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Abstract

We present a study of the core-center for the class of convex games. By means of a dynamic

process between coalitions, the core-center of a convex game can be obtained from the core-centers

of other appealing games, namely the utopia games. Furthermore, for some subclasses of games,

this formulation provides a direct connection between the core-center and the Shapley value of a

game that picks up all the information of the utopia games. Our comparison with the Shapley

value is also based on the properties satisfied by both solutions. To finish the paper, the airport

game allows us to give some insights about the differences between the Shapley value and the

core-center.
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Introduction

In González-Dı́az and Sánchez-Rodŕıguez (2003), a new framework to study so-
lution concepts is introduced. If given a game we are able to summarize all its
information through a set-valued solution then, taking the appropriate allocation
within the set it should also summarize the information of the set and consequently
the information of the original game too. For this purpose distributions of proba-
bility on the sets are defined in order to measure the importance of each allocation
in the set. When there is no additional information on the set but the set itself, one
can endow it with the uniform distribution. Furthermore, in the specific case where
the set-valued solution is the core, the single-valued solution selected is named the
core-center.

The advantages of an allocation method based on a game theoretic solution
(nucleolus and Shapley value, among others) is that the allocation rule incorporates
the information regarding all the alternatives available to the participants in the
game. In our case, the core-center takes into account the information provided by
all the allocations in the core, and subsequently, by the game itself.

In the present paper we focus on the analysis of the core-center for convex
games. If a game is convex, players have incentives to cooperate and form the
grand coalition N since the marginal contribution of any player to any coalition
becomes larger (or at least does not decrease) when the coalition size increases.
Convex games have nice properties: they are balanced games, i.e. their cores are
non-empty; the core is the unique stable set; the Weber set, the bargaining set, and
the core coincide; the kernel is the nucleolus... Furthermore, the special geometric
structure of the core of a convex game allows to find the main result of this paper:
the existing relation between two different “centers” of the core, the Shapley value
and the core-center.

In the class of convex games, the core coincides with the convex hull of all
the marginal contributions vectors, i.e., with the Weber set. The Shapley value
(Shapley (1953)) for convex games is a weighted center of mass of the finite set of
particles given by the extreme points of the core.

The core-center is the center of mass of the whole core considered as a continuum
of particles. It is the point at which one can balance all the core allocations; in
other words it is the expectation of the uniform distribution over the core. So, in
some sense we can say that the core-center summarizes the behavior of the core
preserving its properties and applies a principle of fairness to all the structure of
the core.

The nucleolus is a solution concept for cooperative games introduced by Schmei-
dler (1969) to overcome the multiplicity of outcomes characteristic of its antecedent
concepts, the bargaining set and the kernel. There is at least one important differ-
ence between the core-center and the nucleolus. Given a game with a non-empty
core, as it is proved in Maschler et al. (1979), not all redundant constraints of the
core can be suppressed in the computation of the nucleolus. The core-center be-
haves differently. If two games have the same core, then they also have the same
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core-center. The nucleolus, also called the lexicographic center of a game, defines
a unique vector for each game. When the core is non empty it contains the nucleo-
lus. More geometric properties of the nucleolus are given in Maschler et al. (1979),
where the location of the nucleolus and kernel within the core is characterized in
geometric terms. The core-center also has some parallelism with the nucleolus:
the core-center is the “gravity center” of the core meanwhile the nucleolus is a
“lexicographic center”. Furthermore, the core-center sums up all the information
regarding the core.

We refer to González-Dı́az and Sánchez-Rodŕıguez (2003) for a detailed analysis
and axiomatic characterizations of the core-center.

What we do in this work is analyzing in detail the core by means of a dynamic
process among coalitions. Initially, we start with the imputations set. The value
v(S) represents the utility that a coalition S can obtain independently of N \ S.
Once players accept that value, the set of good allocations for coalition N \ S is
reduced. The core is the resultant of this process when all the values of the charac-
teristic function are considered. The core-center picks up this information through
the utopia games. Basically, the utopia games measure the looses experimented by
any coalition. Following with the analysis, we prove that for special classes of con-
vex games the core-center can be expressed as the Shapley value of a specific game.
The comparative study is also based on the properties satisfied by both solutions.
Finally, the airport game shows some of the differences between the Shapley value
and the core-center.

The outline of this paper is the following: in the first Section we introduce
notions on cooperative game theory and geometric tools; in Section 2 the utopia
games are introduced and the main results are stated; in Section 3, the core-center
is illustrated by means of a very well known game: the airport game; in Section
4 we make a comparison between the core-center and the Shapley value studying
the properties they satisfy; and finally, in section 5 we give insights to some open
questions.

1 Game Theory Background

A cooperative n−person game with transferable utility, shortly a TU game, is a
pair (N, v) where N is a finite set of players and v : 2N → R is a function assigning
to each coalition S ∈ 2N a real number v(S), where v(∅) = 0. For each subgroup or
coalition S, the value v(S) indicates what the players of S obtain by cooperation
among themselves. The set of all n-person games Gn forms a (2n − 1)-dimensional
space.

Given a coalition S ⊂ N, and T ⊂ S, S\T = {i ∈ S : i /∈ T} .
A game (N, v) is called convex if v(S ∪ i) − v(S) ≤ v(T ∪ i) − v(T ) for all

S ⊂ T ⊂ N\ {i} . The amount v(S∪ i)−v(S) is called the i′s marginal contribution
to a coalition S. Convexity says that for all i ∈ N, the i′s marginal contribution
does not decrease as the coalition becomes larger. The set of all n-person convex
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games will be denoted by CGn.
Given a game (N, v), the preimputations set is defined by,

I∗(N, v) =

{
x = (xi)i∈N ∈ Rn :

∑

i∈N

xi = v(N)

}
.

A solution concept on Gn is a function ϕ that associates to any game (N, v) a
subset ϕ(N, v) of its preimputation set I∗(N, v).

An allocation rule is a function ϕ which, given a game (N, v), selects one preim-
putation ϕ(N, v) in I∗(N, v).

The imputation set consists on the individually rational preimputations, i.e.,

I(N, v) = {x ∈ Rn :
∑

i∈N

xi = v(N) and xi ≥ v({i}) for all i ∈ N}.

The imputation set is non-empty iff v(N) ≥ ∑
i∈N

v({i}). If v(N) =
∑
i∈N

v({i}), the

game is called degenerate and I(N, v) = (v({1}), ..., v({n})); in the case where
v(N) >

∑
i∈N

v({i}), then I(N, v) is an (n − 1)-dimensional simplex with extreme

points f1(N, v), ..., fn(N, v) where f i
k(N, v) = v({k}) for all k 6= i and f i

i (N, v) =
v(N)− ∑

k∈N\{i}
v({k}).

The core of a game (N, v), Gillies (1953), is defined by C(N, v) = {x ∈ I(N, v) :∑
i∈S xi ≥ v(S) for all S ⊂ N}. It can be said that all the allocations in the core

satisfy the minimal requirements that any coalition might demand in the game.
So, any allocation in the core ensures that everyone gains, or at least does not
loose, from cooperation . If for all S ⊂ N, v(S) =

∑
i∈S v({i}), the game is called

additive and C(N, v) = {(v({1}), ..., v({n})}. Furthermore if a game (N, v) satisfies
that v(S) =

∑
j∈S v(j) for all S ⊂ N, S 6= N and v(N) >

∑
i∈N v({i}), then

C(N, v) = I(N, v). Bondareva (1963) and Shapley (1967) established necessary
and sufficient conditions for the non-emptyness of the core. Let (N, v) ∈ Gn,
C(N, v) 6= ∅ iff v(N) ≥ ∑

S∈2N\{∅}
λSv(S) for all {λS}S∈2N such that λS ≥ 0 for all

S ∈ 2N\{∅} and
∑

S∈2N\{∅}
λSeS = eN , where eS ∈ Rn and (eS)i =

{
1 i ∈ S
0 i /∈ S

.

Games with a non-empty core are called balanced games. The set of all n-person
balanced games will be denoted by BGn. Note that each convex game is balanced,
but not every balanced game is convex.

For S ⊆ N, we denote by Π(S) the set of all possible orderings of the elements
in S, i.e., bijective functions from S to {1, ..., s}, where s = |S| is the cardinality of
S. A generic order of S is denoted by σS ∈ Π(S). For all i ∈ N and σN ∈ Π(N),
let PσN ({i}) = {j ∈ N : σN (j) < σN (i)} the set of predecessors of i with respect to
σN . Given σ ∈ Π(N) and S ∈ 2N\∅, let σS ∈ Π(S) denote the order induced by σ
in S.
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Let us consider the map that associates to every game (N, v) ∈ Gn and any
order σ ∈ Π(N) the marginal’s contribution vector,:

m : Gn ×Π(N) → Rn

((N, v), σ) ; mσ(N, v)

where the i-th coordinate of the marginal vector mσ(N, v), σ ∈ Π(N), is defined by

mσ
i (N, v) = v(Pσ({i}) ∪ {i})− v(Pσ({i}))

and consider the following relation of equivalence:

σ1 ∼ σ2 ⇐⇒ mσ1(N, v) = mσ2(N, v).

The quotient set will be denoted by π(N)/ ∼.
The Shapley value of a game (N, v) is defined as the average of all marginal

vectors and denoted by Sh, i.e.,

Sh(N, v) =
1
n!

∑

σ∈Π(N)

mσ(N, v)

=
1
n!

∑

[σ]∈π(N)/∼
|[σ]|m[σ](N, v)

which can be expressed alternatively as

Shi(N, v) =
∑

S⊆N :i∈S

(s− 1)!(n− s)!
n!

(v(S)− v(S\{i})) , for all i ∈ N.

If (N, v) is a convex game, then the marginal vectors mσ(N, v) are the extreme
points of C(N, v), i.e.,1

C(N, v) = conv{mσ(N, v) : σ ∈ Π(N)}
= conv

{
m[σ](N, v) : [σ] ∈ π(N)/ ∼

}
.

For the subclass of convex games, the Shapley value is the center of mass of the
extreme points of the core where the weight of each extreme point is the number
of permutations that originate it. Usually, when working with convex games, the
Shapley value is called, by an abuse of language, the barycenter of the core.

Now we define formally the core-center and a property which will be used along
the paper.

Definition 1. Let BGn denote the class of balanced games. The Core-Center µ is
the allocation rule defined as follows:

1Given a set A ⊆ RN , we denote by conv(A) its convex hull.
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µ : BGn −→ Rn

(N, v) 7−→ µ((N, v))

where µ((N, v)) denotes the center of gravity of the core of the game (N, v)2.

A convex polytope P is the convex hull of a finite set V = {v1, ..., vn} of points
in Rn. Clearly the core of a game is a polytope.

Definition 2. A set {a0, a1, . . . , an} in Rn is said to be geometrically independent
if for any scalars ti ∈ R, the equations

n∑

i=1

ti = 0 and
n∑

i=1

tia
i = 0

imply that t0 = t1 = · · · = tn = 0. Note that {a0, a1, . . . , an} is geometrically
independent if and only if the vectors a1− a0, . . . , an− a0 are linearly independent.

Definition 3. Let {a0, a1, . . . , an} be a geometrically independent set in Rn. The
n-simplex Sn spanned by a0, a1, . . . , an is the set of all points x of Rn such that

x =
n∑

i=1

tia
i where

n∑

i=1

ti = 1 and ti ≥ 0, ∀i

Each ai is a vertex of the n-simplex. The numbers ti are the barycentric coordi-
nates for x of Sn with respect to a0, a1, . . . , an.The subscript of Sn is the dimension
of the simplex. An n-simplex is regular if the distance between any two vertices is
constant.

Definition 4. The centroid or barycentre, of an n-simplex Sn spanned by the points
a0, a1, . . . , an is

Θ(Sn) =
n∑

i=0

ai

n + 1

Any convex polytope can be partitioned into simplices. The volume of a poly-
tope is usually computed decomposing the polytope into simplices for which the
volume is easily computed and summed up.

Let P be a polytope in Rn, if P is split into P1, ..., Ps such that P =
s⋃

i=1
Pi and

V ol(Pi∩Pj) = 0 for all i 6= j, then V ol(P ) =
s∑

i=1
V ol(Pi). The particular case where

the elements of the partition are simplices, is called a triangulation of P .
2We consider our sets as homogeneous bodies, so the center of gravity (or center of mass) of a

set can be calculated as the expectation of the uniform distribution defined over it.
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2 The utopia games

In this section we introduce a new class of games; they will play an important role
to make comparisons between core-center and Shapley value.

Definition 5. Let (N, v) be a convex game, and let T ∈ 2N \{∅}. Consider H
∈ 2T \{∅}, then we define the game (N, vH

T ) where

vH
T (S) =





v((T ∩ S) ∪ (N\T ))− v(N\T ) + v(S\(T ∩ S)) if H ⊂ S
v((T ∩ S) ∪ (N\T ))− v(N\T ) +

∑
j∈S\(T∩S)

v(j) otherwise

It can be easily showed that for all T ∈ 2N , T 6= ∅ and ∅ 6= H ⊂ T,

• vH
T (∅) = 0

• vH
T (N) = v(N)

• Whenever T ∩ S = ∅, vH
T (S) =

∑
j∈S

v(j).

Furthermore we define the game (N, v∅) where players have not incentives to
cooperate in subcoalitions,

v∅(S) =

{ ∑
j∈S

v({j}) if S 6= N

v(N) if S = N

Now, we describe in detail the game vH
T . The first consideration is that for each

coalition S 6= T , the value vH
T (S) is the sum of two quantities: on the one side the

marginal contribution of the players of T that are in S to N\T , and in the other
side, the contribution of players of S that are not in T. The second consideration
concerns the coalition formation; in a convex game, it is well known that players
have incentives to cooperate and share the total amount given by v(N).

Observe that, independently of H, what a coalition S ⊆ T obtains in the game
vH
T is its marginal contribution to N\T , i.e., vH

T (S) = v(S ∪ (N\T ))−v(N\T ), and
in the case where S = T , vH

T (T ) = v(N)− v(N\T ).
Take now S ⊂ N such that T ∩ S 6= ∅, S; the contribution of players of S that

are not in T , depends on the head-coalition H. Fixed a head-coalition H, then
the contribution of players of S that are not in T is the maximum utility that the
players can guarantee by themselves whenever H ⊂ S, i.e., v(S\(T ∩S)); otherwise,
that contribution is computed by

∑
j∈S\(T∩S)

v(j). Roughly speaking, players of H

can be thought as the ones who have the key to allow cooperation.
The main idea underlying the games vH

T is that players of T are the ones who
have the power in the game, but always respecting the minimal rights of players in
N\T . Furthermore, the game also establishes a hierarchical structure among the
members of T .

Next proposition shows that these games are convex.
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Proposition 1. Let (N, v) ∈ CGn, T ∈ 2N \{∅} and H ∈ 2T \{∅}, then (N, vH
T ) ∈

CGn.

Proof. We prove that vH
T (R∪{i})−vH

T (R) ≤ vH
T (S∪{i})−vH

T (S) for all R ⊂ S ⊂ N\
{i}. Let us suppose first that i /∈ T. We distinguish three cases:

c1) H ⊆ R ⊂ S.

As vH
T (S ∪{i})− vH

T (S) = v((S ∪{i})\T )− v(S\T ) and vH
T (R∪{i})− vH

T (R) =
v((R ∪ {i})\T ) − v(R\T ), the convexity condition for the game (N, vH

T ) holds by
the convexity of the game (N, v).

c2) H 6⊂ R and H ⊆ S.

In this case

vH
T (S ∪ {i})− vH

T (S) = v((S ∪ {i})\T )− v(S\T )
vH
T (R ∪ {i})− vH

T (R) = v({i}).

Hence, again by the convexity of the game (N, v), the result holds.

c3) H 6⊂ S. Trivial, since i /∈ T we have vH
T (R ∪ {i}) − vH

T (R) = vH
T (S ∪ {i}) −

vH
T (S) = v({i}).

Let us suppose now that i ∈ T. We have again three different cases to study:

c4) H ⊆ R ∪ {i} ⊂ S ∪ {i}. We distinguish two subcases: i /∈ H and i ∈ H.

i /∈ H. In this case,

vH
T (S ∪ {i})− vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i})− v((T ∩ S) ∪ (N\T ))

vH
T (R ∪ {i})− vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i})− v((T ∩R) ∪ (N\T ))

As a consequence of the convexity condition the result holds.

i ∈ H. Now,

vH
T (S ∪ {i})− vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i})−
− v((T ∩ S) ∪ (N\T )) + v(S\(T ∩ S))−

∑

j∈S\(T∩S)

v({j})

vH
T (R ∪ {i})− vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i})−
− v((T ∩R) ∪ (N\T )) + v(R\(T ∩R)−

∑

j∈R\(T∩R)

v({j})
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Again by the convexity of the game (N, v),

v((T ∩ S) ∪ (N\T ) ∪ {i})− v((T ∩ S) ∪ (N\T )) ≥
≥ v((T ∩R) ∪ (N\T ) ∪ {i})− v((T ∩R) ∪ (N\T ))

Besides,

v(S\(T ∩ S))−
∑

j∈S\(T∩S)

v({j}) ≥ v(R\(T ∩R))−
∑

j∈R\(T∩R)

v({j})

since

v(S\(T ∩ S))− v(R\(T ∩R)) = v(S\(T ∩ S))− v(R\(T ∩ S ∩R))

and
∑

j∈S\(T∩S)

v({j})−
∑

j∈R\(T∩R)

v({j}) =

=
∑

j∈S\(T∩S)

v({j})−
∑

j∈R\(T∩S∩R)

v({j}) =
∑

j∈S\(R∪(T∩S∩(N\R))

v({j})

c5) H 6⊂ R∪{i} and H ⊆ S∪{i}. We distinguish two subcases: i /∈ H and i ∈ H.

i /∈ H Then,

vH
T (S ∪ {i})− vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i})− v((T ∩ S) ∪ (N\T ))

vH
T (R ∪ {i})− vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i})− v((T ∩R) ∪ (N\T ))

Therefore, by the convexity of the game (N, v), the convexity condition also
holds for the game (N, vH

T ).

i ∈ H. Then,

vH
T (S ∪ {i})− vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i})−
− v((T ∩ S) ∪ (N\T )) + v(S\(T ∩ S))−

∑

j∈S\(T∩S)

v({j})

vH
T (R ∪ {i})− vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i})− v((T ∩R) ∪ (N\T ))

And, repeating analogous reasonings, we obtain the convexity condition since
v(S\(T ∩ S))− ∑

j∈S\(T∩S)

v({j}) ≥ 0.

c6) H 6⊂ S ∪ {i}.
vH
T (S ∪ {i})− vH

T (S) = v((T ∩ S) ∪ (N\T ) ∪ {i})− v((T ∩ S) ∪ (N\T ))

vH
T (R ∪ {i})− vH

T (R) = v((T ∩R) ∪ (N\T ) ∪ {i})− v((T ∩R) ∪ (N\T ))

So, the convexity condition also holds.
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Now all the cases have been analyzed in detail, so the game (N, vH
T ) ∈ CGn.

For our purpose in the present Section, we will focus in two special cases of
these games, those such that |T | ≤ 2.

Let i ∈ N, and T = {i} (in this case, H = T ). From now on we will identify for
each i ∈ N, the game (N, v

{i}
{i}) with (N, v{i}). The game (N, v{i}) can be thought

as the utopia game for player i, and it will be referred to as the {i}-utopia game.
Now observe its characteristic function below, it shows that player i is the powerful
one since all the coalitions to which i does not belong, are formed separately (each
player gets his v({j}) if one such coalition is formed).

For all S ⊂ N,

v{i}(S) =

{
v(N)− v(N\ {i}) + v(S\{i}) if i ∈ S∑

l∈S

v({l}) if i /∈ S

In this game player i can be thought as the one who has the key for cooperation,
the other players by themselves can get only the sum of their individual values.

Let us describe now the games vH
T where T is a two player coalition, T = {i1, i2}

with i1, i2 ∈ N and i1 6= i2. To this extent, we can define three games:

(N, v
{i1}
{i1,i2}), (N, v

{i2}
{i1,i2}), and (N, v

{i1,i2}
{i1,i2})

that we denote to simplify notation by (N, v(i1,i2)), (N, v(i2,i1)), and (N, vi1i2),
respectively.

v(i1,i2)(S) =





v((T ∩ S) ∪ (N\T ))− v(N\T ) + v(S\(T ∩ S)) i1 ∈ S
v((T ∩ S) ∪ (N\T ))− v(N\T ) +

∑
j∈S\(T∩S)

v({j}) i1 /∈ S

=





v(N)− v(N\{i1, i2}) + v(S\{i1, i2}) i1, i2 ∈ S
v(N\{i2})− v(N\{i1, i2}) + v(S\{i1}) i1 ∈ S, i2 /∈ S

v(N\{i1})− v(N\{i1, i2}) +
∑

l∈S\{i2}
v({l}) i2 ∈ S, i1 /∈ S

∑
l∈S

v{l}) i1 /∈ S, i2 /∈ S

We call this game the (i1, i2)-utopia game. Analogously we can define the (i2, i1)-
utopia game interchanging the role of i1 and i2.

The characteristic function of the i1i2-utopia game is the following:

vi1i2(S) =





v(N)− v(N\{i1, i2}) + v(S\{i1, i2}) i1, i2 ∈ S
v(N\{i1})− v(N\{i1, i2}) +

∑
l∈S\{i2}

v({l}) i2 ∈ S, i1 /∈ S

v(N\{i2})− v(N\{i1, i2}) +
∑

l∈S\{i1}
v({l}) i1 ∈ S, i2 /∈ S

∑
l∈S

v{l}) i1 /∈ S, i2 /∈ S
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The i1i2-utopia game is not going to be used anymore so there will be no place for
confusion with notation; a (i1, i2)-utopia game will denote the game which is good
for both players 1 and 2 but excellent for player 1.

Remark. Expressions for marginal contributions to a coalition for the i-utopia
games and for the (i1, i2)-utopia games can be obtained without effort. Let i ∈ N ,
S ⊂ N and j /∈ S, then

v{i}(S ∪ {j})− v{i}(S) =





v((S ∪ {j})\{i})− v(S\{i}) i ∈ S, i 6= j
v(N)− v(N\ {i}) + v(S)− ∑

l∈S

v({l}) i = j

v({j}) i /∈ S, i 6= j

Similar expressions can be found for the (i1, i2)-utopia games. Notice that by the
convexity of the game (N, vH

T ),

C(N, vH
T ) = conv{mσ(N, vH

T )}.

Lemma 1. Let (N, v) ∈ Gn, n > 2, such that v(N) >
∑
i∈N

v({i}). Then,

a) Θi(I(N, v)) = v({i}) +
v(N)− ∑

k∈N
v({k})

n for all i ∈ N .

b) If v(S) =
∑
i∈S

v({i}), for all S ⊂ N, S 6= N then µ(N, v) = Θ(I(N, v)) =

Sh(N, v).

c) V ol(I(N, v)) = 1
(n−1)!n

1/2

(
v(N)− ∑

j∈N

v({j})
)n−1

where V ol is the Lebesgue

measure on Rn−1.

Proof. The statements in a) and b) are straightforward, and c) is a consequence of
the definition of an (n− 1)-dimensional simplex and its corresponding volume.

Corollary 1. Let (N, v) ∈ G2 with N = {1, 2}, such that v(N) >
∑
i∈N

v({i}), then,

Sh(N, v) = Θ(I(N, v)) = µ(N, v)

and it corresponds to the center of mass of the segment

[(v(1), v(N)− v(1)) , (v(N)− v(2), v(2))].

Proof. This immediately yields from Lemma 1.

Next definition classifies each game attending to the relevant utility of the coali-
tions in relation with their members.

11



Definition 6. Given a game (N, v) ∈ Gn, we say that (N, v) ∈ Gn
r ⇔ ∃1 ≤ r ≤ n−1

such that

• v(S) =
∑
i∈S

v({i}) for all |S| ≤ r and

• There exists a coalition S, |S| = r + 1 such that v(S) >
∑
i∈S

v({i})

Then, for each game (N, v) there is 1 ≤ r ≤ n−1 such that (N, v) ∈ Gn
r . The case

where for all S ⊂ N, v(S) =
∑

i∈S v({i}) has been avoided in the definition because
in this case the core is indeed a single point, and then µ(N, v) = (v(1), . . . , v(n)).
Observe that I(N, v) = C(N, v) if and only if r = n− 1, and then by Lemma 1 the
core-center is the centroid of the imputation set. A game is in Gn

r if all the restric-
tions originated by m player coalitions are redundant in its core when 1 < m ≤ r,
and there is at least one coalition with r + 1 players such that its corresponding
restriction is not redundant.

Figure 1: Core of a game in G4
2 and the cores of a pair of its utopia games

Lemma 2. Let (N, v) ∈ CGn ∩Gn
n−2. Then,

a) For all i ∈ N, C(N, v{i}) = I(N, v{i}) and consequently,

V ol(C(N, v{i}))
V ol(I(N, v))

=

(
v(N\{i})−∑

j∈N\{i} v({j})
v(N)−∑

j∈N v({j})

)n−1

where V ol is the Lebesgue measure on Rn−1.

b) Let i, j ∈ N, i 6= j, then C
(
N, (v{i}){j}

)
= mσ(N, v) where σ ∈ π(N) is such

that σ(i) = n and σ(j) = n− 1.

c) I(N, v) =
( ⋃

i∈N

C(N, v{i})
)⋃

C(N, v).

d) For all i, j ∈ N, C(N, v{i}) ∩ C(N, v{j}) and C(N, v) ∩ C(N, v{i}) are null
measure sets.

12



e) V ol(I(N, v)) =
∑
i∈N

V ol(C(N, v{i}))+V ol(C(N, v)) where V ol is the Lebesgue

measure on Rn−1.

Proof. a) Let i ∈ N. It is easy to check that

v{i}(S) =





v(N)− v(N\ {i}) + v(S\{i}) if i ∈ S and |S| ≥ n− 1
v(N)− v(N\ {i}) +

∑
j∈S\{i}

v(j) if i ∈ S and |S| < n− 1
∑
j∈S

v(j) if i /∈ S

(1)

Besides, let σ ∈ π(N) such that σ(i) = n, then

mσ
i (N, v{i}) = v(N)−

∑

l∈N\{i}
v({l})

mσ
k(N, v{i}) = v({k}) for all k 6= i

and take j ∈ N, j 6= i, then for all σ ∈ π(N) such that σ(j) = n,

mσ
i (N, v{i}) = v(N)− v(N\{i})

mσ
j (N, v{i}) = v(N\{i})−

∑

l 6=i,j

v({l})

mσ
k(N, v{i}) = v({k}) for all k 6= i, j

Therefore, C(N, v{i}) = I(N, v{i}) for all i ∈ N. The ratio between the cores is
easily established following Lemma 1.

b) Let i, j ∈ N, j 6= i. By Proposition 1, (N, v{i}) ∈ CGn. Besides, v{i}(S) =∑
l∈S

v{i}({l}) for all S ⊂ N such that |S| ≤ n− 2, then by a),

C(N, (v{i}){j}) = I(N, (v{i}){j}).

We describe the characteristic function of the {j}-utopia game associated with the
{i}-utopia game. Following (1),

(v{i}){j}(S)) =





v{i}(N)− v{i}(N\ {j}) + v{i}(S\{j}) j ∈ S, |S| ≥ n− 1
v{i}(N)− v{i}(N\ {j}) +

∑
l∈S\{j}

v{i}({l}) j ∈ S, |S| < n− 1
∑
l∈S

v{i}({l}) j /∈ S

(2)
Furthermore, taking into account that

v{i}(S\{j}) =





v(N)− v(N\ {i}) +
∑

l∈S\{i,j}
v({l}) if i ∈ S

∑
l∈S\{j}

v({l}) if i /∈ S
(3)

13



where the last equality holds because |S\{i, j}| = n− 2. Besides,

v{i}({l}) =
{

v(N)− v(N\ {i}) if l = i
v({l}) if l 6= i

(4)

Henceforth, substituting (3) and (4) in (2) one easily obtain with straight com-
putations the value of any coalition S in the j-utopia game associated with the
i-utopia game,

(v{i}){j}(S) =





v(N)− ∑
l∈N\S

v({l}) j ∈ S, i ∈ S

v(N)− v(N\ {i}) +
∑

l∈S\{i}
v({l}) j /∈ S, i ∈ S

v(N\ {i})− ∑
l∈N\(S∪{i})

v({l}) j ∈ S, i /∈ S

∑
l∈S

v({l}) j /∈ S, i /∈ S

Now, it is immediate to check that (N, (v{i}){j}) is an additive game with constants:

ci = v(N)− v(N\{i})
cj = v(N\{i})−

∑

l∈N\{i,j}
v({l})

ck = v({k}) for all k ∈ N\{i, j}.

So, for all σ ∈ π(N), C
(
N, (v{i}){j}

)
= mσ(N, v) where σ ∈ π(N) is such that

σ(i) = n and σ(j) = n− 1.
c) First we show that (

⋃
i∈N

C(N, v{i}))
⋃

C(N, v) ⊂ I(N, v). We only need to

check that for all i ∈ N, C(N, v{i}) ⊂ I(N, v). Take x ∈ C(N, v{i}), then by the
supperaditivity of the game (N, v{i}),

xi ≥ v{i}({i}) = v(N)− v(N\{i}) and xi ≥ v({i})

and for all k ∈ N\{i},

xk ≥ v{i}({k}) and xk = v({k})

hence x ∈ I(N, v).
Consequently we only need to prove that for all x ∈ I(N, v) \C(N, v) , there

is i ∈ N such that x ∈ C(N, v{i}). Take x /∈ C(N, v). That implies that there
is S ⊂ N, |S| = n − 1 such that

∑
i∈S

xi < v(S). Then there exists i ∈ N such

that
∑

j∈N\{i}
xj < v(N\{i}), and by the efficiency condition we deduce that xi >

v(N)− v(N\{i}), and this only happens in C(N, v{i}).
d) We first prove that for all i ∈ N, C(N, v) ∩ C(N, v{i}) is a null measure set.
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Let x ∈ C(N, v) ∩ C(N, v{i}), then

x ∈ C(N, v{i}) ⇒ xi ≥ v{i}({i}) = v(N)− v(N\{i}).
x ∈ C(N, v) ⇒ v({i}) ≤ xi ≤ v(N)− v(N\{i})

So, for all x ∈ C(N, v) ∩ C(N, v{i}), xi = v(N) − v(N\{i}), and then C(N, v) ∩
C(N, v{i}) is at most an n− 2 dimensional space.

Now we prove that for all i, j ∈ N,

C(N, v{i}) ∩ C(N, v{j}) 6= ∅ ⇒ C(N, v{i}) ∩ C(N, v{j}) ⊂ C(N, v) ∩ C(N, v{i})

which it will finish the proof.
We know the existence of x ∈ C(N, v{i}) ∩ C(N, v{j}), which implies

xi ≥ v(N)− v(N\{i})
xj ≥ v(N)− v(N\{j})
xk ≥ v({k}) for all k ∈ N\{i, j}

Let us suppose that x /∈ C(N, v), then there is S ⊂ N such that
∑
i∈S

xi < v(S). So,

the size of the coalition S must be n − 1. Then or i ∈ S or j ∈ S. Take w.l.o.g.
S = N\{j}, then

v(N\{j}) >
∑

i∈N\{j}
xi ≥ v(N)− v(N\{i}) +

∑

l∈N\{i,j}
v({l})

As (N, v) ∈ Gn
n−2 v(N\{i, j}) =

∑
l∈N\{i,j}

v({l}), we deduce that,

v(N\{j})− ∑
l∈N\{i,j}

v({l}) = v(N\{j})− v(N\{i, j}) and

v(N\{j})− ∑
l∈N\{i,j}

v({l}) > v(N)− v(N\{i}),
contradicting the convexity of the game (N, v).

e) It follows immediately from d).

Theorem 1. Let (N, v) ∈ CGn ∩Gn
n−2 with n > 2. Then,

µ(N, v) = Sh(N, w)

where for all S ⊂ N,

w(S) =

(
1
p

(
p0v∅ −

∑

i∈N

piv{i}

))
(S)

being V ol(C(N, v)) = p, V ol(C(N, v∅)) = p0, and V ol(C(N, v{i}) = pi for all i ∈ N.
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Proof. The core-center satisfies the property of fair additivity on the core3, and
by Lemma 2, the imputation set can be broken into n + 1 pieces, the cores of the
utopia games and the core of the original game. So,

µ(N, v∅) = µ(N, v)
p

p0
+

∑

i∈N

µ(N, v{i})
pi

p0

By Lemma 1, µ(N, v∅) = Sh(N, v∅), and µ(N, v{i}) = Sh(N, v{i}) for all i ∈ N.
Thus,

µ(N, v) =
p0

p

(
µ(N, v∅)−

∑

i∈N

pi

p0
µ(N, v{i})

)

=
p0

p
Sh(N, v∅)−

∑

i∈N

pi

p
Sh(N, v{i})

=
1
p

(
p0Sh(N, v∅)−

∑

i∈N

piSh(N, v{i})

)

= Sh(N,w).

where the last equality holds by the additivity of the Shapley value.

Remark. Note that the last part of the proof has the following nice feature; we
start with the centroid of a game and in two steps, using both the “fair additivity”
of the core-center and the “additivity” of the Shapley value, we end up with the
Shapley value of a new game which we are going to call the “fair game”.

Corollary 2. Let (N, v) ∈ CG3. Then,

µ(N, v) = Sh(N, w)

where w(S) =
(

1
p

(
p0v∅ −

∑
i∈N

piv{i}

))
(S).

Proof. It is immediate from Theorem 1.

Remark. The game (N, w) can be interpreted as the fair game that takes all
the information in the core. The core of the fair game coincides with its imputation
set and then it will be a simplex containing the core of the game (N, v). That fact
is easily showed since the game (N, w) is an additive game for the coalitions of size
less of equal than n− 1 which is a consequence of the same additivity property in
the games (N, v{i}) and (N, v∅).

3This property is formally defined in González-Dı́az and Sánchez-Rodŕıguez (2003), it is founded
upon the following property of the center of gravity: Given a set A and two sets B1 and B2 such
that B1 ∪ B2 = A and V ol(B1 ∩ B2) = 0 then the center of gravity of A can be expressed as
µ(A) = V ol(B1)µ(B1) + V ol(B2)µ(B2).
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Furthermore with easy computations in the game (N,w) one can derive the
following expression for the individual values in the game (N, w),

w({i}) = v({i})− pi

p
(v(N)− v(N\{i}) + v({i})) for all i ∈ N

and as a consequence,

µ(N, v) = w({i}) +
v(N)− ∑

k∈N

w({k})

n
.

To illustrate the utopia games and the fair game we give the following example.
In addition, special emphasis is made on the ratios pi

p .

Example 3 players. Let us take the game (N, v), where N = {1, 2, 3} and
v({i}) = 0 for all i ∈ N , v(1, 2) = 2, v(1, 3) = v(2, 3) = 5, and v(N) = 10. Then

Coalition 1− utopia game {1, 2}− utopia game w(S)
1 v(123)− v(23) v(13)− v(3) −2.7174
2 v(2) v(23)− v(3) −2.7174
3 v(3) v(3) −0.6957
12 v(123)− v(23) + v(2) v(123)− v(3) −5.4348
13 v(123)− v(23) + v(3) v(13) −3.4130
23 v(2) + v(3) v(23) −3.4130
123 v(123) v(123) 10

and,

Sh(N, v) = (2.8333, 2.8333, 4.3333)
µ(N, v) = (2.6594, 2.6594, 4.6812)

besides, for all i ∈ N,

ri =
pi

p0
=




v(N\{i})− ∑
k∈N\{i}

v({k})

v(N)− ∑
k∈N

v({k})




2

and r =
p

p0

With easy computations we obtain, p1

p0
= p2

p0
= 1

4 , p3

p0
= 1

25 . Then, p
p0

= 1 −
1
p0

(p1 + p2 + p3) = 23
50 . So, players 1 and 2 are symmetric and less powerful than

player 3.
Observe that C(N, v{1,2}) = C(N, v{2,1}) = C(N, v{12}). Furthermore x ∈

C(N, v{1,2}) if and only if

v(1, 3)− v(3) ≤ x1 ≤ v(1, 2, 3)− v(2, 3)
v(2, 3)− v(3) ≤ x2 ≤ v(1, 2, 3)− v(1, 3)

x3 = v({3})

17



C
C
I(G)

The fair game

Figure 2: The core of a game and its corresponding “fair” game

In our figure the core of that game is the single point (5, 5, 0).
The ratios ri have a nice interpretation since for all i ∈ N, 0 ≤ ri ≤ 1 and∑
ri = 1. So, we are really determining a probability distribution over the set of

imputations. Given i ∈ N, ri is the probability that the coalition {i} receives a good
allocation and the coalition (N\{i}) is disappointed. Further r is the probability
that the grand coalition gets an allocation in the core. So the greater the utopia
game is for a player i, the worse his situation in the game is because his losses with
regard to the original set of imputations are also greater, i.e. he has lost many
good allocations. Looking at Figure 2 it can be seen that in the original game the
“big” utopia games are those for players 1 and 2, so in the core of the fair game
the “bad” section which has been added for player 3 with regard to the core of the
original game is smaller than those for the other two players.

Let us assume that (N, v) ∈ CGn ∩Gn
n−2 where n > 2 and v(N) >

∑
k∈N

v({k}).

Definition 7. A player i is a dummy player if and only if

v(N\{i}) + v({i}) = v(N), i.e. ri = 1.

A player i is a strong player if and only if v(N\{i}) =
∑

k∈N\{i}
v({k}), i.e.

ri = 0.

Let us notice that the strong players are the powerful ones. In contrast, dummy
players receive only their individual values.

Let (N, v) ∈ CGn ∩ Gn
n−2. Next proposition shows that for these games there

is at most one dummy player, and in such a case the core of the game coincides
exactly with one face of the simplex (the one that gives v({i}) to that player).

Proposition 2. Let us assume that v(N) >
∑

k∈N

v({k}) and let (N, v) ∈ CGn ∩
Gn

n−2, then there is at most one dummy player, namely i, and in that case,

C(N, v) = {xN : xi = v({i}) and xN\{i} ∈ C(N\{i}, vN\{i})}.
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Proof. Suppose there are two players i, j ∈ N such that

v(N) = v(N\{i}) + v({i})
= v(N\{j}) + v({j})

Henceforth,

v(N)− v(N\{j}) = v({j})
v(N\{i})− v(N\{i, j}) = v(N)− v({i})− v(N\{i, j})

= v(N)− v({i})−
∑

k∈N\{i,j}
v({k})

As v(N) >
∑

k∈N

v({k}), there is a contradiction with the convexity condition

since v(N)− v(N\{j}) should be greater or equal than v(N\{i})− v(N\{i, j}).
The second part of the proof immediately yields since as v(N) = v(N\{i}) +

v({i}), if x ∈ C(N, v) then

xi = v({i}) and
∑

k∈N\{i}
xk = v(N\{i}).

Remark. Proposition 2 tells us that we can avoid dummy players in order to
compute the centroid. Let us denote by Dv the set of dummy players of the game
(N, v). Then,

µi(N, v) =
{

v({i}) if i ∈ Dv

µi(N\Dv, vN\Dv
) if i /∈ Dv

Let us describe now the structure of the utopia games when we give power to
the coalitions of size n− 3.

Lemma 3. Let (N, v) ∈ CGn ∩Gn
n−3 with n > 3 and i ∈ N . Then,

a) (N, v{i}) ∈ CGn ∩Gn
n−2.

b) C(N, (v{i}){j}) = I(N, (v{i}){j}) for all i, j ∈ N with i 6= j.

c) µ(N, v{i}) = Sh(N, w{i}), where

w{i}(S) =


 1

V ol(C(N, v{i}))


pi0(v{i})∅ −

∑

j∈N\{i}
pij (v{i}){j}





 (S)

where
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Figure 3: Example of a game in G4
3 with some of its utopia games

pi0 = V ol(C(N, (v{i})∅)) =
1

(n− 1)!
n1/2


v(N\{i})−

∑

k∈N\{i}
v({k})




n−1

pij = V ol(C(N, v{i}){j}) =
1

(n− 1)!
n1/2


v(N\{i, j})−

∑

k∈N\{i,j}
v({k})




n−1

for all j ∈ N\{i}.
Proof. a) We will show that v{i}(S) =

∑
k∈S

v{i}({k}) for all S such that |S| ≤ n− 2.

One can easily test that for all S ⊂ N,

v{i}(S) =





v(N)− v(N\ {i}) + v(S\{i}) if i ∈ S and |S| ≥ n− 2
v(N)− v(N\ {i}) +

∑
j∈S\{i}

v(j) if i ∈ S and |S| < n− 2
∑
j∈S

v(j) if i /∈ S

When |S| < n − 2, the result is immediate. The case where |S| = n − 2
holds because |S\{i}| = n − 3, and then v(S\{i}) =

∑
j∈S\{i}

v(j), and so v{i}(S) =
∑
k∈S

v{i}({k}) for all S such that |S| ≤ n− 2.
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b) and c) are immediately yield by Lemma 2 and Theorem 1.

Lemma 4. Let (N, v) ∈ CGn ∩ Gn
n−3 with n > 3 and let (N, v(i1,i2)) the (i1, i2)-

utopia game where i1 and i2 ∈ N and i1 6= i2.

a) Sh(N, v(i1,i2)) =

∑
[σ]∈π(N)/∼

mσ(N,v)

2n−2 .

b) Sh(N, v(i1,i2)) = µ(N, v(i1,i2)).

c) V ol(C(N, v(i1,i2))) = 1
(n−2)!n

1
2

(
v(N\{i1, i2})−

∑
il∈N\{i1,i2}

v({il})
)n−2

·

·
(
v(N)− v(N\{i1}) + v(N\{i1, i2})− v(N\{i2})

)

Proof. a) First we obtain expressions for the marginal contributions given the char-
acteristic function of the (i1, i2)−utopia game

v(i1,i2)(S) =





v(N)− v(N\{i1, i2}) + v(S\{i1, i2}) if i1, i2 ∈ S
v(N\{i2})− v(N\{i1, i2}) + v(S\{i1}) if i1 ∈ S but i2 /∈ S

v(N\{i1})− v(N\{i1, i2}) +
∑

l∈S\{i2}
v({l}) if i2 ∈ S but i1 /∈ S

∑
l∈S

v{l}) if i1 /∈ S and i2 /∈ S

Let π1(N) = {σ ∈ π(N) : σ(i1) = n}, then for all σ ∈ π1(N),

mσ
i1(N, v(i1,i2)) = v(N)− v(N\{i1}) + v(N\{i1, i2})−

∑

l∈N\{i1,i2}
v({l})

mσ
i2(N, v(i1,i2)) = v(N\{i1})− v(N\{i1, i2})

mσ
ik

(N, v(i1,i2)) = v({ik}) for all ik 6= i1, i2

It is easy to check that |π1(N)| = (n− 1)!
Let π2(N) = {σ ∈ π(N) : σ(i2) < σ(i1) and there is in ∈ N\{i1, i2} such that

σ(in) = n}, then

mσ
i1

(N, v(i1,i2)) = v(N)− v(N\{i1}) + v((Pσ(i1)\{i2})−
∑

l∈Pσ(i1)\{i2}
v({l})

= v(N)− v(N\{i1})
mσ

i2
(N, v(i1,i2)) = v(N\{i1})− v(N\{i1, i2})

mσ
ik

(N, v(i1,i2)) = v({ik}) ∀ ik such that σ(ik) < σ(i1)
mσ

ik
(N, v(i1,i2)) = v((Pσ(ik) ∪ {ik})\{i1, i2})− v((Pσ(ik))\{i1, i2})

∀ ik such that σ(ik) > σ(i1)
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Let us note that v(Pσ(i1)\{i2}) =
∑

l∈Pσ(i1)\{i2}
v({l}) since |Pσ(i1)\{i2}| ≤ n−3,

and applying similar reasonings we obtain,

mσ
ik

(N, v(i1,i2)) =





v({ik}) ik ∈ N\{i1, i2}: ik 6= in
v(N\{i1, i2})−

∑
il∈N\{i1,i2,in}

v({il}) ik = in

So, we can write,

mσ
i1(N, v(i1,i2)) = v(N)− v(N\{i1})

mσ
i2(N, v(i1,i2)) = v(N\{i1})− v(N\{i1, i2})
mσ

ik
(N, v{i}) = v({ik}) for all ik such that ik 6= in

mσ
in(N, v{i}) = v(N\{i1, i2})−

∑

il∈N\{i1,i2,in}
v({il})

Observe that for each σ ∈ π(N) such that σ(i2) < σ(i1) and there is in ∈ N\{i1, i2}
such that σ(in) = n, there are exactly (n−1)!

2 marginal vectors that give the same
point. The total number of permutations in this subclass is (n−1)!

2 (n − 2) and the
number of equivalence classes is equal to n− 2; i.e. n− 2 different extreme points.

Let π3(N) = {σ ∈ π(N) such that σ(i2) = n and σ(i1) = n − 1}. Easily it can
be showed that for all σ ∈ π3(N),

mσ
i1(N, v(i1,i2)) = v(N\{i2})−

∑

il∈N\{i1,i2}
v({il})

mσ
i2(N, v(i1,i2)) = v(N)− v(N\{i2})

mσ
ik

(N, v(i1,i2)) = v({ik}) for all ik such that ik 6= i1,i2

In this case we have (n− 2)! marginal vectors that coincide in the same point.
Let π4a(N) = {σ ∈ π(N) such that σ(i2) < n and σ(i2) > σ(i1)}. Then, take

σ ∈ π4a(N),

mσ
i1

(N, v(i1,i2)) = v(N\{i2})− v(N\{i1, i2})
mσ

i2
(N, v(i1,i2)) = v(N)− v(N\{i2})

mσ
ik

(N, v(i1,i2)) = v({ik})∀ ik such that σ(ik) < σ(i1)
mσ

ik
(N, v(i1,i2)) = v((Pσ(ik) ∪ {ik})\{i1})−

∑
il∈Pσ(ik)\{i1}

v({il})
∀ ik such that σ(i1) < σ(ik) < σ(i2)

mσ
ik

(N, v(i1,i2)) = v((Pσ(ik)) ∪ {ik})\{i1, i2})− v((Pσ(ik))\{i1, i2})
∀ ik such that σ(ik) > σ(i2)
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Equivalently,

mσ
i1(N, v(i1,i2)) = v(N\{i2})− v(N\{i1, i2})

mσ
i2(N, v(i1,i2)) = v(N)− v(N\{i2})

mσ
ik

(N, v(i1,i2)) = v({ik}) for all ik such that σ(ik) < n

mσ
ik

(N, v(i1,i2)) = v(N\{i1, i2})−
∑

il∈N\{i1,i2,ik}
v({il}) if σ(ik) = n

It is straightforward to check that that |π4a(N)| = (n−1)!
2 (n − 2), with n − 2

different classes.
Let π4b

(N) = {σ ∈ π(N) such that σ(i2) = n and σ(i1) < n− 1}. Now it is not
difficult to check that:

mσ
i1(N, v(i1,i2)) = v(N\{i2})− v(N\{i1, i2})

mσ
i2(N, v(i1,i2)) = v(N)− v(N\{i2})

mσ
ik

(N, v(i1,i2)) = v({ik}) for all ik such that σ(ik) < n− 1

mσ
ik

(N, v(i1,i2)) = v(N\{i1, i2})−
∑

il∈N\{i1,i2,ik}
v({il}) if σ(ik) = n− 1

And |π4b
(N)| = (n−1)!− (n−2)! = (n−2)!(n−2), with n−2 different classes.

But now, these classes can be regrouped with the corresponding in π4b
(N), so we

obtain π4a(N) such that |π4(N)| = |π4a(N)| + |π4b
(N)| = n2−n−2

2 (n − 2)! and of
course the number of equivalence classes remains equal to n− 2.

Now we can write the following expression for the Shapley value:

Shi1(N, v(i1,i2)) =
1
n!

∑

σ∈π(N)

mσ
i1(N, v(i1,i2)) =

1
n!

[ 4∑

l=1

∑

σ∈πl(N)

mσ
i1(N, v(i1,i2))

]
=

=
1
n!

[
(n− 1)!

[
v(N)− v(N\{i1}) + v(N\{i1, i2})−

∑

l∈N\{i1,i2}
v({l})

]]
+

+
1
n!

[(n− 1)!
2

(n−2)
[
v(N)−v(N\{i1})

]]
+

1
n!

[
(n−2)!

[
v(N\{i2})−

∑

il 6=i1,i2

v({il})
]]

+
1
n!

[n2 − n− 2
2

(n− 2)!
[
v(N\{i2})− v(N\{i1, i2})

]]
.

Making some computations,

Shi1(N, v(i1,i2)) =
v(N) + v(N\{i2})− v(N\{i1})

2
+

− 1
n− 1


(n− 3)

2
v(N\{i1, i2}) +

∑

l∈N\{i1,i2}
v({il})


 .
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Besides for player i2,

Shi2(N, v(i1,i2)) =
v(N) + v(N\{i1} − v(N\{i2})− v(N\{i1, i2})

2
and for all ik ∈ N\{i1, i2},

Shik(N, v(i1,i2)) =
1
n!

(
(n− 1)!v({ik}) +

(n− 1)!
2

(
v(N\{i1, i2})−

∑

l∈N\{i1,i2,ik}
v({il}

))
+

+
1
n!

((n− 1)!
2

(n− 3)v({ik})
)

+
1
n!

(
(n− 2)!v({ik})

)
+

+
1
n!

(
n2 − n− 2

2
(n− 3)!

(
v(N\{i1, i2})−

∑

l∈N\{i1,i2,ik}
v({il}+ (n− 3)v({ik})

))
.

Simplifying we obtain,

Shik(N, v(i1,i2)) =
n− 2
n− 1

v({ik}) +
1

n− 1

(
v(N\{i1, i2})−

∑

l∈N\{i1,i2,ik}
v({il})

)
.

Observe that the number of different vertices of the core is 2(n−1) that coincides
with the cardinal of the quotient set π(N)

∼ .

|π(N)/ ∼ | = 1 + n− 2 + 1 + n− 2 = 2(n− 1)

With some computations it can be checked that
∑

[σ]∈π(N)/∼
mσ(N, v)

2n− 2
= Sh(N, v(i1,i2))

b) First observe that

mσ
i2(N, v(i1,i2)) =

{
v(N\{i1})− v(N\{i1, i2}) for all σ ∈ π1(N) ∪ π2(N)

v(N)− v(N\{i2}) for all σ ∈ π3(N) ∪ π4(N)

and these values determine the hyperplanes defined by the restrictions imposed by
the coalitions {i2} and N\{i2}, i.e. for all x ∈ C(N, v(i1,i2)),

xi2 ≥ v(i1,i2)({i2}) = v(N\{i1})− v(N\{i1, i2})∑

i6=i2

xi ≥ v(i1,i2)(N\{i2}) ⇔ xi2 ≤ v(N)− v(i1,i2)(N\{i2}) = v(N)− v(N\{i2})

Besides, by the convexity of the game we have that v(N) − v(N\{i2}) ≥
v(N\{i1})− v(N\{i1, i2}).

Two cases must be considered:
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i) v(N)−v(N\{i2}) = v(N\{i1})−v(N\{i1, i2}). Then the hyperplanes coincide
and

V ol(C(N, v(i1,i2)) = 0.

ii) v(N) − v(N\{i2}) > v(N\{i1}) − v(N\{i1, i2}). Then the hyperplanes are
parallel and

V ol(C(N, v(i1,i2)) > 0.

Because of the simmetry of the core of this game we can deduce that for player
i2,

µi2(N, v(i1,i2)) =
v(N\{i1})− v(N\{i1, i2}) + v(N)− v(N\{i2})

2
and it coincides with the corresponding coordinate of the Shapley value.

Figure 4: The core of the game (N, v(i1,i2))

In the Figure 4 they are shown both the symmetries with regard the hyperplane
xi2 = µi2(N, v(i1,i2)) and the simplex which is inside the hyperplane itself. Note
that there are 2n − 2 different extreme points, n − 1 will be in one of the two
hyperplanes and the remaining n− 1 will be placed in the other one, besides they
are going to be the symmetric with regard the hyperplane xi2 = µi2(N, v(i1,i2)).

For any ik ∈ N\{i1, i2}, we know that for all x ∈ C(N, v(i1,i2)) (see proof of
Lemma 4 a))

v({ik}) ≤ xk ≤ v(N\{i1, i2})−
∑

l∈N\{i1,i2,ik}
v({il})

Then we can write,
µik(N, v(i1,i2)) = v({ik}) + t

where
0 ≤ t ≤ v(N\{i1, i2})−

∑

l∈N\{i1,i2}
v({il})

Since v(N\{i1, i2}) −
∑

l∈N\{i1,i2}
v({il}) is a constant, we can say that for all ik ∈

N\{i1, i2},
µik(N, v(i1,i2)) = v({ik}) + t
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Now we have to compute the center of mass of the convex hull of the n − 1
points on the hyperplane

xi2 = µi2(N, v(i1,i2)) =
v(N\{i1})− v(N\{i1, i2}) + v(N)− v(N\{i2})

2

The coordinates of players i3, ..., in in the n− 1 points u0, u3, u4, . . . , un are the
following:

u0 : (u0)ik = 0 for all k 6= 1, 2

ul : (l = 3, . . . , n)





(ul)ik = v(N\{i1, i2})−
∑

l∈N\{i1,i2}
v({il}) l = k

(ul)ik = 0 l 6= k

Now, considering the vectors ul−u0 it is straightforward to check that these points
are geometrically independent in Rn−2, so we indeed have a n−2 simplex, and then
for all ik ∈ N\{i1, i2},

µik(N, v(i1,i2)) = v({ik}) +

v(N\{i1, i2})−
∑

l∈N\{i1,i2}
v({il})

n− 1

which coincides with the expression for the Shapley value since if we sum and rest
the amount v({ik})

n−1 to the expression obtained for the Shapley value we obtain that
for all ik ∈ N\{i1, i2},

Shik(N, v(i1,i2)) =
n− 2
n− 1

v({ik}) +
1

n− 1


v(N\{i1, i2})−

∑

l∈N\{i1,i2,ik}
v({il})




= v({ik}) +
1

n− 1


v(N\{i1, i2})−

∑

l∈N\{i1,i2}
v({il})




= µik(N, v(i1,i2))

Now, only remains to prove that Shi1(N, v(i1,i2)) = µi1(N, v(i1,i2)), which it is a
direct consequence of the efficiency property, satisfied by both Shapley value and
core-center.

c) This expression for the volume is a consequence of the volume of the simplex
calculated in b) and the distance between the two hyperplanes also obtained in the
previous part of this Lemma.

Lemma 5. Let (N, v) ∈ CGn ∩ Gn
n−3 with n > 3 and let (N, v(i1,i2)) the (i1, i2)-

utopia game where i1and i2 ∈ N and i1 6= i2.

a) For all S ⊂ N, (v(i1,i2)){i2}(S) = (v{i2}){i1}(S) and C(N, (v(i1,i2)){i2}) =
C(N, (v{i2}){i1}).
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b) µ(N, (v(i1,i2)){i2}) = Sh(N, (v(i1,i2)){i2})

c) For all i, j ∈ N,

C(N, v∅) =
( ⋃

i∈N

C(N, v{i})
)
∪

( ⋃

i<j

(
C(N, v(i,j)) ∪ C(N, (v(i,j)){j})

) )
∪C(N, v)

d) All the intersections between two cores of the before division have null mea-
sure.

Proof. a) First, we recall that

v{i2}(S) =

{
v(N)− v(N\ {i2}) + v(S\{i2}) if i2 ∈ S∑

l∈S

v({l}) if i2 /∈ S

v(i1,i2)(S) =





v(N)− v(N\{i1, i2}) + v(S\{i1, i2}) i1, i2 ∈ S
v(N\{i2})− v(N\{i1, i2}) + v(S\{i1}) i1 ∈ S, i2 /∈ S

v(N\{i1})− v(N\{i1, i2}) +
∑

l∈S\{i2}
v({l}) i2 ∈ S, i1 /∈ S

∑
l∈S

v({l}) i1 /∈ S, i2 /∈ S

Then

(v(i1,i2)){i2}(S) =

{
v{i1,i2}(N)− v{i1,i2}(N\ {i2}) + v{i1,i2}(S\{i2}) i2 ∈ S∑

l∈S

v{i1,i2}({l}) i2 /∈ S

=





v(N)− v(N\{i1, i2}) + v(S\{i1, i2}) i2 ∈ S, i1 ∈ S
v(N)− v(N\{i2}) +

∑
l∈S\{i2}

v({l}) i2 ∈ S, i1 /∈ S

v(N\{i2})− v(N\{i1, i2}) +
∑

l∈S\{i2,i1}
v({l}) i2 /∈ S, i1 ∈ S

∑
l∈S

v({l}) i1 /∈ S, i2 /∈ S

Besides,

(v{i2}){i1})(S) =

{
v{i2}(N)− v{i2}(N\ {i1}) + v{i2}(S\{i1}) i1 ∈ S∑

l∈S

v{i2}({l}) i1 /∈ S

=





v(N)− v(N\ {i1, i2}) + v(S\{i2, i1}) i1 ∈ S, i2 ∈ S
v(N\{i2)− v(N\ {i1, i2}) +

∑
l∈S\{i1}

v({l}) i1 ∈ S, i2 6∈ S

v(N)− v(N\ {i2}) +
∑

l∈S\{i2}
v({l}) i1 /∈ S, i2 ∈ S

∑
l∈S

v({l}) i1 /∈ S, i2 6∈ S
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b) It follows from a) and Lemma 3.
The proofs of c), and d) follow similar lines to those of Lemma 2 and we omit

the details.

Remark. Notice that the ratios ri1,i2 corresponds with the following formula:
1

(n−2)!
n1/2

(
v(N\{i1,i2})−

∑
l∈N\{i1,i2}

v({il})
)n−2

(v(N)−v(N\{i1})+v(N\{i1,i2})−v(N\{i2}))

1
(n−1)!

n1/2

(
v(N)− ∑

j∈N
v({j})

)n−1 =

(n− 1)

(
v(N\{i1,i2})−

∑
l∈N\{i1,i2}

v({il})

v(N)− ∑
j∈N

v({j})

)n−1

v(N)−v(N\{i1})+v(N\{i1,i2})−v(N\{i2})
v(N)− ∑

j∈N
v({j})

This number can be interpreted as the probability that the coalition (i1, i2) is
really happy with the part that they receive in the division of v(N), but inside the
coalition itself, the happiness is bigger for player i1. Happiness for (i1, i2) implies
unhappines for the players of N\{i1, i2}.

And, the ratios r(i1,i2)i2
coincide with

r(i1,i2)i2
=




v(N\{i, j})− ∑
k∈N\{i,j}

v({k})

v(N)− ∑
j∈N

v({j}




n−1

Observe that ri1,i2 = ri2,i1 and r(i1,i2)i2
= r(i2,i1)i1

. With that in mind we can write
the following lemma.

Lemma 6. Let (N, v) ∈ CGn ∩ Gn
n−3 with n > 3 and let (N, v(i1,i2)) the (i1, i2)-

utopia game where i1and i2 ∈ N and i1 6= i2.The following equality holds:

ri1,i2µ(N, v(i1,i2)) + r(i1,i2)i2
µ(N, (v(i1,i2)){i2}) =

= ri2,i1µ(N, v(i2,i1)) + r(i2,i1)i1
µ(N, (v(i2,i1))i1).

Proof. It is a consequence of the following fact,

C(N, v(i1,i2)) ∪ C(N,
(
v(i1,i2)

)
{i2}) = C(N, v(i2,i1)) ∪ C(N,

(
v(i2,i1)

)
i1

).

The last result gives insights of symmetry between any two player coalition.
Now, we are in conditions to state our main theorem that gives a direct relation
between the core-center and the Shapley value of the fair game.

Theorem 2. Let (N, v) ∈ CGn ∩Gn
n−3 with n > 3. Then,

µ(N, v) = Sh(N, w)
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where for all S ⊂ N,

w(S) =


1

p


p0v∅ −

∑

i∈N

piw{i} −
∑

i,j∈N

1
2

(
pi,jv(i,j) + p(i,j)j

(
v(i,j)

)
{j}

)




 (S)

V ol(C(N, v∅)) = p0

V ol(C(N, v{i})) = pi for all i ∈ N

V ol(C(N, v(i,j))) = pi,j for all i, j ∈ N

V ol(C(N,
(
v(i,j)

)
{j})) = p(i,j)j

for all i, j ∈ N

p = p0 −
∑

i∈N

pi −
∑

i<j

(pi,j + p(i,j)j
) = V ol(C(N, v))

Proof. Taking into account that,

C(N, v∅) =
( ⋃

i∈N

C(N, v{i})
)
∪

( ⋃

i<j

(
C(N, v(i,j)) ∪ C(N, (v(i,j)){j})

) )
∪ C(N, v)

and we find out that µ(N, v∅) =

∑
i∈N

pi
p0

µ(N, v{i}) +
∑
i<j

(
pi,j

p0
µ(N, v{i,j}) +

p(i,j)j

p0
µ(N,

(
v{i,j}

)
{j})

)
+ µ(N, v) p

p0
=

=
∑
i∈N

pi

p0
µ(N, v{i}) +

∑
i,j∈N

1
2

(
pi,j

p0
µ(N, v{i,j}) +

p(i,j)j

p0
µ(N,

(
v{i,j}

)
{j})

)
+ µ(N, v) p

p0

where the last equality hold by Lemma 6. Applying lemmas 1 and 4, and the
additivity of the Shapley value we deduce,

µ(N, v) =
p0

p
µ(N, v∅)−

∑

i∈N

pi

p
µ(N, v{i})−

∑

i,j∈N

1
2

(pi,j

p
µ(N, v(i,j))+

p(i,j)j

p
µ(N, (v(i,j)){j})

)
=

p0

p
Sh(N, v∅)−

∑

i∈N

pi

p
Sh(N, w{i})

−
∑

i,j∈N

1
2

(
pi,j

p
Sh(N, v(i,j)) +

p(i,j)j

p
Sh(N, (v(i,j)){j})

)
= Sh(N, w).

Corollary 3. Let (N, v) ∈ CG4. Then,

µ(N, v) = Sh(N, w)

where w(S) =

(
1
p

(
p0v∅ −

∑
i∈N

piw{i} −
∑

i,j∈N

1
2

(
pi,jv(i,j) + p(i,j)j

(
v(i,j)

)
{j}

)))
(S).
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Proof. It is immediate from Theorem 2.

Remark. The fair game takes into account all the possibilities in the game.
Once the players know their individual values and the value of the grand coalition,
they observe that the core of the game (N, v∅) (the imputation set) contains all
the possibilities to share v(N) among them. Just in this point it would be fair
that they obtain the center of the core. But, with all the characteristic function
on the table, would it be fair? Rational players would think on the possibility
of forming subcoalitions, and it would be fair to play a game that picks all that
information. So, players notice that each S ⊂ N such that v(S) >

∑
i∈S v({i}) is

imposing a constraint in the imputation set. What the fair game does is to take into
account all that information by means of a probability measure. For the coalitions
of two players we also have a probabilistic interpretation: when they form their
own coalition there are two possible ways of cooperate, so we assign probability 1

2
to the coalition {i, j} and 1

2 to the coalition {j, i}.

3 The airport game and the core-center

A cooperative TU cost game is a pair (N, c) where N = {1, . . . , n} is a finite set of
agents and c : 2N → R is a map assigning to each coalition S ∈ 2N , a real number
c(S) that represents the minimum costs that the agents of S can guarantee by
themselves independently of the agents of N\S, where c(∅) = 0. The corresponding
cost savings game (N, v) is defined by v(S) =

∑
i∈S

c({i})− c(S) for all S ∈ 2N .

Consider the airport game (Littlechild and Owen (1973)). Suppose, that we have
three types of planes. N = {1, 2, 3}, and c1 < c2 < c3. Then the corresponding cost
game (N, c),

c(1, 2, 3) = c3

c(1, 2) = c2 c(1) = c1

c(1, 3) = c3 c(2) = c2

c(2, 3) = c3 c(3) = c3

It is well known that the Shapley value of the airport game corresponds with the
following formula:

Sh(N, c) = (
c1

3
,
c1

3
+

c2 − c1

2
,
c1

3
+

c2 − c1

2
+ c3 − (c2 + c1)).

The cost to pay by each firm only depends on the planes that are less or equal than
theirs and so, it is independent on the big planes. Now we provide some examples
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to study the centroid.

Sh(N, c) µ(N, c)
c1 = 2, c2 = 4, c3 = 4 (0.6667, 1.6667, 1.6667) (0.8889, 1.5556, 1.5556)
c1 = 2, c2 = 4, c3 = 5 (0.6667, 1.6667, 2.6667) (0.8889, 1.5556, 2.5556)
c1 = 2, c2 = 4, c3 = 10 (0.6667, 1.6667, 7.6667) (0.8889, 1.5556, 7.5556)
c1 = 2, c2 = 40, c3 = 100 (0.6667, 19.6667, 79.667) (0.9915, 19.504, 79.504)
c1 = 2, c2 = 40, c3 = 1000 (0.6667, 19.6667, 979.67) (0.9915, 19.504, 979.504)

As we can observe the centroid for the planes different from the big one is not
affected by changes on the cost of the big one. The reason is that, although the core
changes, we always have the same structure for the other type of planes, i.e. we are
moving the core vertically over the axis of the big plane. On the contrary, what
happens if we change the cost of the other planes? The answer is that for the core-
center all the planes are going to have their allocation changed. The motivation for
this could be that if there are little planes and very big ones, the little planes, even
when they do not need those improvements in the airport, they are also going to
take some benefit from all the resources of the big companies, and so, it seems fair
to pay something else.

4 A comparison by means of properties

• The Shapley value is an allocation rule that satisfies efficiency, symmetry on
the characteristic function, dummy player and additivity on the character-
istic function4. All these properties are satisfied by the core-center, except
additivity on the characteristic function.

• The Shapley value satisfies the strong monotonicity property that says: given
(N, v) and (N, w) ∈ Gn, if for all S ⊂ N\{i}, v(S∪i)−v(S) ≥ w(S∪i)−w(S),
then ϕi(N, v) ≥ ϕi(N, w). As a direct consequence if for all S ⊂ N\{i},
v(S ∪ i)− v(S) = w(S ∪ i)−w(S), then ϕi(N, v) = ϕi(N, w). Besides, Young
(1985) characterized the Shapley value using efficiency, symmetry and strong
monotonicity.

The centroid does not verify this property. Consider the following games with
N = {1, 2, 3} and i = {3}.

v(1, 2, 3) = 10
v(1, 2) = 2 v(1) = 0
v(1, 3) = 3 v(2) = 0
v(2, 3) = 3 v(3) = 0

w(1, 2, 3) = 15
w(1, 2) = 7 w(1) = 0
w(1, 3) = 3 w(2) = 0
w(2, 3) = 3 w(3) = 0

4ϕ satisfies additivity on the characteristic function if for any two games (N, v) and (N, w),
ϕ(N, v + w) = ϕ(N, v) + ϕ(N, w), where (v + w)(S) = v(S) + w(S) for all S ⊂ N.
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r(1,2,3)=1000
r(1,2)=992 r(1)=0
r(1,3)=3 r(2)=0
r(2,3)=3 r(3)=0

For all S ⊂ N\{3},

v(S ∪ {3})− v(S) = w(S ∪ {3})− w(S) = r(S ∪ {3})− r(S)

and,

Sh3(N, v) = Sh3(N, w) = Sh3(N, r) = 3.6667.

µ3(N, v) = 3.5983, µ3(N, w) = 3.8017, µ3(N, r) = 4.

• There are other characterizations of the Shapley value, for instance, using
the property of balanced contributions. Obviously, the core-center does not
satisfy that property.

5 Some conclusions

There is no doubt about the fact that it is interesting to know if Theorem 2 can
be extended to the entire class of convex games. Besides, the utopia games give a
lot of information concerning the game, and up to here, they have been defined for
convex games. So at this point there are some open questions; can we define the
utopia games for any balanced game? and, the core-center of any balanced game,
can it be expressed by means of these games? Even when we have many insights
on how these games behave, much more research on this topic is needed.

As the final conclusion just insist in the fact that the core-center provides a new
focus to search for connections between set-valued solutions and allocation rules.
Of course, many things still remain to be explored in this new field.
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