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Abstract: We follow the path initiated in Shapley (1971) and study the geometry of the core of convex

and strictly convex games. Our main contribution is to establish a nice and instructive relation between

Tartaglia’s triangle and the combinatorial complexity of the core of a strictly convex game.
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1 Preliminaries

A cooperative n-player game with transferable utility, shortly, a TU game, is a pair (N, v),
where N is a finite set and v : 2N → R is a function assigning, to each coalition S ∈ 2N , its
worth v(S); by convention v(∅) := 0. Let Gn be the set of n-player games. Given S ⊆ N ,
let |S| be the number of players in S. For the sake of notation, we denote {i} by i.

Let (N, v) ∈ Gn. The core (Gillies, 1953), is defined by C(N, v) := {x ∈ Rn :
∑

i∈N xi =
v(N) and, for each S ⊆ N,

∑

i∈S xi ≥ v(S)}. Let BGn be the set of n-player games with
nonempty core. We say C(N, v) is full dimensional if it has dimension n − 1.

Let S ⊆ N and let Π(S) be the set of orderings (permutations) of the elements in S. For
each σS ∈ Π(S) and each i ∈ S, σS(i) denotes i’s position. We denote σN by σ. For each
i ∈ N and each σ ∈ Π(N), let Pσ(i) := {j ∈ N : σ(j) < σ(i)} be the set of predecessors of
i with respect to σ. Let (N, v) ∈ Gn and σ ∈ Π(N). The marginal vector associated with
(N, v) and σ, mσ(N, v), is defined, for each i ∈ N , by mσ

i (N, v) := v(Pσ(i) ∪ i) − v(Pσ(i)).
A game (N, v) is convex if, for each i ∈ N and each S and T such that S ⊆ T ⊆ N\ {i},

v(S ∪ i) − v(S) ≤ v(T ∪ i) − v(T ). Let CGn be the set of n-player convex games. A game
(N, v) is strictly convex if, for each i ∈ N and each S and T such that S ( T ⊆ N\ {i},
v(S ∪ i) − v(S) < v(T ∪ i) − v(T ).

A (convex) polytope P is the convex hull of a finite set of points. A polytope P is
an m-polytope if its dimension is m. A hyperplane H is a supporting hyperplane for P if
H ∩ P 6= ∅ and the halfspace below H contains P . A face of a polytope P is defined as (i)
P itself, (ii) the empty set, or (iii) the intersection of P with some supporting hyperplane;
faces of dimension m are called m-faces (with the convention that dim(∅) = −1). The
0-faces, 1-faces, and (m − 1)-faces of an m-polytope P are respectively its vertices, edges,
and facets. Let F(P ) denote the set of all faces of P .
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2 Core Complexity and Tartaglia’s Triangle

We discuss now the geometry of the cores of convex and strictly convex games. In our
exposition we mainly use the terminology in Shapley (1971) and, also, some of the results
included there. Let (N, v) ∈ BGn. For each ∅ 6= T ⊆ N , let HT be the hyperplane
HT := {x ∈ Rn :

∑

i∈T xi = v(T )} and let FT := C(N, v) ∩ HN\T . Clearly, F∅ = C(N, v);
also, let FN := C(N, v).1 Shapley (1971) and Ichiishi (1981) showed that a game is convex
if and only if the vertices of the core are the marginal vectors, i.e., C(N, v) = co{mσ(N, v) :
σ ∈ Π(N)}, where co(A) denotes the convex hull of A. Thus, for convex games, each FT

is a nonempty face of C(N, v) and we refer to FT as a T -face of C(N, v). By definition, in
each allocation in FT , coalition T receives v(N) − v(N\T ). Clearly, for each ∅ 6= T ( N ,
since both FT and FN\T lie in HN , they are parallel to each other. Now we define, for each
coalition T ⊆ N , a game (N, vFT

) that is closely related to FT .

Definition 1. Let (N, v) ∈ BGn and T ⊆ N . The T -face game (N, vFT
) is defined, for

each S ⊆ N , by vFT
(S) := v((S ∩ T ) ∪ (N\T )) − v(N\T ) + v(S ∩ (N\T )).

Note that, if T = ∅ or T = N , then (N, vFT
) = (N, v). Besides, if S ∩ T = ∅, then

vFT
(S) = v(S). If (N, v) ∈ CGn, then, in the game (N, vFT

), the worth of coalition T

coincides with his maximum possible payoff in C(N, v), i.e., v(N) − v(N\T ) and, on the
contrary, the worth of coalition N\T is its minimum payoff in C(N, v), i.e., v(N\T ).

Lemma 1. Let (N, v) ∈ CGn and T ⊆ N . Let σ = (σN\T , σT ) and let σ̄ ∈ Π(N) be such

that it induces the orders σT and σN\T in T and N\T , respectively. Then,

(i) (N, vFT
) ∈ CGn.

(ii) mσ(N, vFT
) = mσ(N, v).

(iii) mσ(N, vFT
) = mσ̄(N, vFT

).

(iv) mσ̄(N, v) ∈ FT if and only if mσ(N, v) = mσ̄(N, v). Hence, FT = co{mσ(N, v) : σ =
(σN\T , σT )}.

Proof. Since (N, vF∅
) = (N, vFN

) = (N, v), the result is trivial for T = ∅ and T = N .
Hence, let ∅ 6= T ( N .

(i) We show that, for each R ⊆ S ⊆ N\i, vFT
(R ∪ i) − vFT

(R) ≤ vFT
(S ∪ i) − vFT

(S).
Suppose that i ∈ N\T . Since vFT

(S ∪ i) − vFT
(S) = v((S ∪ i) ∩ (N\T )) − v(S ∩ (N\T )),

vFT
(R∪ i)− vFT

(R) = v((R∪ i)∩ (N\T ))− v(R∩ (N\T )), and (N, v) is convex, the desired
inequality holds. Suppose that i ∈ T . Since vFT

(S ∪ i)− vFT
(S) = v((S ∩T )∪ (N\T )∪ i)−

v((S ∩ T ) ∪ (N\T )), vFT
(R ∪ i)− vFT

(R) = v((R ∩ T ) ∪ (N\T )∪ i)− v((R ∩ T ) ∪ (N\T )),
and (N, v) is convex, the desired inequality holds.

(ii) Let σ = (σN\T , σT ). We show that, for each i ∈ N , mσ
i (N, v) = mσ

i (N, vFT
).

Suppose that i ∈ N\T . Since Pσ(i) ⊂ Pσ(i) ∪ i ⊆ N\T , then v(Pσ(i) ∪ i) = vFT
(Pσ(i) ∪ i)

and v(Pσ(i)) = vFT
(Pσ(i)). Suppose that i ∈ T . In this case, N\T ⊆ Pσ(i) and it is easy

to check that, again, vFT
(Pσ(i) ∪ i) = v(Pσ(i) ∪ i) and vFT

(Pσ(i)) = v(Pσ(i)).
(iii) If σ̄ = (σN\T , σT ) the result is trivial. Let σ̄ 6= (σN\T , σT ). Then, σ̄ can be written

as (σR1
, σT1

, σR2
, σT2

, . . . , σRp
, σTq

), where T1, . . . , Tq ⊂ T , R1, . . . , Rp ⊂ N\T , and T1 and
R2 are nonempty. Let σ∗ := (σR1

, σR2
, σT1

, σT2
, . . . , σRp

, σTq
), i.e., R2 and T1 are swapped.

We show that mσ̄(N, vFT
) = mσ∗

(N, vFT
). Once the latter is proved, we get, after a finite

1Shapley (1971) defines FT as C(N, v) ∩ HT . Although Shapley’s definition might seem more natural,
ours is more convenient for the exposition below.
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number of swaps, that mσ̄(N, vFT
) = mσ(N, vFT

). Clearly, the marginal vectors associated
with σ̄ and σ∗ can only differ for the players in T1 or R2. We distinguish two cases. Case 1:

i ∈ T1. Clearly, Pσ̄(i) = R1 ∪ PσT1
(i) and Pσ∗(i) = R1 ∪ R2 ∪ PσT1

(i). By the definition
of vFT

, vFT
(Pσ̄(i) ∪ i) − vFT

(Pσ̄(i)) = v(PσT1
(i) ∪ (N\T ) ∪ i) − v(PσT1

(i) ∪ (N\T )) =
vFT

(Pσ∗(i) ∪ i) − vFT
(Pσ∗(i)). Case 2: i ∈ R2. Clearly, Pσ̄(i) = R1 ∪ T1 ∪ PσR2

(i) and
Pσ∗(i) = R1 ∪ PσR2

(i). By the definition of vFT
, vFT

(Pσ̄(i) ∪ i) − vFT
(Pσ̄(i)) = v(R1 ∪

PσR2
(i) ∪ i) − v(R1 ∪ PσR2

(i)) = vFT
(Pσ∗(i) ∪ i) − vFT

(Pσ∗(i)).
(iv) Since v ∈ CGn, mσ(N, v) ∈ FT and the necessity is trivial. We prove the sufficiency.

Since mσ̄(N, v) ∈ FT , then
∑

i∈T mσ̄
i = v(N)−v(N\T ) =

∑

i∈T mσ
i . By convexity, for each

i ∈ T , mσ̄
i (N, v) ≤ mσ

i (N, v) and, since
∑

i∈T mσ̄
i =

∑

i∈T mσ
i , we have that, for each i ∈ T ,

mσ̄
i (N, v) = mσ

i (N, v). Similarly, for each i ∈ N\T , mσ̄
i (N, v) = mσ

i (N, v).

Proposition 1. Let (N, v) ∈ CGn and T ⊆ N . Then, C(N, vFT
) = FT . Therefore,

C(N, v) = co{C(N, vFT
) : ∅ 6= T ( N}.

Proof. The equality C(N, vFT
) = FT is trivial for T = ∅ and T = N . Let ∅ 6= T ( N . By

Lemma 1 (i), for each σ ∈ Π(N), mσ(N, vFT
) is a vertex of C(N, vFT

) and C(N, vFT
) =

co{mσ(N, vFT
) : σ ∈ Π(N)}. Now, by Lemma 1 (ii) and (iii), C(N, vFT

) ⊆ FT and, by
Lemma 1 (ii) and (iv), FT ⊆ C(N, vFT

).

The following result is a compilation of different results in Shapley (1971).

Lemma 2. Let (N, v) be a strictly convex game. Then,

(i) mσ(N, v) = mσ̄(N, v) if and only if σ = σ̄. Hence, C(N, v) has n! vertices.

(ii) C(N, v) is full dimensional and has 2n − 2 facets, one for each ∅ 6= T ( N .

(iii) Let ∅ 6= T ( N . Then, mσ(N, v) ∈ FT if and only if σ is of the form (σN\T , σT ).

Remark. From the previous result, for each strictly convex game and each ∅ 6= T ( N ,
FT is a facet of C(N, v), i.e., an (n − 2)-polytope. Moreover, (i) and (iii) imply that FT

has |T |! (n− |T |)! vertices and, hence, (N, vFT
) is not strictly convex. Recall that, for each

t ∈ {0, . . . , n}, the number of t-player coalitions is
(

n
t

)

. Hence,
(

n
t

)

is also the number of
faces of C(N, v) that are associated with a coalition of size t.

Now, we introduce one more concept from Shapley (1971). Let P = {N1, . . . , Np} be a
partition of N , with p ≥ 2. The game (N, v) is decomposable with respect to P if, for each
T ⊆ N , v(S) = v(S ∩ N1) + . . . + v(S ∩ Np). That is, v is the addition of p smaller games;
each of them is referred to as a component. The following result is also a compilation of
different results in Shapley (1971).

Lemma 3. (i) A strictly convex game is indecomposable.

(ii) A decomposable game is convex if and only if each component is convex.

(iii) The core of a decomposable convex game is the cartesian product of the cores of the

components of any decomposition.

Proposition 2. Let (N, v) ∈ BGn and ∅ 6= T ( N . Then, the game (N, vFT
) is decompos-

able with respect to P = {T, N\T }.

Proof. Let S ⊆ N . Then, vFT
(S ∩ T ) = v((S ∩ T ) ∪ (N\T ))− v(N\T ) + v(∅) and vFT

(S ∩
(N\T )) = v(N\T ) − v(N\T ) + v(S ∩ (N\T )). Hence, vFT

(S ∩ T ) + vFT
(S ∩ (N\T )) =

vFT
(S).
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Let (T, vT ) and (N\T, vN\T ) denote the two components of the decomposition in Propo-
sition 2. Next result is now completely straightforward.

Corollary 1. Let (N, v) be a strictly convex game and ∅ 6= T ( N . Then, (T, vT ) and

(N\T, vN\T ) are strictly convex games such that C(N, vFT
) = C(T, vT ) × C(N\T, vN\T ).

The cores in the cartesian product have dimensions |T | − 1 and |N\T | − 1, respectively.

We move now to core complexity. Two polytopes P and P ′ are combinatorially equivalent

if there is a one-to-one map f : F(P ) → F(P ′) that is inclusion preserving, i.e., F ⊆ F ′ if
and only if f(F ) ⊆ f(F ′). We define the combinatorial complexity of the core of a game as
the number of different equivalence classes there are among its facets according to the above
relation. Given a strictly convex game and a coalition ∅ 6= T ( N , all the |T |-faces are
combinatorially equivalent and, moreover, the faces FT and FN\T are also combinatorially
equivalent. Let ⌊·⌋ be the floor function, i.e., for each r ∈ R, ⌊r⌋ denotes the largest integer
not larger than r. The following corollaries are immediate from Lemma 2 and the remark
below it.

Corollary 2. Let (N, v) be a strictly convex game. Then, for each t ∈ {0, . . . , n}, C(N, v)
has 2

(

n

t

)

combinatorially equivalent facets and each of them can be decomposed as the carte-

sian product of the cores of two strictly convex games with t and n− t players, respectively.

Corollary 3. Let (N, v) be a strictly convex game. Then, the combinatorial complexity of

C(N, v) is ⌊n
2 ⌋.

In Figure 1 we illustrate, with the aid of Tartaglia’s triangle, the last three corollaries.
Given n, below

(

n

0

)

and
(

n

n

)

, we draw the F∅ and FN faces, i.e., C(N, v). Then, for each t ∈

{1, . . . , n− 1}, the polytope below
(

n

t

)

represents one of the
(

n

t

)

combinatorially equivalent
T -facets (with |T | = t) of C(N, v) and, since FT = C(N, vFT

), it also represents the cores of
the T -face games. Remarkably, Figure 1 contains a lot of information about the geometry
of the cores of strictly convex games and, moreover, does it in a noteworthy visual way.
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and their facets (cores of face games)
cores of strictly convex games
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Figure 1: Tartaglia’s triangle and core complexity
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