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A characterization of a new value and an existing value for coop-
erative games with levels structure of cooperation

Abstract: We present parallel characterizations of two different values in the
framework of restricted cooperation games. The restrictions are introduced
as a finite sequence of partitions defined on the player set, each of them being
coarser than the previous one, hence forming a structure of different levels
of a priori unions. On the one hand, we consider a value first introduced
by [18], which extends the Shapley value to games with different levels of a
priori unions. On the other hand, we introduce another solution for the same
type of games, which extends the Banzhaf value in the same manner. We
characterize these two values in terms of easily comparable sets of properties
and we illustrate them by means of an example.

Keywords: Shapley value, Banzhaf value, levels structure of cooperation
JEL Classification: C71

Resum: En aquest treball presentem dues caracteritzacions de dos valors
diferents en el marc dels jocs coalicionals amb cooperacié restringida. Les re-
striccions sén introduides com una seqiiéncia finita de particions del conjunt
de jugadors, de manera que cada una d’elles és més grollera que ’anterior,
formant aixi una estructura amb diferents nivells d’unions a priori. Per una
banda, considerem el valor introduit per [18], que extén el valor de Shapley
a jocs amb diferents nivells d’unions a priori. D’altra banda, introduim una
altra solucid, que extén el valor de Banzhaf de manera similar. Caracter-
izem els dos valors anteriors en termes de conjunts de propietats facilment
comparables logicament i els ilustrem a partir d’un exemple.



1 Introduction

Transferable utility cooperative games (just games from now on) are used
to describe situations in which agents cooperate to obtain some gains, e.g.
building a road to connect a number of towns or reaching an agreement
to pass a bill. These gains are assumed to be divisible and transferable
among players without any loss. The problem of allocating the gains that
the cooperation generates among the players is one of the main topics tackled
in the literature. Therefore, assessing the strategic position of each player
in a given game is crucial in order to find a share-out that respects to some
extent the power of each player. The Shapley value [15] is the best known
concept in this respect, together with the Banzhaf value (6, 12].

In the original model where both the Shapley value and the Banzhaf
value are typically used there is no restriction to the cooperation, and the
game is defined by the worth that any coalition can obtain by its own.
However, there are many real situations in which there is a priori information
about the behavior of the players or there are environmental restrictions and
only partial cooperation occurs. Different approaches have been used to
address this type of situations and different models of games with restricted
cooperation have been studied. In particular, players may form coalitions
and these coalitions may bargain for the division of the worth of the grand
coalition. [5] suppose that the restrictions to the cooperation are given by a
partition of the set of players. The model with both a game and a partition of
the set of players is called a game with a priori unions. For these games, [13]
proposes and characterizes the Owen value, an extension of the Shapley value
[15] to allocate the gains generated by the grand coalition. Following a similar
procedure, in a subsequent paper |14]| defines an extension of the Banzhaf
value [12] known as the Banzhaf-Owen value. The first characterization of
this solution concept is presented in [4]. [2] give parallel characterizations of
the two aforementioned values which eases the comparison between them.

[18] takes one step beyond by introducing games with levels structure
of cooperation, which extends the model of games with a priori unions. He
proposes and characterizes an extension of the Owen value for this kind of
situations, which we will call the Shapley levels value. As before, players
are assumed to be organized in unions as pressure groups for the division of
the worth available (first level of cooperation). Nevertheless, this time the
formed unions may again organize themselves in larger groups (second level of
cooperation) while they maintain their internal obligations of the first level,
and so on and so forth. Hence, this time the restrictions to the cooperation
are described by a sequence of partitions of the player set, each of them



being coarser than the previous ones. [7] give an alternative characterization
of the Shapley levels value using a balanced contributions property and [17]
implement the Shapley levels value in a subgame perfect equilibrium of a
particular bidding mechanism.

In the present paper, we first propose an extension of the Banzhaf-
Owen value for games with levels structure of cooperation, which we call
the Banzhaf levels value. Next, we provide two parallel characterizations of
both the Shapley levels value and the Banzhaf levels value which reveals the
differences between both solution concepts. On the one hand, the Shapley
levels value is characterized using the level game property and the level bal-
anced contributions property. The level game property states that in each
level, the sum of the payoffs of the players of any union equals the payoff
of the same union when considering it as a player in the corresponding level
game. The level balanced contributions is a reciprocity property that as-
serts that the change on the payoff of a player caused by the isolation of
another player of her same union of the first level remains invariant if we
permute both players. A similar property is used in [7], but in this case the
player set is assumed to change. On the other hand, the characterization
of the Banzhaf levels value is based on the singleton level game property
and the level neutrality under individual desertion property. The singleton
level game property is the restriction of the level game property to singleton
unions of a given level, whereas the level neutrality under individual deser-
tion property states that the payoff of a player is not affected by the isolation
of another player in her same union of the first level. Hence, level neutral-
ity under individual desertion implies level balanced contributions and level
game property implies singleton level game property and thus the main prop-
erties used to characterize each of the two values are logically related, which
eases the comparison between the two values.

There is a variety of reasons to seek for parallel axiomatizations of two
different values using a minimal set of logically related properties. In the
first place, from a mathematically point of view, characterizing a value using
a few independent properties may be more appealing than just giving an
explicit formula or procedure to calculate it. In the second place, deciding
on whether to use a value or not can be made more easily using a set of
properties instead of a formula. Lastly, depending on the framework, one
set of properties or another shall fit better, and hence one value or the other
shall be used.

The rest of the paper is organized as follows. Section 2 is mainly devoted
to present the model of games with levels structure of cooperation, and
in particular the Shapley levels value introduced by [18]. In Section 3 we



define the Banzhaf levels value. In Section 4 we introduce and explain some
properties that a value for games with levels structure of cooperation might
satisfy, and we provide a characterization for each of the two aforementioned
values. Section 5 concludes with an example.

2 Preliminaries

An n-person cooperative game with transferable utility (a game) is a pair
(N,v), where N = {1,...,n} is the finite set of players and v, the character-
istic function, is a real valued function on 2V = {S|S C N} with v(f) = 0.
We denote by GV the set of games with player set N. For each S C N and
i € N we will write S U4 instead S U {i} and S\ ¢ instead S\ {i}.

Given (N,v) € GV, a player i € N is a dummy if v(S U i) = v(S) + v(i)
for all S C N\ 4, that is, if all her marginal contributions are equal to v(i).
A player i € N is called a null player if she is a dummy and v(i) = 0. Two
players i,j € N are symmetric if v(SU7) = v(SUj) for all S C N\ {i,j},
that is, if their marginal contributions to each coalition coincide.

A walue on G is a map f that assigns to every game (N,v) € GV a vec-
tor f(N,v) € R™. The following definitions provide the explicit expressions
of two well-known values in the literature.

Definition 2.1. [15] Given a game (N,v), the Shapley value, ¢, is a vector
in R™ where each coordinate is defined as follows:

sV = Y Hrmsm

' [v(SUi) —v(S)], for every i € N,
SCN\i G

where s = |S| and n = |N|.!

Definition 2.2. [6, 12| Given a game (N,v), the Banzhaf value, v, is a
vector in R™ where each coordinate is defined as follows:

P;(N,v) = Z 2n—1_1[v(SUz')—v(S)],for every i € N.

SCN\i

We denote by P (V) the set of all partitions of a finite set of players N,
and for each P € P(N) and each S C N, PFg € P(S) is the partition of S
induced by P, i.e., Bg ={UNS :U € P}. A levels structure of cooperation
is a pair (N, B), where N is the set of players and B = {By,..., By} is a

'We use the | - | operator to denote the cardinality of a finite set.



sequence of partitions of N such that By = {{i} : i« € N} and, for each
r € {0,...,k — 1}, B,4+1 is coarser than B,. That is to say, for each r €
{1,...,k} and each S € B,, there is B C B,_1 such that S = UyecpU. Each
S € B, is called a union and B, is called the r-th level of B. We denote
by L(N) the set of all levels structures of cooperation over the set N. The
following example illustrates the above definitions.

Ezample 2.3. Let N = {1,2,3,4,5,6} and B = {By, By, B2} be a levels
structure of cooperation over N with two levels, where

By = {{172’3}’{4’576}}7
By = {{172}7{3}’{4}7{576}}7 and
By = {{1},{2}, {3}, {4}, {5}, {6}}.

A cooperative game with levels structure of cooperation is a triple (N, v, B),
where (N,v) € GV and (N, B) € L(N). We denote by GL" the set of all co-
operative games with levels structure of cooperation. Given (N, B) € L(N)
with B = {By,..., B} and i € N, (N,B~%) € L(N) is the levels structure
of cooperation obtained from (N, B) by isolating player ¢ from the union
she belongs to at each level, i.e., B~' = {B(]_i,...,B,;i}, where, for all
ref0,....,k}, Byt ={U€B,:i¢U}yU{S\i,{i}} given that i € S € B,.
Note that By* = By. For each r € {1,...,k} and each U € B,, [U] de-
notes U considered as a player at level r, whereas [B,| denotes the set of
players at level r, i.e, [B,] = {{U] : U € B,} and ([B,], B;) € GLIPrl where
B, = {B,,...,By}. Given (N,v,B) € GLY with B = {B,,..., By}, for
each r € {0,...,k} we define the r-th level game ([B,],v", B,) € GLIP] as
the game induced from (NV,v) by considering the coalitions of B, as players,
e, v"([U]) = v(U) for each r € {0,...,k} and each U € B,.

In the framework of games with levels structure of cooperation we assume
that players are initially organized into the coalition structure By, as pressure
groups for the division of v(/N). Then, each union of the last level is divided
again according to the coalition structure By_; as pressure group for the
division of the amount that the unions of the last level have obtained, and
so on and so forth until the last level, By, is reached.

A walue on GLY is a map f that assigns to every game with levels
structure of cooperation (N,v,B) € GLY a vector f(N,v,B) € R*. We
denote by II(V) the set of permutations of N, and given 7w € II(N), 7B =
{mBy,...,mBy}, where 7By, = {wSi,...,nS,} given that By = {S1,...,5p},
and 7v(S) = v(7~1S). Consider the following properties that a value on
GLY may satisfy:



A value f on GLV satisfies efficiency if for all (N,v, B) € GLY,

> fi(N,v, B) = v(N).

1EN

A value f on GLV satisfies additivity if for all (N,v, B),(N,w,B) €
GLV,

f(N7U+w7§) :f(N7,U7§)+f(N7w7§)'

A value f on GLV satisfies individual symmetry if for all (N,v,B) €
GLY and each 7 € TI(N),

mf(N,v,B) = f(7N, v, nB).

A value f on GLY satisfies coalitional symmetry if for all (N,v, B) €
GLY and each level r € {1,--- ,k}, if [S],[U] € [B,] are symmetric
players in the game ([B,],v") and S,U are subsets of the same union
in B; for each [ > r, then

> filN,0,B) =) fi(N,v,B).

€S €U

A value f on GLY satisfies the null player property if for all (N, v, B) €
GLY such that i € N is a null player for the game (N,v),

fi(N,U,E) = O.

The above five properties are natural extensions of the properties used
in [13] within the framework of GL.

Next, let the sets Q(B) = Q1(B) C Q3(B) C --- € Q(B) C II(N)
defined as follows. First of all,

Qp(B)={0c€ll(N):VS € By, Vi,je Se B,and l € N,
if o(i) <o(l) < o(j) thenl € S}.
Then, for r € {k —1,...,1} we recursively define
0 (B)={c€1(B):Vi,je Se B, and [ € N,
if 0(i) < o(l) <o(j) thenl € S}.

Hence, €2,(B) denotes the permutations of Q,,1(B) such that the ele-
ments of each union of B, are consecutive. Let us see an example to illustrate
the above definitions.



Ezxample 2.4. For the levels structure of cooperation of Example 2.3, |Q3(B)| =
72, |Q1(B)| = 36, (1,2,4,3,5,6) ¢ Qa(B), (1,3,2,4,5,6) € Qo(B) \ % (B)
and (3,2,1,5,6,4) € Q1(B).

Next, we recall the definition of the already known solution concept for
games with levels structure of cooperation.

Definition 2.5. Given a game with levels structure of cooperation (N, v, B) €
GLY, the Shapley levels value [18], ®, is a vector in R™ where each coordinate
is defined as follows:

q)i(N,'U,E) =

‘Q(B)’ Z (U(PiJUi)_U(P)iU))v

T oeQ(B)
where P? = {j € N : 0(j) < o(i)} is the set of predecessors of i at o.
[18] characterizes the Shapley levels value using the above five properties.

Theorem 2.6. (18] The Shapley levels value is the unique value on GLN
satisfying efficiency, additivity, indiwidual symmetry, coalitional symmetry,
and the null player property.

3 A new value on GLY

In this section we introduce a new value on GLY that coincides with the
Banzhaf-Owen value [14| when the levels structure of cooperation has just
one level, i.e., when B = {By, B1}. The idea for defining this new value is
to induce, for each player, a partition of the set of players that respects the
restrictions of the levels structure of cooperation. In other words, instead of
looking at which permutations are feasible for the given levels structure, as
in [18], for each player we look at which coalitions are feasible for the given
levels structure of cooperation.

Given a levels structure of cooperation (N, B) € L(N), for each player
i € Nyleti € Uy = {i} C Uy C --- C U such that U, € B, for all
r € {0,...,k}. Then, the partition induced by B on i is defined as follows,

k
P(i,B) = U(Br)|U,~+1\Um
r=0
where Ug11 = N by convenience. Then, P(i,B) € P(N \ i). We denote
|P(i, B)| by m;, and the unions of the partition induced by B, by P(i, B) =
{T1,..., T} Finally the set of indices of the partition induced by B is
denoted by M; = {1,...,m;} which can be seen as the set of representatives
of the unions of P(i, B).



Ezample 3.1. For the levels structure of cooperation of Example 2.3 we have,
for instance, P(1, B) = {{2}, {3}, {4,5,6}} and P(3,B) = {{1,2},{4,5,6}}.

Using this partition induced by the levels structure for each player, we
define a new value on GL, namely the Banzhaf levels value, which is built
based on the Banzhaf-Owen value for games with a priori unions.

Definition 3.2. Given a cooperative game with levels structure of coop-
eration (N,v,B) € GLY, the Banzhaf levels value, ¥, is a value on GLY
defined, for every i € N, as follows:

W(N,0.B) = Y = [v(Th Ud) — o(Th)]
RCM;

where T = UpcrT;.

One can easily check that the coalitions considered in each marginal
contribution, Tg, are the coalitions for which there exists a o € Q(B) such
that Tr = P7. Therefore, exploiting the link between coalitions of elements
of P(i,B), for each ¢ € N, and the permutations of (B) we propose an
alternative expression of the Shapley levels value, ®.

Remark 3.3. Given a cooperative game with levels structure of cooperation
(N,v,B) € GL,

®;(N, v, B) Z‘Q [v(Tr Vi) — v(Tr)]
RCM;

where ¢, = {0 € Q(B) : Pf = Tr}|.
Note that the expressions of ® and ¥ above lead to the Owen and

Banzhaf-Owen values respectively for levels structure of cooperation with
a single and trivial level.

4 Two parallel axiomatic characterizations

In this section we characterize both ® and ¥ based on two different groups
of properties. The first group applies only to games with the trivial levels
structure B = {Bo} = {{i} : i € N} and points out which value on G does
the value on GLY generalize, either the Shapley value or the Banzhaf value.
The second group of properties describes the performance of the values on
GL" with respect to the levels structure.

We consider a number of properties that a value on GLY, f, might be
asked to satisfy. We start with a first set of properties.



EFF A value f on GLY satisfies efficiency if for every (N,v) € GV,

> fi(N,v,{Bo}) = v(N).

1€EN

2-EFF A value f on GLY satisfies 2-efficiency if for every (N,v) € GV and
any i,j € N,

f,'(N,U, {BO}) + fj(N7Uv {BO}) = fp(Nij7Uij7 {BO}ij)v

where (N v {Bg}¥) is the game such that player i and j have
merged into the new player p, i.e., N¥ = (N \ {i,j}) Up, {Bo}¥ =
{{i} :i € NY}, and

ijoay _ | v(S) ifp¢ s c N

v (S) {v((S\p)Uin) ifpes for every S C NY.

pPP A value f on GLY satisfies the dummy player property if for every
(N,v) € GV, if i € N is a dummy player on (N,v),

fi(Nv v, {BO}) = U(Z)

SsYM A value f on GLY satisfies symmetry if for every (N,v) € GV, if
i,7 € N are symmetric players on (N,v),

fi(N7v7 {BO}) = fj(N7v7 {BO})

EMC A value f on GLY satisfies equal marginal contributions if for every
(N,v), (N,w) € GV and every i € N such that v(S Ui) — v(S) =
w(SUi) —w(S) forall S C N\ 4,

fi(N7v7 {BO}) = fi(N7w7 {BO})

The above properties are standard in the literature for games without re-
stricted cooperation. The EFF property states that the whole worth available
is shared among the players. The 2-EFF property is a collusion neutrality
property which states that the payoff of two players does not change if they
decide to artificially merge in a new player. Properties of this kind are used
in many characterizations of the Banzhaf value, see for instance [10], [8] or
[11]. The sym and DPP properties are clear by themselves. The property
of EMC states that if a player’s marginal contributions to any coalition in



two games coincide, then her payoffs also coincide. Stronger versions of EMC
have been used in characterizations of both Shapley and Banzhaf values and
are called monotonicity [19]. Even so some of the stated properties are also
satisfied by the two values considered in this paper for more general levels
structures of cooperation than the trivial one, in order to obtain our results
there is no need to consider stronger properties. Let us now consider another
set of properties.

LGP A value f on GLY satisfies level game property if for every (N,v, B) €
GLY with B = {By,...,B;} and U € B, for some r € {1,--- ,k},

> fi(N,v, B) = fur([Bi],v", By).

eU

SLGP A value f on GLY satisfies the singleton level game property if for
every (N,v,B) € GLN with B = {By,..., B} and U € B, for some
re€{1,---,k}, such that U = {i} for some i € N,

fi(N7U7§) = f[U]([BT])UT)&)'

LBC A value f on GLY satisfies level balanced contributions if for every
(N,v,B) € GL" with B={By,...,B,}and i,j € U € By,

fi(N,v, B) = fi(N,v, B) = f;(N,v, B) = f;(N,v, B”").

LNID A value f on GLY satisfies level neutrality under individual desertion
if for every (N, v, B) € GL" with B = {By,..., B} and i,j € U € By,

fi(va)E) = fZ(va)B__])

The LGP is based on a property used in [13]| to characterize the Owen
value. It states that the total payoff obtained by the members of a union in
a given level equals the payoff obtained by the union when considering it as
a player in the corresponding level game. The SLGP is a weaker version of
LGP, which states that any union which is composed of a single player gets
the same payoff in the original game and in the corresponding level game
when considering the union as a player. The idea behind SLGP was also used
in [3| and more recently in [1].

The LBC property is a reciprocity property that states that the isolation
of a player from the levels structure affects the players in her same union

10



of the first level in the same amount as if it happens the other way around.
This property has been used in the context of games with a priori unions,
e.g. [16] and [3]. The LNID property is a stronger version of LBC and states
that the isolation of a player from the levels structure does not affect the
payoffs of the players which are in her same union in all the levels. LNID
was introduced in [3] and also used in [1] to characterize extensions of the
Banzhaf value to different classes of games.

Next we state and prove the two characterization results, one for the
Shapley levels value (Theorem 4.1) and one for the Banzhaf levels value
(Theorem 4.2). We start characterizing the Shapley levels value.

Theorem 4.1. The Shapley levels value, ®, is the unique value on GLYN
satisfying EFF, SYM, EMC, LGP, and LBC.

Proof. First we show that ® satisfies the properties and then we prove
that it is the only value on GL" satisfying them.

(1) Ezistence. Note that, by definition, for every (N,v) € GV, ®(N,v,{By}) =
(N, v). Hence, from [19] we have that ® satisfies EFF, SYM, and EMC.

In the case of LGP, let (N,v,B) € GL" with B = {By,..., B}, and
consider some U C N such that U € B, for some r € {1,---,k}. We
prove that LGP holds by induction over r. If r = 1, from the definition of the
induced partition, P(i, B)\{{j} : 7 € U \ i} is the same partition for each i €
U. Hence, take i € U and let us define P(U, B) = P(i,B)\{{j} : j € U \ i},
my = |P(U,B)|, and My = {1,...,my}. Then,

)

S EN0B) = > Y Y s (TR US U ~0(Tr U S)).

€U 1€U RCMy SCU\:

where ¢, ¢ = [{o € Q(B) : P7 = Tr U S}| for each i € U, R C My, and
S C U \i. Since U € B; and from the way Q(B) is constructed, for a given

U
R C My and S C U \ i, there is an integer C% such that —&— = ('U‘gl) for

7
CR+sS

11



all € U and all S C U \ 4, and thus eq. (1) reduces to
Zq>i(N7U7§)

icU

- |Z >y IU\ — - (v(TRUS Ui) —v(Tr U S))

ieU RCMy SCU\Z S| )

cR IU\ 1 (v(TRrUSUi) —v(TrUS))

ieU SCU\Z \5|

S U\S
>y 15 _[U\S|

RCMU @CSCU (\gf—i) (‘ULIS’\ 1)

% [(0(TrUU) —v(TR))]

_ C[U} (ot _ !

Js\l Ig\Sl\ _
(sio0) ()
and the fifth equality is explained as follows. From the definition of the in-
duced partition it is straightforward to check that P(U,B) = P([U], By1).
Moreover, let CR = |{o € Q(By) : Poy = = Tg}|. Then, it can be easily

—‘%((%)1', which completes the first step of the induc-

where the fourth equality holds since =0foreacho C SCU

(U]
checked that &~ = |U] -
‘R
tion.

Now suppose that for any S € B,_1, Y
and let U € B,.. Then

> ®(N,v,B)= > D ®(N,v,B)= > Pg(Bra],v" ", Br1)

ieU SeB,_1 ieS SeB,_1
SCU SCU

€S

by the induction hypothesis. Observe that ([B,_1],v" !, B,_1) is a levels
structure of cooperation of k—r+1 levels. Hence, we can follow the argument
from eq. (1) with [B,_1] instead N and [S] instead ¢ to obtain

> BByl v Bry) = Sy ([Be, v, By,
SEBT*I
SCU

12

v(TrUS) +|Uw(TrUU) —

®;(N,v,B) = ®(g/([Br-1],v" 1, Br_1),

Ulv(Tr)



which completes the induction.

In the case of LBC, let (N,v,B) € GLY with B = {By,..., By} and
i,j € U € By. Then, it is easy to check that P(i,B) Ui = P(j,B) U j.
Hence, let us define P(ij, B) = P(i,B) \ j = P(j,B) \ i, m;; = |P(ij, B)|,
and M;; ={1,...,m;;}. Then,

q)i(N7U7§) - q)i(N7U7B__j)

_ RQZM ‘;%5)’ (0(Ti U U1) —o(T U ) + gl (0T U) —v(Tr)
Rc%j ’Qii)’ (0(TrUjUi) —o(Tr Uj))+ \QEZ)\ (v(Tr U4) —v(TR))
> <’;%E')‘ . !Qé;)!) (o(TR U U ) — v(Tk U )
! (\Q@)y - \mﬁ_)\) Wil D) =)

R+j
|{o € Q(B~J) : P7 = Tr U j}|. Note that by definition, ¢ = cp, cﬁéﬂ- =
Chis ) = and CZR:-]] = ¢, We additionally claim (see a proof in
the Appendix) that

where for each R C M;;, C%—j = |{o € QB) : P? = Tg}| and P

(2) cR+cR+j Cp +cR+j

Q@) Bd)

Then ®;(N,v, B) — ®;(N,v, B~7) depends on i in the same way it depends
on j, which concludes the proof.

(2) Uniqueness. In [19] it is proved that any value on GL" that satisfies
EFF, SYM, and EMC is unique for games with the trivial levels structure of
cooperation. In other words, let f! and f2 be two values on GL satisfying
EFF, SYM, and EMC, then

fl(N7v7{B0}) = f2(N7U7 {BO}) = ¢(N,U) for any (va) e GV

Hence, let f! and f2 be two values on GLY satisfying LGP and LBC
and such that fY(N,v,{Bg}) = f2(N,v,{Bp}) for all (N,v) € GV. We
prove that for any (N,v, B) € GL", with B = {Bq, ..., By}, f*(N,v,B) =
f?(N,v, B) by induction on the number k of levels of B. The case k =
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1 is proved in [16]. Now suppose that f!(N,v,B) = f2(N,v,B) for any
(N,v, B) € GL" such that |B| < k and let (N,v, B) € GLY with |B| = k+1
and i € N. We prove that f}(N,v, B) = f}(N,v, B) by a second induction
onu = |U|, wherei € U € By € B. If u =1, ie. U= {i}, since f! and f>
satisfy LGP, we have

f?(ACUnB)::f&qqfﬁhvrngl)::f%ﬁLBILUTnEL)::fguvﬂ5£97

where the second equality holds by the first induction hypothesis. Hence,
suppose that f}(N,v, B) = f2(N,v, B) for any (N,v, B) € GL", with |B| =
k+1and any i € U € By that satisfies |[U| < u. Now suppose that |U| = u+1
and let j € U \ 4. Since f! and f2 satisfy LBC, we have

(3) f?(AﬂU,iﬂ‘—f?(Aalhli)=:f?(AﬂU,ifj)‘—f?(Aﬂv,ifj)
szfuvavnﬁ:z)—‘ffuvavnﬁ:i)Z:f?(Aﬂlblz)—‘foVﬂ%lzﬁ

where the second equality follows from the second induction hypothesis, since

i € U\{j} € Bi—j and j € U\ {i} € By with [U\ {j}| = |U\{i}| =,

where |B77| = |B™!| = k+ 1. Now, adding up eq. (3) for each j € U \ 7, we

have

(4)

(t+ 1) fH(N,v,B) = > f}(N,0,B) = (t+ 1)f7(N,v,B) = > f}(N,v,B).
Jjeu Jjeu

Finally, by LGP we have that

> FH (N0, B) = fiy([Bi],v", By) = [ ([Bi],0", B1) = Y f7(N, 0, B),

Jjeu jeu

where the second equality holds by the first induction hypothesis since | B;| =
k. Combining eq. (4) and (5) we obtain f}(N,v, B) = f?(N,v, B), which
completes the proof. O

In the next theorem we characterize the Banzhaf levels value with a
set of six properties which are easily comparable to the properties used to
characterize the Shapley levels value.

Theorem 4.2. The Banzhaf levels value, ¥, is the unique value on GLY
satisfying 2-EFF, DPP, SYM, EMC, SLGP, and LNID.

Proof. As before, first we show that ¥ satisfies the properties and then
we prove that it is the only value satisfying them.

14



(1) Ezistence. Note that, by definition for every (N,v) € GV, W(N, v, {Bg}) =

¥(N,v). Hence, from [11| we have that U satisfies 2-EFF, DPP, SYM, and
EMC.

In the case of SLGP, the proof follows immediately taking into account the

fact that for any (N,v, B) € GLY with B = {By,..., By} and U = {i} € B,
for some r € {1,--- ,k}, P(i, B) = P([U], By).

In the case of LNID, we only need to check that for any (N,v,B) € GLN

with B = {Bu,..., By}, and any i,j € U € By, P(i, B) = P(i, BJ), which

follows from the definition of the partition induced by B

(2) Uniqueness. From the characterization in [11], we have that any value

on GLY that satisfies 2-EFF, DPP, SYM, and EMC is unique for games with
the trivial levels structure of cooperation. In other words, let f! and f2? be
two values on GLY satisfying 2-EFF, DPP, SYM, and EMC, then

fl(N7v7{B0}) = f2(N,U, {BO}) = ¢(N=’U) for any (va) e GV

Now let f! and f2 be two values on GLY satisfying sSLGP and LNID such

that f1(N,v,{Bo}) = f2(N,v,{Bo}) for all (N,v) € GV. We prove that for
any (N,v,B) € GLY, with B = {By,..., By}, f'(N,v,B) = f*(N,v, B) by
induction on the number k of levels of B. The case k = 1 is proved in [2].
Hence suppose that f1(N,v, B) = f2(N,v, B) for any (N,v, B) € GLY such
that |B| < k and let (N,v, B) € GL" such that |[B| =k+1. Leti € U € By
be an arbitrary player that belongs to an arbitrary union of the first level.
We prove that f!(N,v,B) = f2(N,v, B) by a second induction on u = |U].
Ifu=1,ie U ={i}, since f! and f? satisfy SLGP, we have

fH (N0, B) = fn([Bi),0", B1) = fign([Bi),0", By) = f#(N,v, B),

where the second equality holds by the first induction hypothesis since By €
L(N) is a levels structure with k levels. Now suppose that f}(N,v,B) =
f?(N,v, B) for any (N,v,B) such that [B| = k+ 1 and any i € U € By
where |U| < u. Finally, suppose that U] = v+ 1 and let j € U \ i. Since f!
and f? satisfy LNID we have

fi(N,v,B) = f(N,v,B~) = f}(N,v,B~) = f}(N,v,B),

where the second equality holds by the second induction hypothesis since
i€U\je B, B;? has k +1 levels of cooperation and |U \ j| = u, which
concludes the proof. O

Finally, we check that the proposed properties are independent axioms,

and hence we cannot drop any of them from the characterizations. We start
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examining the properties used for the characterization of the Shapley levels
value, .

Remark 4.3. Independence of properties for Theorem 4.1

(i) The value on GLY, g, given by g(N,v, B) = 0 for all (N, v, B) € GLY
satisfies SYM, EMC, LGP, LBC but not EFF.

(ii) Let g be the value on GLY defined as follows:

o If N ={i,j} and B = {{i},{j}},

gi(N,v,B) = E(U(N)—v(j))+iv(i) and
G(N.0.B) = 7 (0(N) = (i) + Jo0)).

e Otherwise, g(N,v, B) = ®(N,v, B).

Thus, g satisfies EFF, EMC, LGP, LBC, but not SYM.

(iii) Consider the value on GLY, g, given by

®(N,v,B) if (N,v,B) ¢ C

g(N,v,B) = { ainwlive i (N,u,B) €C

where

c_ (N,v,B) € GLY : v =b;y; + (a; — b;)é N,
~ | for some i =i(N,v) € N and 0 <b; < a;

such that for every S C N,

1 ifiesS 1 ifS=N
7i(S) = { 0 otherwise and  dn(5) = { 0 otherwise ’

and 1 € R™ is such that 13() = 1if k =1 and 1;(l) =0 if £ #[. Then
g satisfies EFF, SYM, LGP, LBC, but not EMC.

(iv) The value on GLY | g, given by g(N,v, B) = ¢(N,v) for all (N, v, B) €
GLV satisfies EFF, SYM, EMC, LBC, but not LBC.

(v) Let g be the value on GLY defined as follows:

o If N ={i,j} and B = {{{i},{j}}, N}, g(N,v,B) = (22 2y

e Otherwise, g(N,v,B) = ®(N,v, B).

Thus, g satisfies EFF, SYM, EMC, LGP but not LBC.

Lastly, we examine the properties used for the characterization of the
Banzhaf levels W.
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Remark 4.4. Independence of axioms for Theorem 4.2
(i) The value on GLY, g, given by

gi(N,0,B) = S L B2 DYy gy — (),

m;!

satisfies DPP, SYM, EMC, SLGP, LNID but not 2-EFF.

(ii) The value on GLY, g, given by g(N, v, B) = 0 for all (N, v, B) € GLY
satisfies 2-EFF, SYM, EMC, SLGP, LNID, but not DPP.

(iii) Let g be the value on GL" defined as follows:

o If N ={i,j} and B = {{i}, {j}},

9i(N,v,B) = %(U(N)—v(j))—i-%v(i) and
G(N.0.B) = 7 (o(N) (i) + 2o(j)

e Otherwise, g(N,v,B) = ¥(N,v, B).

Thus, g satisfies 2-EFF, DPP, EMC, SLGP, LNID, but not SYM.

(iv) The value on GLY g, given by

[ ¥(N,v,B) if (N,v,B)¢C
g(N’”’E)_{ 0 if (N,v,B) €C

where C = {(N,v,B) € GLY : v = agdg, for some S C N}, satisfies 2-EFF,
DPP, SYM, SLGP, LNID, but not EMC.

(v) The value on GLY, g, given by g(N, v, B) = (N, v) for all (N, v, B) €
GLV satisfies 2-EFF, DPP, SYM, EMC, LNID, but not SLGP.

(vi) The value on GLY, g, given by

_ 1 Tr N Ug|'(|Ux \ Tr| — 1)! ,
gi(N,v, B) = R%; TR oA (0(Tr Ud) — v(TR)),

satisfies 2-EFF, DPP, SYM, EMC, SLGP, but not LNID, where recall that Uy
is the union of the k-th level to which player ¢ belongs.

It should be pointed out that, from the proofs above it follows that in
both Theorems, the group of properties that apply ounly for the trivial levels
structure can be replaced by any other group of properties that characterize
either the Shapley or the Banzhaf value.
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5 Conclusions and an example

In the present paper we have proposed a new value for games with levels
structure of cooperation and we have provided parallel characterizations of
this new value, the Banzhaf levels value, and the Shapley levels value. Since
the main properties used in both characterizations are logically compara-
ble, our paper serves in the purpose of deciding which value to use in any
framework of restricted cooperation given by a sequence of union levels.

We conclude the paper by examining an example to help us illustrate
the use of the two different values in a decision problem. Before doing so,
we make a comment on the validity of the application of the Banzhaf lev-
els value. [9] claim that, in the context of voting games with a single level
structure of cooperation and the Banzhaf levels value, only comparisons be-
tween players that belong to the same union of the first level are meaningful.
The reason why they state so is that the number that ® assigns to player
1 can be interpreted as the mathematical expectation of the decisiveness of
player ¢ when considering the probability distribution defined on the set of
permutations of players conditional to the partition induced by the levels
structure on player ¢. Since players that belong to different unions give rise
to different induced partitions, their corresponding probability distributions
are different and hence [9] conclude that they cannot be compared. Never-
theless, when the levels structure of cooperation is pin down and the players
cannot behave strategically and change their position in the structure, as it
is the case in the example below, we can do compare the values of players
belonging to different unions, even in the case of simple games. We argue
that even so the probability distribution of each agent is different, all of them
are obtained from the same fixed structure following the same rules, which
can be seen as public knowledge. Therefore, we may interpret the Banzhaf
levels value as the subjective expectation of any player about the outcome of
the game, provided the following condition holds: all agents believe that, for
any arbitrary given agent, all possible coalitions that may form before she
takes a decision -which may be different depending on the player considered-
are equiprobable.

Example 5.1. Consider a grid computing network to which some departments
of several universities contribute with resources, e.g., memory, databases or
processing capacity. The whole network resources are used for purposes
of calculations demanding massive levels of resources such as climate pre-
dictions. The departments involved are willing to use the grid computing
network for their investigations and the problem arises when more than one
department simultaneously request access to the common resources, which
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can only be accessed by one department at a time.

Moreover, consider a numerical example where the amount of resources
that each department contributes with can be measured, e.g., either TB or
Ghz. The total amount of resources add up to 41 units that are provided by
10 departments namely A, B, C, D, E, F, G, H, [ and J, which respectively
contribute 3, 1, 2, 10, 3, 5, 2, 3, 2, 10 units.

In order to measure the contribution of each department to the network
we assume that a grid computing network needs a minimum of 21 units to
operate. Hence, any group of departments whose resources add up to 21
units or more could form a smaller network. Even though all departments
prefer to be part of a network as big as possible, we consider this possibility
in order to measure the bargaining strength of each department.

The situation described so far can be modeled by a simple game (N, v),
where N is the set of departments and the characteristic function v(S) equals
1 if the aggregate amount of resources of coalition S is at least equal to 21 and
0 otherwise. Therefore, the priority rule needed to decide which department
will use the grid first can be based on either the Shapley or the Banzhaf
value, ¢ or i respectively. More precisely, we first normalize the Banzhaf
value and the value of each department is interpreted as the probability -
henceforth just priority- that the corresponding department can make use of
the common resources when all departments simultaneously request access.
These values (¢ and 1) are depicted in Table 5.1.

However, each department involved is part of a university which, in turn,
is in a given country. It may happen that when bargaining for the pri-
ority the departments are not autonomous anymore and need the permis-
sion of the university or country they belong to. If we take into account
these restrictions, a levels structure of cooperation emerges naturally, and
hence, the Shapley and Banzhaf levels values, ® and V¥, could be used
as basis for a priority rule. Counsider for instance, that the 10 depart-
ments are part of 6 different universities which, in turn, are in 4 countries.
More precisely, suppose there is the following levels structure of cooperation,
{A}AB, CYADY}{E, F}{G, H, T}, {J}} and {{A, B,C}, {D, E, F},{G, H, I},
{J}}, i.e. for instance Dept. B and Dept. C belong to the same university,
which at its turn it is located in the same region as the university which
Dept. A belongs to.

Table 5.1 below comprises the different values considered in this paper?.

From Table 5.1, it follows that when considering the restrictions given

2By f we denote the normalized f value. The different values have been calculated
using a MATLAB@© routine, which can be provided by the authors upon request.
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Dep. | Resources ¢ P P v ) R
A 3 0.0690 | 0.0833 | 0.1523 | 0.1250 | 0.0736 | 0.0800
B 1 0.0341 | 0.0417 | 0.0724 | 0.0625 | 0.0358 | 0.0400
C 2 0.0405 | 0.0417 | 0.0898 | 0.0625 | 0.0434 | 0.0400
D 10 0.2579 | 0.2500 | 0.4961 | 0.3750 | 0.2396 | 0.2400
E 3 0.0690 | 0.0417 | 0.1523 | 0.0625 | 0.0736 | 0.0400
F 5 0.1214 | 0.2083 | 0.2773 | 0.3125 | 0.1340 | 0.2000
G 2 0.0405 | 0.0278 | 0.0898 | 0.0625 | 0.0434 | 0.0400
H 3 0.0690 | 0.1110 | 0.1523 | 0.1875 | 0.0736 | 0.1200
I 2 0.0405 | 0.0278 | 0.0898 | 0.0625 | 0.0434 | 0.0400
J 10 0.2579 | 0.1667 | 0.4961 | 0.2500 | 0.2396 | 0.1600

Table 1: The different measures of priority.

by the levels structure of cooperation the priorities change significantly. For
instance, a relevant such difference the change in the priority assigned to
Dep. J. When the departments are considered autonomous it is given top
priority together with Dep. D. However, when the universities and countries
are taken into account it ranks third, having Dep. F priority over Dep. J.
This is explained by the fact that even so Dep. J is one of the departments
whose contribution is highest, the aggregate resources of its country are not
so high compared to the aggregate resources of the remaining countries.
Finally, the difference between ® and ¥ reveals intensely on the values of
Dept. E and Dept. I, since ¥ gives equal priority to both of them, whereas
® doubles the value of Dept. E.

6 Appendix

Proof of the claim in the Proof of Theorem 4.1.

Let (N,U,E) e GLN with B = {Bo,...,Bk}, i,7 € U C ... C Uy
with U, € B, for each r € {1,--- ,k}, and R C M;;. Let us define, for
re{l, -k},

Ap = Hoe(B): B =Tri[+[{o€Q(B): FY =TrUj}| ,and
A7 = Ho e (B): PP =T} + {o € 0(BZ) : P7 = TrUj}|-

L i -1 _ —j =]
Observe that Ap = ¢ + ¢y ; and A" = ¢ 7 + cp

IQi\(%B)I = IQT/(\é)I for all » € {1,--- ,k} by backward induction on r. For

We prove that
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each r € {1,--- ,k}, let b, = |B,|, u, = |U,|, A" = {U € B, \U, : U C
Urs1 and UNTR =0}, and B" = |{U € B, \ U, : U C U,+1 and U C Tr}|.
Recall that by convenience Ugy1 = N. Observe that AF 4+ BF 4+ 1 = b, and
that, for each r € {1,--- ,k}, |U- NTg| + |Uy \ Tr| = uy.

We start proving the case r = k. Recall that Uy € By is such that
i,7 € Ug. In particular, i,5 € Uy \ Tr and thus |Uy \ Tr| > 2. By definition
of N,

Ne= I 1S1t- A% BR[O 0 Tr|)! - (JU\ Tr| - 1)!

SeB\ Ui}
+ [T ISt AR B (U N TRl + 1) (U \ Tr| — 2)!
SeB\{U}
= I 1sit-A%- B (Ux N Tr|)! - (U N\ Tr| - 2)! - w.
SeBp\{Ur}

Similarly, by definition of A%,

A= T IS (AF + )t BRL ([0 N TRI) - (U \ Trl - 2)!
SeB\{Uy}
+ I ISl AR (BR 4 1)1 (U N Tr])! - (U \ Tr| - 2)!
SeBp\{Uy}
= I I1st-A%-B*-(Ux N Tr))! - (U N\ Tal - 2)! - (bx + 1).
SeBL\ Uk}
k
Hence, for every R C M;;, % = b:jl. To conclude with the first step
R
of the induction one can easily check that Qf?ééil-) = b:-]f-l'
N r+1
Now suppose that for every R C M, |f|29$(1é§i)jl)l = )\/\J?TH, for some
TTiAE—— R
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r€{2,...,k}. By definition of A%,

A;;l: 11 ST I 1sn)-4an-Br- I 19

S€Br+1\Ur+1 S'€B, S'eB;
S'CS S'CUr4+1\Ur

(U NTr|)! - (10U \ Tr| — D!+ (JUr N Tg| + D! - (|Up \ Tr| — 1)!
(1Ursa N TR (1Upa \ Tr| = D1+ ([Ur2 N Tr[ 4+ D! ([Upga \ Tr| = 2)!

h(S)!
M [ o] avme 1 s

S€Br+1\Ur+1 S'eB, S'e€B;
scs S'CUpp1\Us

(U N Tr)!- (|Ur \ Tr| — 2)! S Urt1
(|Urs1 NTRN! - (|Ur1 \ TR = 2)!  up

where h(S) = |{S" € B, : 8" C S}| for each S € B,4;. Similarly, by defini-
tion of )\}_%k,

—r :
iL = nS) IS/ | - A"t BT Edl
)\ 7T+1 |S|!
R SEBr4+1\Ur+1 S’'eB;y S’'eB;y
S'Cs S'CUr41\Ur

(IU- N TR - (|U; \ Tr| — 2)!
(Ur1 N TRD! - ([Ur2 \ TrI = 2)F

Combining the two above expressions we obtain

A

6 = . .
©) VR
Furthermore,
10,(B)] 1 h(S)! m | 2Ur1)! /
_ . S|l H IS ] up!
' H | ' rls
‘QT'H(E)’ S€Br+1\Ur+1 ‘S‘ S'eB;, Hr1! S'€Br\Ur
S'CS S'CUp 41
and
1Q,(B77)| H h(S)! / h(Urs1)! /
A9 (B , Sif-—2= II 15| (=1
- il T
‘QT"H(M)’ S€Br+1\Ur+41 ‘S‘ S’eBy (UT-H 1). S'€Br\Ur
S'cS S'CUp 41
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Thus

(7)

2B _ QaB]  u
B B e

Hence, from eq. (6) and (7), using the induction hypothesis we obtain

M AR
2(B)l  [2(BZ)|’

which concludes the proof. U
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