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Abstract

This paper analyzes the 1-nucleolus and, in particular, its relation to the nucleolus and
compromise value. It is seen that the 1-nucleolus of a cooperative game can be charac-
terized using a combination of standard bankruptcy rules for associated bankruptcy prob-
lems. In particular, for any zero-normalized balanced game, the 1-nucleolus coincides with
the Aumann-Maschler rule (Aumann and Maschler, 1985) in this sense. From this result,
not only necessary conditions on a compromise stable game are derived such that the 1-
nucleolus and the nucleolus coincide, but also necessary and sufficient conditions such that
the 1-nucleolus and the compromise value of exact games coincide.

Keywords: 1-nucleolus; Compromise stable games; Exact games; Aumann-Maschler rule;

Nucleolus; Compromise value

1 Introduction

Cooperative transferable utility games (TU-games) have proven effective to analyze problems

where the joint profits obtained by a joint collaboration have to be shared among the individ-

uals involved (the grand coalition). In order to decide on a “fair” or “just” distribution of the

joint profits (a solution), benchmarks are used: the joint profits that any subgroup of individu-

als (a coalition) could obtain by cooperation without any help from the other members of the

grand coalition that are outside this subgroup. This means that the description of a cooperative

game in general requires the computation of 2n values, with n being the number of members of

the grand coalition. Therefore, the computation of a cooperative game is NP-hard and a game

with 6 players already requires 64 coalitional values. Due to this computational drawback, it
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is important to devise fair solutions that do not need much computational work. For instance,

within the field of Operations Research games (cf. Borm et al., 2001), context specific solutions

are constructed that only make use of an algorithm to find the value of the grand coalition and

that lead to stable core elements of the cooperative game at the same time. In this way, we

can solve both the optimization and allocation problem of the grand coalition simultaneously

without the need to obtain all coalitional values. As examples, we mention the Owen set in

linear production games (Owen , 1975), the Bird rule in minimum cost spanning trees (Bird,

1976), and the equal gain splitting rule in sequencing games (Curiel, Pederzoli and Tijs, 1989).

In a general framework, there are several solutions to TU-games available. Among the most

studied are the core (Gillies, 1953), the nucleolus (Schmeidler, 1969), the Shapley value (Shap-

ley, 1953) and the compromise value (Tijs , 1981). For TU-games with a nonempty imputation

set, the nucleolus is a solution based on the idea that a fair distribution of the total worth should

(lexicographically) minimize the sorted vector of the excesses (or complaints) associated with

all possible coalitions. Given an imputation x and a coalition S, the excess measures the dissat-

isfaction of S at x. There are different algorithms to compute the nucleolus, see the Kopelowitz

algorithm (Kopelowitz, 1967) or the Maschler-Peleg-Shapley algorithm (Maschler et al., 1979).

The complexity of these algorithms, however, is exponential in the number of players, and

therefore useful only for relatively small games. Still, there are classes of games, such as as-

signment games (Shapley and Shubik , 1972), where the complexity of these algorithms only

grows polynomically in the number of players. That fact has allowed to develop special algo-

rithms to obtain the nucleolus when the game has a special underlying structure. Nevertheless,

in most applications where many players are involved, the task of computing the nucleolus can

be very difficult, and it can be difficult even to attribute a value to each coalition. The compu-

tational complexity can be reduced by considering k-nucleoli that are based on the excesses of

coalitions of size at most k and at least n − k. Clearly, the case where k is greater than or equal

to the integer part of n
2 corresponds to the nucleolus, since all coalitions are considered.

This paper focuses on the 1-nucleolus. We characterize the 1-nucleolus using a combination

of standard bankruptcy rules of an associated bankruptcy problem. Since only the values of the

grand coalition and coalitions of size 1 and n − 1 are needed, the 1-nucleolus can be computed

in polynomial time. Moreover, we show that the 1-nucleolus of a balanced game, that is, a game

with a nonempty core, corresponds to the Aumann-Maschler rule (Aumann and Maschler,

1985) of the associated bankruptcy problem. Besides, we analyze under which conditions the

nucleolus and 1-nucleolus of compromise stable games coincide. This is done by taking into

account the fact that the nucleolus of a compromise stable game can be also computed as the

Aumann-Maschler rule of another associated bankruptcy problem (cf. Quant, Borm, Reijnierse,

and van Velzen, 2005). Finally, we characterize the class of exact games (cf. Schmeidler, 1972)

for which the 1-nucleolus and the compromise value (cf. Tijs , 1981) coincide. Here, we exploit

the fact that the compromise value of an exact game only depends on the same coalitional

values as the 1-nucleolus.

The outline of the paper is as follows. Section 2 recalls basic concepts and results that will
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be used throughout the paper. Section 3 formally introduces the k-nucleoli. In Section 4, we

characterize the 1-nucleolus by means of a combination of bankruptcy rules. Section 5 analyzes

the 1-nucleolus in relation with the nucleolus for compromise stable games, while Section 6

studies the 1-nucleolus in relation with the compromise value for exact games. The Appendix

contains the proof of the characterization of the 1-nucleolus.

2 Preliminaries

In this section, we survey some well-known concepts and results that will be used in the sub-

sequent sections.

For x, y ∈ R
n, we say that x is lexicographically smaller than y, x <L y, if there is m ∈

{1, . . . , n} such that xl = yl for every 1 ≤ l < m and xm < ym. Moreover, x ≤L y if either x = y,

or x <L y.

A transferable utility game (TU-game) is a pair (N, v) where N is a finite set of players and

v : 2N → R satisfies v(∅) = 0. In general, v(S) represents the value of coalition S, that is, the

joint payoff that can be obtained by this coalition when its members decide to cooperate. Let

GN be the set of all TU-games with player set N. Given S ⊆ N, let |S| be the number of players

in S.

The main focus within a cooperative setting is on how to share the total joint payoff obtained

when all players decide to cooperate. Given a TU-game v ∈ GN , the imputation set of v, I(v), is

the set of efficient allocations that are individually rational. Formally,

I(v) =

{

x ∈ R
N | ∑

i∈N

xi = v(N), xi ≥ v({i}) for all i ∈ N

}

.

Note that the imputation set is nonempty if, and only if,

∑
i∈N

v({i}) ≤ v(N).

We denote by IN the set of all TU-games with player set N and nonempty imputation set.

The core of v ∈ GN , Core(v), was first introduced in Gillies (1953) and is defined as the set

of efficient allocations that are stable, in the sense that no coalition has an incentive to deviate.

Formally,

Core(v) =

{

x ∈ R
N | ∑

i∈N

xi = v(N), ∑
i∈S

xi ≥ v(S) for all S ⊆ N

}

.

Bondareva (1963) and Shapley (1967) established that a game v ∈ GN has a nonempty core if,

and only if, it is balanced. Before introducing balanced games, we need to fix some notation.

Let ∅ 6= S ⊆ N and let eS ∈ R
N be the characteristic vector of S, defined as eS

i = 1 if

i ∈ S and eS
i = 0 if i /∈ S. A family B of nonempty subcoalitions of S is called balanced on S

if there are positive weights δ = {δT}T∈B, δT > 0 for all T ∈ B, such that ∑
T∈B

δTeT = eS or,
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equivalently, ∑T∈B:T∋i δT = 1 for all i ∈ S and ∑T∈B:T∋i δT = 0 for all i ∈ N \ S. We denote by

F(S) the set of balanced families of S. Given a balanced family B, we denote by ∆(B) the set

of positive weights satisfying the balancedness condition. A game v ∈ GN is called balanced if

for all balanced families B ∈ F(N) and all {δS}S∈B ∈ ∆(B), ∑
S∈B

δSv(S) ≤ v(N).

A well-established one-point solution concept is the nucleolus, introduced in Schmeidler

(1969). Let v ∈ IN and let x ∈ I(v). We denote the excess of coalition S ∈ 2N with respect to x

by

e(S, x) = v(S)− ∑
j∈S

xj.

Moreover, we denote by θ(x) ∈ R
2|N|

the vector whose coordinates are the excesses e(S, x)

arranged in non-increasing order, that is, θl(x) ≥ θm(x) for every 1 ≤ l ≤ m ≤ 2|N|. The

nucleolus of v ∈ GN, nuc(v), is defined as

nuc(v) = {x ∈ I(v)|θ(x) ≤L θ(y) for all y ∈ I(v)}.

Schmeidler (1969) showed that the nucleolus of a game with a nonempty imputation set exists

and is unique. The nucleolus is invariant with respect to positive affine transformations, i.e.

for v ∈ IN, α > 0, and a ∈ R
N , it follows nuc(αv + a) = αnuc(v) + a with (αv + a)(S) =

αv(S) + ∑j∈S aj for every S ∈ 2N .

Kohlberg (1971) characterizes the nucleolus by means of collections of coalitions. Let v ∈ IN

and let x ∈ I(v). Let B0(x, v) = {{i} ⊆ N|xi = v({i})} and define recursively

Bl(x, v) =
{

S ∈ 2N \ (∪l−1
m=1Bm(x, v))|e(S, x) ≥ e(R, x) for every R ∈ 2N \ (∪l−1

m=1Bm(x, v))
}

for l ∈ {1, . . . , p}, with p such that Bp(x, v) 6= ∅ and {B1(x, v), . . . , Bp(x, v)} forms a partition

of the set of coalitions of N. For l ∈ {1, . . . , p}, let Bl(x, v) = ∪l
m=1Bm(x, v).

Theorem 2.1 (cf. Kohlberg (1971)). Let v ∈ IN. Then, x is the nucleolus of v if, and only if, for every

l ∈ {1, . . . , p}, there exists Bl
0(x, v) ⊆ B0(x, v) such that Bl

0(x, v) ∪ Bl(x, v) is balanced.

Tijs and Lipperts (1982) introduced the core cover. Let v ∈ IN and i ∈ N. The utopia value

of player i, Mi(v), is defined as

Mi(v) = v(N) − v(N \ {i}).

The minimal right of player i, mi(v), is defined as

mi(v) = max
S⊆N\{i}

{

v(S ∪ {i}) − ∑
j∈S

Mj(v)

}

.

The utopia vector is given by M(v) = (Mi(v))i∈N and the minimal right vector is given by m(v) =
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(mi(v))i∈N . The core cover of v ∈ GN, CC(v), is defined as

CC(v) = {x ∈ I(v) | m(v) ≤ x ≤ M(v)}.

It can be verified that Core(v) ⊆ CC(v) ⊆ I(v). A TU game v ∈ IN is compromise admissible if

CC(v) 6= ∅. A compromise admissible game is compromise stable if Core(v) = CC(v). Quant

et al. (2005) characterized the family of compromise stable games.

Theorem 2.2 (Quant et al. (2005)). Let v ∈ IN be compromise admissible. Then, v is compromise

stable if, and only if, v(S) ≤ max{∑j∈S mj(v), v(N) − ∑j∈N\S Mj(v)} for every S ⊆ N.

Tijs (1981) introduced the compromise value as a one-point solution for compromise ad-

missible games. Let v ∈ GN be a compromise admissible game. The compromise value of v, τ(v),

is defined as

τ(v) = m(v) + α(M(v)− m(v))

with α > 0 such that ∑i∈N τi(v) = v(N).

An important subclass of balanced games is the class of exact games, which were introduced

in Schmeidler (1972). A game v ∈ GN is exact if for every S ⊆ N there exists x ∈ Core(v) such

that ∑i∈S xi = v(S). A well-known subclass of exact games are convex games, as introduced in

Shapley (1971). A game v ∈ GN is convex if v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T) for every

i ∈ N and S ⊂ T ⊆ N \ {i}.

A bankruptcy problem is described by (N, E, c), with N a finite set of players, E > 0, and

c ∈ R
N such that ci ≥ 0 for all i ∈ N and ∑i∈N ci ≥ E. O’Neill (1982) defines the bankruptcy

game associated to a bankruptcy problem (N, E, c), as

vE,c(S) = max

{

0, E − ∑
i∈N\S

ci

}

for every S ∈ 2N .

In fact, Quant et al. (2005) show that any convex and compromise stable game is S-equivalent1

to a bankruptcy game. Aumann and Maschler (1985) show that the nucleolus of a bankruptcy

game corresponds to the Aumann-Maschler rule of the corresponding bankruptcy problem.

3 k-nucleoli

In this section, we introduce the k-nucleolus of a game by considering only coalitions of size

at most k and at least |N| − k. In order to formally define the k-nucleolus, we need to fix some

notation. Let N be a finite set and k ≤ |N|, we denote

Ck(N) = {S ∈ 2N | |S| ≤ k or |S| ≥ |N| − k}.

1Two games v, w ∈ GN are S-equivalent if there exists α > 0 and a ∈ R
N such that v(S) = αw(S) + ∑i∈S ai for

every S ⊆ N.
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If no confusion arises, we write Ck instead of Ck(N). We denote nk = 2 ∑
k
l=0 (

|N|
l ) if k <

|N|
2

and nk = 2|N| if k ≥ |N|
2 . Given v ∈ IN and x ∈ I(v), we write θ

k(x) ∈ R
nk the vector whose

coordinates are the excesses e(S, x), with S ∈ Ck, arranged in non-increasing order, that is,

θ
k
l (x) ≥ θ

k
m(x) for every 1 ≤ l ≤ m ≤ nk.

Definition 3.1. Let v ∈ IN . The k-nucleolus is defined by

nuck(v) = {x ∈ I(v)|θk(x) ≤L θ
k(y) for all y ∈ I(v)}.

Note that for2 k ≥ ⌊ |N|
2 ⌋, nuck(v) = nuc(v) since Ck(N) = 2N . So clearly, the 1-nucleolus

and nucleolus of 3-players games coincide. Moreover, just like the nucleolus, the k-nucleolus is

invariant with respect to positive affine transformations.

Theorem 3.2 (cf. Schmeidler (1969)). Let v ∈ IN . Then, nuck(v) exists and is unique for every

k ∈ {1, . . . , |N|}.

The characterization in Kohlberg (1971) can be translated to the k-nucleolus as already
pointed out in Maschler et al. (1992). Similarly as in Section 2, we need to obtain a partition
of the coalitions in N of size at most k or at least |N| − k. Let v ∈ IN and let x ∈ I(v). Let
Bk

0(x, v) = {{i} ⊆ N|xi = v({i})} and define recursively

Bk
l (x, v) =

{

S ∈ Ck(N) \ (∪l−1
m=1Bk

m(x, v))|e(S, x) ≥ e(R, x) for every R ∈ Ck(N) \ (∪l−1
m=1Bm(x, v))

}

for l ∈ {1, . . . , p}, with p such that Bk
p(x, v) 6= ∅ and 〈Bk

1(x, v), . . . , Bk
p(x, v)〉 forms a partition

of the set of coalitions of Ck(N). For l ∈ {1, . . . , p}, let Bk,l(x, v) = ∪l
m=1Bk

m(x, v).

Theorem 3.3 (cf. Kohlberg (1971) and Maschler et al. (1992)). Let v ∈ IN and let k ∈ {1, . . . , |N|}.

Then, x is the k-nucleolus of v if, and only if, for every l ∈ {1, . . . , p}, there exists Bk,l
0 (x, v) ⊆ Bk

0(x, v)

such that Bk,l
0 (x, v) ∪ Bk,l(x, v) is balanced.

4 1-nucleolus and bankruptcy

The 1-nucleolus only takes into account the information provided by the value of the singletons

(individual coalitions), the value of the |N| − 1 player coalitions, and the value of the grand

coalition. Thus, the information needed stems from 2|N|+ 1 coalitions.

This section shows that the 1-nucleolus is related to the Aumann-Maschler rule of bankruptcy

problems (see Aumann and Maschler, 1985), the constrained equal losses rule for bankruptcy

problems, and the equal share rule. Moreover, the 1-nucleolus of a balanced game can be de-

scribed as the Aumann-Maschler rule of an associated bankruptcy problem. As a consequence,

it turns out that the 1-nucleolus and the nucleolus of bankruptcy games coincide (see O’Neill ,

1982; Aumann and Maschler, 1985; Quant et al., 2005).

2For each r ∈ R, ⌊r⌋ denotes the largest integer smaller than or equal to r.
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We recall some well-known bankruptcy rules in the literature. The equal share rule of a

bankruptcy problem (N, E, c), ES(N, E, c), assigns

ESj(N, E, c) =
E

|N|
for every j ∈ N.

The constrained equal awards rule of a bankruptcy problem (N, E, c), CEA(N, E, c), assigns

CEAj(N, E, c) = min{λ, cj} to every j ∈ N,

with λ ∈ R+ chosen such that ∑j∈N CEAj(N, E, c) = E. The Aumann-Maschler rule of a bankruptcy

problem (N, E, c), AM(N, E, c), is given by

AM(N, E, c) =

{

CEA(N, E, 1
2 c) if E ≤ 1

2 ∑j∈N cj,

c − CEA(N, ∑j∈N cj − E, 1
2 c) otherwise.

Aumann and Maschler (1985) showed that the Aumann-Maschler rule of a bankruptcy problem

corresponds to the nucleolus of the associated bankruptcy game. To conclude, the constrained

equal losses rule of a bankruptcy problem (N, E, c), CEL(N, E, c), is defined as

CELj(N, E, c) = max{0, cj − λ} for every j ∈ N,

where λ is chosen such that ∑j∈N CELj(N, E, c) = E.

For v ∈ IN , we define the zero-normalization of v, v0 ∈ IN , as

v0(S) = v(S)− ∑
j∈S

v({j}) for every S ∈ 2N .

Note that nuc1(v0) = nuc1(v) − (v({j}))j∈N . Therefore, when describing the 1-nucleolus, we

can assume that v = v0, that is, that v is zero-normalized.

The following result fully describes the 1-nucleolus by means of a combination of standard

bankruptcy solutions to associated bankruptcy problems.

Theorem 4.1. Let v ∈ IN with v = v0. Let E = v(N) and let c ∈ R
N be defined by cj = v(N) −

v(N \ {j}) for every j ∈ N.

(i) If cj ≥ 0 for every j ∈ N, then,

nuc1(v) =

{

AM(N, E, c) if E ≤ ∑j∈N cj,

c + ES(N, E − ∑j∈N cj, c) if E > ∑j∈N cj.

(ii) If cj < 0 for some j ∈ N, let c+ ∈ R
N be defined by c+j = max{0, cj} for every j ∈ N and let
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cmin ∈ R
N be defined as cmin

j = cj − min{cl |l ∈ N} for every j ∈ N. Then,

nuc1(v) =















AM(N, E, c+) if E ≤ ∑j∈N c+j ,

CEL(N, E, cmin) if ∑j∈N c+j < E ≤ ∑j∈N cmin
j ,

c + ES(N, E − ∑j∈N cj, c) if E > ∑j∈N cmin
j .

Proof. See Appendix.

The next result provides an explicit connection of the 1-nucleolus for balanced games to the

Aumann-Maschler rule.

Theorem 4.2. Let v ∈ IN be a balanced game with v = v0. Then,

nuc1(v) = AM(N, E, c)

with E = v(N) and c ∈ R
N defined as cj = v(N)− v(N \ {j}) for every j ∈ N.

Proof. By Theorem 4.1 (i), it suffices to show that cj ≥ 0 for every j ∈ N and that E ≤ ∑j∈N cj.

Let j ∈ N. Since v is balanced, we have that v(N) ≥ v({j}) + v(N \ {j}) = v(N \ {j}).

Therefore, cj = v(N)− v(N \ {j}) ≥ 0.

Moreover, since v is balanced, we have that ∑j∈N
1

|N|−1v(N \ {j}) ≤ v(N). Therefore,

E = v(N) = v(N) + (|N| − 1) ∑
j∈N

1
|N| − 1

v(N \ {j}) − ∑
j∈N

v(N \ {j})

≤ v(N) + (|N| − 1)v(N)− ∑
j∈N

v(N \ {j}) = ∑
j∈N

(v(N) − v(N \ {j})) = ∑
j∈N

cj.

As a consequence, we have

Theorem 4.3. Let (N, E, c) be a bankruptcy problem and let (N, vE,c) be the corresponding bankruptcy

game. Then, nuc(vE,c) = nuc1(vE,c).

Proof. Let w ∈ GN be the zero-normalization of vE,c, that is w(S) = vE,c(S)− ∑j∈S vE,c({j}) for

all S ∈ 2N . Then,

nuc1(vE,c) = (vE,c({j}))j∈N + nuc1(w)

= (vE,c({j}))j∈N + AM(N, w(N), (w(N) − w(N \ {j}))j∈N)

= (vE,c({j}))j∈N + AM

(

N, vE,c(N)− ∑
j∈N

vE,c({j}), M(vE,c)− (vE,c({j}))j∈N

)

= m(vE,c) + AM(N, vE,c(N)− ∑
j∈N

mj(vE,c), M(vE,c)− m(vE,c))

= AM(N, vE,c(N), M(vE,c))
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= nuc(vE,c)

where the third equality follows from Mi(w) = w(N) − w(N \ {i}) = Mi(vE,c) − vE,c({i})

for every i ∈ N, the fourth equality is a direct consequence of vE,c({j}) = mj(vE,c) for every

j ∈ N, and the fifth equality follows from the fact that the Aumann-Maschler rule satisfies the

property of minimal rights first (see Thomson, 2003).

As a consequence of Theorem 4.3, the nucleolus and 1-nucleolus of convex and compromise

stable games coincide since every convex and compromise stable game is S-equivalent to a

bankruptcy game (cf. Quant et al., 2005).

5 1-nucleolus and compromise stability

Quant et al. (2005) characterize the nucleolus of compromise stable games.

Theorem 5.1 (Quant et al. (2005)). Let v ∈ IN be a compromise stable game. Then,

nuc(v) = m(v) + AM(N, v(N) − ∑
j∈N

mj(v), M(v)− m(v)).

The following example shows that the 1-nucleolus might not belong to the core cover of a

compromise stable game. Furthermore, it illustrates that the 1-nucleolus and the nucleolus of

such a game need not coincide.

Example 5.2. Consider v ∈ IN with N = {1, 2, 3, 4},

v({1}) = 0, v({2}) = 0, v({3}) = 0, v({4}) = 0,

v({1, 2}) = 1, v({1, 3}) = 0, v({1, 4}) = 4, v({2, 3}) = 0, v({2, 4}) = 0, v({3, 4}) = 3,

v({1, 2, 3}) = 1, v({1, 2, 4}) = 5, v({1, 3, 4}) = 5, v({2, 3, 4}) = 0, v(N) = 5.

Here, m(v) = (1, 0, 0, 3) and M(v) = (5, 0, 0, 4). One readily verifies (using Theorem 2.2) that v is

compromise stable. Using Theorem 5.1, we have

nuc(v) = (1, 0, 0, 3) + AM(N, 1, (4, 0, 0, 1)) = (1.5, 0, 0, 3.5) ∈ CC(v).

However, using Theorem 4.1, we have

nuc1(v) = AM(N, 5, (5, 0, 0, 4)) = (3, 0, 0, 2) 6∈ CC(v).

Notice that in the example above, both the nucleolus and the 1-nucleolus are obtained

through the Aumann-Maschler rule, but they provide different allocations. This difference

arises from the fact that we first allocate the minimal rights in the nucleolus and then we ap-

ply the Aumann-Maschler rule, while in the case of the 1-nucleolus we first allocate the vector

(v({i})i∈N and then we apply the Aumann-Maschler rule. Thus, some of the coordinates of the
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1-nucleolus may be smaller than the corresponding coordinates of the minimal rights vector.

Precisely that difference makes the 1-nucleolus of a compromise stable game easier to compute

than the nucleolus, since one does not need the minimal rights vector. Next, we provide some

conditions for the nucleolus and 1-nucleolus of a compromise stable game to coincide.

Theorem 5.3. Let v ∈ IN be compromise stable. Let E = v(N) − ∑j∈N v({j}) and cj = Mj(v) −

v({j}) for every j ∈ N.

(i) If mj(vE,c) = mj(v)− v({j}) for every j ∈ N, then, nuc1(v) = nuc(v).

(ii) If mj(v) = max{v({j}), v(N) − ∑k∈N\{j} Mk(v)} for every j ∈ N, then, nuc1(v) = nuc(v).

(iii) If either m(v) < M(v), or m(v) = M(v), then, nuc1(v) = nuc(v).

Proof. We assume, without loss of generality, that v = v0. Note that E = v(N)−∑ j∈N v({j}) =

v(N) and cj = Mj(v) − v({j}) = Mj(v) for every j ∈ N. Since v is compromise stable, v is

balanced and, therefore, nuc1(v) = AM(N, E, c) by Theorem 4.2.

(i) Let mj(vE,c) = mj(v)− v({j}) = mj(v) for every j ∈ N. Then,

nuc1(v) = AM(N, E, c)

= m(vE,c) + AM(N, E − ∑
j∈N

mj(vE,c), c − m(vE,c))

= m(v) + AM(N, v(N) − ∑
j∈N

mj(v), M(v)− m(v))

= nuc(v)

where the second equality follows from the fact that the Aumann-Maschler rule satis-

fies minimal rights first (see Thomson, 2003), the third one is a direct consequence of

mj(vE,c) = mj(v)− v({j}) = mj(v) for every j ∈ N, and the last one follows from Theo-

rem 5.1.

(ii) Let mj(v) = max
{

v({j}), v(N) − ∑k∈N\{j} Mk(v)
}

for every j ∈ N. We show that mj(vE,c) =

mj(v)− v({j}) = mj(v) for every j ∈ N.

Since (N, vE,c) is convex, we have mj(vE,c) = vE,c({j}) for every j ∈ N. Then, for j ∈ N,

mj(vE,c) = vE,c({j})

= max
{

0, E − ∑
k∈N\{j}

ck

}

= max
{

0, v(N) − ∑
k∈N

v({k}) − ∑
k∈N\{j}

(Mk(v)− v({k}))

}

= max
{

0, v(N) − ∑
k∈N\{j}

Mk(v)

}

10



= max
{

v({j}), v(N) − ∑
k∈N\{j}

Mk(v)

}

= mj(v)− v({j})

Then, by (i), we have that nuc1(v) = nuc(v).

(iii) First, let m(v) < M(v). We show that mj(v) = max{v({j}), v(N) − ∑k∈N\{j} Mk(v)}

for every j ∈ N. By (ii), we then have that nuc1(v) = nuc(v). On the contrary, sup-

pose that there exists i ∈ N and S ∈ 2N \ {∅, N} with S ∋ i such that mi(v) = v(S) −

∑j∈S\{i} Mj(v) > max{v({i}), v(N)−∑ j∈N\{i} Mj(v)}. Then, we arrive at a contradiction

since

mi(v) = v(S)− ∑
j∈S\{i}

Mj(v)

≤ max
{

∑
j∈S

mj(v), v(N) − ∑
j∈N\S

Mj(v)

}

− ∑
j∈S\{i}

Mj(v)

= max
{

mi(v) + ∑
j∈S\{i}

(mj(v)− Mj(v)), v(N) − ∑
j∈N\{i}

Mj(v)

}

< mi(v)

where the first inequality follows from Theorem 2.2 and the second one is a direct conse-

quence of M(v) > m(v) and our supposition.

Second, let m(v) = M(v). Since v ∈ IN is a compromise stable game and m(v) = M(v),

it follows that ∑i∈N mi(v) = v(N) = ∑i∈N Mi(v) and nuc(v) = M(v) = AM(N, E, c) =

nuc1(v).

Remark 5.1. As a consequence of Theorem 5.3, we can identify several well-known classes of

compromise admissible games for which the nucleolus and the 1-nucleolus coincide: big boss

games, clan games (see Potters et al., 1989), 1-convex games (see Driessen , 1983) and 2-convex

games (see Driessen , 1983).

6 1-nucleolus and exactness

In this section, we examine the relationship between the 1-nucleolus and the compromise value

(Tijs , 1981) for exact games.

The following result characterizes the class of (zero-normalized) exact games where the

1-nucleolus and the compromise value coincide.

Theorem 6.1. Let v ∈ GN be an exact game with v = v0. Then, nuc1(v) = τ(v) if, and only if, one of

the following conditions hold.
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(i) 2v(N) = ∑j∈N Mj(v).

(ii) v(N \ {i}) = v(N \ {j}), for every i, j ∈ N.

(iii) v(N) = ∑j∈N Mj(v).

Proof. Since v is an exact game, mi(v) = v({i}) = 0 for every i ∈ N. Moreover, since every

exact game is balanced, Mi(v) ≥ 0 for every i ∈ N. Note that if c = M(v) = 0, then, v(N) = 0,

τ(v) = 0 = nuc1(v), and (i), (ii), and (iii) hold. We assume, without loss of generality, that

c 6= 0. Then, for every i ∈ N,

τi(v) =
v(N)

∑j∈N cj
ci.

First, for the only if part, assume that nuc1(v) = τ(v). Since (N, v) is balanced, we have that

nuc1(v) = AM(N, E, c) with E = v(N) and c = M(v) by Theorem 4.2. Following the definition

of the Aumann-Maschler rule, we have:

• if E ≤ 1
2 ∑j∈N cj, then, if |N|min{ck|k∈N}

2 > E,

nuc1
j (v) =

E

|N|
for all j ∈ N

and if |N|min{ck|k∈N}
2 ≤ E, there exists i ∈ N such that

nuc1
j (v) =







cj

2 for all j ∈ N with cj ≤ ci,
E−∑k∈N|ck≤ci

ck
2

|{k∈N|ck>ci}|
for all j ∈ N with cj > ci.

• if E >
1
2 ∑j∈N cj, then, if |N|min{ck|k∈N}

2 > ∑k∈N ck − E,

nuc1
j (v) = cj −

∑k∈N ck − E

|N|
for all j ∈ N

and if |N|min{ck|k∈N}
2 ≤ ∑k∈N ck − E, there exists i ∈ N such that

nuc1
j (v) =







cj

2 for all j ∈ N with cj ≤ ci,

cj −
∑k∈N ck−E−∑k∈N|ck≤ci

ck
2

|{k∈N|ck>ci}|
for all j ∈ N with cj > ci.

Then, we consider three cases: (i) there is i ∈ N with nuc1
i (v) =

ci
2 , (ii) nuc1

i (v) =
E
|N| =

v(N)
|N| for

every i ∈ N, and (iii) nuc1
i (v) = ci −

∑j∈N cj−E

|N|
= ci −

∑j∈N cj−v(N)

|N|
for every i ∈ N.

(i) There is i ∈ N with nuc1
i (v) =

ci
2 . Since nuc1

i (v) = τi(v), we have

ci

2
=

v(N)

∑j∈N cj
ci.

Thus, 2v(N) = ∑j∈N cj and Condition (i) holds.
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(ii) For every i ∈ N, we have nuc1
i (v) =

v(N)
|N| . Then, ci

2 ≥ v(N)
|N| for every i ∈ N. Besides, since

nuc1(v) = τ(v), we have, for every i, j ∈ N,

τi(v) =
v(N)

∑k∈N ck
ci =

v(N)

|N|
=

v(N)

∑k∈N ck
cj = τj(v),

which implies ci = cj for every i, j ∈ N. Thus, v(N \ {i}) = v(N \ {j}) for every i, j ∈ N

and Condition (ii) holds.

(iii) For every i ∈ N, we have nuc1
i (v) = ci −

∑j∈N cj−v(N)

|N|
. Then, 2v(N) > ∑j∈N cj and

nuc1
i (v) = ci −

∑j∈N cj−v(N)

|N| ≥ ci
2 for every i ∈ N. Then, the coincidence of the compromise

value and the 1-nucleolus gives

v(N)

∑j∈N cj
ci = ci −

∑j∈N cj − v(N)

|N|
for every i ∈ N.

This implies that

∑j∈N cj − v(N)

|N|
= ci

(

1 −
v(N)

∑j∈N cj

)

=
ci

∑j∈N cj

(

∑
j∈N

cj − v(N)

)

for every i ∈ N. Thus, either v(N) = ∑j∈N cj, or |N|ci = ∑j∈N cj for every i ∈ N. That

is to say, either v(N) = ∑j∈N cj = ∑j∈N Mj(v), or Mi(v) = ci = cj = Mj(v) for every

i, j ∈ N. Then, Condition (ii) or Condition (iii) holds.

Second, with respect to the if part, assume that one of the three conditions hold.

(i) If 2v(N) = ∑j∈N Mj(v), then, τ(v) = v(N)
∑j∈N Mj(v)

M(v) = v(N)
2v(N) M(v) = 1

2 M(v) and nuc1(v) =

CEA(N, v(N), 1
2 M(v)) = 1

2 M(v). Consequently, τ(v) = nuc1(v).

(ii) If v(N \ {i}) = v(N \ {j}), for every i, j ∈ N, then, Mi(v) = Mj(v) for all i, j ∈ N and

τi(v) = v(N)
|N| for all i ∈ N. Moreover, since ∑j∈N Mj(v) = |N|Mi(v) ≥ v(N) and the

Aumann-Maschler rule satisfies equal treatment of equals (see Thomson, 2003), we have

nuc1
i (v) =

v(N)
|N| for all i ∈ N. Consequently, τ(v) = nuc1(v).

(iii) If v(N) = ∑j∈N Mj(v), then, τ(v) = M(v) = nuc1(v).

Remark 6.1. Since every convex game is also exact, Proposition 6.1 can be used to characterize

the class of convex games for which the 1-nucleolus and the compromise value coincide, too.
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Appendix

Proof of Theorem 4.1.

We assume, without loss of generality, that N = {1, . . . , n} and c1 ≤ c2 . . . ≤ cn. Note that if

x ∈ I(v), then,

e({j}, x) = v({j}) − xj = −xj

and

e(N \ {j}, x) = v(N \ {j}) − ∑
l∈N\{j}

xl = v(N \ {j}) − (v(N) − xj) = xj − cj.

(i) We have cj ≥ 0 for every j ∈ N.

Case (i.a): E ≤ ∑j∈N cj.

We show that nuc1(v) = AM(N, E, c). Note that (N, E, c) is a bankruptcy problem. We

distinguish between two situations: E ≤ 1
2 ∑j∈N cj and E >

1
2 ∑j∈N cj.

Case (i.a.1): E ≤ 1
2 ∑j∈N cj.

By definition of the Aumann-Maschler rule, AM(N, E, c) = CEA(N, E, 1
2 c) where CEAj(N, E, 1

2 c) =

min{λ, 1
2 cj} for every j ∈ N and λ ∈ R+ is chosen such that ∑j∈N CEAj(N, E, 1

2 cj) = E.

Let c0 = 0 and let i ∈ N satisfy
ci−1

2
≤ λ <

ci

2
.

Then, λ = 1
|N|−i+1(E − ∑

i−1
l=0

cl
2 ) and

AMj(N, E, c) =







cj

2
if 1 ≤ j ≤ i − 1,

λ if i ≤ j ≤ n.

Let x = AM(N, E, c). Then,

e({j}, x) = −xj =







−
cj

2
if 1 ≤ j ≤ i − 1,

−λ if i ≤ j ≤ n

and

e(N \ {j}, x) = xj − cj =







−
cj

2
if 1 ≤ j ≤ i − 1,

λ − cj if i ≤ j ≤ n.

Therefore,

e({1}, x) = e(N \ {1}, x) ≥ . . . ≥ e({i − 1}, x) = e(N \ {i − 1}, x) = −
ci−1

2
≥ −λ

= e({i}, x) = . . . = e({n}, x) = −λ > −λ + 2λ −
ci

2
= λ −

ci

2
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= e(N \ {i}, x) ≥ . . . ≥ e(N \ {n}, x).

Then, by Theorem 3.3, we have that x = nuc1(v).

Case (i.a.2): E >
1
2 ∑j∈N cj.

By definition of the Aumann-Maschler rule, AM(N, E, c) = c − CEA(N, ∑l∈N cl − E, 1
2 c)

where CEAj(N, ∑l∈N cl − E, 1
2 c) = min{λ, 1

2 cj} for every j ∈ N and λ ∈ R+ is chosen

such that ∑j∈N CEAj(N, ∑l∈N cl − E, 1
2 c) = ∑l∈N cl − E.

Let c0 = 0 and let i ∈ N satisfy
ci−1

2
≤ λ <

ci

2
.

Then, λ = 1
|N|−i+1

(

∑
|N|
l=1 cl − E − ∑

i−1
l=0

cl
2

)

and

AMj(N, E, c) =







cj

2
if 1 ≤ j ≤ i − 1,

cj − λ if i ≤ j ≤ n.

Let x = AM(N, E, c). Then,

e({j}, x) = −xj =







−
cj

2
if 1 ≤ j ≤ i − 1,

−cj + λ if i ≤ j ≤ n

and

e(N \ {j}, x) = xj − cj =







−
cj

2
if 1 ≤ j ≤ i − 1,

−λ if i ≤ j ≤ n.

Therefore,

e({1}, x) = e(N \ {1}, x) ≥ . . . ≥ e({i − 1}, x) = e(N \ {i − 1}, x) = −
ci−1

2
≥ −λ

= e(N \ {i}, x) = . . . = e(N \ {n}, x) = −λ > −λ + 2λ − ci = λ − ci

= e({i}, x) ≥ . . . ≥ e({n}, x).

Then, by Theorem 3.3, we have that x = nuc1(v).

Case (i.b): E > ∑j∈N cj.

We show that nuc1(v) = c + ES(N, E − ∑j∈N cj, c). Let x = c + ES(N, E − ∑j∈N cj, c).

Then, xj = cj +
E−∑l∈N cl

|N|
,

e({j}, x) = −xj = −cj −
E − ∑l∈N cl

|N|
, and e(N \ {j}, x) = xj − cj =

E − ∑l∈N cl

|N|

for every j ∈ N. Therefore,

e(N \ {1}, x) = . . . = e(N \ {n}, x) > e({1}, x) ≥ . . . ≥ e({n}, x)
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where the strict inequality is a direct consequence of the fact that E−∑l∈N cl

|N| > 0 > −c1 −
E−∑l∈N cl

|N|
. Then, by Theorem 3.3, we have that x = nuc1(v).

(ii) We have cj < 0 for some j ∈ N.

Assume, without loss of generality, that c1 ≤ . . . ≤ ck̄ < 0 ≤ ck̄+1 ≤ . . . ≤ cn with

k̄ ∈ {1, . . . , n}.

Case (ii.a): E ≤ ∑j∈N c+j .

We show that nuc1(v) = AM(N, E, c+). Note that c+1 = . . . = c+
k̄

= 0 and c+j = cj for

every j ∈ {k̄ + 1, . . . , n}. Moreover, (N, E, c+) is a bankruptcy problem. By definition

of the Aumann-Maschler rule, AMj(N, E, c+) = 0 for every j ∈ {1, . . . , k̄}. Let x =

AM(N, E, c+). Then,

e({j}, x) = −xj = 0 and e(N \ {j}, x) = xj − cj = −cj > 0 for every j ∈ {1, . . . , k̄}

and B0(x, v) ⊇ {1, . . . , k̄}. Following the same lines as in Case (i.a) of this proof, we can

show that x = nuc1(v).

Case (ii.b): ∑j∈N c+j < E ≤ ∑j∈N cmin
j .

We show that nuc1(v) = CEL(N, E, cmin), with CELj(N, E, cmin) = max{0, cmin
j − λ} for

every j ∈ N and λ ∈ R+ chosen such that ∑j∈N CELj(N, E, cmin) = E. Note that cmin
j =

cj −min{cl |l ∈ N} = cj − c1 for every j ∈ N and 0 = cmin
1 ≤ cmin

2 ≤ . . . ≤ cmin
n . Moreover,

it follows that (N, E, cmin) is a bankruptcy problem.

Let i ∈ N satisfy

cmin
i−1 ≤ λ < cmin

i .

Then, λ = 1
|N|−i+1

(

∑
|N|
l=i cmin

l − E
)

and

CELj(N, E, cmin) =

{

0 if 1 ≤ j ≤ i − 1,

cmin
j − λ if i ≤ j ≤ n.

Let x = CEL(N, E, cmin). Then,

e({j}, x) = −xj =

{

0 if 1 ≤ j ≤ i − 1,

−cmin
j + λ if i ≤ j ≤ n

and

e(N \ {j}, x) = xj − cj = xj − cmin
j − c1 =

{

−cj if 1 ≤ j ≤ i − 1,

−c1 − λ if i ≤ j ≤ n.

Before we write the excesses in non-increasing order, we show that

i − 1 ≤ k̄. (1)
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First, note that

−c1 > λ

since

λ =
1

|N| − i + 1

(

|N|

∑
l=i

cmin
l − E

)

=
1

|N| − i + 1

(

|N|

∑
l=i

(cl − c1)− E

)

=
1

|N| − i + 1

(

|N|

∑
l=i

cl − E

)

− c1 ≤
1

|N| − i + 1

(

∑
l∈N

c+l − E

)

− c1 < −c1,

where the weak inequality is a direct consequence of the definition of c+ and the strict

inequality follows by the assumption ∑l∈N c+l < E.

Next, we show that i − 1 ≤ k̄ by contradiction. Suppose, on the contrary, that i − 1 > k̄.

Then, ci−1 > 0 by definition of k̄ and cmin
i−1 = ci−1 − c1 > −c1 > λ. This establishes a

contradiction with the definition of i. Therefore, we have i − 1 ≤ k̄. Then,

B0(x, v) = {1, . . . , i − 1}

and

e(N \ {1}, x) ≥ . . . ≥ e(N \ {i − 1}, x) ≥ e(N \ {i}, x) = . . . = e(N \ {n}, x)

> e({1}, x) = . . . = e({i − 1}, x) > e({i}, x) ≥ . . . ≥ e({n}, x)

where e(N \ {i − 1}, x) ≥ e(N \ {i}, x) because −ci−1 = −c1 − cmin
i−1 ≥ −c1 − λ by def-

inition of i; e(N \ {n}, x) > e({1}, x) since −c1 > λ and, then, −c1 − λ > 0; e({i −

1}, x) > e({i}, x) since cmin
i > λ by definition of i. Then, by Theorem 3.3, we have that

x = nuc1(v).

Case (ii.c): E > ∑j∈N cmin
j .

We show that nuc1(v) = c + ES(N, E − ∑j∈N cj, c). Let x = c + ES(N, E − ∑j∈N cj, c).

Then, xj = cj +
E−∑l∈N cl

|N|
,

e({j}, x) = −xj = −cj −
E − ∑l∈N cl

|N|
, and e(N \ {j}, x) = xj − cj =

E − ∑l∈N cl

|N|

for every j ∈ N. Therefore,

e(N \ {1}, x) = . . . = e(N \ {n}, x) > e({1}, x) ≥ . . . ≥ e({n}, x)

where the strict inequality is a direct consequence of the fact that E−∑l∈N cl

|N| > 0 > −c1 −
E−∑l∈N cl

|N|
. Then, by Theorem 3.3, we have that x = nuc1(v). ✷
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