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Abstract

This paper deals with bankruptcy problems in which the players have
different utility functions defined in terms of the quantity of allocated re-
source. We tackle this kind of situation by means of an NTU-game, which
turns out to be ordinally convex and balanced. We introduce the CEA-rule
in this context and provide two characterizations of this.
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1 Introduction

In a bankruptcy problem, one has to divide an estate amongst a set of agents,
each of whom has a claim on it, and the total amount claimed exceeds the
estate available, so not all the claims of the agents can be met completely.
Bankruptcy problems were introduced by O’Neill (1982) and Aumann and
Maschler (1985) and have been applied to a wide array of economic prob-
lems such as: taxation problems (Young, 1988), surplus-sharing problems
(Moulin, 1987), cost-sharing problems (Moulin, 1988), apportionment of in-
divisible goods problems (Young, 1994) and priority problems (Moulin, 2000
and Young, 1994). In brief, one can say that the classical bankruptcy model
deals with allocation problems in which there is a perfectly divisible estate to
be distributed and the demand of each agent involved can be characterized
by a single (monetary) claim on it.

Kaminski (2000) and Calleja et al (2005) also consider bankruptcy prob-
lems in which the demand of each claimant is not one-dimensional, as is
the case in classical bankruptcy models, but multi-dimensional. In the for-
mer paper different priorities are assigned to the various components of an
agent’s claim vector, however, in the latter work, on the contrary, they do
not assume any exogenously given priorities on the claim components.

Another extension of the classical model is introduced in Pulido et al
(2002, 2008), where two types of information are used. On the one hand,
the claims of the different agents and, on the other hand, a vector with
additional information -exogenous to the claimants but directly related to
the problem. This additional information is considered as a point of reference
or starting point to begin with the distribution of the estate.

In all the above-mentioned papers, the estate is considered to be per-
fectly divisible. Nevertheless, in Herrero and Mart́ınez (2006) bankruptcy
problems with indivisible goods are studied and bankruptcy rules, with pri-
orities among the agents, are provided. The paper by Orshan et al (2003)
focuses on bankruptcy problems with non-transferable utility (NTU). This
kind of problem arises in situations where the estate is not perfectly divisible
but a set of all possible allocations.

In this work we consider bankruptcy problems where the estate is per-
fectly divisible, although the satisfaction derived from receiving one unit
is not the same for all agents, i.e. they have different utility functions
which can be non-linear. Bearing in mind these circumstances, we intro-
duce an NTU-game and, afterwards, analyse bankruptcy rules which extend
the classical ones. This kind of problems can be found in different settings.
For instance, Lucas-Estañ et al (2007) and Gozálvez et al (2007) describe
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the channel assignment problem in wireless telecommunications networks
through bankruptcy techniques, taking into account that the users in the
system do not have the same utility functions and these are non-linear.
In their work, the Constrained Equal Awards (CEA) and the Constrained
Equal Losses (CEL) rules are adjusted to such situations where the estate
(number of channels to be assigned to) is countable and bounded1. However,
this idea can be adapted for communications networks in which the allocated
resource -the bandwidth or channels which can be shared- is perfectly divisi-
ble. Allocating resources (money, for instance) for buying the equipment for
several laboratories is another case where this approach can be meaningful.
Since not all laboratories have the same features, it is understandable that
the same amount of money does not provide the same level of contentment.
Finally, and in order to complete a possible list of examples, we can consider
the situation in which several agents have to share some water resources. It
is glaringly obvious that the financial return of the water resources assigned
to each agent can be completely different, although they all receive the same
amount. Moreover, this return can be non-linear with the assigned amount
of water.

Therefore, the model proposed in this paper can be used to tackle situa-
tions in which there is an estate (assumed to be perfectly divisible) and a set
of agents who have demands on it, but the same quantity assigned to differ-
ent individuals produces different levels of satisfaction. In each particular
case, the utility function translates the resources assigned to an agent as the
return that they perceive. In the case of channel assignment, for example,
a user receives a certain number of channels which represents a particu-
lar transmission rate or quality of service (QoS). In the example of buying
equipment for laboratories, the claimants obtain money which is converted
into a certain functionality of the laboratory. And finally, in the problem of
allocating water resources, the water assigned to each landowner is trans-
lated into earnings. Thus, we analyse the problem of allocating a scarce
resource not from the resource point of the view, but from the perspective
of how much profit a claimant can make from the resources he obtains. As
a result, since agents are different, drawing an analogy with the problem of
sharing a cake, we are talking about how to share one when people have
different metabolism, so we do not look at the portion of the cake that an
agent receives, but focus on the satisfaction it gives them.

The paper is organized as follows. In Section 2 we introduce an NTU-
1These works concentrates in algorithms that allow to obtain the CEA and the CEL

rules.
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game associated with a bankruptcy problem in which the players have dif-
ferent utility functions defined over the quantity of allocated resources. We
also analyze its properties and the non-emptiness of the core. In Section 3
we define the CEA rule for this kind of bankruptcy problems and provide
two characterizations of this rule in Section 4.

2 The model

A standard bankruptcy problem can be described by a triple (N,E, d), where
N = {1, ..., n} is the finite set of agents, E ≥ 0 is the estate to be divided
and d ∈ RN

+ , the vector of claims, is such that
∑

i∈N di ≥ E. To deal
with a bankruptcy problem (N,E, d) we can derive a classical bankruptcy
TU-game (N, v), where the value of a coalition S ⊂ N is given by

v(S) = max{E −
∑

i∈N\S

di, 0}.

Therefore, it represents what is left for the players in S after the demands
of the players in N\S have been satisfied.

As it was motivated in Section 1, we are interested in bankruptcy prob-
lems where the demands of the agents are based on a certain amount of the
resource involved and they will represent the corresponding level of satis-
faction or utility for them. Thus, in our case, each agent i ∈ N has their
own bounded utility function ui : R+ → [0, ki] , which translates resources
into degree of contentment. We assume that these utility functions are non-
decreasing, right-continuous and such that ui (x) = ki for all x ≥ mi, where

mi = min
{

arg max
x

ui (x)
}

, (1)

for all i ∈ N . We represent a bankruptcy problem with non-linear utilities as
a triple (N,E, d), where N is the finite set of agents, E ≥ 0 is the estate to be
divided and d = (m,u) with E ≤

∑
i∈N mi. In our context, associated with a

bankruptcy problem of this type, we can introduce a cooperative bankruptcy
game with non-transferable utility (N,V(N,E,d),H), whose elements are: N
is the set of players, V(N,E,d) is the map which assigns to each coalition
S ⊂ N,S (= ∅ a subset V(N,E,d) (S) ⊂ RS with

V(N,E,d) (S) =
{

k ∈ RS

∣∣∣∣
∃x ∈ RS

+,
∑

i∈Sxi ≤ v (S) and
u (x) = (u1 (x) , ..., us (x)) ≥ k

}
, (2)
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where v(S) = max{E −
∑

i∈N\S mi, 0}, and H =
n∏

i=1
[0, ui (mi)] is a com-

pact subset of RN
+ . For the sake of brevity, we usually identify the game

(N,V(N,E,d),H) with the pair (N,V(N,E,d)).
The next result shows that it is actually an NTU-game.

Proposition 1 Let (N,E, d) be a bankruptcy problem with non-linear util-
ities, where d = (m,u) and m is defined as in (1), and (N,V(N,E,d)) is the
corresponding bankruptcy game. Then, it holds that

(i) V(N,E,d) (S) (= ∅,∀S ⊂ N.
(ii) If k ∈ V(N,E,d) (S) and wi ≤ ki,∀i ∈ S, then w ∈ V(N,E,d) (S) .
(iii) If S ∩ T = ∅, then V(N,E,d) (S)× V(N,E,d) (T ) ⊂ V(N,E,d) (S ∪ T ) .
(iv) k ∈ V(N,E,d) (N) =⇒ k ≤ w, for some w ∈ H,

i.e. (N,V )(N,E,d) is an NTU-game.

Proof. From (2) it is easy to check that conditions (i), (ii) and (iv) are
met. Condition (iii) represents the superadditivity in our context. Consider
(kS , kT ) ∈ V(N,E,d) (S)× V(N,E,d) (T ) with S ∩ T = ∅. Then, there exist

xS ∈ RS
+ |

∑
i∈SxS

i ≤ v (S) , u
(
xS

)
≥ kS , and

xT ∈ RT
+ |

∑
i∈T xT

i ≤ v (T ) , u
(
xT

)
≥ kT .

Since (N, v) is a classical bankruptcy game, it holds that

v (S ∪ T ) ≥ v (S) + v (T ) ≥
∑

i∈SxS
i +

∑
i∈T xT

i ,

with
(
xS , xT

)
∈ RS∪T

+ . Thus, u
(
xS , xT

)
≥

(
kS , kT

)
∈ V(N,E,d) (S ∪ T ) , i.e.

superadditivity is fulfilled. !

A solution for NTU-games is a correspondence F that allocates to each
game (N,V ), of a family of NTU-games, a subset F (N,V ) ⊂ RN . A well-
known solution concept for NTU-games is the core,

C(N,V ) = {x ∈ V (N) | ( ∃ S ⊂ N, S (= ∅,

and y ∈ V (S), with yi > xi ∀i ∈ S}.

In our setting, Theorem 1 states that these bankruptcy NTU-games are
balanced.
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Theorem 1 Let (N,E, d) be a bankruptcy problem with non-linear utilities
and (N,V(N,E,d)) the corresponding bankruptcy NTU-game. Then the core,
C(N,V(N,E,d)), is non-empty.

Proof. Consider a balanced collection {S1, ..., Sm} , i.e. suppose that there
exist positive numbers α1, ...,αm such that

∑
j:i∈Sj

αj = 1,∀i ∈ N. We have

to prove that
m⋂

j=1
V(N,E,d) (Sj) ⊂ V(N,E,d) (N) . Take k ∈

m⋂
j=1

V(N,E,d) (Sj) ,

then there exist xj ∈ RSj such that
∑

i∈Sj
xj

i ≤ v (Sj) and ui

(
xj

i

)
≥ ki,∀i ∈

Sj . Thus, αj
∑

i∈Sj
xj

i ≤ αjv (Sj) and, consequently,

m∑

j=1

αj
∑

i∈Sj
xj

i ≤
m∑

j=1

αjv (Sj) ≤ v (N) = E,

where the last inequality holds because (N, v) is a classical bankruptcy
game. Taking into account that

∑
i∈N

∑
j:i∈Sj

αjx
j
i =

∑m
j=1 αj

∑
i∈Sj

xj
i

and
∑

j:i∈Sj
αjx

j
i ≥ minj:i∈Sj

{
xj

i

}
, we can derive that ui(

∑
j:i∈Sj

αjx
j
i ) ≥

ui(minj:i∈Sj

{
xj

i

}
) ≥ ki. Therefore, k ∈ V(N,E,d) (N) . !

Related with the non-emptiness of the core we obtain the next result.

Theorem 2 Let (N,E, d) be a bankruptcy problem with non-linear utilities,
(N,V(N,E,d)) the corresponding bankrupty NTU-game and (N, v) the game
with transferable utility associated with the bankruptcy problem (N,E, m).
If x ∈ C(N, v) then u(x) ∈ C(N,V ).

Proof. If x ∈ C(N, v)2 then
∑

i∈N xi = v(N) and thus u(x) ∈ V (N). Now
suppose that there exist S ⊂ N and k ∈ V (S) such that ki > ui(xi) for all
i ∈ S. k ∈ V (S) implies that there exists y ∈ RS such that

∑
i∈S yi ≤ v(S)

and u(y) ≥ k. Thus we have that ui(yi) ≥ ki > ui(xi) for all i ∈ S and then
yi > xi for all i ∈ S because the functions ui are non-decreasing. In this
way we obtain that v(S) ≥

∑
i∈S yi >

∑
i∈S xi, but this is a contradiction

with x ∈ C(N, v). !

Classical bankruptcy games turned out to be convex, so the next step
in our analysis of bankruptcy NTU-games should be related to studying

2If (N, v) is a game with transferable utilty, the core of the game is defined as C(N, v) =
{X ∈ RN | i∈N xi = v(N) and i∈S xi ≥ v(S) ∀S ⊂ N}.
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whether this property also holds in our context or not. Vilkov (1977) and
Sharkey (1981) introduced two related concepts for NTU-games, ordinal
and cardinal convexity, respectively, mainly based on supermodularity. The
reader is referred to Hendrickx et al (2000, 2002) for other marginalistic
interpretations and their relationships.

An NTU-game (N,V ) is called ordinally convex if, for all coalitions
S, T ⊂ N such that S (= ∅, T (= ∅ and for all k ∈ RN such that kS ∈ V (S)
and kT ∈ V (T ), we have kS∩T ∈ V (S ∩ T ) or kS∪T ∈ V (S ∪ T ).

An NTU-game is called cardinally convex if

V 0 (S) + V 0 (T ) ⊂ V 0(S ∩ T ) + V 0 (S ∪ T ) 3,

for all S, T ⊂ N,S (= ∅ (= T.
In this paper we focus on the so-called ordinal convexity, because as the

next example shows, although strong conditions on the utility functions are
requiered we can not guarantee that bankruptcy NTU-games are cardinally
convex.

Example 1 Let ({1, 2, 3, 4} , 8,
(
(1, 1000x) ,

(
2, x2

)
,
(
3, x3

)
,
(
4, x4

))
) be a

bankruptcy problem with convex utilities.
In this case, V 0 (1, 2) + V 0 (1, 3) − V 0(1) " V 0 (1, 2, 3)4. Since, we can

consider
for {1, 2} , (1000, 0) ∈ V (1, 2) and
for {1, 3} , (1000, 1) ∈ V (1, 3).

Furthermore, it is straightforward to prove that V (1) = {k ∈ R | k ≥ 0} and
if (k1, k2, k3) ∈ V (1, 2, 3) then k1 ≤ 1000.

Theorem 3 Let (N,E, d) be a bankruptcy problem with non-linear utilities.
The corresponding bankruptcy NTU-game (N,V(N,E,d)) is ordinally convex.

Proof. Let k ∈ RN be such that kS ∈ V (S) and kT ∈ V (T ). Then,
there exist xS with

∑
i∈SxS

i ≤ v (S) , kS ≤ u
(
xS

)
, and yT with

∑
i∈T yT

i ≤
v (T ) , kT ≤ u

(
yT

)
.

We can assume without loss of generality that xS
i = yT

i for all i ∈ S ∩T,
because kS

i = kT
i for all i ∈ S ∩ T. If S ∩ T = ∅, it is straightforward that

kS∪T ∈ V (S ∪ T ) . Thus, let us assume that S ∩T (= ∅. In this problem, we
have kS∩T ≤ u

(
xS

S∩T

)
and two cases can arise:

3If (N, V ) is an NTU-game and S ⊂ N , V 0(S) = {x ∈ RN | xS ∈ V (S) and xi = 0 ∀i ∈
N\S}.

4Instead of V ({i}), V ({i, j}), etc. we often write V (i), V (i, j), etc.
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1. If
∑

i∈S∩T xS
i ≤ v (S ∩ T ) , then kS∩T ∈ V (S ∩ T ) .

2. If
∑

i∈S∩T xS
i > v (S ∩ T ) , we take z ∈ RS∪T

+ such that

zi = xS
i , if i ∈ S\T

zi = yT
i , if i ∈ T\S

zi = xS
i = yT

i , if i ∈ S ∩ T.

Therefore,
∑

i∈S∪T zi =
∑

i∈SxS
i +

∑
i∈T yT

i −
∑

i∈S∩T xS
i ≤ v (S) +

v (T )− v (S ∩ T ) ≤ v (S ∪ T ) , where the last inequality holds because
the classical bankruptcy game (N, v) is convex. Moreover, kS∪T ≤
u (z) and, as a result, kS∪T ∈ V (S ∪ T ) . !

3 The CEA rule

3.1 Definition

We have focussed our attention on bankruptcy NTU-games so far. In this
section we are going to tackle the problem using bankruptcy rules. In par-
ticular, we are interested in the role which the Constrained Equal Awards
(CEA) rule plays in this setting.

Definition 1 The Constrained Equal Awards (CEA) rule for bankruptcy
problems with non-linear utilities is a nonnegative function which assigns to
each (N,E, d) a payoff vector CEA(N,E, d), where

CEAi(N,E, d) = min{mi, u
−1
i (α)}

with α ∈ R+ and such that

n∑

i=1

min{mi, u
−1
i (α)} = E and

n∑

i=1

min{mi, u
−1
i (α′)} > E,

for all α′ > α5.
5We would like to point out that we could opt for an alternative definition of the CEA

rule in which efficiency was not required, i.e. with

n

i=1

min{mi, u
−1
i (α)} ≤ E,

but we have preferred to keep as it was introduced in this section in order to preserve such
an important feature for a rule.
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Remark 1 We use

u−1
i (α) =

{
min{x ∈ R+ | ui(x) ≥ α} if α ≤ ui(mi)
+∞ or mi if α > ui(mi)

as the definition of the inverse function of ui, for all i ∈ N.

As Example 2 illustrates, we need to impose an additional restriction
upon the utility functions in order to guarantee that the CEA rule is uniquely
determined.

Example 2 Let ({1, 2} , E, d) be an NTU bankruptcy problem, where both
agents have the same utility function:

In this case, we cannot find an α ∈ R+ such that
∑2

i=1 min{mi, u
−1
i (α)} =

E.

However, if we consider strictly increasing utility functions, as in Propo-
sition 2, the CEA rule is well defined.

Proposition 2 Let (N,E, d) be a bankruptcy problem with non-linear utili-
ties. If, for all i ∈ N , ui are strictly increasing, then CEA(N,E, d) consists
in only one point.

Proof. First, we are going to prove that every u−1
i is a continuous and

non-decreasing function in (0, ui(mi)).
Let 0 < α < α′ < ui(mi). We have

{x ∈ R+ | ui(x) ≥ α′} ⊂ {x ∈ R+ | ui(x) ≥ α},

and, therefore

min{x ∈ R+ | ui(x) ≥ α′} ≥ min{x ∈ R+ | ui(x) ≥ α},
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which implies u−1
i (α) ≤ u−1

i (α′). Hence, u−1
i is a non-decreasing function.

In order to prove that u−1
i is continuous in (0, ui(mi)), let α ∈ (0, ui(mi)).

Consider the limits

lim
y→α+

min{x ∈ R+ | ui(x) ≥ y} = x1 and

lim
y→α−

min{x ∈ R+ | ui(x) ≥ y} = x2.

Both exist and coincide with the infimum, respectively supremum, of the
function because u−1

i is a non-decreasing and bounded function. Further-
more, we have that x1 ≥ u−1

i (α) ≥ x2.
Let us assume that x1 > u−1

i (α). Thus, we can take x′ such that
u−1

i (α) < x′ < x1. Since ui is strictly increasing, we obtain

α ≤ ui(u−1
i (α)) < ui(x′) < ui(x1),

and min{x ∈ R+ | ui(x) ≥ ui(x′)} ≤ x′ < x1. But this is a contradiction with
the definition of x1. Hence, it holds that x1 = u−1

i (α) and, consequently,
u−1

i is right-continuous.
If u−1

i (α) > x2, we can consider x′ such that x2 < x′ < u−1
i (α). Since ui

is strictly increasing, two cases arise:

1. ui(x′) ≤ α. Since x′ > x2, we obtain a contradiction with the way in
which x2 was chosen.

2. ui(x′) > α. This means that x′ ∈ {x ∈ R+ | ui(x) ≥ α}, so x′ ≥
min{x ∈ R+ | ui(x) ≥ α} = u−1

i (α) what contradicts x′ < u−1
i (α).

Therefore, we can conclude u−1
i (α) = x2, and this implies that u−1

i is
left-continuous and, as a result, it is continuous.

Let us consider the set {ui(mi), i ∈ N}. From it we can build the
corresponding sequence α1 < α2 < ... < αr, r ≤ n, and associated with each
α we can derive the sets of players Sj = {i ∈ N | ui(mi) ≥ αj}, j = 1, 2, ..., r.
Note that S1 = N # S2 # ... # Sr. We define the function:

U−1(α) =






∑
i∈S1

u−1
i (α) if 0 ≤ α ≤ α1∑

i∈S1\S2
mi +

∑
i∈S2

u−1
i (α) if α1 < α ≤ α2

... ...∑
i∈S1\Sr

mi +
∑

i∈Sr
u−1

i (α) if αr−1 < α ≤ αr∑
i∈S1

mi if α > αr.
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This is a continuous function and
∑

i∈S1
mi > E. Taking into account the

Intermediate Value Theorem, there exists α ∈ R+ such that U−1(α) = E
and U−1(α′) > E, for all α′ > α. Furthermore, this α is unique.

Finally, note that U−1(α) =
∑n

i=1 min{mi, u
−1
i (α)} =

∑n
i=1 CEAi(N,E, d).

!

3.2 Game theoretical rules

In this subsection we relate two possible approaches for the study of bankruptcy
problems with non-linear utilities. Following Section 2, the first approach
is based on NTU-games. The second, according to the subsection above, is
based on the direct definition of rules across the problem. We should note
that the main ideas of this subsection are inspired by Curiel et al (1987).

Let (N,V ) be an NTU-game. It will be of interest to consider the so-
called utopia vector K(V ) (Borm et al, 1992) that is defined for each i ∈ N
by

Ki(V ) = sup{t ∈ R such that ∃a ∈ RN\{i} with (a, t) ∈ V (N),

( ∃b ∈ V (N\{i}) with b > a}.

To attain our objective, first we give a definition.

Definition 2 A rule f for bankruptcy problems with non-linear utilities is
a game theoretical rule if there exists a solution F for NTU-games such that
u(f(N,E, d)) = F (N,V(N,E,d)), for all (N,E, d).

We provide a characterization of the game theoretical rules for bankruptcy
problems with non-linear utilities that generalizes the well-known result for
classical bankruptcy rules.

Theorem 4 A rule f for bankruptcy problems with non-linear utilities is a
game theoretical rule if and only if for every bankruptcy problem with non-
linear utilities (N,E, d), f(N,E, d) = f(N,E, d′), where d′i = (min{E,mi}, ui)
for all i ∈ N .

Proof. Necessary condition. Let f be a game theoretical rule for bankrup-
tcy problems with non-linear utilities and F the corresponding solution for
NTU-games. Let (N,E, d) be a bankruptcy problem with non-linear utili-
ties, then:

u(f(N,E, d)) = F (N,V(N,E,d)) = F (N,V(N,E,d′)) = u(f(N,E, d′)).
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Thus, we have that f(N,E, d) = f(N,E, d′).
Sufficient condition. Let f be a rule for bankruptcy problems with non-

linear utilities such that for all (N,E, d), f(N,E, d) = f(N,E, d′). We will
define a solution for NTU-games. Let (N,V ) be an NTU-game in which
each player i ∈ N has an utility function ui. We define

F (N,V ) = u(f(N,EV , dV )),

where

EV = max{
∑

i∈N

xi

∣∣x ∈ u−1(V (N)+)}, dV = (mV , u) and

mV
i = u−1

i (Ki(V )) + n−1(EV −
∑

i∈N

u−1
i (Ki(V )))+.

Let (N,E, d) be a bankruptcy problem with non-linear utilities. We obtain
that

u(f(N,E, d)) = u(f(N,E, d′)) = F (N,V(N,E,d))

and, then, the rule f is game theoretical. !

Curiel et al (1987) proved that the CEA rule applied to a classical
bankruptcy problem provides an element of the core of the game with trans-
ferable utility associated with the bankruptcy problem. In the general setup
we are working with, we obtain a similar result.

Theorem 5 Let (N,E, d) be a bankruptcy problem with non-linear utilities.
Then, u(CEA(N,E, d)) ∈ C(N,V(N,E,d)).

Proof. Suppose that there exists a bankruptcy problem with non-linear
utilities (N,E, d) such that u(CEA(N,E, d)) (∈ C(N,V(N,E,d)). Then there
exist a coalition S ⊂ N and a vector of utilities k ∈ V(N,E,d)(S) such that

k > u(CEA(N,E, d))S . (3)

Because k ∈ V(N,E,d)(S) and the definition of the NTU-game (N,V(N,E,d))
there is a vector x ∈ RS

+ such that
∑

i∈S

xi ≤ v(S) and u(x) ≥ k, (4)
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where v(S) = max{0, E −
∑

i∈N\S mi}, that is, (N, v) is the classical TU
bankruptcy game associated with the bankruptcy problem (N,E, m). In
this way, by (3) and (4) we have that

v(S) ≥
∑

i∈S

xi >
∑

i∈S

CEAi(N,E, d). (5)

We will define a rule, f , for bankruptcy problems. Let (N,E, c) be such a
problem, then:

f(N,E, c) =






CEA(N,E, c), if c (= m

CEA(N,E, d = (m,u)), if c = m.

It is straightforward to check that for all bankruptcy problems (N,E, c),
∑

i∈N

fi(N,E, c) = E and 0 ≤ fi(N,E, c) ≤ ci, for all i ∈ N.

By using Theorem 6 in Curiel et al (1987), we have that for every bankruptcy
problem (N,E, c), f(N,E, c) ∈ C(N, v(N,E,c)) and, then, for all S ⊂ N,
v(S) ≤

∑
i∈S CEAi(N,E, d). But this is a contradiction with (5) and, as a

result, u(CEA(N,E, d)) ∈ C(N,V(N,E,d)). !

4 Axiomatic characterizations

In this section we provide two axiomatic characterizations of the CEA rule
for bankruptcy problems with non-linear utilities. We assume the condition
given by Proposition 2. To start with, we introduce some natural properties
for a rule in this context.

A rule for bankruptcy problems with non-linear utilities is a function f
that assigns to every bankruptcy problem with non-linear utilities (N,E, d)
a vector f(N,E, d) ∈ RN such that 0 ≤ fi(N,E, d) ≤ mi for all i ∈ N
and

∑
i∈N fi(N,E, d) = E. Hence a rule provides a possible division of the

resource among the users, where the amount fi(N,E, d) that user i obtains
is non-negative and not larger than their claim on the resource mi.

Equal treatment. A rule f satisfies equal treatment if for all (N,E, d)
and for all i, j ∈ N such that di = dj , then fi(N,E, d) = fj(N,E, d).

If a rule f satisfies equal treatment, two agents with the same resource
claim and the same utility function will obtain the same outcome. This

13



property has a similar flavour to the basic symmetry requirement of equal
treatment of equals (cf. O’Neill, 1982).

Invariance under claims truncation. A rule f satisfies invariance under
claims truncation if for all (N,E, d) we have

f(N,E, d) = f(N,E, d′),

where d′i = (min{E,mi}, ui) for all i ∈ N .
This property (cf. Curiel et al, 1987) means that truncating each resource

claim by the estate does not influence the outcome.
Weak composition. A rule f satisfies weak composition if, for all (N,E, d)

and for all 0 ≤ E′ ≤ E when ui = uj for all i, j ∈ N, we have

f(N,E, d) = f(N,E′, d) + f(N,E − E′, (mi − fi(N,E′, d), ui)i∈N ).

According to this property (cf. Young, 1988) we can divide the estate
using two different procedures, which result in the same outcome when the
utilities of the users are equal. In the first, we divide the avaliable resources
directly by means of f . In the other procedure, first we divide a part E′ of
the estate and then the remainder, E − E′, on the basis of the remaining
claims, both times using f .

Utility consistency of awards. A rule f satisfies utility consistency of
awards if, for all (N,E, d) and for all S ⊂ N, it holds

f(S,
∑

i∈S

ui(fi(N,E, d)), (ui(mi), id)i∈S) = (ui(fi(N,E, d)))i∈S ,

where id denotes the identity function defined over the set of the real num-
bers.

Utility consistency of awards (cf. Aumann and Maschler, 1985) states
that if a set of users solve a bankruptcy problem with non-linear utilities
and after that a subset of them decide to redivide the utility that they have
obtained, then this subset of agents should obtain the same utility in both
cases.

When we restrict ourselves to the type of classic bankruptcy problems
where agents have the same linear utility function, equal treatment, invari-
ance under claims truncation and weak composition reduce to the classical
properties of equal treatment, invariance under claims truncation and com-
position. Dagan (1996) characterized the CEA rule for bankruptcy problems
by using these three properties. We extend that result to the context of
bankruptcy problems with non-linear utilities by adding a fourth property.

14



Theorem 6 A rule f for bankruptcy problems with non-linear utilities satis-
fies equal treatment, invariance under claims truncation, weak composition,
and utility consistency of awards if and only if

f(N,E, d) = CEA(N,E, d),

for all bankruptcy problems with non-linear utilities.

Proof. It is straightforward to see that the CEA rule for bankruptcy prob-
lems with non-linear utilities satisfies the four properties of the theorem.
Thus, we only have to prove the uniqueness. Let f be a rule that satis-
fies the four properties and (N,E, d) a bankruptcy problem with non-linear
utilities. We will prove that f(N,E, d) = CEA(N,E, d). We consider the
bankruptcy problem (N,

∑n
i=1 ui(fi(N,E, d)), (ui(mi), id)i∈N ). Since f sat-

isfies equal treatment, invariance under claims truncation, and weak compo-
sition, and using similar arguments to those in the proof by Dagan (1996),
we obtain that

f(N,
n∑

i=1

ui(fi(N,E, d)), (ui(mi), id)i∈N )

= CEA(N,
n∑

i=1

ui(fi(N,E, d)), (ui(mi), id)i∈N ).

Moreover, f satisfies utility consistency of awards and taking into account
the last result, we can assert that for all i ∈ N

ui(fi(N,E, d)) = CEAi(N,
n∑

i=1

ui(fi(N,E, d)), (ui(mi), id)i∈N ). (6)

Applying the definition of the CEA rule we have that, for all i ∈ N,

CEAi(N,
n∑

i=1

ui(fi(N,E, d)), (ui(mi), id)i∈N ) = min{ui(mi),α},

with α ∈ R such that
n∑

i=1

min{ui(mi),α} =
n∑

i=1

ui(fi(N,E, d)).

Taking into account (6) we can deduce that

fi(N,E, d) = min{mi, u
−1
i (α)},
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where α ∈ R and we know that
∑n

i=1 fi(N,E, d) = E. As a consequence,

fi(N,E, d) = CEAi(N,E, d), ∀i ∈ N. !

Corollary 1 The CEA rule for bankruptcy problems with non-linear utili-
ties is a game theoretical rule.

Other natural properties are the following.
Strong equal treatment. A rule f satisfies strong equal treatment if for all

(N,E, d), for all i, j ∈ N such that ui(mi) = uj(mj), then ui(fi(N,E, d)) =
uj(fj(N,E, d)).

If a rule f satisfies strong equal treatment and two agents have resource
claims with the same utility, they obtain outcomes with the same utility.
This property has also a similar flavour than the basic symmetry require-
ment of equal treatment of equals (cf. O’Neill, 1982) and it implies equal
treatment.

Path independence. A rule f satisfies path independence if for all (N,E, d)
and for all E′ ≥ E,

f(N,E, d) = f(N,E, d′),

where d = (m, u) and d′ = (f(N,E′, d), u).
If a rule f satisfies path independence (cf. Moulin, 1987) we can divide

the total amount of resources using two procedures yielding the same result.
The first procedure divides the estate directly through f . In the second, we
first divide a bigger amount E′ ≥ E and, then, use the outcome f(N,E′, d)
as resource claims to divide the real E, in both cases using f .

Consistency. A rule f satisfies consistency if for all (N,E, d), for all
S ⊂ N and for all i ∈ S,

fi(N,E, d) = fi(S,
∑

i∈S

fi(N,E, d), dS),

where dS denotes the claims on the resources and the utilities of the users
in S.

Consistency (cf. Aumann and Maschler, 1985) says that if a set of users
solves a bankruptcy problem with non-linear utilities and, afterwards, a
subset of them decides to redivide the resources they have obtained, then
they should obtain the same part of the total in both cases.

Exemption for two users. A rule f satisfies exemption for two users if
for all (N,E, d) with N = {1, 2} and for all i, j ∈ N , i (= j, such that

ui(mi) ≤
ui(mi) + uj(E −mi)

2
, we have fi(N,E, d) = mi

6.

6A general statement for n users of this property can be given.
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This property (cf. Herrero and Villar, 2001) refers to the behaviour of
a rule when resource claim utilities are completely different. It implies that
when the utility of a resource claim is smaller than the proportional division
of the estate, the rule should grant it the full resource claim. This property
is a protective criterion for those users with small claims.

Herrero and Villar (2001) axiomatically characterize the CEA rule for
bankruptcy problems through path independence, consistency and exemp-
tion. The next theorem extends that result.

Theorem 7 A rule f for bankruptcy problems with non-linear utilities sat-
isfies path independence, consistency, and exemption for two users if and
only if

f(N,E, d) = CEA(N,E, d),

for every bankruptcy problem with non-linear utilities.

Proof. Again, we omit the part of the existence and focus on the uniqueness.
Let f be a rule for bankruptcy problems with non-linear utilities that satisfies
the properties of the theorem. Then we have that f satisfies strong equal
treatment (the proof follows the same steps that the proof of Claim 4 in
Herrero and Villar, 2001). Let (N,E, d) be a bankruptcy problem with
non-linear utilities in which N has only two elements. First, suppose that

u1(m1) ≤
u1(m1) + u2(E −m1)

2
,

then exemption implies that f1(N,E, d) = m1, f2(N,E, d) = E −m1 and,
thus, f(N,E, d) = CEA(N,E, d). If

u1(m1) >
u1(m1) + u2(E −m1)

2
,

then u1(m1) > u2(E − m1) and E < u−1
2 (u1(m1)) + m1. Take E′ =

u−1
2 (u1(m1))+m1. We have that E′ > E, E′−m1 = u−1

2 (u1(m1)) and, there-

fore, u2(E′−m1) = u1(m1). So we can write u1(m1) =
u1(m1) + u2(E′ −m1)

2
and, then, exemption implies f(N,E′, d) = (m1, E′−m1) = CEA(N,E′, d).
Path independence allows us to derive f(N,E, d) = f(N,E, (f(N,E′, d), u)).
Taking into account that f(N,E′, d) = (m1, E′ −m1) and u2(E′ −m1) =
u1(m1), if we apply strong equal treatment, we can conclude that

u1(f1(N,E, d)) = u2(f2(N,E, d))
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and finally, f(N,E, d) = CEA(N,E, d). In the general case, when N has
more than two elements, we can apply consistency and the well-known fact
that the consistent extension of a rule is unique (see, for example, Aumann
and Maschler, 1985), to achieve the desired result. !

Remark. The properties of Theorem 6 and of Theorem 7 are logically
independent. We leave the proof to the reader.
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