andt < T I. An exposed player continues to play as if on path and

transitions to the infected mood at the end of Phase I.

We use the termunhealthyto describe a player who is not in the healthy mood. Fig-

ure3 provides a schematic for the mood transitions and behavior.These definitions

imply that no player is in the infected mood in Phase I. Also, abuyer cannot turn

rogue in Phase I, since her actions are not triggering in the firstT I periods.

Note that a profitable deviation by a player is punished (ultimately) by the whole com-

munity, with the punishment action spreading like an epidemic. This is referred to as

contagionin the existing literature. The difference between our strategies and contagion

(Kandori, 1992; Ellison, 1994) is that here the game starts with two initial phases in which

deviations are not punished immediately. In other words, unlike the results for the PD,

where the equilibria are based on trigger strategies, we have “delayed” trigger strategies.

3.4 On-path incentives

On-path incentives are straightforward, so we omit the formal proof. First, non-triggering

deviations are never profitable, since they entail a loss in the present period and have no

impact on future payoffs. Second, triggering actions starta contagion that will eventually

have all players playing the Nash action from some period onwards. Therefore, givenM ,

T I, andT II, there isδ1 ∈ (0, 1) such that, for eachδ ∈ [δ1, 1), on-path deviations are
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Figure 3:The top half describes the events inducing transitions between the four moods. Moods
labeled H, E, I, and R denote healthy, exposed, infected, and rogue, respectively. A healthy player
who simultaneously plays and faces a triggering action transitions to the infected mood. The bottom
half describes behavior in each mood. Where needed, C1 and C2 specify the player’s community.

not profitable. Moreover, since Phase III has infinite length, givenT I, T II, andε, there is

δ2 ∈ (0, 1) such that, for eachδ ∈ [δ2, 1), the payoff associated with̄σ is within ε of v.

3.5 Off-path incentives - Outline of argument

Since the proof of optimality off-path is long, we first present an outline of the approach.

The off-path incentives of a player depend only on his beliefs about how spread the conta-

gion is. Thus, establishing sequential rationality requires an analysis of off-path beliefs.

The first step is to define off-path beliefs and understand belief updating, which we do in

Section4. We specify the trembles on completely mixed strategies andpresent two results,

Lemma1 and Lemma2, which characterize the ensuing beliefs. In particular, Lemma1 is

the basis for showing that beliefs evolve as simple Markov processes that can be studied

using the appropriate transition matrices.

We then analyze off-path incentives in Sections5 and6. We classify off-path histories

for a playeri as follows:

H1. Histories that can be explained by a single deviation by a seller in period 1.
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a. Histories in which playeri got infected in Phase III (discussed in Section5).

b. Histories in which playeri becomes rogue in period 1 (Section6.1.1).

c. Other histories including those in whichi gets exposed in Phase I or infected in

Phase II (Section6.2).

H2. Histories that cannot be explained by a single deviation by aseller in period 1.

(Section6.1.2and AppendixB.2).

Crucially, the off-path beliefs defined in Section4.1 ensure that whenever a player

observes a deviation from the equilibrium path, he attachesprobability one to the set of

histories H1. In particular, Lemma1 states that exposed and infected players always assign

probability 1 to a seller having deviated in periodt = 1. Recall that behavior has not

been specified for players who became rogue att > 1 but, since no other player ever

assigns positive probability to this event, this underspecification does not pose problems

(the behavior of such a rogue player does not affect the incentives of others).12 Only a rogue

player can know that a history in H2 has been realized and he will be play his best response

there. Thus, it suffices to show that players have incentivesto punish after histories in H1.

Lemma11 in Section5 is an important result, which presents a sufficient condition on

beliefs to have incentives to punish. Informally, it statesthat if an infected player believes

that contagion iswidely spread(Definition 2), then he is willing to play the Nash action

because he knows that his action cannot affect his continuation payoff significantly. This

result reduces our problem to showing that a player, after observing a history in H1, believes

that contagion is widely spread. We do this using the tools developed in Section4.3. Beliefs

in H1a are the most complex ones, and are divided in three cases:

Infection early in Phase III. (Section5.1) Suppose that playeri gets infected in period

t = T I + T II + 1. Using properties of the appropriate Markov process (Lemma8), we

show that playeri believes that, with high probability, everybody is unhealthy. Then, by

Lemma11 we have optimality of Nash reversion. Suppose now that, after getting infected

in period t and switching to the Nash action, playeri starts observing actions different

from the Nash action, meaning that he is not facing infected players. In such a case,i has

to revise his beliefs and two effects come into play: facing ahealthy player implies that

contagion was not as spread after periodt but, at the same time, playeri has further spread

12There are some “pathological” histories that can arise and where special care is needed because of under-
specification. These histories involve multiple nested off-path deviations combined with a sequence of very
low probability match realizations. They are discussed in AppendixB.2.1.
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the contagion by infecting his current opponent. For the resulting Markov process we can

still show that playeri believes that, with high probability, everybody is unhealthy.

Infection late in Phase III. (Section5.2) If player i gets infected in periodt, late in

Phase III, then the properties of the relevant Markov process (Lemma9) imply that playeri

believes that, with high probability, everybody was unhealthy at the start of Phase III.

However, if after that playeri starts observing actions different from the Nash action, he

may no longer believe that, with high probability, everybody was infected at the start of

Phase III. Section5.2shows that even then he believes that contagion is widely spread.

Infection in other parts of Phase III. (Section5.3) For other periods of Phase III,

we use a monotonicity argument to establish that if playeri observes a deviation, he still

believes that contagion is widely spread.

The arguments for histories in H1b and H1c are more straightforward and are presented

in Sections6.1.1and6.2, respectively. A complete proof requires showing sequential ra-

tionality also at off-path histories in H2, which is done mostly in AppendixB.2.

4 Off-path Beliefs

4.1 Trembles and ensuing beliefs

First, we define trembles associated withσ̄ that define a sequence of completely mixed

strategy profiles{σn}n∈N converging (pointwise) tōσ and such that the associated beliefs

{µn}n∈N converge (pointwise) to a system of beliefsµ̄.

Fix a playeri and letD + 1 be the number of actions available to playeri in the stage

gameG ∈ G . For eachn ∈ N, let εn :=
(

1
2n

)n
. The strategy of playeri in profile σn is

denoted byσn,i. Letht be a personal history. Now, we distinguish several cases:13

Player i is healthy or exposed atht: σn,i(h
t) selects̄σi(h

t) with probability(1−εntn ) and

every other action with probabilityε
nt
n

D
.

Player i is rogue atht: σn,i(h
t) selects̄σi(h

t) with probability(1 − ε
1/t
n ) and every other

action with probabilityε
1/t
n

D
.

Player i is infected atht: σn,i(h
t) selects̄σi(h

t) with probability (1 − ε
1/(nt)
n ) and every

other action with probabilityε
1/(nt)
n

D
.

13See Section7.3for a discussion on alternative belief constructions.
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Clearly,{σn}n∈N converges tōσ. Moreover,{µn}n∈N converges pointwise to a system

of beliefsµ̄. By definition,µ̄ is consistent with̄σ as required by sequential equilibrium.

The above sequence is chosen to ensure certain properties ofthe limiting beliefs. For

instance,t in (1 − εntn ) ensures that early deviations by healthy players are regarded as

infinitely more likely than late deviations. On the contrary, t in (1− ε
1/t
n ) and(1− ε

1/(nt)
n )

ensures that late deviations by rogue and infected players are regarded as infinitely more

likely than early ones. By comparing(1 − εntn ) with (1 − ε
1/t
n ) and(1 − ε

1/(nt)
n ) we have

that deviations by healthy players are infinitely less likely than deviations by rogue players,

which are themselves infinitely less likely than deviationsby infected players. Below we

establish the properties ofµ̄ needed to show that̄σ is sequentially rational given̄µ.

Lemma 1. Leti be a player who is in the exposed or infected mood at somet-period history

ht. Then, according tōµ, playeri puts probability 1 on a seller having played a triggering

action in period 1.

Proof. See AppendixA.1.

The essence of Lemma1 is that triggering actions after period 1 are so unlikely com-

pared to a triggering action in period 1, that regardless of the likelihood of the subsequent

observations, an exposed or infected playeri will always be convinced that the first trigger-

ing action occurred in period 1. For the next result, we defineanerror as an actionai ∈ Ai

such that i)ai is a non-triggering action or ii) playeri is infected and does not play the Nash

action. In particular, the actions of rogue players are never classified as errors.

Lemma 2. Leti be a player who is in the infected mood at somet-period historyht and who

did not get exposed in period 1. Suppose, further, thatht has probability zero conditional

on a seller playing a triggering action in period 1 and play proceeding according tōσ

thereafter. Then, the following statements hold:

i) If player i faced triggering actions by sellers before periodT I + 2, then he assigns

probability 1 to these actions having been played by a rogue seller who also played

a triggering action in period 1.

ii) If player i faced non-triggering actions in Phase I, then he assigns probability 1 to

these being errors made by buyers (by definition).

iii) If player i faced any other action that implies additional deviations from σ̄, then he

assigns probability 1 to these deviations being errors by infected players.
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Proof. See AppendixA.1.

Lemma2 implies that, when an infected playeri is at a history that cannot be explained

just by a deviation of a seller in period 1, he will believe, ifpossible, that there have been as

many errors by infected players as needed to explain the current history. Those deviations

directly faced by playeri and that cannot be attributed to infected players are covered in

statements i) and ii), and will be attributed to the rogue seller and to buyers, respectively.

It is worth discussing why Lemma2 is not true for a playeri who gets exposed in

period 1. Suppose that playeri is a buyer who gets exposed in period 1 and faces off-path

actions throughout Phase I. The definition of trembles ensures that deviations by rogue

players are (infinitely) more likely than deviations by healthy players. Then, playeri will

start Phase II believing that there is a rogue seller whom shehas met in all periods of

Phase I and that she is the only infected player. Suppose further that in periodT I + 1 she

faces an action different from the Nash action. Then, she will believe that she has met the

rogue seller again and so there is no infected seller yet. If in periodT I + 2 she again faces

an action different from the Nash action, contrary to statement iii) in Lemma2, she cannot

attribute this deviation to an infected player since she believes there is no such player.

Then, she will believe that she has met the rogue seller once again. Histories like this one

are what we call “pathological” histories, and the associated incentives are discussed in

AppendixB.2.1. One implication of Lemma2 is that no infected player other thani will

ever assign positive probability to these pathological histories.

Importantly, Lemma1 and Lemma2 are crucial for the computation of off-path beliefs

since they allow us to model the beliefs as Markov processes.

4.2 Computation of off-path beliefs

Recall that, given̄σ, a player’s action only depends on his mood. Therefore, all that matters

for incentives are the moods of the players in each communityand so the incentives of an

infected player only depend on his belief about how spread the contagion is.14

When analyzing the beliefs of an infected playerj , we use the termgood behaviorfor

actions that point towards fewer people being unhealthy. Any other action isbad behavior.

• Bad behavior (b). A action ai ∈ Ai is considered bad behavior for playerj in

14Note that the beliefs̄µ contain additional information such as whether the contagion started slow and
then sped up or started fast, but this information is irrelevant for the incentives.
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period t if one of the following holds: i)ai is a triggering action, ii)ai is a non-

triggering action, or iii) playerj is unhealthy andai = āti = a∗i .
15

• Good behavior (g). A actionai ∈ Ai is considered good behavior for a playerj in

periodt if it is not considered bad behavior.

We slightly abuse notation and write, for instance,ht = g . . . gb to denote a history in which

playeri has faced good behavior during the firstt− 1 periods and bad behavior in periodt.

4.2.1 Approach to computing off-path beliefs

Suppose that I am a player who gets infected at some periodt̄ in Phase III and that I face

a healthy player in period̄t + 1, i.e.,ht̄+1 = g . . . gbg. I will think that a seller deviated

in period 1 (Lemma1) and that in periodT I + T II + 1 all unhealthy buyers and sellers

played the Nash action (which is triggering in this period).Therefore, periodT I + T II + 2

starts with the same number of unhealthy players in both communities. Hence, it suffices

to compute my beliefs about the number of unhealthy sellers.These beliefs are represented

by xt̄+1 ∈ R
M , wherext̄+1

k is the probability of exactlyk sellers being unhealthy after

period t̄ + 1, and must be computed using Bayes rule and conditioning on my personal

history. LetGt be the event “I was healthy after periodt” andU t be the random variable

corresponding to the number of unhealthy sellers after period t. Then, I have the following

information after historyht̄+1: i) A seller deviated at period 1, sox1 = (1, 0, . . . , 0), ii) for

eacht < t̄, eventGt holds, iii) since I got infected at period̄t, at least one player in the

rival community got infected in the same period, and iv) since I faced a healthy player at

t̄+ 1, then, for eacht < t̄, U t ≤ M − 2.

To computext̄+1, we compute a series of intermediate beliefsxt, for t < t̄ + 1. We

computex2 from x1 by conditioning onG2 andU2 ≤ M − 2; then we computex3 from x2

and so on. Note that, to computex2, we do not use the information that “I was healthy at the

end of each period2 < t < t̄.” So, at eacht < t̄, xt represents my beliefs when I condition

on the fact that the contagion started at period 1 and that no matching that leads to more

thanM − 2 people being unhealthy could have been realized.16 Put differently, at each

period, I compute my beliefs by eliminating (assigning zeroprobability to) the matchings

15Actions in points ii) and iii) are neutral: they do not point in the direction of more or less people being
unhealthy. These actions are equally likely to come from healthy and unhealthy players.

16The updating after period̄t is different, since I know that I was infected att̄ and that no more thanM −1
people could possibly be unhealthy in the other community atthe end of period̄t.
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I know could not have taken place. At a given periodτ < t̄, the information that “I was

healthy at the end of periodt, with τ < t < t̄” is not used. This information is added period

by period, i.e., only at periodt we add the information coming from the fact that “I was

healthy at the end of periodt.” In the Online Appendix (B.1) we show that this method

yields the correct beliefxt̄+1 at period̄t+1 conditional on the entire personal historyht̄+1.

Although from periodT I +T II +1 onwards the number of unhealthy sellers and buyers

coincide, this is not the case in Phases I and II. In particular, it will be important to compute

the evolution of the number of exposed buyers in Phase I.

In some abuse of notation, when it is known that a player assigns0 probability to more

thank opponents being unhealthy, we work withxt ∈ R
k. Given beliefsxt, x̂t ∈ R

k, we

say thatxt first-order stochastically dominateŝxt if xt assigns higher probability to more

people being unhealthy; i.e., for eachl ∈ {1, . . . , k},
∑k

i=l x
t
i ≥

∑k
i=l x̂

t
i.

4.3 Modeling beliefs with contagion matrices

4.3.1 Contagion matrices and their properties

Beliefs evolve according to Markov processes and can be studied using appropriate tran-

sition matrices, which we callcontagion matrices. A contagion matrixQ describes how

contagionspreadsin a community in a given period, withQij denoting the probability that

state “i unhealthy players” transitions to state “j unhealthy players”. If we letMk denote

the set ofk × k matrices with real entries, we say thatQ ∈ Mk is a contagion matrix if it

has the following properties:

i) All the entries ofQ belong to[0, 1] (they represent probabilities).

ii) Q is upper triangular (being unhealthy is irreversible).

iii) All diagonal entries are strictly positive (with some probability, no healthy player

observes a triggering action and contagion does not spread in the current period).

iv) For eachi > 1, Qi−1,i > 0 (with some probability, exactly one healthy player gets

exposed or infected in the current period, unless everybodyis already unhealthy).

Since contagion matrices are upper triangular, their eigenvalues correspond to the diagonal

entries. Given a matrixQ, let Ql⌋ denote the matrix obtained by removing the lastl rows

and columns fromQ. Similarly,Q⌈k is the matrix obtained by removing the firstk rows and
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columns andQ⌈k,l⌋ by doing both operations simultaneously. Clearly, if we perform any of

these operations on a contagion matrix, we get a new contagion matrix.

Given y ∈ R
k, let ‖y‖ :=

∑

i∈{1,...,k} yi. We are interested in the limit behavior of

yt := yQt

‖yQt‖ , whereQ is a contagion matrix andy is a probability vector. We present

below a few results about this limit behavior for contagion matrices. The proofs are in

AppendixA.2. Given a contagion matrixQ ∈ Mk, we define the following properties:

Property Q1: {Q11} = argmaxi∈{1,...,k}Qii.

Property Q2: Qkk ∈ argmaxi∈{1,...,k}Qii.

Property Q3: For eachl < k, Q⌈l ∈ Ml satisfies Q1 or Q2.

Lemma 3. Let Q be a contagion matrix andx be a left eigenvector associated with the

largest eigenvalue ofQ. Then,x is either nonnegative or nonpositive.

Lemma 4. LetQ be a contagion matrix and letλ be its largest eigenvalue. Then, the left

eigenspace associated withλ has dimension one. That is, the geometric multiplicity ofλ is

one, irrespective of its algebraic multiplicity.

Given a contagion matrixQ with largest eigenvalueλ, we denote byyQ the unique

nonnegative left eigenvector associated withλ such that‖yQ‖ = 1.

Lemma 5. LetQ ∈ Mk be a contagion matrix. Letl < k and consider vectoryQl⌋ ∈ R
k−l.

If
∑k−l

i=1 y
Q
i 6= 0 then, for eachj ∈ {1, . . . , k − l}, y

Ql⌋

j =
yQj

∑k−l
i=1 yQ

.

Lemma 6. Let Q ∈ Mk be a contagion matrix satisfyingQ1 or Q2. Then, for each

nonnegative vectory ∈ R
k with y1 > 0, we havelimt→∞

yQt

‖yQt‖ = yQ. In particular, under

Q2, yQ = (0, . . . , 0, 1).

Lemma 7. Let Q ∈ Mk be a contagion matrix satisfyingQ1 and Q3. Let y ∈ R
k be a

nonnegative vector. Ify is close enough to(0, . . . , 0, 1), then, for eacht ∈ N, yt first-order

stochastically dominatesyQ, i.e., for eachl ∈ {1, . . . , k},
∑k

i=l y
t
i ≥

∑k
i=l y

Q
i .

4.4 Relevant contagion matrices

In this section we present the main contagion matrices that are relevant for our construction.
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4.4.1 Contagion matrix in Phase I

Let hT I+T II+1 = g . . . gb denote a history in which I am a player who gets infected in

periodT I + T II + 1. Since the number of unhealthy players is the same in both commu-

nities, it suffices to compute my beliefs about the number of unhealthy buyers,xT I+T II+1,

which depends on how contagion spreads after a seller turns rogue in period 1. In Phase I,

this seller continues deviating, causing buyers to get exposed. The contagion is a Markov

process with state space{1, . . . ,M}, representing the number of exposed buyers. This cor-

responds with contagion matrix̂SM ∈ MM , where a statek transitions tok+1 if the rogue

seller meets a healthy buyer, which has probabilityM−k
M

. With the remaining probability,

i.e., k
M

, statek remains at statek. When no confusion arises, we omit subscriptM in ŜM .

Let Ŝkl be the probability that statek transitions to statel. Then,

ŜM =














1
M

M−1
M

0 0 . . . 0

0 2
M

M−2
M

0 . . . 0
...

...
. .. .. .

...

0 0 0 M−2
M

2
M

0

0 0 0 0 M−1
M

1
M

0 0 0 0 0 1














.

To compute my beliefs after being infected, I must also condition on the information

from my own history. Lett < T I. After observing historyhT I+T II+1 = g . . . gb, I know

that, at the end of periodt + 1, at mostM − 1 buyers were exposed and I was healthy.

Therefore, to computext+1, my intermediate beliefs about the number of buyers who were

exposed at the end of periodt+ 1, i.e., aboutU t+1, I need to condition on the following:

i) My beliefs aboutU t: xt.

ii) I was healthy at the end oft+ 1: the eventGt+1.

If I am a buyer and condition onGt+1, then I know I did not meet the rogue seller. The

transition from statel− 1 to statel then requires that the rogue seller meets a healthy

buyer, which has probabilityM−l+1
M

, and that this healthy buyer is different from me,

which has probability M−l
M−l+1

. On the other hand, if I am a seller, conditioning on

Gt+1 is irrelevant, since sellers always observe good behavior during Phase I.

iii) At most M − 1 buyers were exposed by the end of periodt + 1: U t+1 ≤ M − 1

(otherwise I would not have observedg throughout Phase II).
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Therefore, givenl < M , if I am a buyer, the probability that exactlyl buyers are

exposed after periodt+ 1, conditional on the above information, is given by:

P(lt+1 |xt ∩Gt+1 ∩ U t+1 ≤ M − 1) =
P(lt+1 ∩Gt+1 ∩ U t+1 ≤ M − 1 |xt)

P(Gt+1 ∩ U t+1 ≤ M − 1 |xt)

=
xt
l−1Sl−1,l

M−l
M−l+1

+ xt
lSl,l

∑M−1
k=1

(
xt
k−1Sk−1,k

M−k
M−k+1

+ xt
kSk,k

) .

The expression for a seller would be analogous, but without the M−l
M−l+1

factors. Note

that we can express the transition fromxt to xt+1 using aconditional transition matrix, Q̂.

Let Q̂ ∈ MM be defined, for each pairk, l ∈ {1, . . . ,M − 1}, by Q̂kl := Skl
M−l
M−k

; by

Q̂MM := 1, and with all remaining entries being0.

Since we know thatxt
M = xt+1

M = 0, we can work inRM−1. Recall thatQ̂1⌋ andŜ1⌋

denote the matrices obtained from̂Q andŜ by removing the last row and the last column

of each. The truncated matrix of conditional transition probabilitiesQ̂1⌋ is as follows:

Q̂1⌋ =












1
M

M−1
M

M−2
M−1

0 0 . . . 0

0 2
M

M−2
M

M−3
M−2

0 . . . 0
...

...
. . . .. .

...

0 0 0 0 M−2
M

2
M

1
2

0 0 0 0 0 M−1
M












.

We need to understand the evolution of the Markov processes associated with matrices

Q̂1⌋ and Ŝ1⌋, starting with only one player being unhealthy. Then, for the buyer case, let

y1B0 = (1, 0, . . . , 0) ∈ R
M−1 and defineyt+1

B0 as

yt+1
B0 =

ytB0 Q̂1⌋

‖ytB0 Q̂1⌋‖
=

y1B0 Q̂t
1⌋

‖y1B0 Q̂t
1⌋‖

.

Analogously, we define the Markov process for the seller,ytS0, by usingŜ1⌋ instead ofQ̂1⌋.

Therefore, my intermediate beliefs at the end of periodT I, xT I
, would be given byyT

I

B0 if

I am a buyer andyT
I

S0 if I am a seller. To compute the beliefsxT I+T II+1, I would have to

update using the contagion matrix in Phase II but, as will be discussed in Section5, our

proof does not need to deal with it explicitly.

Suppose now that, after getting infected after historyhT I+T II+1 = g . . . gb, during the
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nextα periods, with1 ≤ α ≤ M − 2, I face good behavior while I play the Nash action,

leading to a history of the formhT I+T II+1+α = g . . . gbg α. . . g. Suppose that I am a buyer

(the arguments for a seller are analogous). After getting infected in periodT I + T II + 1, I

can believe that all players in my community are unhealthy atthe end of periodT I+T II+1.

However, this is no longer possible, because I have observedthe on-path action which is

played only by healthy players and, moreover, I have been infecting by playing the Nash

action. Thus, afterhT I+T II+1+α = g . . . gbg α. . . g, I know that at mostM − 1 − α buyers

were exposed by the end of Phase I. So, for eacht ≤ T I and eachk ≥ M − α, xt
k = 0.

My beliefs are no longer computed usinĝQ1⌋, but rather withQ̂α+1⌋. Accordingly, denote

my intermediate beliefs at the end of periodT I by yT
I

Bα ∈ R
M−1−α if I am a buyer and

yT
I

Sα ∈ R
M−1−α if I am a seller. Below we characterize the limit behavior ofytBα andytSα .

Lemma 8. For eachM > 2 and eachα ∈ {0, 1, . . . ,M − 2}, we havelimt→∞ ytBα =

limt→∞ ytSα = (0, . . . , 0, 1) ∈ R
M−1−α.

Proof. Since, for eachα ∈ {0, 1, . . . ,M − 2}, the matrixQ̂α+1⌋ satisfies property Q2, the

result follows from Lemma6.

This result is intuitive. Since the largest diagonal entry in matricesQ̂α+1⌋ andŜα+1⌋ is

the last one, stateM − 1 − α is more stable than any other state. Consequently, as more

periods of contagion elapse in Phase I, stateM − 1− α becomes more and more likely.

4.4.2 Contagion matrix in Phase III

Suppose that I get infected after observinght̄+1 = g . . . gb, with t̄ > T I + T II + 1. My

beliefsxt̄+1 also depend on how contagion spreads in Phase III. The new contagion matrix

is S̄ ∈ MM where, for each pairk, l ∈ {1, . . . ,M}, if k > l or l > 2k, S̄kl = 0; otherwise,

i.e., if k ≤ l ≤ 2k, the probability of transition to statek to statel is (see Figure4):

S̄kl =

((
k

l−k

)(
M−k
l−k

)
(l − k)!

)2

(2k − l)!(M − l)!

M !
=

(k!)2((M − k)!)2

((l − k)!)2(2k − l)!(M − l)!M !
.

Since I have observed historyht̄+1 = g . . . gb, given t such thatT I + T II < t < t̄, I

know that “at mostM − 1 people could have been unhealthy in the rival community at the

end of periodt + 1”, i.e., U t+1 ≤ M − 1, and “I was healthy at the end of periodt + 1”

(eventGt+1). As before, letxt be my intermediate beliefs after periodt. Since, for each
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l-k

k

M-k

Community 2 (Buyers)Community 1 (Sellers)

Already unhealthy

Newly infected

Still healthy

(2k − l)!

(M − l)!

(

k

l−k

)(

M−k

l−k

)

(l − k)!

(

k

l−k

)(

M−k

l−k

)

(l − k)!

Figure 4: Spread of Contagion in Phase III. There areM ! possible matchings. For statek to
transition to statel, exactly (l − k) unhealthy people from each community must meet(l − k)
healthy people from the other one. The number of ways of choosing exactly (l − k) buyers fromk

unhealthy ones is
(

k
l−k

)
. The number of ways of choosing the corresponding(l− k) healthy sellers

that will get infected is
(
M−k
l−k

)
. Finally, the number of ways in which these sets of(l − k) people

can be matched is the number of permutations ofl−k people, i.e.,(l−k)!. Analogously, we choose
the(l − k) unhealthy sellers who will be matched to(l − k) healthy buyers. The number of ways
in which the remaining unhealthy buyers and sellers get matched to each otheris (2k − l)! and, for
the healthy ones, we have(M − l)!.

t ≤ t̄, xt
M = 0, we can work withxt ∈ R

M−1. Thus, for eachl ∈ {1, . . . ,M − 1}, we want

to computext+1
l , which is given by:

P(lt+1 |xt ∩Gt+1 ∩ U t+1 ≤ M − 1) =
P(lt+1 ∩Gt+1 ∩ U t+1 ≤ M − 1) |xt)

P(Gt+1 ∩ U t+1 ≤ M − 1) |xt)

=

∑

k∈{1,...,M} x
t
kS̄kl

M−l
M−k

∑

l∈{1,...,M−2}
(∑

k∈{1,...,M} x
t
kS̄kl

M−l
M−k

) .

Again, we can express these probabilities using the corresponding conditional transition

matrix. LetQ̄ ∈ MM be defined, for each pairk, l ∈ {1, . . . ,M − 1}, by Q̄kl := S̄kl
M−l
M−k

;

by Q̄MM := 1; and with all remaining entries being0. Then, given a vector of beliefs at

the beginning of Phase III represented by a probability vector ȳ0B0 , we are interested in the

evolution of the Markov process whereȳt+1
B0 is defined as

ȳt+1
B0 =

ȳtB0 Q̄1⌋

‖ȳtB0 Q̄1⌋‖
.

There is no need to distinguish betweenȳtB0 and ȳtS0 , since in Phase III the contagion

spreads identically in both communities. For eacht ≤ t̄−T II −T I, ȳtB0 coincides with the

intermediate beliefsxT I+T II+t. Below, we characterize the limit behavior ofȳtB0. Impor-
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tantly, provided that(ȳ0B0)1 > 0, the limit does not depend on̄y0B0.

Lemma 9. Suppose that(ȳ0B0)1 > 0. Then,limt→∞ ȳtB0 = (0, 0, . . . , 0, 1) ∈ R
M−1.

Proof. SinceQ̄1⌋ satisfies property Q2, the result follows from Lemma6.

The logic behind the result is less straightforward than that for Lemma8. The largest

diagonal entries of̄Q1⌋ are the first and last ones:̄Q11 = Q̄M−1,M−1 = 1
M

. Unlike in the

contagion matrix of Phase I, stateM − 1 is not the unique most stable state. Here, states1

andM−1 are equally stable, and more stable than any other state. Yet, in each period many

states transition toM − 1 with positive probability, while no state transitions to state 1, and

so the ratio
(ȳt

B0 )M−1

(ȳt
B0 )1

goes to infinity ast increases.

Suppose that I get infected afterht̄+1 = g . . . gb and the nextα periods, with1 ≤ α ≤
M − 2, I face good behavior while I play the Nash action, leading toa historyht̄+1+α =

g . . . gbg α. . . g. Then, I know that fewer than(M − 1−α) people in each community were

unhealthy at the end of period̄t since, otherwise, I could not have facedg in α periods after

getting infected. I have to recompute my beliefs using the information that, for eacht ≤ t̄,

U t ≤ M −1−α. In particular, for eacht ≤ t̄ and eachk ≥ M −α, xt
k = 0. My beliefs are

computed usinḡQα+1⌋ and we denote my intermediate beliefs at the end of periodT I by

ȳT
I

Bα ∈ R
M−1−α (the process for sellers,̄yT

I

Sα ∈ R
M−1−α, is the same and can be omitted).

We have the Markov process that starts with a vector of beliefs at the beginning of

Phase III, represented by a probability vectorȳ0Bα, and such that̄yt+1
Bα is computed as

ȳt+1
Bα =

ȳtBα Q̄α+1⌋

‖ȳtBα Q̄α+1⌋‖
.

As before, for eacht ≤ t̄−T I −T II, ȳtBα coincides with the intermediate beliefsxT I+T II+t.

We want to study the limit behavior of̄ytBα ast goes to∞.

The extra difficulty comes from the fact that, for eachα with 1 ≤ α ≤ M − 2,

Q̄M−1−α,M−1−α < Q̄11 =
1
M

, and so matrix̄Qα+1⌋ does not satisfy property Q2. Therefore,

the intuition behind Lemma9 do not apply and, indeed, the limit beliefs do not converge to

(0, . . . , 0, 1). Yet, Q1 holds and we can rely on Lemma6 to ensure convergence.

Lemma 10. Let M > 2 and α ∈ {1, . . . ,M − 2}. Suppose that(ȳ0Bα)1 > 0. Then,

limt→∞ ȳtBα = ȳMBα , whereȳMBα is the unique nonnegative left eigenvector associated with

the largest eigenvalue of̄Qα+1⌋ such that‖ȳMBα‖ = 1. In particular, ȳMBαQ̄α+1⌋ =
ȳMBα

M
.
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Proof. Since, for eachα ∈ {1, . . . ,M − 2}, the matrixQα+1⌋ satisfies property Q1, with

(Q̄α+1⌋)11 =
1
M

, the result follows from Lemma6.

The result above implies that the limit ast̄ goes to infinity of the beliefsxt̄ is indepen-

dent ofT I andT II. Given these results on off-path beliefs, we are now equipped to study

the off-path incentives of players.

5 Incentives after Getting Infected in Phase III

Checking incentives of players infected in Phase III is the heart of the proof. We consider

three cases: First, players who gets infected at the start ofPhase III. Next, players who get

infected late in Phase III. Finally, we use a monotonicity argument on the beliefs to check

the incentives after infection in intermediate periods in Phase III.

The main idea is that an infected player will always believe that contagion is widely

spread and, therefore, find it optimal to play the Nash action. Accordingly, we define a

notion of “contagion being widely spread,” and establish two preliminary results.

Definition 2. Letx ∈ R
M represent a probability distribution over the number of unhealthy

people in a community, so thatxk is the probability that there arek unhealthy people. Let

p ∈ [0, 1] andr ∈ [0, 1].

• We say that contagion istotally p-spreadgivenx if xM ≥ p.

• We say that contagion is(r, p)-spreadgivenx if
M∑

j=⌈rM⌉
xj ≥ p.17

Note that totallyp-spread is equivalent to(1, p)-spread. Lemma11 below relates Def-

inition 2 with the incentives of an unhealthy player, regardless of how patient he is. This

independence with respect toδ is very important because, given our equilibrium strategies,

a highδ is needed for on-path incentives, but may make off-path incentives harder to sat-

isfy. Since a seller can profitably deviate throughout PhaseI, if T I is large sellers must be

patient so that the potential losses in Phase III outweigh any possible gains in Phase I. On

the other hand, in Phase III, a very patient infected player may not want to punish, since

that would spread contagion and reduce his continuation payoff. Lemma11 shows that if

an infected player believes that contagion is widely spread, then he is willing to play the

Nash action because his action cannot affect his continuation payoff significantly.

17⌈z⌉ denotes the smallest integer not smaller thanz and⌊z⌋ denotes the largest integer not larger thanz.
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Lemma 11. LetG ∈ G . Then, there arepG ∈ (0, 1) andrG ∈ (0, 1) such that, for each

p ≥ pG andr ≥ rG, the following holds for every gameGM
δ with M > 2 andδ ∈ (0, 1):

An unhealthy player who, at some periodt̄ > T I + T II, believes that the contagion is

(r, p)-spread, finds it sequentially rational to play the Nash action at the given period.

Proof. See AppendixA.3.

Now, suppose that, at some point in Phase III, I am an unhealthy player who believes

that at least one player is infected in each community. Suppose further that I then play

the Nash action fort periods while observing onlyg. Thus, in each period I infect a new

player and contagion keeps spreading. As the game proceeds,I will eventually believe

that contagion is(rG, pG)-spread. The lemma below shows that the number of periods

necessary for this to happen only depends on the gameG and on the population sizeM and,

we denote it byφG(M). Since contagion spreads exponentially fast in Phase III, for fixed

G, φG(M) is some logarithmic function ofM and the following result is straightforward.

Lemma 12. LetG ∈ G and r̄ ∈ (0, 1). Then, there is
¯
M ∈ N such that, for eachM ≥

¯
M ,

we haveφG(M) < (1− r̄)M .

The above result is important to study incentives in Phase III, but we also need to under-

stand how beliefs evolve before the Nash action has been played forφG(M) periods. Sup-

pose that I am an infected player who is computing his beliefsafter historyht = g . . . gb,

with t > T I + T II. Contagion matrices are used to prove that afterht I essentially believe

thatN − 1 people were infected at the end of periodt − 1 and, therefore, everybody was

infected after periodt. Histories of the formht+α = g . . . gbg α. . . g are more involved, and

can only be explained by having at mostN−α people infected at the end of periodt. Thus,

the largerα is, the more people I believe were healthy at the end of periodt. On the other

hand, we have an effect that goes in the opposite direction: from periodt to periodt + α

I am infecting healthy players (I am observingg) and contagion keeps spreading. A fun-

damental part of the results below consists of showing that this second effect ensures that,

regardless of the value ofα, I will believe that contagion is(rG, pG)-spread.

5.1 Infection at the start of Phase III

Let ht̄ be a history in which I got infected in periodT I + T II + 1, i.e., ht̄ starts with

hT I+T II+1 = g . . . gb. The equilibrium strategies prescribe that I play the Nash action at
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t̄+1. The optimality of this action depends on my beliefsxt̄ about the number of unhealthy

players in the other community. I must believe that contagion is (r, p)-spread withp ≥ pG

andr ≥ pG. Establishing this is the core of the proof of Proposition3 below.

Proposition 3. LetG ∈ G . Fix T II ∈ N andM > 2. Let t̄ ≥ T I + T II + 1 and letht̄ be a

history that starts withhT I+T II+1 = g . . . gb. There isT I
1 ∈ N such that, for eachT I ≥ T I

1 ,

if I observeht̄, then it is sequentially rational for me to play the Nash action at periodt̄+1.

Proof. We show that, afterht̄, I believe that contagion is totallyp-spread withp ≥ pG.

Then, the result follows from Lemma11. We analyze three cases.

Case 1.Suppose thatht̄ is a history of the formhT I+T II+1 = g . . . gb. By Lemma8,

takingT I large enough, the intermediate beliefsxT I ∈ R
M−1, which coincide withyT

I

B0 if I

am a buyer and withyT
I

S0 if I am an seller, can be made arbitrarily close to(0, . . . , 0, 1).

Suppose that I am a buyer. I will assign probabilityp ≥ pG to M − 1 players in my

community being exposed at the end of Phase I. Since both healthy and unhealthy sellers

play the Nash action in Phase II, I cannot learn anything fromplay in Phase II. I also

know that there were at least as many unhealthy sellers as unhealthy buyers by the end of

Phase II. Hence, ifT I is large enough, the intermediate beliefsxT I+T II ∈ R
M−1 are such

that I assign probabilityp ≥ pG to M − 1 players being unhealthy in each community.

Then, in periodT I +T II +1, with probability at leastp I got infected by an unhealthy seller

and also the last healthy seller got infected (I was the last healthy buyer). Thus, my beliefs

xT I+T II+1 ∈ R
M are such that afterhT I+T II+1 I believe that contagion is totallyp-spread

with p ≥ pG.

Next, suppose that I am a seller. Since no buyer infected me inPhase II, the intermediate

beliefsxt with t > T I are computed fromxT I
factoring in this information, which will shift

them towards “less people being unhealthy”. Yet, ifT I

T II is large enough, Lemma8 implies

that beliefsxT I+T II+1 are such that I believe that contagion is totallyp-spread withp ≥ pG.

Case 2.Suppose thatht̄ is a history of the formhT I+T II+1+α = g . . . gbg α. . . g. First,

suppose that1 ≤ α ≤ M − 2. As we argued in the discussion preceding Lemma8, I know

that at mostM − 1 − α buyers were exposed at the end of Phase I. So, for eacht ≤ T I

and eachk ≥ M − α, xt
k = 0. Then, we can represent the beliefs at the end of period

T I by yT
I

Bα ∈ R
M−1−α if I am a buyer andyT

I

Sα ∈ R
M−1−α if I am a seller. By Lemma8,

for T I large enough, these beliefs can be made arbitrarily close to(0, . . . , 0, 1) ∈ R
M−1−α.

In particular, I will assign probabilityp ≥ PG to M − 1 − α players in my community

being exposed at the end of Phase I. Suppose that I am a buyer. Bythe same arguments
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of Case 1, the intermediate beliefsxT I+T II ∈ R
M−1−α are such that I assign probability

p ≥ PG to M − 1 − α players being infected in each community. Thus, I got infected in

periodT I + T II + 1 and at mostM − α buyers (and sellers) remained healthy. Then, with

probability at leastp, in each one of the followingα periods I faced one of the remaining

healthy sellers and infected him, infecting the last one in periodT I+T II+1+α. Therefore,

my beliefsxT I+T II+1+α are such that afterhT I+T II+1+α I believe that contagion is totally

p-spread withp ≥ pG. If I am a seller, similar considerations to those in Case 1 areneeded,

were T I

T II has to be large enough.

Finally, suppose thatα > M − 2. In this case, by statement iii) in Lemma2, I must

assign probability 1 to the following history: The seller who deviated in period 1 met the

same buyer throughout Phases I and II, so that Phase III started with only one infected

player in each community; then, I got infected in periodT I +T II +1 and I infected healthy

players in the nextM − 2 periods; from periodT I + T II +M − 1 onwards, I met infected

players who were making errors. In particular I believe thatcontagion is totally1-spread.

Case 3. Now, consider histories where, after getting infected, I observe a sequence

of actions that may include bothg andb, i.e., histories starting withhT I+T II+1 = g . . . gb

and where I facedb in one or more periods after getting infected. By definition, every

observation ofb shifts my beliefs towards more people being unhealthy. Therefore, since

the beliefs in the two cases above are such that, afterht̄, I believe that contagion is totally

p-spread withp ≥ pG, the same also holds in this third case.

5.2 Infection late in Phase III

We now analyze histories in which I get infected in periodt̄ > T I + T II + 1 and study

beliefs and incentives as̄t goes to infinity. We start with the result for histories of theform

g . . . gb and then move to the most challenging case,g . . . gbg α. . . g with 1 ≤ α ≤ M − 2.

Proposition 4. LetG ∈ G . Fix T I ∈ N, T II ∈ N, andM > 2. Let t̄ > T I + T II + 1 and

let ht̄ = g . . . gb. There iŝt ∈ N such that, if̄t > t̂ and I observeht̄, then it is sequentially

rational for me to play the Nash action at periodt̄+ 1.

Proof. First considerxt̄−1 ∈ R
M−1, my intermediate beliefs given historyht̄ just before

getting infected. There is a positive probability that the rogue seller who deviated in pe-

riod 1 has met the same buyer throughout the first two phases. Thus,xT I+T II

1 > 0. Then,

when computingxt̄−1 from xT I+T II
, we can apply Lemma9 with ȳ0B0 = xT I+T II

and get

30



that limt→∞ ȳtB0 = (0, 0, . . . , 0, 1) ∈ R
M−1. Therefore, ift̄ is large enough, the interme-

diate beliefsxt̄−1, which coincide withȳt̄−1
B0 , are such that I assign probabilityp ≥ pG to

M − 1 being infected in each community.18 Then, with probability at leastp, in period

t̄ I got infected by an unhealthy player and the last healthy player in the rival community

also got infected. Therefore, my beliefsxt̄ are such that afterht̄ I believe that contagion is

totally p-spread withp ≥ pG. The result follows from Lemma11.

Next, suppose that I get infected in periodt̄ > T I + T II + 1 and after that I face

good behavior forα periods, i.e., I observe a historyht̄+α of the formg . . . gbg α. . . g with

1 ≤ α ≤ M − 2. After these histories, updating of beliefs builds upon theQ̄α+1⌋. By

Lemma10, as long as the intermediate beliefs at the start of phase III, ȳ0Bα ∈ R
M−1−α,

are such that(ȳ0Bα)1 > 0, thenlimt→∞ ȳtBα = ȳMBα , whereȳMBα is such that‖ȳMBα‖ = 1 and

ȳMBα = MȳMBαQ̄α+1⌋.19 The difficulty comes from the fact that now̄yMBα 6= (0, . . . , 0, 1).

The core of the current section consists of establishing that, for eachr ∈ (0, 1) and each

p ∈ (0, 1), if M is large enough, I believe that contagion is(r, p)-spread after historyht̄+α.

In order to do so, the crucial step is to show the following: let r ∈ (0, 1) andm ∈ N; then,

if M is large enough, for eachk < ⌈rM⌉, there arēr ∈ (r, 1) andk̄ ∈
[
⌈rM⌉, ⌊r̄M⌋

]
such

that(ȳMBα)k̄ > Mm+1(ȳMBα)k.

Two opposing forces affect how my beliefs evolve after I observe g . . . gbg α. . . g. On

the one hand, each observation ofg suggests that not too many people are unhealthy, mak-

ing me step back in my beliefs and assign higher weight to lower states (fewer unhealthy

people). On the other hand, since I believe that contagion started att = 1 and that it is

spreading during Phase III, every elapsed period makes me assign more weight to higher

states (more unhealthy people). The intuition behind the magnitudes of these two effects is

as follows. First, each time I observeg, my beliefs get updated with more weight assigned

to lower states and, roughly speaking, this step back in beliefs turns out to be of the order

of M . Second, the statek′ arising after the most likely transition from a given statek is

about
√
M times more likely than the statek. Then, by takingM large enough, we can

find r̄ ∈ (r, 1) such that, givenk < ⌈rM⌉, the number of “most likely transitions” needed

to get from statek to a statek′ > ⌊r̄M⌋ is as large as needed. In turn, there will be a state

k̄ ∈
[
⌈rM⌉, ⌊r̄M⌋

]
that can be made arbitrarily more likely thank.

18Recall that there is no need to distinguish betweenȳt
B0 andȳt

S0 , since in Phase III an equal number of
players is infected in each community and contagion spreadsidentically in both communities.

19In our construction, the condition̄y0
1
> 0 follows from the fact that, with positive probability, the rogue

seller may meet the same buyer in all the periods in phases I and II.
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We need some preliminaries before proving formally the above observations. Recall that

(Q̄α+1⌋)k,k+j = S̄k,k+j
M − k − j

M − k
=

(k!)2((M − k)!)2

(j!)2(k − j)!(M − k − j)!M !

M − k − j

M − k
.

Given a statek ∈ {1, . . . ,M − 2}, let tr(k) := ⌊k(M−k)
M

⌋ which, for largeM , is such

that k + tr(k) is a good approximation of the most likely transition from statek. Next,

we temporarily switch to the case where there is a continuum of states, i.e., we think of

the set of states as the interval[0,M ]. In the continuous setting, a statez ∈ [0,M ], can

be represented asrM ; wherer = z/M can be interpreted as the proportion of unhealthy

people at statez. Let γ ∈ R and letfγ : [0, 1] → R be defined as

fγ(r) :=
rM(M − rM)

M
+ γ = (r − r2)M + γ.

Note that allfγ functions are continuous and that tr(rM) = ⌊f0(r)⌋, sof0 is the extension

to the continuous case of function tr(·). We want understand the likelihood of the transition

from staterM to rM + f0(r) is. Letg : [0, 1] → [0, 1] be defined as

g(r) := 2r − r2.

The functiong is continuous and strictly increasing. Givenr ∈ [0, 1], g(r) represents

the proportion of unhealthy people if, at staterM , f0(r) healthy people get infected, since

rM+f0(r) = rM+(r−r2)M = (2r−r2)M . Letg2(r) := g(g(r)) and define analogously

any other power ofg. Hence, for eachr ∈ [0, 1], gn(r) represents the fraction of unhealthy

people aftern steps starting atrM when transitions are made according tof0(·).

Lemma 13. LetM ∈ N anda, b ∈ (0, 1), with a > b. Then,aM + f0(a) > bM + f0(b).

Proof. Note thataM +f0(a)− bM −f0(b) = (g(a)− g(b))M , and the result follows from

the fact thatg(·) is strictly increasing on(0, 1).

Let hM
γ : (0, 1) → (0,∞) be defined as

hM
γ (r) :=

(rM !)2((M − rM)!)2

(fγ(r)!)2(rM − fγ(r))!(M − rM − fγ(r))!M !

M − rM − fγ(r)

M − rM
.

This function is the continuous version of the transitions given by the matrixQ̄α+1⌋. In

particular, givenγ ∈ R andr ∈ [0, 1] the functionhM
γ (r) represents the conditional prob-

32



ability of transition from staterM to staterM + fγ(r). In some abuse of notation, we

apply the factorial function to non-integer real numbers. In such cases, the factorial can be

interpreted as the corresponding Gamma function, i.e.,a! = Γ(a+ 1).

Lemma 14. Letγ ∈ R andr ∈ (0, 1). Then,limM→∞ MhM
γ (r) = ∞. More precisely,

lim
M→∞

MhM
γ (r)√
M

=
1

r
√
2π

.

Proof. We prove the result in two steps.

Step 1: γ = 0. Stirling’s formula implies thatlimn→∞(e−nnn+ 1
2

√
2π)/n! = 1. Given

r ∈ (0, 1), to studyhM
γ (r) in the limit, we use the approximationn! = e−nnn+ 1

2

√
2π.

Substituting and simplifying, we get the following:

MhM
0 (r) = M

((rM)!)2(((1− r)M)!)2

M !(r2M)!(((r − r2)M)!)2((1− r)2M)!
(1− r)

=
M(rM)1+2rM((1− r)M)1+2(1−r)M(1− r)√

2πM
1
2
+M((1− r)2M)1+2(1−r)2M((r − r2)M)

1
2
+(r−r2)M(r2M)

1
2
+r2M

=

√
M

r
√
2π

.

Step 2: Letγ ∈ R and r ∈ (0, 1). Now,

hM
0 (r)

hM
γ (r)

=
(r2M − γ)!(((r − r2)M + γ)!)2((1− r)2M − γ)!

(r2M)!(((r − r2)M)!)2((1− r)2M)!

(1− r)2M

(1− r)2M − γ
.

Applying Stirling’s formula again, the above expression becomes

(r2M−γ)
1
2+r2M−γ

(r2M)
1
2+r2M

((r−r2)M+γ)1+2(r−r2)M+2γ

((r−r2)M)1+2(r−r2)M

((1−r)2M−γ)
1
2+(1−r)2M−γ

((1−r)2M)
1
2+(1−r)2M

(1−r)2M
(1−r)2M−γ

. (1)

To compute the limit of the above expression asM → ∞, we analyze the four fractions

above separately. Clearly,((1− r)2M)/((1− r)2M − γ) → 1 asM → ∞. So, we restrict

attention to the first three fractions. Take the first one:

(r2M − γ)
1
2
+r2M−γ

(r2M)
1
2
+r2M

= (1− γ

r2M
)
1
2 · (1− γ

r2M
)r

2M · (r2M − γ)−γ = A1 · A2 · A3,

wherelimM→∞A1 = 1 andlimM→∞ A2 = e−γ. Similarly, the second fraction decomposes

asB1·B2·B3, wherelimM→∞ B1 = 1, limM→∞B2 = e2γ andB3 = ((r−r2)M+γ)2γ. The
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third fraction can be decomposed asC1·C2·C3, wherelimM→∞ C1 = 1, limM→∞C2 = e−γ

andC3 = ((1− r)2M − γ)−γ. Thus, the limit of expression (1) asM → ∞ reduces to

lim
M→∞

1

eγ(r2M − γ)γ
· e2γ((r − r2)M + γ)2γ · 1

eγ((1− r)2M − γ)γ
=

lim
M→∞

( ((r − r2)M + γ)2

(r2M − γ)((1− r)2M − γ)

)γ

= 1.

We are now ready to present the results regarding the properties of ȳMB1 which, relying

on Lemma5, can be used to get properties of the otherȳMBα vectors.

Lemma 15. Let r ∈ (0, 1) andm ∈ N. Then, there arēr ∈ (r, 1) and
¯
M ∈ N with the

following property: for eachM ≥
¯
M and eachk < ⌈rM⌉, there isk̄ ∈

[
⌈rM⌉, ⌊r̄M⌋

]

such that(ȳMB1)k̄ > Mm+1(ȳMB1)k.

Proof. Fix r ∈ (0, 1) andm ∈ N. We start with statek0 = ⌈rM⌉−1. Letρ := 2m+3 and

r̄ := gρ(r). Recall that functionsf0 andg are such that,r < r̄ < 1. Let M ′ be such that,

for eachM ≥ M ′, r̄M ≤ M − 2. Let k̄ be the number of unhealthy people afterρ steps

according to function tr(·) starting from statek0. Clearly,k̄ > ⌈rM⌉ and, sincek0 < rM ,

Lemma13 implies that̄k < r̄M . Thus,k̄ ∈
[
⌈rM⌉, ⌊r̄M⌋

]
.

For eachj ∈ {1, . . . , ρ}, let kj := kj−1 + tr(·). In particular,k̄ = kρ. Recall that, for

eachr̂ ∈ (0, 1), tr(r̂M) = ⌊f0(r̂)⌋. Then, for eachj ∈ {1, . . . , ρ}, there isγj ∈ (−1, 0]

such that tr(kj−1) = fγj(
kj−1

M
). By Lemma10, ȳMB1 = MȳMB1Q̄2⌋. Then,

(ȳMB1)k1 = M
M−2∑

k=1

(ȳMB1)k(Q̄2⌋)kk1 > M(ȳMB1)k0(Q̄2⌋)k0k1 = (ȳMB1)k0MhM
γ1
(r),

which, by Lemma14, can be approximated by
√
M

r
√
2π
(ȳMB1)k0 if M is large enough. Repeating

the same argument for the other intermediate states that arereached in each of theρ steps

we get that there isMk0 such that, for eachM ≥ Mk0 ,

(ȳMB1)k̄ >
M

ρ
2

(r
√
2π)ρ

(ȳMB1)k0 = Mm+1 M
1
2

(r
√
2π)ρ

(ȳMB1)k0 > Mm+1(ȳMB1)k0 .

The proof for an arbitrary statek < ⌈rM⌉ − 1 is very similar, with the only difference

that more thanρ steps might be needed to get to a statek̄ ∈
[
⌈rM⌉, ⌊r̄M⌋

]
. Yet, the

extra number of steps makes the difference between(ȳMB1)k and(ȳMB1)k̄ even larger. Then,

it suffices to define
¯
M := max{M ′,maxk≤k0{Mk}}.
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The following result is an immediate consequence of Lemma15.

Corollary 1. Let r ∈ (0, 1) andm ∈ N. Then, there arēr ∈ (r, 1) and
¯
M ∈ N such that,

for eachM ≥
¯
M ,

i)
M−2∑

j=⌈rM⌉
(ȳMB1)j > 1− 1

Mm
and

ii) for eachα such thatM − 1− α ≥ ⌊r̄M⌋,
∑⌊r̄M⌋

j=⌈rM⌉(ȳ
M
Bα)j

∑⌊r̄M⌋
j=1 (ȳMBα)j

> 1− 1

Mm
.

Proof. The proof of statement i) is straightforward. Moreover, by Lemma5, for each

α ∈ {2, . . . ,M − 2} and eachj ≤ M − 1− α, (ȳMBα)j =
(ȳM

B1 )j
∑M−1−α

i=1 (ȳM
B1 ) i

. Then, for eachα

such thatM − 1− α ≥ ⌊r̄M⌋, we have

∑⌊r̄M⌋
j=⌈rM⌉(ȳ

M
Bα)j

∑⌊r̄M⌋
j=1 (ȳMBα)j

=

∑⌊r̄M⌋
j=⌈rM⌉(ȳ

M
B1)j

∑⌊r̄M⌋
j=1 (ȳMB1)j

,

and the proof of statement ii) is also straightforward. The conditionM − 1−α ≥ ⌊r̄M⌋ is

important, sincēyMBα ∈ R
M−1−α.

Proposition 5. LetG ∈ G . Fix T I ∈ N andT II ∈ N. Let t̄ > t > T I + T II + 1 and let

ht̄ be a history that starts withht = g . . . gb. There arêt ∈ N andMG
1 ∈ N such that, for

eachM ≥ MG
1 , if t > t̂ and I observeht̄, then it is sequentially rational for me to play the

Nash action at period̄t+ 1.

Proof. The logic of the proof is similar to that of Proposition3. We divide the proof in

three cases for which we show that, afterht̄, I believe that contagion is(rG, pG)-spread.

Then, the result follows from Lemma11.

The casēt = t, i.e.,ht̄ = ht = g . . . gb, follows from Proposition4.

Case 1. Suppose thatht̄ is a history of the formht+1 = g . . . gbg, so t̄ = t + 1.

Similarly to the proof of Proposition4, we are interested in my beliefsxt̄ ∈ R
M , but we

start studyingxt̄−2 ∈ R
M−2, my intermediate beliefs given historyht̄ right before getting

infected. There is positive probability that the rogue seller who deviated in period 1 has

met the same buyer throughout the first two phases. Thus,xT I+T II

1 > 0. Then, when

computing my intermediate beliefsxt̄−2 from xT I+T II ∈ R
M−2, we can apply Lemma10

with ȳ0B1 = xT I+T II
and get thatlimt→∞ ȳtB1 = ȳMB1. Thus, if t̄ is large enough,xt̄−2, which
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coincides with̄yt̄−2−T I−T II

B1 , is very close tōyMB1. In particular, by takingr ∈ (0, 1), r ≥ rG,

andm = 1 in statement i) of Corollary1, we have that there aret′ andM ′ such that, for

eacht̄ > t′ and eachM > M ′,

M−2∑

j=⌈rM⌉
xt̄−2
j =

M−2∑

j=⌈rM⌉
(ȳt̄−2−T I−T II

B1 )j > 1− 1

M
≥ pG.

Now, we usext̄−2 to computext̄.

• After periodt̄− 1: I computext̄−1 by updatingxt̄−2, conditioning on i) I observedb

in periodt̄ − 1 and ii) at mostM − 1 people were unhealthy aftert̄ − 1 (I observed

g at t̄). Let x̃t̄−1 be the belief computed fromxt̄−2 by conditioning instead on i) I

observedg in periodt̄− 1 and ii) at mostM − 2 people are unhealthy. Clearly,xt̄−1

first-order stochastically dominates̃xt̄−1, in the sense of placing higher probability

on more people being unhealthy. Moreover,x̃t̄−1 coincides withȳt̄−1−T I−T II

B1 , which

also satisfies that
∑M−2

j=⌈rM⌉(ȳ
t̄−1−T I−T II

B1 )j > pG.

• After periodt̄: I computext̄ based onxt̄−1 and conditioning on i) I observedg; ii) I

infected my opponent by playing the Nash action att̄; and iii) at mostM people are

unhealthy after̄t. Again, this updating leads to beliefs that first-order stochastically

dominatẽxt̄, the beliefs we would obtain if we instead conditioned on i) Iobservedg

and ii) at mostM−2 people are unhealthy aftert̄. Again,x̃t̄ coincides with̄yt̄−T I−T II

B1 ,

which also satisfies that
∑M−2

j=⌈rM⌉(ȳ
t̄−T I−T II

B1 )j > pG.

Hence, contagion is(rG, pG)-spread givenxt̄.

Case 2. Suppose thatht̄ is a history of the formht+α = g . . . gbg α. . . g, so t̄ =

t + α. Again, we start withxt̄−1−α ∈ R
M−1−α, my intermediate beliefs given history

ht̄ right before getting infected. Similarly to Case 1, relying on Lemma10 with ȳ0Bα =

xT I+T II ∈ R
M−1−α, we get thatlimt→∞ ȳtBα = ȳMBα. Thus, if t̄ is large enough,xt̄−1−α,

which coincides withȳt̄−1−α−T I−T II

B1 , is very close tōyMBα . Now, by takingr ∈ (0, 1),

r ≥ rG, andm = 1 in statement ii) of Corollary1, we have that there aret′′ andM ′′ such

that, for each̄t > t′′ and eachM > M ′′, for eachα such thatM − 1− α ≥ ⌊r̄M⌋,
∑⌊r̄M⌋

j=⌈rM⌉(ȳ
t̄−1−α−T I−T II

Bα )j
∑⌊r̄M⌋

j=1 (ȳt̄−1−α−T I−T II

Bα )j
> 1− 1

M
≥ pG.

Next, we useφG(M), defined after Lemma11. By Lemma12, there isM ′′ such that, for
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eachM > M ′′, φG(M) < (1 − r̄)M . Suppose thatM ≥ M ′′ andt̄ > t′′. We distinguish

two subcases, depending on the value ofα.

M − 1 − α ≥ ⌊r̄M⌋: In this case, if we lett∗ := t̄− 1− α− T I − T II, we have

M−1−α∑

j=⌈rM⌉
xt̄−1−α
j =

M−1−α∑

j=⌈rM⌉
(ȳt

∗

Bα)j =

∑M−1−α
j=⌈rM⌉(ȳ

t∗

Bα)j

1

=

∑⌊r̄M⌋
j=⌈rM⌉(ȳ

t∗

Bα)j +
∑M−1−α

⌊r̄M⌋+1(ȳ
t∗

Bα)j
∑⌊r̄M⌋

j=1 (ȳt
∗

Bα)j +
∑M−1−α

⌊r̄M⌋+1(ȳ
t∗
Bα)j

≥
∑⌊r̄M⌋

j=⌈rM⌉(ȳ
t∗

Bα)j
∑⌊r̄M⌋

j=1 (ȳt
∗

Bα)j
> pG.

Therefore,
∑M−1−α

j=⌈rM⌉ x
t̄−1−α
j > pG. We can repeat the arguments of Case 1 to show that

my beliefsxt̄ first-order stochastically dominatext̄−1−α obtaining again that contagion is

(rG, pG)-spread givenxt̄.

M − 1 − α < ⌊r̄M⌋: SinceφG(M) < (1− r̄)M , we haveα > M − 1− ⌊r̄M⌋ ≥
(1 − r̄)M > φG(M) we have, by definition ofφG(M), that I believe that contagion is

(rG, pG)-spread givenxt̄.

Case 3.Now, consider histories where, after getting infected, I observe a sequence of

actions that may include bothg andb, i.e., histories starting withht = g . . . gb and where I

facedb in one or more periods after getting infected. By definition, every observation ofb

shifts my beliefs towards more people being unhealthy. Therefore, since the beliefs in the

two cases above are such that, afterht̄, I believe that contagion is(rG, pG)-spread givenxt̄,

the same also holds in this third case.

To conclude the proof, just letMG
1 := max{M ′,M ′′} andt̂ := max{t′, t′′}.

5.3 Infection in other periods of Phase III

In Section5.1 we proved that, if I get infected at the start of Phase III, I will believe that

contagion is totallypG-spread. In Section5.2 we proved that, if I get infected late in

Phase III, I will believe that contagion is totally(rG, pG)-spread. Next, we show that, if I

get infected in other periods of Phase III, my beliefs will lie in between. In some sense,

as a function of the period in which I get infected, my beliefswill move “monotonically”

from the kind of beliefs characterized in Section5.1to those characterized in Section5.2.

Proposition 6. LetG ∈ G and letM ≥ MG
1 . Fix T II ∈ N. There isT I

2 ∈ N such that, for

eachT I ≥ T I
2 , it is sequentially rational for me to play the Nash action after each history
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in which I get infected in Phase III.

Proof. The cases in which I get infected at the start of Phase III and late in Phase III are

covered by Proposition3, Proposition4, and Proposition5. What remains to be shown is

that the same is true if I get infected at some intermediate period in Phase III. We prove this

for histories in Phase III of the formht̄ = g . . . gbg. The proof can be extended to include

other histories, just as the proofs of the above propositions. We want to compute my belief

xt̄ afterht̄. We first compute the intermediate beliefsxt̄−2.

Beliefs are computed using matrix̂Q2⌋ in Phase I and̄Q2⌋ in Phase III. We know from

Section5.1 (the arguments in Proposition3 that build upon Lemma8) that, by takingT I

large enough, we can make the intermediate beliefsxT I+T II+1 ∈ R
M arbitrarily close to

(0, . . . , 0, 1). SinceQ̄2⌋ satisfies Q1 and Q3, by Lemma7, if I start Phase III with such

beliefsxT I+T II+1, xt̄−2 first-order stochastically dominatesȳMB1. I still need to update my

beliefs fromxt̄−2 toxt̄−1 and then fromxt̄−1 toxt̄. The arguments to show that the resulting

beliefs are such that I believe that contagion is(rG, pG)-spread are analogous to those used

when proving Case 1 in Proposition4.

6 Off-path Incentives at other histories

In this section we discuss the incentives at histories not covered in the preceding section.

For the sake of brevity, the exposition here is informal. Theincentives at the histories

discussed here are straightforward after the foregoing analysis in Sections4 and 5. In

Subsection6.4, we conclude our analysis by specifying the order in which the different

parameters of the construction,M , T I, T II, andδ are fixed.

6.1 Incentives after becoming rogue

6.1.1 A seller becomes rogue in period 1

Exposed and infected players believe that a seller became rogue in period 1. Thus, the

behavior of such a seller is important for the off-path incentives of infected players.

Recall that the equilibrium strategies prescribe that a seller who turns rogue in period 1

of the game playsa′1 until the end of Phase I and then switches to the Nash action forever.

Upon deviating in period 1, the rogue seller knows that one buyer is exposed, and this buyer

will start playing the Nash action from the start of Phase II.Moreover, there isT II
1 ∈ N
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such that, ifT II ≥ T II
1 , this buyer will almost certainly infect all sellers duringPhase II.

Then, from the start of Phase III, all infected sellers will be playing the Nash action, and,

therefore, everybody will almost certainly be infected after periodT I +T II +1. Now, given

the lengthT II of Phase II, there isT I
3 ∈ N such that, for eachT I ≥ T I

3 , the following holds:

• T I

T II is large enough so that the rogue seller will have an incentive to keep deviating in

Phase I, since his short-run gains in Phase I will be larger than the potential losses in

Phase II and Phase III. This is the case independently of the discount factorδ ∈ (0, 1),

and the logic is analogous to that behind Lemma11.

• T I

T II is large enough so that, even if the rogue seller faces the on-path action many

times in Phase II, he still beliefs that, with high probability,M−1 buyers got exposed

in Phase I and he has been repeatedly meeting the only remaining healthy buyer in

Phase II. Thus, regardless of what he observes after becoming rogue in period 1, if he

plays as prescribed by the strategy from that period onwards, he will start Phase III

believing that, with very high probability, at most one buyer is healthy:

– If he thinks that everybody is infected at the start of Phase III, then playing the

Nash action at the start of Phase III is optimal. In the remainder of Phase III,

no matter what actions he faces, he will always believe that,with very high

probability, everybody is infected. This is so even after observing good behav-

ior, since after any such observation he will believe that hehas just infected the

last healthy opponent (this argument was discussed more formally during some

parts of the analysis in Section5).

– Even if he thinks that there is one uninfected buyer, there isMG
2 ∈ N such

that, for eachM ≥ MG
2 , the probability of meeting such a buyer in the given

period is so small that the potential gain the seller might get by facing her when

not playing Nash would not compensate the losses when facingany other buyer

(who would be playing the Nash action).

6.1.2 A player becomes rogue after period 1

The behavior of these players has not been specified but, since no other player would ever

assign positive probability to such a player existing, their behavior is irrelevant for the

incentives of other players.
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6.2 Incentives after facing deviations in Phases I and II

6.2.1 A buyer gets exposed in Phase I

The strategy prescribes that, during Phase I, an exposed buyer plays the on-path action and

reverts to the Nash action at the start of Phase II. Since deviations of buyers during Phase I

are non-triggering, her incentives at a given period of Phase I just depend on her expected

payoff in that period. Since the action profile played in Phase I has one-sided incentives,

the exposed buyer could only profit by deviating from the on-path action if she happened to

meet the rogue seller. Then, there isMG
3 ∈ N such that, for eachM ≥ MG

3 , the probability

of meeting the rogue seller in the given period is so small that the potential profit the buyer

might get by facing him when deviating would not compensate the losses when facing any

other seller. Therefore, playing as if on path during Phase Iis optimal for her.

Once Phase II starts, two things can happen:

i) The buyer has observed an off-path action in every period of Phase I. Then she knows

that she has met the rogue seller in every period of Phase I andthat no other buyer is

infected. Moreover, she knows that the rogue seller believes that, almost certainly, he

has infected all buyers in Phase I, and is playing Nash and will spread the contagion

in Phase III. Then, there isT II
2 ∈ N such that, for eachT II ≥ T II

2 , she will have an

incentive to play Nash in Phase II, since her short-run gainsin Phase II will be larger

than the potential losses in Phase III. This is the case independently of the discount

factorδ ∈ (0, 1) (the logic is analogous to that of Lemma11).

ii) The buyer has observed the on-path action at least once inPhase I. In this case,

Phase II starts with at least two infected buyers and, regardless of the actions of this

buyer, contagion would spread during this Phase II. Thus, the incentives to play Nash

and make short-run gains during Phase II are even larger thanin the case above.

Finally, once Phase III starts, the buyer will believe that everybody is infected and so

she has the incentive to keep playing Nash. As before, observations of good behavior

during Phase III would not change these beliefs, because after every such observation the

buyer would think that she has just infected the last healthyopponent.

6.2.2 A player gets infected in Phase II.

Next, consider players who get infected in Phase II. The strategy prescribes that these

players, buyers or sellers, should switch to play Nash forever. These players would believe
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that the contagion is widely spread, the logic being very similar to the case of a player

getting infected at the start of Phase III, discussed in Section 5.1. In particular, a result

analogous to Proposition3 holds: GivenT II andM > 2, there isT I
4 ∈ N such that, for

eachT I ≥ T I
4 , it is sequentially rational for a player to play Nash after every history in

which he got infected by observing a triggering action in Phase II.

6.2.3 A non-triggering action is played in Phase I.

The equilibrium strategy prescribes that these deviationsare ignored. Thus, both the seller

observing this deviation and the buyer playing it believe that his opponent will continue to

play as if on path. Given that the opponent will indeed ignorethe deviation, the incentives

for both players coincide with the on-path ones.

6.3 Incentives after histories with multiple deviations

A complete analysis of off-path incentives requires the study of histories that involve mul-

tiple off-path deviations. At some of these histories behavior has not yet been specified

explicitly. Since these histories are of secondary importance, we discuss them in the On-

line Appendix (B.2), which also contains a classification of all off-path histories that can

arise and describes the relevant arguments for the incentives at each of them.

6.4 Choice of the parameters

To establish the intermediate results used in the proof of Proposition2, we have used

bounds on the different parametersM , T I, T II, andδ. Thus, it is important to specify

the order in which they have to be chosen so that all the results can be applied.

i) Population size:
¯
M . The first parameter to be fixed is

¯
M . Recollecting the different

bounds obtained forM we haveMG
1 in Proposition5, MG

2 in Section6.1.1, andMG
3

in Section6.2.1. Then, it suffices to take
¯
M ≥ max{MG

1 ,M
G
2 ,M

G
3 , 3}. Note that

M just depends on the payoffs ofG, so Proposition2 is not a limiting result onM .

ii) Length of Phase II: T II. Recollecting the different bounds forT II we haveT II
1 in

Section6.1.1andT II
2 in Section6.2.1. Then, it suffices to takeT II ≥ max{T II

1 , T
II
2 }.

iii) Length of Phase I:T I. OnceT II has been fixed, we pickT I. Regarding the bounds

for T I we haveT I
1 in Proposition3, T I

2 in Proposition6, T I
3 in Section6.1.1, andT I

4
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in Section6.2.2. T II must be fixed already because some of these bounds depend on

T II. Then, it suffices to takeT I ≥ max{T I
1 , T

I
2 , T

I
3 , T

I
4}.

iv) Discount factor
¯
δ. The last parameter to be chosen is the discount factor, whose role

is twofold: to ensure that deviations from the equilibrium path are not profitable and

to ensure that̄σ approximates the target payoffv. To this end, boundsδ1 andδ2 are

given in Section3.4. Thus, once
¯
M , T I, T II, and the degree of approximationε have

been chosen, it suffices to take
¯
δ ≥ max{δ1, δ2}.20

7 Discussion

7.1 The role of calendar time

We implicitly assume that all players know when the game started and can perfectly coor-

dinate using calendar time. Although this is a standard and quite innocuous assumption in

game theory, it turns out to be more substantive in our setting.

Commonly known start of the game:The fact that all players know that the game starts

at timet = 1 is important in our construction. When a player is required topunish a devia-

tion by playing the Nash action, she believes that enough people are already infected which

makes the Nash action optimal. Here, we use the fact that players know how long the game

has been played and can therefore deduce that enough people are infected. An interesting

line of investigation may be to consider a model of repeated interactions in which the start

date is not commonly known. For instance, one possible approach would be to consider a

setting where players enter and leave the game as time unfolds and have limited informa-

tion about past history. A detailed analysis of this issue isbeyond the scope of this paper.

Perfectly synchronized interactions: In our setting, it is commonly known that in every

period all players participate. One could consider alternate models in which only some

players are matched in every period, or in which matches takeplace with some probabil-

ities in a continuous time setting. An analysis of this is beyond the scope here. We think

that synchronized play is not crucial, and that a result likeProposition2 may still hold.21

20It is worth highlighting that Lemma11 is crucial. It states that if an unhealthy player believes that
contagion is(r, p)-spread withr ≥ rG andp ≥ pG then, regardless of discount factor, he will find it optimal
to play the Nash action. This independence with respect to the discount factorδ is what allows to chooseδ
last, and ensure that this choice does not interfere with theresults related to the off-path incentives.

21Some “problematic” histories of our setting would not ariseunder asynchronous matching; e.g., there
could be no history in which a buyer starts Phase II knowing that she and the rogue seller have only faced
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7.2 Introduction of Noise

Since players have strict incentives, our equilibria are robust to the introduction of some

noise in the payoffs. Suppose, however, that players were constrained to make mistakes

with probability at leastε > 0 at every history. Our equilibrium construction is not robust

to this modification. Our assumption that early deviations are believed to be more likely

ensures that when players are required to punish, they thinkthat the contagion has spread

enough for punishing to be optimal. If mistakes occur with positive and equal probability

in all periods, this property is lost.

7.3 Alternative Systems of Beliefs

What is important for our delayed grim trigger strategies to work is that an infected player

believes that almost everybody was infected after Phase I. We can guarantee this with our

assumption that a player who observes a triggering action believes that some player from

Community 1 deviated in the first period of the game. However, our construction would

work as long as the first triggering deviation is believed to have happened early enough in

the game, not necessarily in the first period. We work with theextreme case for tractability.

Our extreme belief also yields the weakest bound onM . With other assumptions, for

a given gameG ∈ G and givenT I andT II, the threshold population size
¯
M required to

sustain cooperation would be weakly greater than the threshold we obtain. Why is this so?

Formally, on getting infected at periodt, let a vectorxt ∈ R
M denote my belief about

the number of people who are not healthy in the other community at the end of periodt,

wherext
k denotes the probability of exactlyk people not being healthy. Then, my belief

xt can be expressed asxt =
∑t

τ=1 µ(τ)y
t(τ), whereµ(τ) is the probability I assign to

the first deviation having occurred at periodτ , andyt(τ) is my belief about the number of

people who are not healthy if I know that the first deviation took place at periodτ . Since

contagion is not reversible, every elapsed period of contagion results in a weakly greater

number of infected people. Thus, my belief if I think the firstinfection occurred att = 1

first-order stochastically dominates my belief if I think the first infection happened later,

at anyt > 1, i.e., for eachτ and eachl ∈ {1, . . . ,M},∑M
i=l y

t
i(1) ≥ ∑M

i=l y
t
i(τ). Now

consider any belief̂xt that I might have had with differently chosen trembles. Thisbelief

will be some convex combination of the beliefsyt(τ), for τ = 1, . . . , t. Since we know that

yt(1) first-order stochastically dominatesyt(τ) for all τ > 1, it follows thatyt(1) will also

each other in Phase I.
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first-order stochastically dominatêxt. Therefore, the belief system in this paper is the one

for which players will think that the contagion is most widespread at any given time.
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A Proofs Omitted in the Text

A.1 Proofs of results in Section4.1

Proof of Lemma1. In order to prove a property for̄µ we need to study the sequences

{σn}n∈N and{µn}n∈N. Consider the following three events:

• ETr :=“There has been a triggering action.”

• E1 :=“A seller played a triggering action in period 1.”

• E0 :=“No seller played a triggering action in period 1.”

For eachn ∈ N, we usePn to denote probabilities of different events givenσn. Note that,

E1 andE0 are disjoint events and thatETr = E1 ∪ E0. Since playeri is in the exposed or

infected mood atht, Pn(E
Tr|ht) = 1 for eachn ∈ N. We are interested inPn(E

1|ht) and

Pn(E
0|ht) = 1− Pn(E

1|ht). We want to prove thatlimn→∞ Pn(E
1|ht) = 1. Note that

Pn(E
0|ht)

Pn(E1|ht)
=

Pn(E0∩ht)
Pn(ht)

Pn(E1∩ht)
Pn(ht)

=
Pn(E

0 ∩ ht)

Pn(E1 ∩ ht)
=

1− Pn(E
1 ∩ ht)

Pn(E1 ∩ ht)
,

and, therefore, to prove thatPn(E
1|ht) converges to 1 we can equivalently prove that

limn→∞(1− p1n)/p
1
n = 0, wherep1n = Pn(E

1 ∩ ht).

If t = 0 no player can be exposed or infected afterht, so there is nothing to prove. If

t = 1 no player can be infected afterht and only a buyer can be exposed afterht, which

would happen only if she has faced a triggering action in period 1. Hence, for such a buyer

Pn(E
1|ht) = 1 for everyn ∈ N. If t > 1 and playeri has faced a triggering action in

period 1, then alsoPn(E
1|ht) = 1 for everyn ∈ N.

Suppose now thatt > 1 and that playeri has neither faced a triggering action in period1

nor a non-triggering action inht. The case with non-triggering actions inht is discussed at

the end. GivenM , t, andht, letF 1(M, t, ht) denote the number of different ways to match

the 2M players through periods1 to t. Next, we construct a lower bound forp1n and an

upper bound for1− p1n.

We start by computing a lower bound on the probability of the most unlikely complete

history (not just personal history) compatible withE1 ∩ ht with the following two prop-

erties: i) the only deviation from̄σ by a healthy or exposed player is made by a seller

in period 1 and ii) at most one player deviates fromσ̄ at any given period. First, since
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matching is uniform, 1
F 1(M,t,ht)

is the probability of the corresponding matches having been

realized. Then, since a seller deviated in period1, such a deviation had probabilityε
n
n

D
(re-

call thatD + 1 is the number of actions available to sellers in the stage game). By ii), no

one else deviated in period 1, which has probability(1−εn)
2M−2. In each of the remaining

t − 1 periods, the most unlikely profile that is compatible with i)and ii) is that a rogue

player deviated and that no one else did.22 The probability of such a profile at a period

τ is bounded below byε
1/τ
n

D
(1 − ε

1/nτ
n )2M−2; the second term reflects that no other player

deviated and it represents a lower bound since1 − ε
1/nτ
n is the probability that an infected

player does not deviate (and infected players are the most likely ones to do so). Thus, the

probability of the complete history under discussion is bounded below by

1

F 1(M, t, ht)

εnn
D
(1− εn)

2M−2

t∏

τ=2

(ε
1/τ
n

D
(1− ε1/nτn )2M−2

)

≥ 1

F 1(M, t, ht)
G(n)

εn+1
n

Dt
,

wherelimn→∞G(n) = 1. Since the above probability corresponds to just one of the possi-

ble histories compatible withE1 ∩ ht, we have that

p1n ≥ 1

F 1(M, t, ht)
G(n)

εn+1
n

Dt
.

We do now the opposite exercise and compute an upper bound on the probability of the

most likely complete history compatible withE0 ∩ ht. Since such a history must contain a

triggering action in a period different from period 1, the associated probability is bounded

above byε2nn
D

, which is the probability of a triggering action in period 2 (and forgetting

about all other terms dealt with in the case above, since all of them are bounded above

by 1). Thus, we have that1− p1n can be bounded by

1− p1n ≤ F ∗(M, t, ht, D)
ε2nn
D

,

whereF ∗(M, t, ht, D) denotes the number of complete histories compatible withE0 ∩ ht.

Therefore, we have

1− p1n
p1n

≤ F ∗(M, t, ht, D) ε
2n
n

D

1
F 1(M,t,ht)

G(n) ε
n+1
n

Dt

=
F ∗(M, t, ht, D)F 1(M, t, ht)Dt−1

G(n)
· ε2nn
εn+1
n

.

22Recall that deviations by infected players are more likely than deviations by rogue players and that
i) requires that no healthy or exposed players deviate inht after period 1.
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Sincelimn→∞ G(n) = 1 and all other terms not includingεn are constant inn,

lim
n→∞

1− p1n
p1n

= 0,

which implies thatlimn→∞ Pn(E
1|ht) = 1. Yet, one has to ensure that there exists a

complete history compatible withE1 ∩ ht satisfying i) and ii), but this readily follows

from the fact that theσn strategies are completely mixed (and all histories have positive

probability of being realized).

Finally, suppose that the playeri has faced some triggering action inht. These actions

can only be made by healthy or exposed players and have no impact on the future behavior

of other players. Thus, the computations of the bounds abovefor p1n and1 − p1n can be

immediately extended by requiring that the studied histories contain the observed non-

triggering actions. Since this inclusion would be in the histories associated with bothE1

andE0, with the same probabilities in both cases, the corresponding terms would cancel

out when computing1−p1n
p1n

.

Proof of Lemma2. Suppose thatht has probability zero conditional on a seller playing a

triggering action in period 1 and play proceeding accordingto σ̄ thereafter. Lemma1 still

guarantees that playeri puts probability 1 onE1. Yet, additional deviations from̄σ are

needed to explainht.

We start with statements i) and ii). If playeri is a buyer and has faced a triggering action

before periodT I + 2, since no seller can be in the infected mood before that period, then

either a healthy or a rogue seller made that deviation. Sincedeviations by a rogue seller

become infinitely more likely asn goes to∞, in the limit playeri will put probability 1 on

such a deviation coming from the rogue seller. If playeri is a seller and has faced some

non-triggering action in Phase I, then these deviations from σ̄ are errors by definition.

Consider now statement iii). Since playeri did not get exposed in period 1, with positive

probability a buyer became exposed in period 1 and then infected some seller in periodT I+

2. Thus, for eachn ∈ N, playeri puts positive probability on the event “there is at least

one infected player in each community after periodT I + 1.” Suppose now thatht has

probability zero conditional on a seller playing a triggering action in period 1 and play

proceeding according tōσ thereafter except for possibly some deviation already covered

by statements i) and ii). Consider the following three events:

• AAd :=“ht cannot be explained with a single deviation in period 1 and some deviation
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covered by statements i) and ii).”

• A1 :=“All additional deviations have been made by infected players (errors).”

• A0 :=“At least one additional deviation has been made by a healthyor rogue player.”

The arguments are now similar to those in the proof of Lemma1. We want to show that

limn→∞ Pn(A
1|ht) = 1. The construction would again rely on the computation of lower

and upper bounds forPn(A
1 ∩ ht) andPn(A

0 ∩ ht), respectively.

Setting aside terms that are constant inn or that converge to1 asn goes to∞, the

lower bound onPn(A
1 ∩ ht) would be of the order ofεnn (deviation by a seller in period 1)

multiplied by
∏t

τ=T I+2 ε
1/nτ
n (a deviation by an infected seller in each and every period

from T I + 2). Thus, this lower bound would be of the order

εnn ·
t∏

τ=T I+2

ε1/nτn ≥ εnn ·
t∏

τ=1

ε1/nn = εnn · εt/nn .

On the other hand, the upper bound onPn(A
0 ∩ ht) would arise when considering that,

apart from the deviation by a seller in period 1, there was only one additional deviation,

which was made by a rogue player at periodt (late deviations by rogue players are the most

likely ones). Then, an upper bound can be given byεnn · ε1/tn . Hence, since the termsεnn in

the two bounds cancel out and, asn goes to∞, ε1/tn becomes infinitely smaller thanεt/nn ,

we have

lim
n→∞

Pn(A
0 ∩ ht)

Pn(A1 ∩ ht)
= 0.

Therefore,limn→∞ Pn(A
1|ht) = 1.

A.2 Proofs of general results for contagion matrices (Section4.3.1)

Proof of Lemma3. Let λ be the largest eigenvalue andx a left eigenvector associated with

it. Supposek is the first coordinate ofx such thatxk 6= 0 and assume thatxk > 0 (the case

xk < 0 is analogous). We want to prove thatxi > 0, for all i ≥ k. The proof is done by

induction oni − k. The casei − k = 0 follows by assumption. Suppose that the result is

true fori− k = j, i.e.,xi = xk+j > 0. We want to show thatxi+1 = xk+j+1 > 0.

Clearly, sinceQ is a contagion matrix, the properties ofx andλ imply that(xQ)i+1 =

xiQi,i+1 + xi+1Qi+1,i+1 = λxi+1. Then,xiQi,i+1 = (λ − Qi+1,i+1)xi+1. By the induction
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hypothesisxi > 0 and, sinceQ is a contagion matrix,Qi,i+1 > 0. Then,xiQi,i+1 > 0 and,

sinceλ ≥ Qi+1,i+1, we haveλ > Qi+1,i+1 andxi+1 > 0.

Proof of Lemma4. Let l be the largest index such thatQll = λ > 0, and lety be a non-

negative left eigenvector associated withλ. We claim that, for eachi < l, yi = 0. Suppose

not and leti be the largest index smaller thanl such thatyi 6= 0. If i < l − 1, we have

that yi+1 = 0 and, sinceQi,i+1 > 0, we get(yQ)i+1 > 0, which contradicts thaty is an

eigenvector associated withλ. If i = l− 1, then(yQ)l ≥ Qllyl +Ql−1,lyl−1 > Qllyl = λyl,

which, again, contradicts thaty is an eigenvector associated withλ. Then, we can restrict

attention to matrixQ⌈(l−1). Now, λ is also the largest eigenvalue ofQ⌈(l−1) but, by defi-

nition of l, only one diagonal entry ofQ⌈(l−1) equalsλ and, hence, its multiplicity is one.

Then,z ∈ R
k−(l−1) is a left eigenvector associated withλ for matrixQ⌈(l−1) if and only if

(0, . . . , 0, z) ∈ R
k is a left eigenvector associated withλ for matrixQ.

Proof of Lemma5. Let l < k and letz := (yQ1 , . . . , y
Q
k−l) ∈ R

k−l. Since a contagion matrix

is upper triangular we have that, for each,j ∈ {1, . . . , k−l}, (zQl⌋)j = (yQQ)j. Therefore,

z is a left eigenvector associated with the largest eigenvalue ofQ which, therefore, is also

the largest eigenvalue ofQl⌋. Then, by definition,yQl⌋ = z
‖z‖ = z

∑k−l
i=1 yQi

.

Proof of Lemma6. Clearly, sinceQ is a contagion matrix, ift is large enough, all the

components ofyt are positive. Then, for the sake of exposition, we assume that all the

components ofy are positive. We distinguish two cases.

Q satisfies Q1.This part of the proof is a direct application of Perron-Frobenius theo-

rem. First, note thatyQ
t

‖yQt‖ can be written asy(Q
t/λt)

‖y(Qt/λt)‖ . Now, using for instance Theorem 1.2

in Seneta(2006), we have thatQ
t

λt converges to a matrix that is obtained as the product of

the right and left eigenvectors associated toλ. Since in our case the right eigenvector is

(1, 0, . . . , 0), Qt

λt converges to a matrix that hasyQ in the first row and with all other rows

being the zero vector. Therefore, the result follows from the fact thaty1 > 0.

Q satisfies Q2. We show that, for eachi < k, limt→∞ yti = 0. We prove this by

induction oni. Let i = 1. Then, for eacht ∈ N,

yt+1
1

yt+1
k

=
Q11y

t
1

∑

l≤k Qlkytl
<

Q11y
t
1

Qkkytk
≤ yt1

ytk
,

where the first inequality is strict becauseyk−1 > 0 andQk−1,k > 0 (Q is a contagion

matrix); the second inequality follows from Q2. Hence, the ratio yt1
ytk

is strictly decreasing
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in t. Moreover, since all the components ofyt lie in [0, 1], it is not hard to see that, as

far asyt1 is bounded away from0, the speed at which the above ratio decreases is also

bounded away from0.23 Therefore,limt→∞ yt1 = 0. Suppose that the claim holds for each

i < j < k − 1. Now,

yt+1
j

yt+1
k

=

∑

l≤j Qljy
t
l

∑

l≤k Qlkytl
<

∑

l≤j Qljy
t
l

Qkkytk
=

∑

l<j

Qlj

Qkk

ytl
ytk

+
Qjj

Qkk

ytj
ytk

≤
∑

l<j

Qlj

Qkk

ytl
ytk

+
ytj
ytk

.

By the induction hypothesis, for eachl < j, the termytl
ytk

can be made arbitrarily small for

large enought. Then, the first term in the above expression can be made arbitrarily small.

Hence, it is easy to see that, for large enought, the ratio
ytj
ytk

is strictly decreasing int. As

above, this can happen only iflimt→∞ ytj = 0.

Proof of Lemma7. For eachi ∈ {1 . . . , k}, let ei denote thei-th element of the canonical

basis inRk. By Q1,Q11 is larger than any other diagonal entry ofQ. Let yQ be the unique

nonnegative left eigenvector associated withQ11 such that‖yQ‖ = 1. Clearly,yQ1 > 0 and,

hence,{yQ, e2, . . . , ek} is a basis inRk. With respect to this basis, matrixQ is of the form









Q11 0

0 Q⌈1









.

Now, we distinguish two cases.

Q⌈1 satisfies Q2. In this case, we can apply Lemma6 to Q⌈1 to get that, for each

nonnegative vectorz ∈ R
k−1 with z1 > 0, limt→∞

zQt
⌈1

‖zQt
⌈1
‖ = (0, . . . , 0, 1). Now, lety ∈ R

k

be the vector in the statement of this result. Sincey is very close to(0, . . . , 0, 1). Then,

using the above basis, it is clear thaty = αyQ + v, with α ≥ 0 andv ≈ (0, . . . , 0, 1). Let

t ∈ N. Then, for eacht ∈ N,

yt =
yQt

‖yQt‖ =
λtαyQ + vQt

‖yQt‖ =
λtαyQ + ‖vQt‖ vQt

‖vQt‖
‖yQt‖ .

23Roughly speaking, this is because the statek will always get some probability from state1 via the
intermediate states, and this probability will be bounded away from 0 as far as the probability of state 1 is
bounded away from 0.
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Clearly,‖yQt‖ = ‖λtαyQ + ‖vQt‖ vQt

‖vQt‖‖ and, since all the terms are positive,

‖yQt‖ = ‖λtα‖ ‖yQ‖+ ‖vQt‖ ‖ vQt

‖vQt‖‖ = ‖λtα‖+ ‖vQt‖

and, hence, we have thatyt is a convex combination ofyQ and vQt

‖vQt‖ . Sincev ≈ (0, . . . , 0, 1)

and vQt

‖vQt‖ → (0, . . . , 0, 1), it is clear that, for eacht ∈ N, vQt

‖vQt‖ first-order stochastically

dominatesyQ in the sense of more people being unhealthy. Therefore, alsoyt will first-

order stochastically dominateyQ.

Q⌈1 satisfies Q1.By Q1, the first diagonal entry ofQ⌈1 is larger than any other diagonal

entry. Letyc⌈1 be the unique associated nonnegative left eigenvector suchthat‖yc⌈1‖ = 1. It

is easy to see thatyc⌈1 first-order stochastically dominatesyQ; the reason is thatyc⌈1 andyQ

are the limit of the same contagion process, with the only difference that the state in which

only one person is unhealthy is known to have probability0 when using obtainingyc⌈1 from

Q⌈1. Clearly,y
c⌈1
2 > 0 and, hence,{yQ, yc⌈1 , e3, . . . , ek} is a basis inRk. With respect to this

basis, the matrixQ is of the form












Q11 0 0

0 Q22 0

0 0 Q⌈2












.

Again, we can distinguish two cases.

• Q⌈2 satisfies Q2. In this case, we can repeat the arguments above to show thatyt

is a convex combination ofyQ, yc⌈1 and vQt

‖vQt‖ . Since bothyc⌈1 and vQt

‖vQt‖ first-order

stochastically dominateyQ, yt also does.

• Q⌈2 satisfies Q1.Now, we would get a vectoryc⌈2, and the procedure would continue

until a truncated matrix satisfies Q2 or until we get a basis ofeigenvectors, one of

them beingyQ and all the others first-order stochastically dominatingyQ. In both

situations, the result immediately follows from the above arguments.
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A.3 Proofs of results in Section5

Proof of Lemma11. Let G ∈ G , M > 1, δ ∈ (0, 1), andr ∈ (0, 1). Consider gameGM
δ .

Let k ∈ {1, 2} and leti ∈ Ck be a player who is unhealthy after some historyht̄, with

t̄ > T I + T II. Suppose that exactly⌈rM⌉ people are infected in each community. Given

σi ∈ Σi, the payoff associated with the continuation strategyσi|ht̄ can be decomposed as

(1 − δ)(ut̄+1 + V (σi, r,M, δ)), whereut̄+1 denotes the expected payoff in periodt̄ + 1

andV (σi, r,M, δ) the (expected) sum of discounted continuation payoffs fromperiodt̄+2

onwards. Letσ∗
i be a maximizer ofV (σi, r,M, δ) for givenr, M , andδ. Then, define

∆(r,M, δ) := V (σ∗
i , r,M, δ)− V (σ̄i, r,M, δ),

the difference between the (expected) sums of discounted continuation payoffs associated

with σ∗
i andσ̄i (which prescribes to play the Nash action). We first establish a claim that is

a consequence of the fact that contagion spreads exponentially fast during Phase III.

Claim 1. Let G ∈ G . There isŪG ∈ R such that, for eachr > 1
2
, eachM > 1, and

eachδ ∈ (0, 1), if ⌈rM⌉ > M
2
+ 1, then∆(r,M, δ) ≤ ŪG.

Proof of Claim 1.Consider a situation in which there arek unhealthy players in each com-

munity playing the Nash action in a given periodt in Phase III and, hence, less thanM − k

healthy players. Then, letP (k,M) be the probability that there are more thanM−k
2

healthy

players in each of the communities at the end of periodt. We want to show that, ifk > M
2

,

thenP (k,M) < 1
2
. Clearly,P (k,M) is strictly decreasing ink, so it suffices to show that

P (M
2
,M) ≤ 1

2
. We want to show that the probability that more than

M−M
2

2
= M

4
players

remain healthy is not larger than1
2
.

Recall that the transition matrix in Phase III,S̄ ∈ MM (defined in Section4.4) is such

that for each pairk, l ∈ {1, . . . ,M}, S̄kl is 0 unlessk ≤ l ≤ 2k, in which case:

S̄kl =
(k!)2((M − k)!)2

((l − k)!)2(2k − l)!(M − l)!M !
and, hence, S̄M

2
l =

(M
2
!)2((M − M

2
)!)2

((l − M
2
)!)2((M − l)!)2M !

.

The above probabilities are symmetric in the sense that transitioning from M
2

to M
2
+ α

is as likely as transitioning fromM
2

to M − α. Thus, for each transition that results in

less thanM
4

new infections there is an equally likely one that delivers more thanM
4

. Thus,

the probability that more thanM
4

players in each community remain healthy is not larger

than 1
2
, and soP (k,M) < 1

2
wheneverk > M

2
.
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Now, recall that∆(r,M, δ) = V (σ∗
i , r,M, δ) − V (σ̄i, r,M, δ), defined in the proof

of Lemma11, is the difference between the (expected) sums of discounted continuation

payoffs from period̄t+ 2 onwards associated withσ∗
i andσ̄i (which prescribes to play the

Nash action). Given that⌈rM⌉ > M
2
+ 1, the computation behind∆(r,M, δ) assumes that

there are, at least,⌈rM⌉ > M
2
+ 1 unhealthy players in each community. Thus, regardless

of the action of playeri in periodt̄+ 1, more thanM
2

unhealthy players will be playing the

Nash action. Therefore, by the above result regarding theP (k,M) probabilities, there iŝp

such thatP (⌈rM⌉ − 1,M) ≤ p̂ < 1
2
. We start by computing the probability of meeting a

healthy player in future periods.

• Periodt + 1: Regardless of the action chosen by player i in periodt, the probability

that less than half of the healthy players got infected in period t is at mostp̂ . Then,

the probability of meeting a healthy opponent in periodt+ 1 is, at most,

p̂(1− r) + (1− p̂)
1− r

2
<

1− r

2
+ p̂(1− r) = (1− r)(

1

2
+ p̂).

• Periodt+2: Similarly, the probability of meeting a healthy opponent in periodt+2

is, at most,̂p(p̂(1− r) + (1− p̂)1−r
2
) + (1− p̂)

p̂(1−r)+(1−p̂) 1−r
2

2
, which reduces to

p̂2(1− r) + 2p̂(1− p̂)
1− r

2
+ (1− p̂)2

1− r

4
= (1− r)(

1

2
+ p̂)2.

• Periodt+ τ : In general, regardless of the actions chosen by playeri, the probability

of meeting a healthy opponent in periodt+ τ is less than(1− r)(1
2
+ p̂)τ .

We turn to the computation of∆(r,M, δ) = V (σ∗
i , r,M, δ) − V (σ̄i, r,M, δ). Suppose

the payoffs inG are such that i) the payoff loss from deviating from the strict Nasha∗ is at

least
¯
l > 0 and ii) the maximal possible gain from not playing accordingto a∗ against an

opponent who is not playing according toa∗ is at mostm̄. Then, we have

∆(r,M, δ) ≤
∞∑

τ=1

(1− r)(
1

2
+ p̂)τδτm̄−

(

1− (1− r)(
1

2
+ p̂)τ

)

δτ
¯
l

≤
∞∑

τ=1

(1− r)(
1

2
+ p̂)τδτm̄ ≤ m̄

∞∑

τ=1

(
1

2
+ p̂)τ

Since1
2
+ p̂ < 1, the above series converges. Thus, if we defineŪG := m̄

∑∞
τ=1(

1
2
+ p̂)τ ,

the result follows.
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We can use Claim 1 to now prove the lemma. Claim 1 captures the fact that, once the

contagion has infected half of the population, no matter howpatient a player is, there is not

much to gain by slowing down the contagion (regardless of thevalue ofM ):

Now, suppose that playeri believes that contagion is(r, p)-spread and chooses a con-

tinuation strategy in which he does not play the Nash action in periodt̄. Then, we have the

following possibilities:

i) Playeri meets an unhealthy player. This event has probability at least rp, playeri

incurs some loss
¯
l > 0 by not playing Nash, and does not slow down the contagion.

ii) There are two cases in which playeri can meet a healthy player:

• Case 1. At leastrM people are unhealthy and playeri meets a healthy player.

This event has probability at most1− r.

• Case 2. At mostrM people are unhealthy and playeri meets a healthy player.

This event has probability at most1− p.

In both cases above playeri makes some gain̄m in the current period and, provided

that⌈rM⌉ > M
2
+ 1, at mostŪG in the future.

Hence, the gain from not playing the Nash action instead of doing so is bounded above by

(1− p)(m̄+ ŪG) + (1− r)(m̄+ ŪG)− rp
¯
l.

Sincem̄,
¯
l, andŪG just depend on the stage gameG, there existpG ∈ (0, 1) andrG ∈ (0, 1)

such that, for eachp ≥ pG and eachr ≥ rG, we have that the above expression is negative

and, moreover,⌈rM⌉ > M
2
+1 for all M > 2 (so that we can rely on bound̄UG). Thus, for

such values it is sequentially rational for playeri to play the Nash action.
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B.1 Updating of beliefs conditional on observed histories

We validate the approach to computing beliefs discussed in Section4.2. Suppose that player

i observes historyht̄+1 = g . . . gbg in Phase III. We want to compute her beliefs at the end

of period t̄ + 1 conditional onht̄+1, namelyxt̄+1. We first compute a set of intermediate

beliefsxt for t < t̄ + 1. For any periodt < t̄, we computext+1 from xt by conditioning

onGt+1 andU t+1 ≤ M − 2. We do not use the information that “I was healthy at the end

of each periodt∗ with t + 1 < t∗ < t̄.” This information is added later, period by period,

i.e., only at periodt we add the information that “I was healthy at the end of periodt.” We

show that this method is equivalent to conditioning on the entire history at once.

Letα ∈ {0, . . . ,M−2} and letht+1+α denote the(t+1+α)-period historyg . . . gbg α. . .

g. Let bt (gt) denote the event: “I facedb (g) in periodt.” Moreover, we have:

• U t
i,k denotes the eventi ≤ U t ≤ k, i.e., the number of unhealthy sellers at the end of

periodt is at leasti and at mostk.

• Et
α := U t

1,M−α−1 ∩Gt.

• Et+1
α := Et

α ∩ U t+1
2,M−α ∩ bt+1.

• For eachβ ∈ {1, . . . , α− 1}, Et+1+β
α := Et+β

α ∩ U t+1+β
β+2,M−α+β ∩ gt+1+β.

• Et+1+α
α := Et+α

α ∩ U t+1+α
α+2,M ∩ gt+1+α = ht+1+α.

∗Yale University.
†University of Santiago de Compostela.
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Let H t be a complete history of the contagion process up to periodt. LetHt be the set of

all H t histories. LetHt
k := {H t ∈ Ht : U t = k}. We sayH t+1 ⇒ ht+1 if, underH t+1, I

observedht+1. Givenβ ∈ {0, . . . , α}, letP
(
i
t+1+β→ k

)
:= P

(
U t+1+β = k |Et+1+β

α ∩Ut+β=i

)
.

SinceEt+1+α
α = ht+1+α, the probabilities of interest areP (U t+1+α = k |Et+1+α

α
). We claim

that these probabilities can be obtained by starting with the probabilities aftert conditional

on Et
α and, then, let the contagion elapse one more period at a time conditioning on the

information: “in the current period I observedg and infected one more person.” Formally,

we want to show that, for eachβ ∈ {0, . . . , α},

P (U t+1+β = k |Et+1+β
α

)
?
=

∑M
i=1 P (i

t+1+β→ k)P (U t+β = i |Et+β
α

)
∑M

j=1

∑M
i=1 P (i

t+1+β→ j)P (U t+β = i |Et+β
α

)
.

Fix β ∈ {0, . . . , α}. For eachH t+1+β ∈ Ht+1+β, let H t+1+β,β denote the uniqueH t+β ∈
Ht+β that is compatible withH t+1+β, i.e., the restriction ofH t+1+β to the firstt+β periods.

Let F 1+β := {H̃ t+1+β ∈ Ht+1+β : H̃ t+1+β ⇒ Et+1+β
α }. Let F 1+β

k := {H̃ t+1+β ∈
F 1+β : H̃ t+1+β ∈ Ht+1+β

k }. Clearly, theF 1+β
k sets define a “partition” ofF 1+β (one or

more sets in the partition might be empty). LetF β
k := {H̃ t+1+β ∈ F 1+β : H̃ t+1+β,β ∈

Ht+β
k }. Clearly, also theF β

k sets define a “partition” ofF 1+β. Note that, for each pair

H t+1+β, H̃ t+1+β ∈ F 1+β
k ∩ F β

i , P (H t+1+β |Ht+1+β,β) = P (H̃ t+1+β |H̃t+1+β,β). Denote this

probability byP (F β
i

t+1+β→ F 1+β
k ). Let |i t+1+β→ k| denote the number of ways in whichi

can transition tok at periodt + 1 + β consistently withht+1+α = Et+1+β
α . Clearly, this

number is independent of the history that led toi people being unhealthy. Then, we have

P (i
t+1+β→ k) = P (F β

i

t+1+β→ F 1+β
k )|i t+1+β→ k|. Therefore,

P (U t+1+β = k |Et+1+β
α

) =

=
∑

Ht+1+β∈Ht+1+β
k

P (H t+1+β |Et+1+β
α

) =
∑

Ht+1+β∈F 1+β
k

P (H t+1+β |Et+1+β
α

)

=
∑

Ht+1+β∈F 1+β
k

P (H t+1+β ∩ Et+1+β
α )

P (Et+1+β
α )

=
1

P (Et+1+β
α )

∑

Ht+1+β∈F 1+β
k

P (H t+1+β)

=
1

P (Et+1+β
α )

M∑

i=1

∑

Ht+1+β∈F 1+β
k ∩Fβ

i

P (H t+1+β)
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=
1

P (Et+1+β
α )

M∑

i=1

∑

Ht+1+β∈F 1+β
k ∩Fβ

i

P (H t+1+β |Ht+1+β,β)P (H t+1+β,β |Et+β
α

)P (Et+β
α )

=
P (Et+β

α )

P (Et+1+β
α )

M∑

i=1

P (F β
i

t+1+β→ F 1+β
k )

∑

Ht+1+β∈F 1+β
k ∩Fβ

i

P (H t+1+β,β |Et+β
α

)

=
P (Et+β

α )

P (Et+1+β
α )

M∑

i=1

P (F β
i

t+1+β→ F 1+β
k )|i t+1+β→ k|

∑

Ht+β∈Ht+β
i

P (H t+β |Et+β
α

)

=
P (Et+β

α )

P (Et+1+β
α )

M∑

i=1

P (F β
i

t+1+β→ F 1+β
k )|i t+1+β→ k|P (U t+β = i |Et+β

α
)

=
P (Et+β

α )

P (Et+1+β
α )

M∑

i=1

P (i
t+1+β→ k)P (U t+β = i |Et+β

α
)

It is easy to see thatP (Et+1+β
α ) =

∑M
j=1 P (Et+β

α )
∑M

i=1 P (i
t+1+β→ j)P (U t+β = i |Et+β

α
),

and the result follows. Similar arguments apply to histories ht+1+α = g . . . gbg α. . . where

playeri observes bothg andb in theα periods following the first triggering action.

B.2 Incentives after histories with multiple deviations

We now discuss different types of histories that can arise when multiple deviations occur.

First, consider the situation in which a rogue player, after his initial deviation, observes

a probability zero history. His behavior has not been specified. We only say that he will

best respond given his beliefs. Analogously to point iii) inthe statement of Lemma2, this

rogue player will assign probability 1 to these deviations being errors by infected players.

In particular, a rogue seller who deviated in period 1 will not believe that contagion is

proceeding slower than if he had not observed these errors.

Second,consider histories in which a seller deviates in period 1 andthen he deviates

again during Phase I. The behavior of this rogue seller has not been specified completely.

However, we show below that we can still check incentives.

• Consider a history of length̄t < T I in which a seller deviated in period 1 and in

all subsequent periods played an action other than the best response or the on-path

action. The best response of the seller at this history wouldbe to play his most

profitable deviation until the end of Phase I. This is his bestresponse after his first
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deviation in period 1. Since any off-path action of a seller in Phase I is a triggering

action, the effect of these additional deviations on contagion will be the same as if

he had played his best response. An exposed buyer who observes this behavior will

think that she is just facing a seller who deviated in period 1and is continuing to

deviate. Thus, this rogue seller’s best response from that point onwards will remain

the same as if he had been best responding throughout. Also, all the exposed buyers

would switch to the Nash action at the end of Phase I.

• Consider a history of length̄t < T I in which a seller deviated in period 1 and in some

later periods played the on-path action. Since on-path actions are not triggering, the

above argument can no longer be used to characterize the seller’s best response. Yet,

any exposed buyer observing an on-path action will think that she is facing a healthy

seller while the rogue seller is continuing to infect. Sinceno one attaches positive

probability to such behavior by the rogue seller, not specifying the rogue seller’s

behavior at such histories is not a problem for analyzing other player’s incentives.

Third, suppose I am a healthy player who observes a triggering action and then devi-

ates from the prescribed off-path action. The strategies prescribe that I subsequently play

ignoring my own deviation. To see why this is optimal we briefly discuss the most prob-

lematic case: a history in which I have been infected at a period t̄+ 1 late in Phase III and

observed a historyht̄ of the formht+α = g . . . gbg α. . . g. Further, suppose that, instead of

playing Nash, I have played my on-path action after being infected.

The situation is similar to the one covered by Proposition5, but with the difference that,

after getting infected, I am not spreading the contagion while observing good behavior.

How will my beliefs evolve now? We argue below why, regardless of the value ofα, I

will still believe that contagion is sufficiently spread forme to have the incentive to play

Nash.The argument is very similar to that of Case 1 in the proofof Proposition5.

History ht̄ = g . . . gbg. After this history, the argument is completely analogous toCase 1

in the proof of Proposition5. In that proof, when computing the intermediate beliefs

at the end of period̄t it was argued that they first-order stochastically dominatex̃t̄,

the beliefs obtained when conditioning on the following information: i) I observedg

and ii) at mostM − 2 people are unhealthy aftert̄. In particular, we did not use the

information that I had infected an opponent in periodt̄, which is the only difference

between the history at hand and the histories studied in Case 1in the proof of Propo-
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sition 5. Thus, to get the desired incentives, we can rely again on thefact thatx̃t̄ is

close toȳMB1, the limit of the Markov process with transition matrix̄Q2⌋.

History ht̄ = ht+α = g . . . gbg α. . . g. We start with intermediate beliefsxt. Regard-

less of the value ofα, since I am not spreading contagion (I may be meeting the same

healthy player in every period since I got infected), I will still think that at mostM−2

people were unhealthy at any periodτ ≤ t. The transition matrix is̄Q2⌋, andxt will

be close tōyMB1. To compute subsequent intermediate beliefsxt+1, xt+2, . . . , xt+α,

since I know that at least two people in each community were unhealthy after̄t, I

have to use matrix̄Q⌈1,2⌋, which shifts the beliefs towards more people being un-

healthy (relative to the process given bȳQ2⌋). Therefore, the ensuing process will

move fromxt to a limit that first-order stochastically dominatesȳMB1 in terms of more

people being unhealthy, which ensures that I have the incentive to play Nash.

Finally, to study the beliefs after histories in which, after being infected or exposed, I

alternate on-path play with the Nash action and I face bothg and b, we would have to

combine the above arguments with those in cases 2 and 3 of the proof of Proposition5.

B.2.1 Pathological histories

Finally, we discuss a class of histories that we callpathological. They involve multiple

nested off-path deviations combined with a sequence of verylow probability match re-

alizations or multiple independent deviations. Behavior has not been described at these

histories. They have virtually no effect on incentives: We discuss them for completeness.

First, for pedagogical reasons, we start with an extreme example, thespecial history:

Phase I. A seller deviates in period 1 and then meets the same buyer in all periods of

Phase I. We call these two players thespecial sellerand thespecial buyer, respec-

tively. There is no other deviation during Phase I.

Phase II. In each and every period of Phase II, the special seller further deviates by playing

an action that is not the Nash action while being again matched with the special buyer

in every period.

Checking incentives after this history is specially difficult. The main role of Phase II

is to account for histories in which Phase I proceeds as in this special history. After such

histories, when Phase II starts, only one buyer and one seller are unhealthy, and only the
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buyer knows it. The special seller believes that, with very high probability, every buyer is

unhealthy. Since both unhealthy and healthy sellers play Nash during Phase II, the special

buyer, while playing Nash in Phase II, will think that, with very high probability, she is

infecting all sellers (even if she is meeting the special seller in every period). In the special

history, however, the special seller is playing something different from the Nash action.

Lemma2 implies that this this erroneous behavior should be attributed to infected players.

However, the special buyer knows that there is no infected seller. Since deviations by rogue

players are more likely than deviations by healthy players (see Section4.1), the special

buyer will know that she is meeting the special seller (and not spreading the contagion).

For most of Phase II, the special buyer will play Nash and keepmaking short run prof-

its (even though, most likely, this will spread the contagion). However, once the end of

Phase II approaches and she knows that no seller except the special seller is unhealthy (be-

cause she always met the special seller), she might start thinking about playing differently

given that contagion is not widely spread. Now, as soon as sheplays something that no

other buyer (infected or healthy) would play, the special seller will realize that this patho-

logical history has been realized (note that only the special seller has deviated from the

strategy profile so, for him, this history has positive probability given his behavior).

This is a history at which the behavior of two players is not specified and both of them

know that it has been realized. But, this is not a problem for the following reasons:

i) Since this special history is so unlikely, no seller will deviate in period 1 hoping for

this extremely unlikely history to be realized. Further, even if he has deviated in

period 1, he would not be deviating throughout Phase II hoping to have met the same

buyer throughout Phase I and to be meeting her in each and every period of Phase II.

ii) It does not affect the incentives of the special buyer at the start of Phase II, since the

strategy prescribes that the rogue seller plays Nash and so she attaches probability

zero to the special history being realized.

iii) Lemma2 ensures that no other player, buyer or seller, will ever assign positive prob-

ability to the special history being realized. They will always explain erroneous

behavior with deviations by infected players.

The above arguments apply not only to the special history, but also to similar histories that

involve a special buyer who observes triggering actions in all periods of Phase I and non-

Nash actions in most periods of Phase II. An easier argument applies to similar histories in
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which, during Phase I, a rogue seller observes only off-pathbehavior. Since deviations by

healthy and exposed buyers are equally likely, his beliefs about contagion are unaltered.

Histories at which behavior is left unspecified for some player can be problematic for

the analysis of incentives if other players become aware of these histories. More precisely,

underspecification is not problematic if the following holds: For each pair of playersi

and j, player j will never assign positive probability to any history at whichplayer i’s

behavior is unspecified.We call this Property B which, in particular, does not hold after

the special history. But Lemma2 ensures that no player other than the special seller and

the special buyer will assign positive probability to it.

Second,consider histories that involve independent deviations bymultiple players. Be-

cause behavior has not been specified, if these players become aware of the existence of

one another, we might violate Property B. We need to consider the following cases:

i) Suppose that selleri becomes rogue in period 1 and playerj becomes rogue at a

later period. Selleri can never become aware ofj’s deviation. And, even if playerj

happens to realize that there is another healthy player who played a triggering action,

he will attribute it to a deviation by a seller in period 1. Since the continuation play

of such a rogue seller is specified, this history is consistent with Property B.

ii) Suppose that two playersi andj became rogue (independently) after period 1. If

any of them, sayi, becomes aware of the existence of another rogue player, he will

attribute it to a seller having deviated in period 1. Since continuation play for such a

rogue seller is specified, there is no problem in computingi’s incentives.

Note that Lemma2 ensures that no infected player will ever assign positive probability to

histories with multiple rogue players.

B.2.2 Detailed outline of off-path histories and specification of behavior

Below we provide a list of off-path histories and discuss how we address the potential

issues from not specifying behavior.

Off-path histories for a buyer i

i) Buyeri became rogue by playing the first triggering action of the game: By defini-

tion of a triggering action, a buyeri can become rogue by playing the first triggering
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action of the game only in Phase II or III. The behavior of buyer i is not specified ex-

plicitly at these histories. Equilibrium strategies prescribe that buyeri best responds.

However, at these histories, Property B holds: Lemma1 ensures that no player other

thani will ever assign positive probability to such a history being realized.

ii) Buyeri became rogue by playing a triggering action that was not the first triggering

action of the game: By definition, a buyeri can become rogue by playing a triggering

action only in Phase II or III. The behavior of buyeri is not specified at these histo-

ries. If this was not the first triggering action of the game, then such histories must

involve two or more healthy players becoming rogue independently. These histories

arepathologicaland have been discussed inB.2.1.

iii) Buyeri got infected or exposed by facing a triggering action: The behavior of buyeri

is fully specified at these histories. Buyeri ignores the deviation while she is in the

exposed mood and switches to the Nash action when she is in theinfected mood.

However, there are again somepathologicalhistories, discussed inB.2.1, where spe-

cial care is needed to check incentives. This includes, for instance, histories in which,

during Phase I, buyeri observes many instances of a seller playing actions that are

neither the on-path action nor the prescribed off-path action.

Off-path histories for a seller i

iv) Selleri became rogue by playing the first triggering action of the game:

(a) Histories in which selleri became rogue by playing the first triggering action

of the game in a periodt 6= 1: The behavior of selleri is not specified explicitly

at these histories, but the situation is analogous to i. above, i.e., Property B

holds: Lemma1 ensures that no player other thani will ever assign positive

probability to such a history being realized.

(b) Histories in which selleri became rogue by playing the first triggering action

of the game in period 1:

i. Suppose that selleri does not further deviate during Phase I: Behavior of

seller i has been specified at these histories. With the exception of the

special histories discussed inB.2.1, no matter what he observes or does,

his best response from Phase II onwards will be to play the Nash action.
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ii. Suppose that selleri deviates further during Phase I, but does not play

the on-path action in any period of Phase I: Behavior of selleri has been

specified at these histories. No matter what he observes or does, his best

response from Phase II onwards will be to play the Nash action. These

histories have been discussed inB.2.1.

iii. Suppose that selleri deviates further during Phase I, and plays the on-path

action at least once in Phase I: The behavior of selleri is not specified. We

just prescribe that selleri best responds. Notice that, after playing the on-

path action for many periods during Phase I, it may no longer be optimal for

the seller to keep playing his most profitable deviation throughout Phase I.

However, Property B holds at these histories, since any buyer who observes

an on-path action in Phase I will believe that she is facing a healthy seller.

v) Selleri became rogue by playing a triggering action that was not the first triggering

action of the game: The behavior of selleri is not specified at these histories. Further,

at some of these histories, some care is needed to verify thatProperty B holds. These

histories arepathologicaland have been discussed inB.2.1.

vi) Histories in which selleri got infected by facing a triggering action: The behavior

of selleri is fully specified at these histories. He switches to the Nashaction forever

from the next period.

B.3 Can we get a (Nash Threats) Folk Theorem?

For a gameG ∈ G with strict Nash equilibriuma∗, the setFa∗ does not include action

profiles where only one player is playing the Nash actiona∗i . In the product-choice game,

our construction cannot achieve payoffs close to(1 + g,−l) or (−l, 1 − c). However, we

conjecture we can obtain a Nash threats folk theorem for two-player games by modifying

our strategies by adding trust-building phases. We hope that the informal argument below

illustrates how this might be done in the product-choice game.

Consider a feasible and individually rational target payoffthat can be achieved by play-

ing short sequences of(QH , BH) (10 percent of the time) alternating with longer sequences

of (QH , BL) (90 percent of the time). It is not possible to sustain this payoff in Phase III

with our strategies. To see why not, consider a long time window in Phase III where the

prescribed action profile is(QH , BL). Suppose that a buyer facesQL for the first time in
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a period of this phase followed by many periods ofQH . Notice that since the action for a

buyer isBL in this time window, she cannot infect any sellers herself. Then, with more and

more observations ofQH , she will ultimately be convinced that few people are infected.

Thus, it may not be optimal to keep playing Nash any more. Thisis different from when the

target action is(QH , BH). In that case, a player who gets infected starts infecting players

himself and so, after at mostM − 1 periods he is convinced that everyone is infected.

Consider a modification: Suppose that the target payoff phaseinvolves alternating se-

quences of(QH , BL) for T1 periods and(QH , BH) for T2 =
1
9
T1 periods. Now, in Phase III,

the windows of(QH , BL) and(QH , BH) will be separated by trust-building phases. We

start the game as before:T I periods of(QH , BH) andT II periods of(QL, BH). In Phase III,

players play(QH , BL) for T1 periods, followed by a new trust-building phase ofT ′ peri-

ods during which(QL, BH) is played. Then, players switch to playing(QH , BH) for T2

periods. The new phase is chosen to be short enough (i.e.,T ′ ≪ T1) to have no significant

payoff consequences. But, it is long enough so that a player who is infected during theT1

period window, but thinks that very few people are infected,will still want to play Nash to

make short-term gains during the new phase.‡ We conjecture that adding such appropriate

trust-building phases in the target payoff phase can help obtain a folk theorem.

B.4 A Game outsideG

Consider the two-player game in Figure5. This is a game with strictly aligned interests.

L C R
T −5,−5 −1, 8 5, 5
M −5,−5 −2,−2 8,−1
B −3,−3 −5,−5 −5,−5

Figure 5: A game outsideG .

Each (pure) action profile is either a Nash equilibrium or both players want to deviate. The

difference with other strictly aligned interests games, such as the battle of the sexes, is that

there is a Pareto efficient payoff,(5, 5), that cannot be achieved as the convex combination

‡For example, think of a buyer who observes a triggering action for the first time in Phase III and then
observes only good behavior for a long time while continuingto play (QH , BL). Even if this buyer is
convinced that very few people are infected, she knows that the contagion has begun, and ultimately her
continuation payoff will drop. So, if there is a long enough phase of playing(QL, BH) ahead, she will play
Nash because this is the myopic best response, and would giveher at least some short-term gains.
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of Nash payoffs. Further, since it Pareto dominates the pureNash given by(B,L), it might

be possible to achieve it using Nash reversion. Note that, given a strictly aligned interests

game and an action profile, if a player plays her best reply against her opponent’s action,

the resulting profile is a Nash equilibrium. Suppose that we want to achieve an equilibrium

payoff close to(5, 5). Our approach does not work well because there is no one-sided

incentive profile to use in Phase I. (Both players have an incentive to deviate from(T,R)).

Suppose that we start the game with a phase in which we aim to achieve target payoff

(5, 5), with the threat that any deviation will, at some point, be punished by Nash reversion

to (−3,−3). Suppose that a player deviates in period 1. Then, the opponent knows that

no one else is infected in her community and that Nash reversion will eventually occur.

Hence, both infected players will try to make short-run gains by moving to the profile that

gives them8. As more players become infected, more people are playingM andC and

the payoff will get closer to(−2,−2). Now it is not clear how the dynamics will evolve.

Further, it is hard to provide players with the incentives tomove to(−3,−3). Note that, as

long as no player playsB orL, no one ever gets something below−2, whileB andL lead

to, at most,−3. So, a player will not switch toB unless she thinks that a many players in

the other community are already playingL but, it is not clear who would switch first.
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