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Abstract
We give necessary and sufficient conditions for existence of a pure

strategy equilibrium for first price private value auctions. The signals
of the players may have any kind of dependence. The conditions are
given for a set of distributions which is dense in the set of all symmetric
distributions.

The approach allows numerical simulations, which show that affilia-
tion is a very restrictive assumption, not satisfied in many cases that have
pure strategy equilibrium. We also show that neither existence nor the
revenue ranking implied by affiliation (superiority of the English auction)
generalizes for positively dependent distributions. Nevertheless, the rev-
enue ranking is valid in a weak sense (on average) for the dense set of
distributions.
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1 Introduction
Information play a crucial role in auctions. Indeed, one of the most important
reasons for using an auction to sell a good is the uncertainty about the market
price for the item in question. Also, most conclusions of auction theory de-
pend crucially on information structure. For instance, under independence of
the information of bidders (and other standard assumptions, such as symme-
try and risk neutrality), all kind of auctions give the same revenue (Revenue
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Equivalence Theorem, Vickrey 1961, Myerson 1981). This is no longer true if
the independence assumption is relaxed (see below).
The same example also illustrates that the information structure should be

considered in real world decisions. For instance, if the information possessed
by bidders is correlated, the choice of the auction may influence the expected
revenue of the seller.1 Thus, a natural question arises: if the bidders have
correlated types (which is natural to expect), which auction format (among the
common ones) provides the highest expected payoff for the seller?
The best contribution to the solution of this problem was made through a

remarkable insight of Milgrom andWeber (1982a), which introduced the concept
of affiliation in auction theory.2 Affiliation is a generalization of independence
that was explained through the appealing notion that our assessments of values
are positively dependent: “Roughly, this [affiliation] means that a high value of
one bidder’s estimate makes high values of the others’ estimates more likely.”
(Milgrom and Weber (1982a), p. 1096. We give a formal definition of affiliation
in section 2.) Under this assumption, Milgrom and Weber (1982a) obtain two
main results:3

• there exists a symmetric pure strategy equilibrium (this is a generalization
of the independent types case);

• the second price auction gives greater revenue than the first price auc-
tion (a truly new result that breaks the Revenue Equivalence Theorem
and is a consequence of their linkage principle, which states that, on aver-
age, revenues are enhanced by always providing the bidders with as much
information as possible about the value of the good).

In the face of these results, it is possible to cite at least three reasons for
the profound influence of the afore mentioned paper in auction theory: (i) its
theoretical depth and elegance; (ii) the plausibility of the hypothesis of affili-
ation, as explained by a clear economic intuition; (iii) the fact that it implies
that English auctions yield higher revenues than first price auctions, which is a
good explanation for the fact that English auctions are more common than first
price auctions.
Nevertheless, some counterexamples and comments in the literature have

suggested that affiliation may be too restrictive and its consequences not valid

1 Indeed, under correlation of types, Crémer and McLean (1988) show that it is possible
to fully extract the surplus, through an optimal auction (provided that some conditions are
met). We will not consider optimal designs, but only the single-object auctions most used in
the real world: the English auction and the first price auction.

2 In two previous papers, Milgrom presented results that use a particular version of the
same concept, under the traditional statistical name “monotone likelihood ratio property”
(MLRP): Milgrom (1981a, 1981b). Before Milgrom’s works, Wilson (1969 and 1977) made
important contributions that may be considered the foundations of the affiliated value model.
Nevertheless, the concept is fully developed and the term affiliation first appears in Milgrom
and Weber (1982a). See also Milgrom and Weber (1982b).

3The paper has many other insightful conclusions. We restrict ourselves to these because
they seem the most important and relevant for our discussion.
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in a more general context (see Perry and Reny 1999 and Klemperer 2002, for
instance). Thus, one would like to have an assessment of how restrictive is affil-
iation and how far its implications can go. In section 2 we show that affiliation
is quite restrictive.
From this, it seems important to have a picture of the equilibrium existence

problem and the revenue ranking for a bigger set of distributions. Consider the
simple setting of symmetric private value auctions with two players, but general
dependence of types. While second price auctions always have pure strategy
equilibrium in weakly dominant strategies, we only know that first price auctions
have a mixed strategy equilibrium (see Jackson and Swinkels 2005). However,
pure strategy equilibria have the advantage of providing grounds for revenue
comparisons.
We offer necessary and sufficient conditions for pure strategy equilibrium

existence for a set of distributions which is dense in the set of all symmetric
distributions with bivariate density functions (p.d.f.). The set is as follows. Let£
t, t
¤2
be the fixed domain and divide it in n2 equal squares. Our set is that

of symmetric distributions which are constant in each of these squares. It is
easy to see that, as n goes to ∞, we can approximate any p.d.f. (including
non-continuous ones).
Although the necessary and sufficient conditions are not simple – as one

could expect –, they are easy to check numerically. We use this feature to
make simulations, which show that the set of distributions with pure strategy
equilibrium is much bigger than the set of affiliated distributions. There is
no easy relation between positive correlation and equilibrium existence, since
we show that distributions with strong positive dependence properties may not
have equilibrium. However, distributions with positive dependence are more
likely to have pure strategy equilibria.
We also show that auctions with distributions satisfying strong positive de-

pendence properties may fail to maintain the revenue ranking implied by affili-
ation (that is, the superiority of English auctions over first price auctions).
Nevertheless, since we consider a set which is dense in the set of distributions,

we can give a general picture of the average of the distributions. Looking to the
problem in this weak sense, that is, in the average of the distributions, we recover
the revenue ranking of affiliation. The notion of “average” over distributions is
well defined because we work with finite dimensional sets (see subsection 2.2).
The paper is organized as follows. Section 2 compares affiliation and other

definitions of positive dependence. Section 3 presents the equilibrium existence
results. Section 4 generalizes the revenue ranking and presents a counterexample
for further generalizations. It also shows the numerical evaluation of the revenue
for each given simple distribution. As a conclusion, section 5 summarizes the
contribution.
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2 How restrictive is affiliation?
The introduction of the affiliation concept was made through an appealing eco-
nomic intuition: “Roughly, this [affiliation] means that a high value of one bid-
der’s estimate makes high values of the others’ estimates more likely.” Milgrom
and Weber (1982a), p. 1096. The formal definition is as follows, for the case
where there exists a density function.4 The random variables X1, ..., XN with
density function f : RN → R+ are affiliated if f (x) f (y) 6 f (x ∧ y) f (x ∨ y),
where x and y are realizations of (X1, ...,XN ) and x∧ y = (min {xi, yi})Ni=1 and
x ∨ y = (max {xi, yi})Ni=1.
We illustrate the definition in Figure 1, for N = 2. Affiliation requires that

the product of the weights at the points (x0, y0) and (x, y) (where both values
are high or both are low) is greater than (x, y0) and (x0, y) (where they are high
and low, alternatively).

y

x x´

y´

f x ,y( ) f x´,y( )

f x ,y´( ) f x´,y´( )

Figure 1: Affiliation requires f (x0, y) f (x, y0) ≤ f (x, y) f (x0, y0) .

Thus, affiliation seems to be a good concept to express positive dependence.
Indeed, there is a predominant view in auction theory that understands affil-
iation as a suitable synonym of positive dependence. This can be seen in the
intuitions normally given to affiliation, along the same lines of the previous
quote. One can say that the literature seems to mix two different ideas that we
would like to state separately: (1) positive dependence is a sensible assumption
(an idea that we call positive dependence intuition); and (2) affiliation is a suit-
able mathematical definition for positive dependence (an idea that, for easier
future reference, we will call rough identification).
The positive dependence intuition seems very reasonable, because many

mechanisms may lead us to correlated assessments of values: education, cul-
ture and even evolution.
Nevertheless, we argue that the rough identification is misleading because

affiliation is too strong to be a suitable definition of positive dependence. In the

4 It is possible to give a definition of affiliation for distributions without density functions.
See Milgrom and Weber (1982a) or the appendix. We will assume the existence of a density
function and use only this definition.
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following subsection, we present some theoretical concepts that also correspond
to positive dependence and are strictly weaker than affiliation. In subsection
2.2, we evaluate numerically how relevant such restrictiveness is. The numerical
evaluation is made through a “canonical” model — in a sense made precise in
that subsection — and is surprisingly negative.
Since these results do not confirm the usual understanding (rough identifica-

tion), it is useful to reassess other arguments and models that lead to affiliation.
Subsection 2.3 considers the conditional independence model. Subsection 2.4
discusses the use of affiliation in other sciences.
The results and arguments of this section concern only the restrictiveness

of affiliation as a good description of the world. Thus, they do not imply that
affiliation is a worthless assumption. Such judgment must take into account the
most important of all criteria: whether the resulting theory “yields sufficiently
accurate predictions”(Friedman (1953), p. 14). Because of this, we study the
main consequences of affiliation — namely, equilibrium existence and the revenue
rank — in sections 3 and 4.

2.1 Affiliation and positive dependence

In the statistical literature, various concepts were proposed to correspond to the
notion of positive dependence. Let us consider the bivariate case, and assume
that the two real random variables X and Y have joint distribution F and
strictly positive density function f . The following concepts are formalizations
of the notion of positive dependence:5

Property I - X and Y are positively correlated (PC) if cov(X,Y ) > 0.

Property II - X and Y are said to be positively quadrant dependent
(PQD) if cov(g (X) , h (Y )) > 0, for all g and h non-decreasing.

Property III - The real random variablesX and Y are said to be associated
(As) if cov(g (X,Y ) , h (X,Y )) > 0, for all g and h non-decreasing.

Property IV - Y is said to be left-tail decreasing inX (denoted LTD(Y |X))
if Pr[Y 6 y|X 6 x] is non-increasing in x for all y. X and Y satisfy property
IV if LTD(Y |X) and LTD(X|Y ).

Property V - Y is said to be positively regression dependent on X (denoted
PRD(Y |X)) if Pr[Y 6 y|X = x] = FY |X (y|x) is non-increasing in x for all y.
X and Y satisfy property V if PRD(Y |X) and PRD(X|Y ).

Property VI - Y is said to be Inverse Hazard Rate Decreasing in X (de-
noted IHRD(Y |X)) if FY |X(y|x)fY |X(y|x) is non-increasing in x for all y, where fY |X (y|x)

5Most of the concepts can be properly generalized to multivariate distributions. See, e.g.,
Lehmann (1966) and Esary, Proschan and Walkup (1967). The hypothesis of strictly positive
density function is made only for simplicity.
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is the p.d.f. of Y conditional to X. X and Y satisfy property VI if IHRD(Y |X)
and IHRD(X|Y ).
Property VII (Affiliation) - Y and X are said to be affiliated (or that

they satisfy property (VII)) if
fY |X(y0|x)
fY |X(y|x) is non-increasing in x for all y and y0

with y > y0.6 ,7

We have the following:

Theorem 1. The above properties are successively more restrictive and are
all different, that is,

(V II)⇒ (V I)⇒ (V )⇒ (IV )⇒ (III)⇒ (II)⇒ (I)

and all implications are strict.

This theorem illustrates how strong affiliation is.8 Some implications of The-
orem 1 are trivial and most of them were previously established. Our contribu-
tion regards Property VI, that we use later to prove convenient generalizations
of equilibrium existence and revenue rank results. We prove that Property VI
is strictly weaker than affiliation and that it is sufficient for, but not equivalent
to Property V.
Although Theorem 1 says that affiliation is mathematically restrictive, it

could be the case that affiliation is satisfied in most of the cases with positive
correlation. That is, although there are counterexamples for each of the impli-
cations above, such counterexamples could be pathologies and affiliation could
be true in many cases where positive correlation (property I) holds. Thus, one
should evaluate how typical it is.
Obviously, the best tests for this are the empirical and experimental ones

(see section 6). Nevertheless, a theoretical evaluation would be useful. Unfor-
tunately, this is not easy to do, since the objects (distributions) are of infinite
dimension. As is well known, there are no natural measures (as the Lebesgue
measure) for infinite dimension sets. To overcome this problem, we present a
methodology to make such evaluation in the next subsection.

6 In statistic literature, affiliation is known as positively likelihood ratio dependent (PLRD).
The reason for this name becomes clear from this form of the definition.

7Although Property VII seems asymmetric, it is indeed symmetric. To see this and that
Property (VII) is equivalent to the previous definition of affiliation, observe that Property
(VII) holds if x > x0, y > y0 (in the support of the distribution) imply

fY |X (y0|x)
fY |X (y|x)

6
fY |X (y0|x0)
fY |X (y|x0)

⇔ fY |X y0|x fY |X y|x0 6 fY |X y0|x0 fY |X (y|x) .

Multiplying both sides on the right by fX (x) fX (x
0) we obtain the affiliation inequality and

dividing by fY (y) fY (y
0), we obtain the symmetrical condition for property (VII). Due to

the fact that Property VII is equivalent to the monotonicity of
fY |X(y|x0)
fY |X(y|x) , it is also known

as Monotone Likelihood Ratio Property (MLRP).
8We defined only seven concepts for simplicity. Yanagimoto (1972) defines more than thirty

concepts of positive dependence and, again, affiliation is the most restrictive of all, but one.
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2.2 How often are positive dependent variables affiliated?

Consider the density function f (t1, t2), with support
£
t, t
¤× £t, t¤. Without loss

of generality (by reparametrization), we can assume
£
t, t
¤2
= [0, 1]2. Let D be

the set of density functions on [0, 1]2. For n ≥ 2, define the transformation
Tn : D → D given by

Tn (f) (x, y) = n2
Z p

n

p−1
n

Z m
n

m−1
n

f (α, β) dαdβ,

whenever (x, y) ∈ ¡m−1n , mn
¤ × ¡p−1n , pn

¤
, for m,p ∈ {1, 2, ..., n}. Observe that

Tn (f) is constant over each square
¡
m−1
n , mn

¤× ¡p−1n , pn
¤
. Let us define the set

Dn of simple distributions obtained as above, that is, Dn ≡ Tn (D).
Thus, a density function f ∈ Dn can be described by a matrix A = (aij)n×n,

as follows:

f (x, y) = amp if (x, y) ∈
µ
m− 1
n

,
m

n

¸
×
µ
p− 1
n

,
p

n

¸
, (1)

for m, p ∈ {1, 2, ..., n} . The definition of f at the zero measure set of points
{(x, y) =

¡
m
n ,

p
n

¢
: m = 0 or p = 0} is arbitrary.

We will assume full support and symmetry, that is, we will consider the set
S ⊂ D of density functions which are bounded away from zero and such that
f (x, y) = f (y, x). (Symmetry is not important for the results of this section ,
but it is important for sections 3 and ??). The following lemma is immediate:

Lemma 1 If f ∈ S, then Tn (f) can be represented by a matrix A = (aij)n×n,
as in (1), such that, for all m, p ∈ {1, 2, ..., n} , amp > 0 and amp = apm.

Our method is to study the properties of the infinite dimensional set S by
the properties of the finite dimensional sets Sn ≡ Tn (S), for each n ∈ N. The
following result provides the justification of the method:

Proposition 2 f ∈ S satisfies Property VII if and only if fn = Tn (f) satisfies
Property VII, for all n.

For each f ∈ S that is affiliated, there is a fn = Tn (f) ∈ Sn that is also
affiliated. The converse does not hold: there are functions f ∈ S that are
not affiliated, but such that fn = Tn (f) ∈ Sn is affiliated for some n. Thus,
the “proportion” of functions in S that are affiliated are overestimated by the
proportion of the functions in Sn that are affiliated. (Here, we used quotation
marks because “proportion” cannot be properly defined in S, as we said before.)
Since Sn is finite dimensional, we can use the Lebesgue measure to evaluate

the proportion of densities that are affiliated. This is done through a numerical
experiment.

Numerical experiment
For n = 3, 4, 5 and 6, we repeated 108 trials of the following procedure:9

9The results are already stable for 107 trials and even less.
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1. Generate N = n(n+1)
2 random numbers X1, X2, ...,XN from a uniformly

distribution on [0, 1].

2. Define a symmetric matrix (xij)n×n with these numbers (see illustration
below for the case n = 3, N = 6) x11 x12 x13

x21 x22 x23
x31 x32 x33

 =
 X1 X4 X6

X4 X2 X5

X6 X5 X3


3. Define the symmetric matrix A = (aij)n×n by

aij = n2
xijP

j

P
i xij

,

so that
P

j

P
i aij = n2.

It is easy to see that each matrix A = (aij)n×n corresponds to a distribution
Tn (f) ∈ Sn as in (1). For instance, if all Xk are equal, A is the matrix formed
only by ones, which corresponds to the uniform distribution in [0, 1]2.
Then, we calculate the correlation implied by Tn (f) and verify whether

it satisfies Property VII (affiliation). In fact, we checked whether it satisfies
Properties IV, V, VI and VII.10 For each n, we counted the number of cases in
each interval of correlations and obtained the proportion of trials that satisfy
such properties. The results are reported in the graphics below, for n = 3, 4
and 5, and are available upon request for all n up to 10.
For each n, we generated at least three times 108 different matrices (distri-

butions). The results become stable (they reproduce with great precision), for
n ≤ 7 and correlation lower than 0.7 with just 107 trials.11
For the case n = 3, Figure 2 shows the proportion of distributions that sat-

isfy properties IV, V, VI and VII (affiliation), for a range of positive correlation
ρ, from 0 to 0.8 (correlations above 0.8 are very rare in our simulations). For
instance, about 12% of the cases with correlation 0.4 satisfied affiliation.

10Property I occurs in 50% of the cases. We did not find a good characterization of Prop-
erties II and III to include them in the tests.
11Kotz, Wang and Hung (1988) made a similar study, for n = 3.
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Figure 2: Percentage of occurrence of properties IV, V, VI and VII
(affiliation), when n=3.

If we increase n to 4, the proportion of distributions that satisfy each prop-
erty falls sharply, especially for properties V, VI and VII, as Figure 3 shows.
One sees that Property VII is satisfied for less than 2% of the cases, even for a
correlation as high as 0.8.
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Figure 3: Percentage of occurrence of properties IV, V, VI and VII
(affiliation), when n=4.
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In the case n = 5, we did not obtain a significant proportion of cases of
distributions satisfying properties VI and VII in 108 trials. See Figure 4.
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Figure 4: Percentage of occurrence of properties IV, V, VI and VII (affiliation)
when n=5.

From the graphics above, we see that distributions rarely satisfy affiliation
(property VII), even for a large correlation coefficient. The reason for that
comes from the fact that affiliation requires an inequality to be satisfied for
each quadruple of coordinates. If we consider the general definition of affiliation
given in the appendix, we see that affiliation requires an inequality to be satisfied
conditioned on every sublattice. This is a rather strong property to require and
it is the source of its scarcity.
These findings seem to contradict the common understanding that affiliation

is reasonable. For instance, models with conditional independence are consid-
ered very natural and it is usually supposed that they satisfy affiliation. We
analyze them in the next subsection.

2.3 Conditional independence

Conditional independence models assume that the signals of the bidders are
independent conditional to the value of the object (see Wilson 1969, 1977).
Assume that f (t1, ..., tN |v) is the p.d.f. of the signals conditional to the value
and that it is C2. It can be proven that the signals are affiliated if and only if

∂2 log f (t1, ..., tN |v)
∂ti∂tj

> 0,

10



and

∂2 log f (t1, ..., tN |v)
∂ti∂v

> 0, (2)

for all i, j.12 Conditional independence implies only that

∂2 log f (t1, ..., tN |v)
∂ti∂tj

= 0.

Thus, conditional independence is not sufficient for affiliation. To obtain the
latter, one needs to assume (2) or that ti and v are affiliated. In other words, to
obtain affiliation from conditional independence, one has to assume affiliation
itself. So, the justification of affiliation through conditional independence is
meaningless.
This may bring to mind an usual method of obtaining affiliated signals: to

assume that the signals ti are a common value plus an individual error, that is,
ti = z + εi, where the εi are independent and identically distributed. This is
not yet sufficient for the affiliation of t1, ..., tN . Indeed, let g be the p.d.f. of
the εi, i = 1, ..., N . Then, t1, ..., tN are affiliated if and only if g is a strongly
unimodal function.13 ,14

2.4 Affiliation in other sciences

The above discussion suggests that affiliation is, indeed, a narrow condition
and probably not a good description of the world. Nevertheless, we know that
affiliation is widely used in Statistics, reliability theory and in many areas of
social sciences and economics (possibly under other names). Why is this so, if
affiliation is restrictive?
In Statistics, affiliation is known as Positive Likelihood Ratio Dependence

(PLRD), the name given by Lehmann (1966) when he introduced the concept.
PLRD is widely known by statisticians to be a strong property and many papers
in the field do use weaker concepts (such as given by properties V, IV or III).
In Reliability Theory, affiliation is generally referred to as Total Positivity of

order two (TP2), after Karlin (1968). Historical notes in Barlow and Proschan
(1965) suggest why TP2 is convenient for the theory. It is generally assumed
that the failure rates of components or systems follow specific probabilistic dis-
tributions and such special distributions usually have the TP2 property, so, it
is natural to study its consequences. In contrast, in auction theory, the signals
represent information gathered by the bidders and there is no reason for assum-
ing that they have a specific distribution. Indeed, this is rarely assumed. Thus,

12See Topkis (1978), p. 310.
13The term is borrowed from Lehmann (1959). A function is strongly unimodal if log g is

concave. A proof of the affirmation can be found in Lehmann (1959), p. 509, or obtained
directly from the previous discussion.
14Even if g is strongly unimodal, so that t1, ..., tN are affiliated, it is not true in general

that t1, ..., tN , ε1, ..., εN , z are affiliated.
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the reason for the use of TP2 (or affiliation) in reliability theory does not apply
to auction theory.
Finally, we stress that the kind of results of previous subsections are insuffi-

cient to regard a hypothesis as not useful or inadequate. This judgement has to
be made in the context of the other assumptions of the theory. For instance, it
is possible that the hypothesis is not so restrictive given the setting where it is
assumed. Moreover, the judgment must take into account the most important
of all criteria: whether the resulting theory “yields sufficiently accurate predic-
tions”(Friedman (1953), p. 14). This paper addresses only the use of affiliation
in auction theory, as we emphasize in the subsequent sections. It is a task for
the specialists in other fields to analyze whether this assumption is appropriate
for their applications.

3 Equilibrium existence
Before we present our main equilibrium existence result, we call the attention
to the fact that the same proof from Milgrom and Weber (1982a) can be used
to prove equilibrium existence for Property VI. Indeed, the following property
is sufficient:
Property VI0 - The joint distribution of X and Y satisfy property VI0 if

for all x, x0 and y in the support of the distribution, x ≥ y ≥ x0 imply

FY |X (y|x0)
fY |X (y|x0) ≥

FY |X (y|y)
fY |X (y|y) ≥

FY |X (y|x)
fY |X (y|x)

and analogously, if we exchange the roles of X and Y.
It is easy to see that Property VI implies Property VI0. Unfortunately,

however, it is impossible to generalize further the existence of equilibrium for
the properties defined in subsection 2.2. Indeed, in the appendix, we give a
example of a distribution in S3 which satisfies Property V, but does not have
equilibrium. These facts are summarized in the following:

Theorem 3 Consider a symmetric first price, private value auction between 2
bidders. Suppose also that bidders are risk-neutrals and there is a joint sym-
metric p.d.f., f :

£
t, t
¤2 → R+. If f satisfies property VI0, there is a symmetric

pure strategy monotonic equilibrium. Moreover, property V is not sufficient for
equilibrium existence.

The most important message of Theorem 3 is the negative one: that it is
impossible to generalize the equilibrium existence for the other still restrictive
definitions of positive dependence. This mainly negative result leads us to con-
sider another route to prove equilibrium existence.
We are interested in the density functions in the finite dimensional sets

Sn = Tn (S) (see subsection 2.2 for the definition of Tn and S). These cases
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are interesting because: (1) they are natural approximations for all density
functions; (2) they embrace all real world auctions and applications, where
values and bids are never continuous (they are discretized at some level – units
of dollars or cents, for instance); (3) they allow for the use of the convenient
formulas and expressions of the continuous variables, as we show below; and,
more important, (4) the sets involved are finite dimensional, which has a well
defined “natural” measure on them (Lebesgue measure), as we explained in
subsection 2.2.
In some sense, we are also using a discretization to obtain finite dimensional

sets (this is done via Tn) but our method has the advantage of making the
density functions simple functions, while maintaining the underlying variables
continuous. This is what allows the use of the theory of differentiable symmetric
pure strategy equilibrium. Indeed, consider the following well known lemma:

Lemma 4 If f ∈ S has an increasing and differentiable symmetric pure strategy
equilibrium, it is given by

b (x) = x−
Z x

0

exp

·
−
Z x

u

f (s|s)
F (s|s)ds

¸
du. (3)

Observe that even a discontinuous density function f can have a differen-
tiable equilibrium. Thus, we can consider differentiable equilibria for functions
f ∈ Sn. This is the basic point of our method. The following result, which
is proven in the supplement to this paper, shows that our method leads to the
equilibrium in the limit (continuous case):

Proposition 5 Let f ∈ S be continuous. If Tn (f) has a differentiable sym-
metric pure strategy equilibrium for all n ≥ n0, then f also has, and it is the
limit of the equilibria of Tn (f) as n goes to infinity.

With these preliminaries out of the way, we can consider the cases f ∈ Sn.
Let b (·) be given by (3). In the supplement, we prove that b (·) is always
increasing. Let Π (y, b (x)) = (y − b (x))F (x|y) be the interim payoff of a player
with type y who bids as type x, when the opponent follows b (·). Let ∆ (x, y)
represent Π (y, b (x)) − Π (y, b (y)). It is easy to see that b (·) is equilibrium if
and only if ∆ (x, y) ≤ 0 for all x and y ∈ [0, 1]2. Thus, the content of the next
theorem is that it is possible to prove equilibrium existence by checking this
condition only for a finite set of points:

Theorem 6 Let f ∈ Sn. Then, f has a symmetric differentiable pure strategy
equilibrium if and only if ∆ (x, y) ≤ 0 for all (x, y) ∈ P , where P ⊂ [0, 1]2 is a
given finite set.

In the supplement to this paper, we completely characterize the set P . It
is useful to say that the theorem is not trivial, since ∆ (x, y) is not monotonic
in the squares

¡
m−1
n , mn

¤ × ¡p−1n , pn
¤
. Indeed, the main part of the proof is the

analysis of the non-monotonic function ∆ (x, y) in the sets
¡
m−1
n , mn

¤×¡p−1n , pn
¤

13



and the determination of its maxima for each of these sets. Indeed, for each
square we need to check at least one and at most 5 points. Thus, the set P has
less than 5n2 points.15

Using Theorem 6, we can easily classify whether there is equilibrium or not,
and, through numerical simulations, obtain the proportion of cases with pure
strategy equilibrium.

Numerical experiment
In addition to the tests described in subsection 2.2, for each trial f ∈ Sn, we

test whether the auction with players with such distribution has a pure strategy
equilibrium. This is shown in the Table 1 below.

For each n, 100%=distributions with equilibrium.

Distribution satisfying n = 3 n = 4 n = 5 n = 6 n = 7
Prop. IV 44.9% 21.2% 5, 5% 0, 93% 0, 0%
Prop. V 30.5% 9.7% 1, 0% 0, 026% 0, 0%
Prop. VI 21.3% 2.4% 0, 1% 0, 0% 0, 0%
Affiliation 16.8% 0.9% 0, 011% 0, 0% 0, 0%

Table 1 - Proportion of f ∈ Sn with pure strategy equilibrium
that satisfy properties IV-VII.

Table 1 shows that the available equilibrium results are too restrictive (this
includes Theorem 3 above).16

4 The Revenue Ranking of Auctions
In this section we derive an expression for the difference in revenue from second
and first price symmetric auctions. Indeed, we are interested in answering the
question of whether the result on the rank of the auctions also holds for a concept
weaker than affiliation.
We have the following:

Theorem 7 Consider the auction of an indivisible object with 2 risk neutral
bidders and with private values. Let f (x) be a symmetric probability density
function. If f satisfies Property VI0, then the second price auction gives greater
revenue than the first price auction. Specifically, the revenue difference is given
by Z 1

0

Z x

0

b
0
(y)

·
F (y|y)
f (y|y) −

F (y|x)
f (y|x)

¸
f (y|x) dy · f (x) dx

15Thus, the number of restrictions increase with n. As a consequence – not obvious, but
true in the simulations –, we see that the proportion of distributions with pure strategy
equilibrium falls when n increases.
16For n ≥ 7, all the properties represent nearly 0% of the cases where there exists pure

strategy equilibrium.
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where b (·) is the first price equilibrium bidding function, or byZ 1

0

Z x

0

·Z y

0

L (α|y) dα
¸
·
·
1− F (y|x)

f (y|x) ·
f (y|y)
F (y|y)

¸
· f (y|x) dy · f (x) dx,

where L (α|t) = exp
h
− R t

α
f(s|s)
F (s|s)ds

i
. Moreover, Property V is not sufficient for

this revenue rank.
Proof. See the appendix.

From Theorem 7, we learn that the revenue superiority of the English (second
price) auction over the first price auction seems to be strongly dependent on the
condition required for Property VI0. More than that, the revenue rank is not
valid even for such a strong positive dependence concept as Property V.
The counterexample mentioned in the proof of Theorem 3 is obtained for

f ∈ S3, which is a relatively simple set. (It is not possible to provide the
counterexample in S2 because the properties are equivalent in this set – see
Esary et. al. 1967, condition 4.8 and its discussion).
In the supplement of this paper, we develop the expression of the revenue

differences from the second price auction to the first price auction for f ∈ Sn.
We can make simulations, generating distributions as we have done in subsection
2.2 and section 3, to evaluate the revenue difference percentage, given by:

rd =
R2 −R1

R2
· 100%,

where R2 is the expected revenue of the second price auction and R1 is the
expected revenue of the first price auction. That is, we carried out the following:

Numerical experiments
In each of the previously described trials (see subsection 2.2), we tested not

only whether the first price auction has pure strategy equilibrium (see section 3),
but we also obtained the revenue differences, for the cases where the symmetric
pure strategy equilibrium exists.
We collected 10 sets of data, each with 107 trials. The average of rd for the

cases with positive correlation (and PSE) is given in Table 2 below:
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Sets n = 3 n = 4 n = 5 n = 6 n = 7
Set 1 8, 25% 11, 04% 10, 38% 8, 89% −0, 32%
Set 2 8, 24% 11, 06% 10, 42% 9, 15% 24, 29%
Set 3 8, 24% 11, 01% 10, 38% 9, 47% 14, 00%
Set 4 8, 25% 11, 03% 10, 45% 9, 29% 6, 62%
Set 5 8, 25% 11, 01% 10, 47% 8, 83% 17, 93%
Set 6 8, 24% 11, 00% 10, 48% 9, 71% 20, 53%
Set 7 8, 24% 11, 03% 10, 43% 9, 47% 21, 43%
Set 8 8, 24% 11, 04% 10, 42% 9, 36% 19, 78%
Set 9 8, 25% 11, 02% 10, 53% 9, 43% 4, 13%
Set 10 8, 23% 10, 98% 10, 65% 9, 81% 16, 83%
Average 8, 24% 11, 02% 10, 46% 9, 34% 14, 525%

Table 2 - Average of the relative revenue differences

for positive correlated distributions with PSE.

If we consider all distributions with PSE (and not only those with positive
correlation), we obtain the following:

Sets n = 3 n = 4 n = 5 n = 6 n = 7
Set 1 7, 58% 10, 20% 10, 05% 8, 66% −0, 32%
Set 2 7, 58% 10, 20% 10, 02% 8, 92% 24, 29%
Set 3 7, 58% 10, 15% 10, 04% 9, 40% 14, 00%
Set 4 7, 58% 10, 17% 10, 10% 9, 17% 6, 62%
Set 5 7, 59% 10, 18% 10, 10% 8, 81% 17, 93%
Set 6 7, 58% 10, 14% 10, 14% 9, 71% 20, 53%
Set 7 7, 58% 10, 15% 10, 11% 9, 47% 21, 43%
Set 8 7, 58% 10, 17% 10, 05% 9, 24% 19, 78%
Set 9 7, 58% 10, 17% 10, 16% 9, 19% 4, 13%
Set 10 7, 57% 10, 12% 10, 16% 9, 19% 16, 83%
Average 7, 58% 10, 17% 10, 09% 9, 17% 14, 52%

Table 3 - Average of the relative revenue differences

for all distributions with PSE.

We report below the variance of the distribution of rd for all distributions
with PSE.
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Sets n = 3 n = 4 n = 5 n = 6 n = 7
Set 1 6, 52% 10, 03% 11, 47% 11, 75% 9, 70%
Set 2 6, 52% 10, 04% 11, 40% 12, 14% 7, 64%
Set 3 6, 52% 10, 02% 11, 52% 11, 49% 8, 79%
Set 4 6, 52% 10, 02% 11, 50% 12, 07% 8, 91%
Set 5 6, 51% 10, 02% 11, 47% 11, 51% 8, 90%
Set 6 6, 52% 10, 08% 11, 39% 11, 95% 5, 83%
Set 7 6, 52% 10, 07% 11, 35% 12, 15% 6, 93%
Set 8 6, 52% 10, 07% 11, 40% 11, 76% 7, 66%
Set 9 6, 52% 10, 02% 11, 43% 11, 45% 12, 58%
Set 10 6, 51% 10, 05% 11, 43% 11, 77% 9, 81%
Average 6, 52% 10, 04% 11, 44% 11, 80% 8, 67%

Table 4 - Variance of the relative revenue differences

for all distributions with PSE.

In what follows, we will treat the numerical simulations as giving an “experi-
mental distribution” of rd. No confusion should arise between the “experimental
distribution” of rd and the distributions generated by each f ∈ Sn.
We first analyze the cases with positive correlation. The results for n = 3, 4

and 5and all distributions are shown in the following figures.
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Histogram of Rev Dif, for n=3

  Mean Rev Dif  =  +7.6 %
  Variance  =  +6.5 %    
  0.1 quantile  =  0 %
  0.3 quantile  =  2 %
  0.5 quantile  =  4 %
  0.7 quantile  =  8 %
  0.9 quantile  =  15 %
  0.96 quantile  =  17.5 %

Figure 5: histogram for rd, n = 3 - all distributions with PSE.

17



−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Revenue Dif (%)

R
el

at
iv

e 
fr

eq
ue

nc
y

Histogram of Rev Dif, for n=4

  Mean Rev Dif  =  +10.2 %
  Variance  =  +10.0 %    
  0.1 quantile  =  −3 %
  0.3 quantile  =  3 %
  0.5 quantile  =  8 %
  0.7 quantile  =  12.5 %
  0.9 quantile  =  20 %
  0.96 quantile  =  25 %

Figure 6: histogram for rd, n = 4 - all distributions with PSE.
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Histogram of Rev Dif, for n=5

  Mean Rev Dif  =  +10.1 %
  Variance  =  +11.4 %    
  0.1 quantile  =  −4 %
  0.3 quantile  =  2 %
  0.5 quantile  =  8 %
  0.7 quantile  =  12.5 %
  0.9 quantile  =  20 %
  0.96 quantile  =  25 %

Figure 7: histogram for rd, n = 5 - all distributions with PSE.

5 Related literature and conclusion
A few papers pointed out restrictions or limitations to the implications of af-
filiation. Perry and Reny (1999) presented an example of a multi-unit auction
where the linkage principle fails and the revenue ranking is reversed, even under
affiliation. Thus, their criticism seems to be restricted to the generalization of
the consequences of affiliation to multi-unit auctions. In contrast, we considered
single-unit auctions and relaxed the requirement of affiliation of the distribution.
Klemperer (2003) argues that, in real auctions, affiliation is not as important

as asymmetry and collusion. He illustrates his arguments with examples of the
3G auctions conducted in Europe in 2000-2001.
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Nevertheless, much more was written in accordance with the conclusions of
affiliation. McMillan (1994, p.152) says that the auction theorists working as
consultants to the FCC in spectrum auctions, advocated the use of an open
auction using the linkage principle as an argument: “Theory says, then, that
the government can increase its revenue by publicizing any available information
that affects the licence’s assessed value”. The disadvantages of the open format
in the presence of risk aversion and collusion were judged “to be outweighed by
the bidders’ ability to learn from other bids in the auction” (p. 152). Milgrom
(1989, p. 13) emphasizes affiliation as the explanation of the predominance of
English auction over the first price auction.
This paper presents evidence that affiliation is a restrictive condition. After

developing an approach to test the existence of symmetric pure strategy equi-
librium (PSE) for simple density functions, we are able to verify that many
cases with PSE do not satisfy affiliation.17 Also, the superiority of the English
auction is not maintained even for distributions satisfying strong requirements
of positive dependence.
Nevertheless, we show that the original insights of Milgrom and Weber

(1982a) are surprisingly true, in a weak sense, for a much bigger set of cases.
Indeed, we find evidence that positive dependence helps to ensure equilibrium
existence and the revenue superiority of the English auction is true, on average,
for our set of simple density functions.
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