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Abstract
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1 Introduction

We face up in this paper the problem of allocating an amount of indivisible units of an

homogeneous good among a group of agents whose preference are single-peaked. One of

the examples used to illustrate this kind of problems is that in which a group of people

must supply a certain amount of labor paid hourly to complete a common task. These

agents�preferences over the worked hours, and then over the earned money, are assumed

to be single-peaked. This means that each agent has a most preferred amount of hours

(equivalently money) to work, and if it happens that he has to work more than this

preferred amount he wishes to deviate as less as possible. Similarly, if it happens that he

has to work less than this preferred amount he wishes to be as close as possible to his

preferred amount.

Consider now the following situation. At a university department, there are a certain

amount of extra hours which have to be covered by the faculty. Here the agents are

the professors of the department; each of whom, given the salary per hour, has an "ideal"

amount of time to work. Usually, each hour corresponds to a complete class of a particular

subject, that is, it is not possible to allocate fractions of hours. In this case, thus, the task

is made out of a certain number of indivisible units (hours). Similar situations appear in

the allocation of shifts in hospitals or hotels, among other examples.

The above situation is a particular instance of a general set of problems called allocation

problems under single-peaked preferences with indivisible goods. These problems come

described by three elements. First, a set of agents. Second, an amount of indivisible

units of a certain good to be distributed, called the task. Finally, a pro�le of the agents�

preferences over the number of units involved in the task. A rule or solution is a function

that distributes the task among the agents.

The literature related with allocation problems when preferences are single-peaked has

focused so far on the continuous case (when the task is perfectly divisible). The traditional

way of supporting rules to solve the problem is by applying the so called axiomatic method.

Rules are then defended on the basis of the properties they ful�l, and in general, suitable

combinations of di¤erent appealing properties are used to di¤erentiate among rules. The

most appealing properties in this case have to do with e¢ ciency, equity, and incentive

compatibility considerations. By far, the best-known rule in the continuous case is the

uniform rule, introduced in Sprumont (1991). It proposes to treat all agents as equally as

possible, subject to e¢ ciency. Characterizations of this rule also appear in Ching (1994),

Sönmez (1994), Thomson (1994), and Dagan (1996), among others. An alternative, also

well-known rule in the continuous case is the equal distance rule , introduced in Thomson

(1994), that proposes to select the allocation at which all agents are equally far from their

preferred consumptions, subject to e¢ ciency and boundary conditions, in which case those
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agents whose consumptions would be negative are given zero instead. Characterizations

of this rule appear in Herrero & Villar (1998, 2000) and in Herrero (2002). Both the

uniform and the equal distance rules are e¢ cient and equitable, and the uniform rule is

also incentive compatible, while the equal distance rule is not.

When the good comes in indivisible units, some of the aforementioned properties cannot

be met. This happens, for instance, with equity properties, that should be accomodated to

this case. The traditional requirement of equal treatment of equals, for example, can only

be partially reached, and we should allow equal agents to be alloted di¤erent amounts.

The only way of keeping equality as far as possible is to forbid equal agents allotments to

di¤er in more than one unit. Fortunately enough, e¢ ciency and strategy-proofness can be

satis�ed in the indivisible case.

A natural way to solve rationing problems when the good comes in indivisible units consists

of applying priority methods (see Young 1994, Moulin (2000), Moulin & Stong (2002), and

Herrero & Martinez (2004)). When there is a pure priority relationship on the set of agents,

the easiest way of solving the problem is by asking the agents to choose which amount of the

task to consume following the priority ordering, and forcing the last agent to get whatever

is left. These pure priority methods are e¢ cient and incentive compatible, but they are far

from being minimally equitable. A di¤erent method consists of applying priority orderings

on the cartesian product of agents and integer numbers, so called standards of comparison

in Young (1994). When using standards of comparison to solve rationing problems, the

most natural procedure consists of starting from some predetermined allocation, and then

move out of it, unit by unit by using the standard. This procedure was used in Herrero &

Martinez (2005) to solve claims problems.

In this paper we analyze two methods to solve allocation problems when preferences are

single-peaked when the good comes in indivisible units, by using standards of comparison.

The �rst procedure (Up method) allocates the task unit by unit, according to the standard,

when the numbers paired with the agents are interpreted as agents�peaks. The second

procedure (Temporary Satisfaction method) starts by giving all agents their preferred

consumptions, and then move away from this provisional allocation, unit by unit by using

the standard. Here, the numbers paired with the agents are interpreted either as agents�

peaks or the opposite peaks, depending upon the type of problem at hand (either an excess

demand or excess supply problem).

Then we explore the properties our families of discrete rules may satisfy. As it happens

in Herrero and Martínez (2005), in order to approach equality we shoul consider a sub-

family of standards, those called monotonic standards, that always give priority to larger

numbers. Then it happens that monotonic Up methods provide allocations very similar to

those prescribed by the equal-distance rule when the good is perfectly divisible. Similarly,

3



the allocations prescribed by monotonic Temporary Satisfaction methods are as close as

possible to those provided by the continuous uniform rule. Then we obtain that our dis-

crete families can be characterized by sets of properties very similar to those supporting

some of the characterizations of the continuous versions of the respective rules.

The rest of the paper is structured as follows: In Section 2 we set up the problem of

allocating indivisible units of a good when preferences are single-peaked. In Section 3 we

introduce standards of comparison and use them to construct two allotment procedures:

the Up and the Temporary Satisfaction methods, that convey to construct two families of

discrete rules. Section 4 analyzes the properties our families of rules may ful�l. In Section

5 we present our characterization results. Section 6, with �nal comments and remarks,

concludes.

2 Preliminaries

This section is devoted to provide formal statements of single-peaked preferences, alloca-

tion problems and rules.

A preference relation, Ri, de�ned over Z+ is said to be single-peaked if there exists an
integer number p(Ri) 2 Z+, called the peak of Ri, such that, for each x; x0 2 Z+,

�
(x0 < x < p(R)) or (p(Ri) < x < x0)

�
, xPx0:

Let S denote the class of all single-peaked preferences de�ned over Z+. Let N be the set
of all potential agents. Let N be the family of all �nite subsets of N. An allocation
problem with single-peaked preferences, or simply a problem, is a triple e = (N;T;R),

where N 2 N is the set of agents (n = jN j), R � (Ri)i2N 2 SN is the pro�le of agents�

preferences, and T 2 Z++ is the amount to be allocated, called the task. Let AN denote

the class of all problems with agents set N , and A the class of all problems, that is,

AN =
�
(N;T;R) 2 fNg � Z+ � SN

	
and

A =
[
N2N

AN :

For each problem, we face the question of �nding a division of the task among the agents.
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An allocation for e = (N;T;R) 2 A is a list x 2 ZN+ satisfying the condition of being

a complete distribution of the task among the agents,
P
i2N xi = T . Let X(e) be the

set of all allocations for e 2 A. An allocation, x 2 X(e) is e¢ cient if there is no other
allocation in which the agents are better-o¤, that is, there is no allocation y 2 X(e) such
that for each i 2 N , yiRixi, and for some j 2 N , yjPjxj . Let P (e) be the set of all
e¢ cient allocations for e 2 A.

A rule is a function, F , that selects, for each problem e 2 A, a unique allocation F (e) 2
P (e).1 As Sprumont (1991) points out, the requirement of e¢ ciency is equivalent to asking

for each agent to consume no more than his preferred amount if
P
i2N p(Ri) � T , and no

less if
P
i2N p(Ri) � T .

3 Standards of Comparison and Up and Temporary Satis-
faction Methods.

A standard of comparison is a linear order (complete, antisymmetric and transitive) over

the cartesian product N�Z. such that for each agent, larger integer numbers have priority
over smaller integer numbers. This product can be interpreted as the product of the set

of potencial agents and the set of their potential peaks.

Standard of Comparison, � (Young, 1994): Is a function � : N� Z �! Z+ such that
for each i 2 N, and each a 2 Z, �(i; a+1) < �(i; a). Let � denote the class of all standards
of comparison.

This class of orders have been applied by Moulin and Stong (2002), and Herrero and

Martínez (2004) in the context of claims problems with indivisiblilities.2

Consider a problem with only one unit of the task to allocate. The standard of comparison

determines the agent who receives this unit. Alternatively, if the task di¤ers from the sum

of the peaks (aggregate demand) by just one unit, then all agents, but one, are fully

satis�ed. In this case, the standard of comparison determines who that agent is.

Two natural methods for solving allocation problems by using the standards of comparison.

can be constructed. The �rst option consists of an algorithm to allocating all units of the

task one by one. The second one consists of accomodating all units of either excess demand

or excess supply one by one, after giving (temporarily) all agents their peaks. We shall

1Notice that the notion of rule refers simply to the selection of an e¢ cient allocation for each problem.

This choice can be made via a direct formulation, as it is the case for the majority of rules used when the

task is perfectly divisible, or else, it can be made by using an algorithm, as we do in this work.
2The reader is referred to the survey by Thomson (2003) for a widely exposition of claims problems

when the good is perfectly divisible.
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call those up methods and temporary satisfaction methods respectively.

For each list of pairs agent-integer number f(i; ai)gi2N , the agent with strongest num-
ber according to the standard of comparison � is the agent k 2 N such that the pair (k; ai)

has the highest priority among all the pairs (i; ai) according to �. That is, k is the agent

with the strongest number according to � if for each i 2 N r fkg, then �(k; ak) < �(i; ai).

Up method associated to �, U�: Let e = (N;T;R) 2 A. Start by associating to each
agent her peak, and then identifying the agent with the strongest number (peak) according

to �. Then give one unit of the task, T , to this agent. Reduce his number (peak) by one

unit. Now identify the agent with the new strongest number for �, and proceed in the

same way. Repeat this process until the task runs out.

Temporary satisfaction method associated to �, TS�: Let e = (N;T;R) 2 A.
Start by giving all agents their peaks. Now we distinguish two cases. On the one hand,

if the task in not enough,
P
i2N p(Ri) � T . In this case we have to remove some units

from the temporary allocation. Associate to each agent his peak, and identify the agent

with the strongest number (peak) according to �. Subtract one unit from this agent, and

reduce his number accordingly. Identify again the agent with the new strongest number

according to �, and proceed in the same way until reaching the task. On the other hand,

if the task is too large, i.e., if
P
i2N p(Ri) � T , we have to allocate extra units to the

agents, T 0 = T �
P
i2N p(Ri). We shall proceed in the following way. Associate to each

agent the the opposite of his peak, that is, let ai = �p(Ri). Identify the agent with the
strongest number (-peak) according to �. Then assign one unit of the remaining task, T 0,

to this agent. Reduce the number of this agent by one unit. Now identify the agent with

the new strongest number for �, and proceed in the same way. Repeat this process until

the task T 0 runs out.

Example 1. Assume that the standard of comparison is such that, restricted to agents in
N , it happens that �(2; x) < �(1; y) < �(3; z); for all x; y; z 2 Z+. Now, consider the allo-
cation problem where N = f1; 2; 3g, T = 6 and R = (R1; R2; R3) such that p(R) = (1; 3; 5).
Note that, in this case,

P
i2N p(Ri) > T . For the pairs involved in the aforementioned

problem, we have

�(2; 3) < �(2; 2) < �(2; 1) < �(1; 1) < �(3; 5) < �(3; 4) < �(3; 3) < �(3; 2) < �(3; 1):

The next table shows the functioning of the up-method for this problem. The �rst column

gives the kth unit of the task. The second column gives the allocation up to that unit, x(k).

The third column gives the updated vector of numbers, p(k).
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T x(k) p(k)

(0,0,0) (1,3,5)

1 (0,1,0) (1,2,5)

2 (0,2,0) (1,1,5)

3 (0,3,0) (1,0,5)

4 (1,3,0) (0,0,5)

5 (1,3,1) (0,0,4)

6 (1,3,2) (0,0,3)

Example 2. The next table we show the functioning of the temporary satisfaction method
for the same standard of comparison and problem as in previous example. In this case we

start by fully satisfying all agents, that is, by giving to each agent his peak. This implies

allocating 9 units, but we only have 6 units to allocate. Thus we need to remove 3 units.

The table shows the process of removing. The �rst column gives the kth unit of the task.

We start from 9 units and we remove unit by unit up to reach 6 units. The second column

gives the allocation up to that unit, x(k). The third column gives the updated vector of

numbers, p(k).

T x(k) p(k)

9 (1,3,5)

8 (1,2,5) (1,3,5)

7 (1,1,5) (1,2,5)

6 (1,0,5) (1,1,5)

Previous examples illustrate the way both the up method and the temporary satisfaction

method work. Additionally, they show that these methods could result in pure priority

rules, depending upon the standard of comparison used. Given the standard of comparison

in previous examples, the allocation obtained by means of the up-method is the allocation

prescribed by a pure priority rule in which agent 2 is fully satis�ed �rst, then agent 1

comes to the line and he is also fully satis�ed, and, �nally, any remaining units go to agent

3. As for the allocation obtained by the application of the temporary satifaction method,

it coincides with the allocation recommended by the pure priority rule with the reverse

order: Now, agent 3 is the one going �rst to the line up to when he is fully satis�ed, next,

agent 1 comes to the line, and �nally, any remaining units go to agent 2 The next examples

consider a di¤erent type of standard of comparison.

Example 3. Let N = f1; 2; 3g, and assume that the standard of comparison is such
that, restricted to agents in N , it happens that for all i; j 2 N; and all x; y 2 Z++; if
x > y; then �(i; x) < �(j; y): Furthermore, �(1; x) < �(2; x) < �(3; x) if x is odd, and

�(2; x) < �(1; x) < �(3; x) if x is even. Now, let be T = 14, and R = (R1; R2; R3) such
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that p(R) = (1; 3; 5). The next table shows the functioning of the up method associated to

this standard of comparison

T x(k) p(k)

: : : : : : : : :

9 (1,3,5) (0,0,0)

10 (1,4,5) (0,-1,0)

11 (2,4,5) (-1,-1,0)

12 (2,4,6) (-1,-1,-1)

13 (3,4,5) (-2,-1,-1)

14 (3,5,5) (-2,-2,-1)

Example 4. This example illustrates the functioning of the temporary satisfaction method
for the same problem and standard of comparison as before. In this case, T = 14 >

9 = p(R1) + p(R2) + p(R3). Then, after fully compensating all the agents T 0 = 5 =

T � (p(R1) + p(R2) + p(R3)) remains. We associate to each agent his opposite peak:

(1;�1), (2;�3), and (3;�5). The next table shows the rest of the process.

T 0 x(k) p(k)

0 (1,3,5) (-1,-3,-5)

1 (2,3,5) (-2,-3,-5)

2 (3,3,5) (-3,-3,-5)

3 (4,3,5) (-4,-3,-5)

4 (4,4,5) (-4,-4,-5)

5 (4,5,5) (-4,-5,-5)

4 Properties

Here we look for properties our rules may ful�l. Some of the following properties have

been studied in the case where the good is perfectly divisible, and their rationale and

"appealingness" are preserved in the case of indivisible goods. For some other properties,

we have to adapt the fairness principle at hand so that it becomes meaningful in the case

of problems with indivisibilities.

The most common and appealing requirement in the continuous case is a property of

impartiality. In one of its forms, the so called equal treatment of equals, it says that in any

problem, if two agents have identical preferences, then they should be indi¤erent among

their respective allocations. Paired with the requirement of e¢ ciency, it simply means

that agents with identical preferences should be alloted the same amount. Unfortunately,

no rule can ful�ll this property in the context of problems with indivisibilities. It is enough
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to consider a two-agents problem with identical preferences R1 = R2, and T = 1. ?, ?,
and ? consider a weaker version of this condition, that they call balancedness: If in a
problem two agents have equal preferences, then their allocations should di¤er, at most,

by one unit.

Balancedness: For each e 2 A and each fi; jg � N , if Ri = Rj , then jFi(e)�Fj(e)j � 1.

The following property is straightforward. It says that an agent�s allocation depends only

on his preferred consumption.

Peaks only: For each e = (e; T; (Ri; R�i)) 2 A and each e0 = (N;T; (R0i; R�i)) 2 AZ such
that p(R0i) = p(Ri), then Fi(e) = Fi(e

0).

The next principle, ar-truncation, can be interpreted as an instance of a general principle

of independence of irrelevant alternatives. Given e 2 A, let ar(e) =
P
j2N p(Rj)�E

n . The

number ar(e) is simply the average rationing of the task among the agents in N . This

property states that any information on the agents� preferences below ar(e) should be

ignored. In consequence, all those problems whose preferences coincide in [ar(e);+1[ are
indistinguishable.

Ar-truncation: For each e = (N;T;R) 2 A and each e0 = (N;T;R0) 2 AZ, if for all
i 2 N , Ri = R0i on [ar(e);+1[, then, F (e) = F (e0).

The following two properties refer to the case in which there is a change in the a problem�s

task, without altering agents�preferences. The �rst one, one-sided resource monotonicity,

considers the case in which the change in the task does not alter the type of rationing

associated to the initial problem, i.e, if initially we have to ration labor, it is still labor to

be rationed after the task increasing, or else, if in the initial problem we have to ration

leisure, then again, we have too much labor to allocate even after the decreasing of the

task. In either case, the property states that no agent should su¤er.

One-sided resource monotonicity: For all e; e0 2 A such that e = (N;T;R) and

e0 = (N;T 0; R);if it happens that (i)
P
j2N p(Rj) � T 0 > T; or else, (ii)

P
j2N p(Rj) �

T 0 < T;then for all i 2 N; Fi(e0)RiFi(e):

Imagine now that when estimating the value of the task, we were pessimistic, so that

the real value is larger than expected. Then two possibilities are open, either to forget

about the initial allocation and just solve the new problem, or keep the tentative allocation

and then allocate the rest of the task among the agents, after adjusting the preferences

by shifting them by the amount already obtained. The property of agenda independence

requires that the �nal allocation should not depend on this timing.
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Agenda independence For e = (N;T;R) 2 A and each T 2 Z++, F (e) = F (N;T 0; R)+
F (N;T � T 0; R0), where R0i = �Fi(N;T

0;R)(Ri).3

The principle of strategy-proofness states that thruthtelling should be a (weakly) dom-

inant strategy for all agents, or, in other words, that no agent should over bene�t from

misrepresenting his preferences.

Strategy-proofness: For each e = (N;T; (Ri; R�i)) 2 A, each e0 = (N;T; (R0i; R�i)) 2 A,
and each i 2 N , Fi(e)RiFi(e0).

The next group of properties refer to changes in the set of agents. Suppose that, after

solving the problem e = (N;T;R) 2 A, a proper subset of agents S � N decides to

reallocate the total amount they have received, that is, they face a new allocation problem:

(S;
P
i2S ai; RS), where RS = (Ri)i2S and a is the allocation corresponding to apply

the rule to the problem e. A rule satis�es consistency if the new reallocation is only a

restriction to the subset S of the initial allocation.

Consistency: For each e 2 A, each S � N , and each i 2 S, Fi(e) = Fi(S;
P
j2S Fj(e); RS).

If the previous requirement is made only for subsets of agents of size two, then it is referred

to as bilateral consistency.

Bilateral consistency: For each e 2 A, each S � N , such that jSj = 2;and each i 2 S,
Fi(e) = Fi(S;

P
j2S Fj(e); RS).

Finally, we consider the possibilituy of recovering the solution for the general case out

of the solutions in the two-agent case. Let us consider an allocation for a problem with

the following feature: For each two-agents subset, the rule chooses the restriction of that

allocation for the associated reduced problem to this agent subset. Then that allocation

should be the one selected by the rule for the original problem.

Let c:con(T;R;F ) � fx 2 ZN+ :
P
i2N xi = T and for all S � N such that jSj = 2; xS =

F (S;
P
i2S xi; RS)g

Converse consistency (Chun, 1999): For each e 2 AZ, c:con(T;R;F ) 6= �, and if

x 2 c:con(T;R;F ), then x = F (e).

The next two results are also valid for the case of indivisibilities..

Proposition 1. One-sided resource monotonicity together with consistency imply converse
consistency.

Proof. Let e 2 AZ. By consistency the set c:con(T;R;F ) 6= �. Let x; y 2 c:con(T;R;F )
3For a given a 2 Z, �a : S �! S is de�ned as follows: For each R 2 S, x�a(R)y i¤ (x + a)R(y + a).

Given R 2 S, we call �a(R) the shifting of R by a.
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with x 6= y. We distinguish two cases.

Case 1. If
P
i2N p(Ri) � T . There exists k 2 N such that xk > yk. Consider each two-

agent set S = fk; jg with j 2 N and j 6= j. Since x; y 2 c:con(T;R;F ), xS =

F (S; xj + xk; RS) and yS = F (S; yj + yk; RS). By one-sided resource monotonicity,

xj � yj . This fact, join with xk > yj , and
P
i2N xi = T =

P
i2N yi yields a

contradiction.

Case 1. If
P
i2N p(Ri) � T . There exists k 2 N such that xk < yk. Consider each two-

agent set S = fk; jg with j 2 N and j 6= j. Since x; y 2 c:con(T;R;F ), xS =

F (S; xj + xk; RS) and yS = F (S; yj + yk; RS). By one-sided resource monotonicity,

xj � yj . This fact, join with xk < yj , and
P
i2N xi = T =

P
i2N yi yields a

contradiction.

Lemma 2 ([Elevator lemma] Thomson, 2000). If a rule F is bilaterally consistent

and coincides with a conversely consistent rule F 0 in the two agent case, then it coincides

with F 0 in general.

5 Characterizations

As we observed in Section 3, up and temporary satisfaction methods associated to a

standard of comparison may end up in pure priority methods, and thus could violate

balancedness. In order to guarantee this property, we should concentrate on a particular

subfamily of standards of comparison, that we call monotonic standards.

Monotonic standard of comparison: For each fi; jg � N, and each x; y 2 Z; if
x > y; then �(i; x) < �(j; y). Let �M denote the subfamily of all monotonic standards of

comparison.

In other words, monotonic standards of comparison always give priority to agents with

larger integer numbers.

The following result is straightforward:

Proposition 3. Let � 2 � be an standard of comparison. Then, the associated up and

temporary satisfaction methods, U� and TS�, satisfy balancedness if and only if � is

monotonic.

We shall call up (temporary satisfaction) monotonic methods to the up (temporary
satisfaction) methods associated to monotonic standards of comparison.
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We present now our �rst characterization of the temporary satisfaction monotonic meth-

ods. It constitutes a parallel result to that obtained by Ching to characterize the uniform

rule (1994).

Theorem 4. A rule F satis�es peaks only, balancedness, strategy proofness, and consis-

tency if and only if there exists a monotonic standard of comparison � 2 �M such that

F = TS�.

Proof. It is easy to check that each TS� satis�es the two properties. Conversely, let F

bea rulle satisfying all the properties.

Step 1. De�nition of the standard of comparison. Let us de�ne the order � 2 �M as

follows

a > b) �(i; a) > �(j; b)

a = b) [�(i; a) > �(j; b), F (fi; jg; 1; (Ri; Rj)) = ei];

where Ri and Rj are two single-peaked preference relations such that p(Ri) = a =

b = p(Rj). It is straightforward to see that such a � is complete and antisym-

metric. Let us show that � is transitive. Suppose that there exist fi; j; kg � N

such that �(i; x) > �(j; y), �(j; y) > �(k; z), but �(i; x) < �(k; z). By con-

struction and peaks only, this can only happen when x = y = z. By de�nition

of �, in such a case, F (fi; jg; 1; (Ri; Rj)) = ei, F (fj; kg; 1; (Rj ; Rk)) = ej and

F (fk; ig; 1; (Rk; Ri)) = ek, where p(Ri) = x, p(Rj) = y, and p(Rk) = z. Con-

sider the problem (fi; j; kg; 2; (Ri; Rj ; Rk)). There are only three possible alloca-
tions: (1; 1; 0), (1; 0; 1) and (0; 1; 1). Suppose that F (fi; j; kg; 2; (Ri; Rj ; Rk)) =
(1; 1; 0), by consistency, F (fi; kg; 1; (Ri; Rk)) = ei, achieving in this way a con-

tradiction with F (fi; kg; 1; (Ri; Rj)) = ek. An analogous argument is applied if

F (fi; j; kg; 2; (Ri; Rj ; Rk)) = (1; 0; 1), or if F (fi; j; kg; 2; (Ri; Rj ; Rk)) = (0; 1; 1).

Therefore �(i; ci) > �(k; ck), and then � is transitive.

Step 2. Let us prove now that F = TS�. By Proposition ?? and Lemma ?? it is su¢ cient
to consider the two-agent case. Then, let us consider the problem e = (S; T;R) 2 AZ
where S = fi; jg � N . Without loss of generality we can assume that pi � p(Ri) �
p(Rj) � pj . We analyze the case in which pi+ pj � T . The other case is completely
analogous. We distinguish the following cases:

Case 1. If R1 = R2 and T 2 _2. By balancedness, F (e) =
�
T
2 ;

T
2

�
= D�(e).

Case 2. If Ri = Rj and E 2 _2 + 1. Then, by balancedness and the de�nition of the
order �, F (e) = D�(e).

Case 3. If Fi(e) � Fj(e) � p(Ri) � p(Rj). By strategy proofness, Fi(e) = Fi(S; T; (Rj ; Rj))=
D�i (S; T; (Rj ; Rj)) = D

�
i (e).
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Case 4. If Fj(e) � Fi(e) � p(Ri) � p(Rj). By strategy proofness, Fj(e) = Fj(S; T; (Ri; Ri)) =
D�j (S; T; (Ri; Ri)) = D

�
j (e).

Case 5. If Fi(e) � p(Ri) < Fj(e) � p(Rj). By strategy proofness, Fi(e) = Fi(S; T; (Rj ; Rj)) =
D�i (S; T; (Rj ; Rj)) = D�i (e). If Fi(e) = Di�(e) = p(Ri), then Fj(e) = T �
Fi(e) = T �Di�(e) = Uj�(e). If Fi(e) � p(Ri)� 1, then Fj(e) � p(Ri), which
is a contradiction.

Then, F coincides with TS� in the two agents case, and therefore they do so in

general.

We present now a characterization of the up monotonic methods.

Theorem 5. A rule F satis�es peaks only, balancedness, agenda independence, ar-truncation,
and consistency if and only if there exists a monotonic standard of comparison � 2 �M

such that F = U�.

Proof. It is easy to check that each up monotonic method satis�es the properties. Con-

versely, let F be a discrte rule satisfying all the properties.

Step 1. De�nition of the standard of comparison. Let us de�ne the order � 2 �M as

follows

a > b) �(i; a) > �(j; b)

a = b) [�(i; a) > �(j; b), F (fi; jg; 1; (Ri; Rj)) = ei];

where Ri and Rj are two single-peaked preference relation such that p(Ri) = a =

b = p(Rj). It is straightforward to check that � is an order.

Step 2. Let us prove now that F = U�. By Proposition ?? and Lemma ?? it is su¢ cient
to consider the two-agent case. Then, let us consider the problem e = (S; T;R) 2 AZ
where S = fi; jg � N . Without loss of generality we can assume that pi � p(Ri) �
p(Rj) � pj . Suppose �rst that pi = pj . By peaks only, equal treatment of equals,

and the de�nition of the order, F (e) = U�(e). Let now pi = pjWe distinguish now

the following cases:

Case 1. If pi + pj � T . Let us de�ne T 0 = pi + pj . Then F (S; T 0; R) = (pi; pj) =

U�(S; T 0; R). Once we have alloted the amount T 0, both agents have the

same preference relation: R0i = R0j . By balancedness and the de�nition of

the order F (S; T � T 0; (R0i; R0j)) = U�(S; T � T 0; (R0i; R0j)). By agenda indepen-
dence, F (e) = F (S; T 0; R) + F (S; T � T 0; (R0i; R0j)) = U�(S; T 0; R) + U�(S; T �
T 0; (R0i; R

0
j)) = U

�(e).
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Case 2. If pi + pj � T . If T is such that 0 � T � pj � pi, then ar(e) � p1. By ar-
truncation, F (e) = (0; T ) = U�(e). If T is such that pj�pi � T � pi+pj , then,
by agenda independence, F (e) = F (S; pj�pi; R)+F (S; T �(pj�pi); R0), where
R0i = R0j . By balancedness and the de�nition of the order, F (e) = F (S; pj �
pi; R) + F (S; T � (pj � pi); R0) = U�(S; pj � pi; R) +U�(S; T � (pj � pi); R0) =
U�(e).

Then, F coincides with U� in the two agents case, and therefore they do so in general.

6 Temporary satisfaction Monotonic Methods and the uni-
form rule and up Monotonic Methos and equal distance
rule.

In the previous section we obtained characterization results for the family of up and tem-

porary satisfaction monotonic methods. Some of those characterizations have analogous

counterparts in characterization results of the continuous equal distance and uniform rules,

respectively.4 Actually, the relationship between those monotonic methods and the uni-

form and equal distance rules is strongest. On the one hand, any monotonic temporary

satisfaction method can be interpreted as a discrete version of the uniform rule, and, sim-

ilarly, any monotonic up method could be interpreted as a discrete version of the equal

distance rule. In this section we further explore the relationship between the family of

monotonic temporary satisfaction methods and the u rule, and the relationship between

the monotonic up methods and the ed rule. We show that, for any problem, the alloca-

tions prescribed by the uniform rule can be interpreted as the ex-ante expectations of the

agents under the application of temporary satisfaction monotonic methods, if all plausible

allocations prescribed by such methods are equally likely, and similarly the allocations

prescribed by the equal distance rule can be interpreted as the ex-ante expectations of

4Under the assumption that the task were completely divisible, two of the most widely studied rules are

the so called uniform and equal distance rules. The idea underlying the �rst one is equality distribution

of the task.

Uniform rule, u: For each e 2 A, selects the unique vector e(u) 2 RN such that: If
P

i2N p(Ri) � T ,
then u(e) = minfp(Ri); �g for some � 2 R. And, if

P
i2N p(Ri) � T , then u(e) = maxfp(Ri); �g for some

� 2 R.
The idea of the second rule is also equality, but now focusing on losses above or below, depending on

the case, with respect to the peaks.

Equal distance rule, ed: For each e 2 A, selects the unique vector ed(e) 2 RN such that ed(e) =

maxf0; p(Ri) + �g for some � 2 R.

14



the agents under the application of up monotonic methods, if all plausible allocations

prescribed by such methods are equally likely. Next proposition proves the result.

Proposition 6. Let e = (N;T;R) 2 A. Let �M(N;c) denote the subset of �
M of the di¤erent

partial orders involved in the problem (N;E; c).5 Then

(a) u(e) =
1����M(N;c)���

X
�2�M

(N;c)

D�(N;E; c).

(b) ed(N;E; c) =
1����M(N;c)���

X
�2�M

(N;c)

U�(N;E; c).

Proof. Let us prove the result for the uniform rule. On one hand, we know that the

continuous uniform rule satis�es converse consistency, since it satis�es one-sided resource

monotonicity and consistency. On the other hand, it is easy to check that the temporary

satisfaction methods are consistent. Then the average given by the right hand side in the

formula is also consistent (see Thomson 2004). By using the Elevator Lemma it is enough

to consider the two-agent case. But it is straightforward that in this case both the uniform

rule and the average coincide. As a result, they are equal in general. We use an analogous

argument for Statement b.

7 Final Remarks

In this work we have considered allocation problems with indivisible goods when the

agents�preferences are single-peaked, that is, problems in which the task, the allocations

and the preferences are only de�ned over the set of integer numbers. Two natural proce-

dures, up and temporary satisfaction methods have been proposed to solve these problems.

The construction of these methods rely on using a particular standar of comparison on the

cartesian product of agents and integer numbers, interpreted eother as peaks or opposite

peaks. Thus, what we propose is not a pair of solutions, but else, two families of solutions,

one for each method.

When we concentrate on a certain sub-family of standards, monotonic standards, our two

families of solutions satisfy properties very much related to some well-known properties

studied in the case of perfectly divisible goods, and they have a strongest relationship with

the continuous uniform and equal-distance rule, respectively.

5 In �M we consider all possible orders over N�Z++. Notice that, for a given e, no all of them rank the

pairs (i; p(Ri)) involved in that particular problem in di¤erent ways. �M(N;c) denotes precisely the subset

of those di¤erent orders.
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Some quali�cations on the properties used in this paper are in order. The procedural

properties related to changes in the set of agents, consistency, bilateral consistency and

converse consistency, read exactly as in the case of a perfectly divisible good, and they

maintain both their interpretation ans strenght in obtaining the characterization results.

It is particularly interesting that also the incentive compatibility condition, strategy proof-

ness, is not only meaningful in the case of indivisible goods, but also that all the solutions

in the family of temporary satisfaction methods do satisfy this property. This means that

there are a large family of allocation methods for which the agents do not have incentives

to misrepresent their preferences. As for balancedness, this property is the best we can do

to approach equal treatment, and, in this respect, we may look at our procedures as to be

as impartial as possible, given the indivisibilities.

In the same way as the requirement of balancedness forces to rely on a subfamily of

standards of comparison, the so called monotonic standards, we may ask whether some

additional properties may also signi�cantly reduce the family of standards. Some partic-

ular sub-families come naturally to mind, and seem to be worth studying. For instance,

consider a priority relation � on the set of agents, and then, construct a monotonic stan-

dard �, out of this priority relation in the following way

x > y =) �(i; x) < �(j; y) 8i; j 2 N
�(i) < �(j) =) �(i; x) < �(j; x) 8x 2 Z

This family of standards always respect the priority relation in the set of agents, whenever

the integer numbers coincide. We may call this standards persistent monotonic standards.

It is an open problem to see whether persistent monotonic standards are associated to some

appealing additional property for both up and temporary satisfaction methods. This and

related questions are left for future research..
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