Robust B -splines estimators in generalized partly linear regression under monotone constraints

Graciela Boente ${ }^{1}$
${ }^{1}$ Universidad de Buenos Aires and CONICET, Argentina

Based on joint work with

- Daniela Rodriguez ${ }^{1}$ and Pablo Vena ${ }^{1}$

Semiparametric generalized partially linear model

- $y_{i} \mid\left(\mathbf{x}_{i}, z_{i}\right) \sim F\left(., \mu_{i}\right)$ canonical exponential family, $z_{i} \in[0,1]$

$$
\exp \left\{[y \theta(\mathbf{x}, z)-B(\theta(\mathbf{x}, z))] / A\left(\kappa_{0}\right)+C\left(y, \kappa_{0}\right)\right\},
$$

- $\operatorname{VAR}\left(y_{i} \mid\left(\mathbf{x}_{i}, z_{i}\right)\right)=A^{2}\left(\kappa_{0}\right) V\left(\mu_{i}\right)$ with $V: \mathbb{R} \rightarrow \mathbb{R}$ known function.
- $\mu_{i}=\mathbb{E}\left(y_{i} \mid\left(\mathbf{x}_{i}, z_{i}\right)\right)=\mu\left(\mathbf{x}_{i}, z_{i}\right)$

$$
\mu(\mathbf{x}, z)=H\left(\mathbf{x}^{\mathrm{T}} \boldsymbol{\beta}_{0}+\eta_{0}(z)\right)
$$

- $\boldsymbol{\beta}_{0} \in \mathbb{R}^{p}$ is an unknown parameter.
- $\eta_{0}:[0,1] \rightarrow \mathbb{R}$ is a continuous function.
- κ_{0} : nuisance parameter

Semiparametric generalized partially linear model GPLM
 $$
\mu(\mathbf{x}, z)=H\left(\mathbf{x}^{\mathrm{T}} \boldsymbol{\beta}_{0}+\eta_{0}(z)\right)
$$

- Partial linear logistic Model
- Partial linear Poisson Model

Semiparametric generalized partially linear model

 GPLM$$
\mu(\mathbf{x}, z)=H\left(\mathbf{x}^{\mathrm{T}} \boldsymbol{\beta}_{0}+\eta_{0}(z)\right)
$$

Partial linear Model

- Partial linear logistic Model
- Partial linear Poisson Model

Symmetric errors

Semiparametric generalized partially linear model

GPLM

$$
\mu(\mathbf{x}, z)=H\left(\mathbf{x}^{\mathrm{T}} \boldsymbol{\beta}_{0}+\eta_{0}(z)\right)
$$

Partial linear Model

- Partial linear logistic Model
- Partial linear Poisson Model

Skewed errors
Log-Gamma Model

Isotonic generalized partially linear model

- We add a monotone constraint on the nonparametric component:

We assume that η_{0} is non-decreasing.

Adding monotonicity to the GPLM

In many applications, monotonicity is a desired property.

- When $\boldsymbol{\beta}=\mathbf{0}$, Ramsay (1988) studied the relation between the incidence of Down's syndrome and the mother's age.
- Leitenstorfer and Tutz (2006) studied the air pollution (São Paulo) to evaluate the association between the number of daily deaths of elderly people for respiratory causes and the concentration of $\mathrm{SO}_{2}, \mathrm{CO}$, PM_{10} and O_{3}.
- Lu (2014) studied air pollution(Mexico City). The response y was daily death count, the covariates are
- $z=\mathrm{PM}_{10}=$ the daily mean ambient concentration of fine particle air pollutants $<10 \mu \mathrm{~m}$
- $\mathbf{x}=$ the daily mean temperature and daily rainfall indicator.

Semi-parametric estimation When $H(t)=t$

- Huang (2002): LS under constrains.
- Lu (2010): ML estimators based on B-splines.
- Wang and Huang (2002): Robust isotonic estimators $(\beta=0)$.
- Álvarez and Yohai (2012): M-isotonic regression estimators $(\beta=0)$.
- Du et al. (2013): M-estimators based on monotone B-splines with known scale.

Semi-parametric estimation

When $H(t)=t$

- Huang (2002): LS under constrains.
- Lu (2010): ML estimators based on B-splines.
- Wang and Huang (2002): Robust isotonic estimators $(\beta=0)$.
- Álvarez and Yohai (2012): M-isotonic regression estimators $(\beta=0)$.
- Du et al. (2013): M-estimators based on monotone B-splines with known scale.

Under a GPLM

- Boente et al. (2006): Robust profile kernel based estimators of η and β (no restrictions on η)
- Boente and Rodriguez (2010): Robust two-step kernel based estimators of η and β (no restrictions on η)
- Lu (2014): Monotone B-splines estimators based on the quasi-likelihood.

Spline approaches

B-spline approximation

Spline approaches

B-spline approximation

- Monotone Splines

Spline approaches

B-spline approximation

- Monotone Splines
- Monotone modification of unconstrained estimators

Dette, Neumeyer \& Pilz(2006) and Neumeyer (2007)

Splines and monotonicity

Consider the knots $\mathcal{Z}_{n}=\left\{\xi_{i}\right\}_{i=1}^{m_{n}+2 \ell}$ where

$$
0=\xi_{1}=\cdots=\xi_{\ell}<\xi_{\ell+1}<\cdots<\xi_{m_{n}+\ell+1}=\cdots=\xi_{m_{n}+2 \ell}=1
$$

and denote as $\mathcal{S}_{n}\left(\mathcal{Z}_{n}, \ell\right)$ the class of splines of order $\ell>1$ with knots \mathcal{Z}_{n}.

Schumaker (1981)

- There exist a class of B-spline basis functions $\left\{B_{j}: 1 \leq j \leq k_{n}\right\}$, with $k_{n}=m_{n}+\ell$, such that $g=\sum_{j=1}^{k_{n}} a_{j} B_{j}$, for any $g \in \mathcal{S}_{n}\left(\mathcal{Z}_{n}, \ell\right)$.
- The spline g is nondecreasing on $[0,1]$ if $a_{1} \leq \cdots \leq a_{k_{n}}$.

Robust Estimators

To obtain Robust estimators, combine monotone B-splines

Loss function that bounds residuals

Weight function to control the effect of leverage points
$\mathbf{w}: \mathbb{R}^{\mathbf{p}} \rightarrow \mathbb{R}$: weight function to control leverage of x

Robust estimators

- $\widehat{\kappa}$: robust consistent estimator of the nuisance parameter κ_{0}.

The estimators

$$
(\widehat{\boldsymbol{\beta}}, \widehat{\eta})=\left(\widehat{\boldsymbol{\beta}}, \sum_{j=1}^{k_{n}} \widehat{\mathrm{a}}_{j} B_{j}\right)
$$

where

$$
(\widehat{\boldsymbol{\beta}}, \widehat{\mathbf{a}})=\underset{\mathbf{b} \in \mathbb{R}^{p}, \mathbf{a} \in \mathcal{L}_{k_{n}}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \phi\left(y_{i}, \mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}+\sum_{j=1}^{k_{n}} a_{j} B_{j}\left(z_{i}\right), \widehat{\kappa}\right) w\left(\mathbf{x}_{i}\right),
$$

$$
\mathcal{L}_{k_{n}}=\left\{\mathbf{a} \in \mathbb{R}^{k_{n}}: a_{1} \leq \cdots \leq a_{k_{n}}\right\} .
$$

Loss functions: Bounding the deviances

$$
\phi(y, u, \kappa)=\rho_{c}[d(y ; u)]+G(H(u)), \quad c=c(\kappa)
$$

- ρ_{c} odd and bounded nondecreasing function with continuous derivative φ_{c}.
- c is a tuning parameter.
- G guarantees Fisher-consistency.

$$
G^{\prime}(s)=\int \psi_{c}[d(y ; u)] f^{\prime}(y, s) d \mu(y)=\mathbb{E}_{s}\left(\psi_{c}[d(y ; u)] \frac{f^{\prime}(y, s)}{f(y, s)}\right)
$$

- \mathbb{E}_{s} expectation taken under $F(\cdot, s)$ and $f^{\prime}(y, s)=\frac{\partial}{\partial s} f(y, s)$.

Loss functions: Bounding the deviances

$$
\phi(y, u, \kappa)=\rho_{c}[d(y ; u)]+G(H(u)), \quad c=c(\kappa)
$$

- ρ_{c} odd and bounded nondecreasing function with continuous derivative φ_{c}.
- c is a tuning parameter.
- G guarantees Fisher-consistency.

$$
G^{\prime}(s)=\int \psi_{c}[d(y ; u)] f^{\prime}(y, s) d \mu(y)=\mathbb{E}_{s}\left(\psi_{c}[d(y ; u)] \frac{f^{\prime}(y, s)}{f(y, s)}\right)
$$

- \mathbb{E}_{s} expectation taken under $F(\cdot, s)$ and $f^{\prime}(y, s)=\frac{\partial}{\partial s} f(y, s)$.

When $y_{i} \mid\left(\mathbf{x}_{i}, z_{i}\right)$ has a density, $G(s) \equiv 0$ (Bianco et al., 2005).

The partial linear model: Symmetric errors

$$
y=\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{x}+\eta_{0}(z)+u, \quad u \sim G_{0}\left(\cdot / \sigma_{0}\right)
$$

- κ_{0} is scale parameter σ_{0} and

$$
\phi(\mathrm{y}, \mathrm{~s}, \kappa)=\rho_{\mathrm{c}}\left(\frac{\mathrm{y}-\mathrm{s}}{\kappa}\right)
$$

- $\rho_{c}(t)=\rho(t / c)$ and $\rho: \mathbb{R} \rightarrow[0, \infty)$ is a ρ-function
ρ : bisquare function

$$
\rho_{\mathrm{T}, c}(t)=\min \left(1-\left(1-(t / c)^{2}\right)^{3}, 1\right)
$$

PLM: Symmetric errors

(1) Compute an unrestricted $M M$-estimator $(\widehat{\boldsymbol{\beta}}, \widehat{\eta})=\left(\widehat{\boldsymbol{\beta}}, \sum_{j=1}^{k_{n}} \widehat{a}_{j} B_{j}\right)$

$$
(\widehat{\boldsymbol{\beta}}, \widehat{\mathbf{a}})=\underset{\mathbf{b} \in \mathbb{R}^{p}, \mathbf{a} \in \mathbb{R}^{k}{ }^{k}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \rho_{c}\left(\frac{y_{i}-\mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}-\sum_{j=1}^{k_{n}} a_{j} B_{j}\left(z_{i}\right)}{\widehat{\sigma}}\right),
$$

$\widehat{\sigma}$ is the scale related to an S-estimator (Yohai, 1987)

PLM: Symmetric errors

(1) Compute an unrestricted $M M$-estimator $(\widehat{\boldsymbol{\beta}}, \widehat{\eta})=\left(\widehat{\boldsymbol{\beta}}, \sum_{j=1}^{k_{n}} \widehat{\mathrm{a}}_{j} B_{j}\right)$

$$
(\widehat{\boldsymbol{\beta}}, \widehat{\mathbf{a}})=\underset{\mathbf{b} \in \mathbb{R}^{p}, \mathbf{a} \in \mathbb{R}^{k} n}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \rho_{c}\left(\frac{y_{i}-\mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}-\sum_{j=1}^{k_{n}} a_{j} B_{j}\left(z_{i}\right)}{\widehat{\sigma}}\right),
$$

$\widehat{\sigma}$ is the scale related to an S-estimator (Yohai, 1987)
(2) If $\widehat{a}_{1}^{(0)} \leq \hat{a}_{2}^{(0)} \leq \cdots \leq \hat{a}_{k_{n}}^{(0)}$, then

$$
\text { - } \widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}^{(0)} \quad \widehat{\eta}(z)=\sum_{j=1}^{k_{n}} \hat{a}_{j}^{(0)} B_{j}(z) .
$$

PLM: Symmetric errors

(1) Compute an unrestricted $M M$-estimator $(\widehat{\boldsymbol{\beta}}, \widehat{\eta})=\left(\widehat{\boldsymbol{\beta}}, \sum_{j=1}^{k_{n}} \widehat{a}_{j} B_{j}\right)$

$$
(\widehat{\boldsymbol{\beta}}, \widehat{\mathbf{a}})=\underset{\mathbf{b} \in \mathbb{R}^{p}, \mathbf{a} \in \mathbb{R}^{k_{n}}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \rho_{c}\left(\frac{y_{i}-\mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}-\sum_{j=1}^{k_{n}} a_{j} B_{j}\left(z_{i}\right)}{\widehat{\sigma}}\right),
$$

$\widehat{\sigma}$ is the scale related to an S-estimator (Yohai, 1987)
(2) If $\widehat{a}_{1}^{(0)} \leq \widehat{a}_{2}^{(0)} \leq \cdots \leq \hat{a}_{k_{n}}^{(0)}$, then

$$
\text { - } \widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}^{(0)} \quad \widehat{\eta}(z)=\sum_{j=1}^{k_{n}} \hat{a}_{j}^{(0)} B_{j}(z) .
$$

(0) Otherwise, use an IRWLS that takes into account the given restrictions, that is, we approximate the minimization problem using IRWLS subject to $a_{1} \leq \cdots \leq a_{k_{n}}$ using quadratic programming.

PLM: Errors with exponential unimodal density

$$
y=\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{x}+\eta_{0}(z)+u,
$$

- Errors density

$$
\mathrm{g}_{0}\left(\mathrm{u}, \alpha_{0}\right)=\mathbf{Q}\left(\alpha_{0}\right) \exp ^{\alpha_{0} \nu(\mathrm{u})},
$$

- $\alpha_{0}>0$ an unknown parameter
- ν is a continuous function with unique maximum at u_{0}
- Log-Gamma case: $\nu(s)=s-\exp (s), u_{0}=0$

PLM: Errors with exponential unimodal density

$$
y=\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{x}+\eta_{0}(z)+u,
$$

Loss function: Bianco, García Ben \& Yohai (2005)

$$
\phi(\mathrm{y}, \mathrm{~s}, \kappa)=\rho\left(\frac{\sqrt{\mathrm{d}(\mathrm{y}-\mathrm{s})}}{\kappa}\right)
$$

- $d(s)=\nu\left(u_{0}\right)-\nu(s)$.
- ρ a ρ-function.
- κ : tuning constant related to the parameter α_{0}.

PLM: Errors with exponential unimodal density

- MM-estimator without restrictions

$$
\left(\widehat{\boldsymbol{\beta}}^{(0)}, \widehat{\mathbf{a}}^{(0)}\right)=\underset{(\mathbf{b}, \mathbf{a}) \in \mathbb{R}^{p+k_{n}}}{\operatorname{argmin}} \sum_{i=1}^{n} \rho\left(\frac{\sqrt{d\left(y_{i}-\left[\mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}+\mathbf{a}^{\mathrm{T}} \mathbf{B}_{i}\right]\right)}}{\widehat{\kappa}_{n}}\right) w\left(\mathbf{x}_{i}\right)
$$

$\widehat{\kappa}_{n}$ is the tuning constant as in Bianco et al. (2005).

PLM: Errors with exponential unimodal density

- MM-estimator without restrictions

$$
\left(\widehat{\boldsymbol{\beta}}^{(0)}, \widehat{\mathbf{a}}^{(0)}\right)=\underset{(\mathbf{b}, \mathbf{a}) \in \mathbb{R}^{p+k_{n}}}{\operatorname{argmin}} \sum_{i=1}^{n} \rho\left(\frac{\sqrt{d\left(y_{i}-\left[\mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}+\mathbf{a}^{\mathrm{T}} \mathbf{B}_{i}\right]\right)}}{\widehat{\kappa}_{n}}\right) w\left(\mathbf{x}_{i}\right),
$$

$\widehat{\kappa}_{n}$ is the tuning constant as in Bianco et al. (2005).

- If $\widehat{a}_{1}^{(0)} \leq \widehat{a}_{2}^{(0)} \leq \cdots \leq \widehat{a}_{k_{n}}^{(0)}$, then

$$
-\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}^{(0)} \quad \rightarrow \widehat{\eta}(z)=\sum_{j=1}^{k_{n}} \hat{a}_{j}^{(0)} B_{j}(z)
$$

PLM: Errors with exponential unimodal density

- Otherwise, use a non-linear minimization algorithm with restrictions choosing as initial value $\left(\widehat{\boldsymbol{\beta}}^{(0)}, \mathbf{a}^{(0)}\right)$, where $\mathbf{a}^{(0)} \in \mathcal{L}_{k_{n}}$. One possible choice for a^{0} is $a_{1}^{0}=a_{2}^{0}=0$ and $a_{i}^{0}=i-2$ for $i=3, \ldots, k_{n}$.

The increasing modification: Dette, Neumeyer \& Pilz (2005),

 Neumeyer (2007)- $f:[a, b] \rightarrow \mathbb{R}$ define

$$
\Upsilon(f)(u)=\int_{a}^{b} \mathbb{I}_{\{f(z) \leq u\}} d z+a \quad u \in \mathbb{R}
$$

The increasing modification: Dette, Neumeyer \& Pilz (2005),

Neumeyer (2007)

- $f:[a, b] \rightarrow \mathbb{R}$ define

$$
\Upsilon(f)(u)=\int_{a}^{b} \mathbb{I}_{\{f(z) \leq u\}} d z+a \quad u \in \mathbb{R}
$$

- Given $f:[0,1] \rightarrow \mathbb{R}$, the Increasing modification $f_{\text {IMOD }}:[0,1] \rightarrow \mathbb{R}$ is

$$
f_{\mathrm{IMOD}}=\Upsilon\left(\Upsilon(f) \mathbb{I}_{[f(0), f(1)]}\right) \mathbb{I}_{[0,1]}
$$

$$
\begin{aligned}
& f_{\text {IMOD }} \\
& f(x)= \\
& 5 x^{3}+4 x-8 x^{2} \mathbb{I}_{0 \leq x \leq 1}
\end{aligned}
$$

The monotone estimator of η

A monotone estimator of $\eta:[0,1] \rightarrow \mathbb{R}$ may be constructed as

$$
\widehat{\eta}_{\text {IMOD }}=\Upsilon\left(\Upsilon(\widehat{\eta}) \mathbb{I}_{[\widehat{\eta}(0), \widehat{\eta}(1)]}\right) \mathbb{I}_{[0,1]}
$$

from the unconstrained estimators.

Selection of k_{n}

As in He and Shi (1996) and He, Zhu \& Fung (2002), define

$$
B I C(k)=\log \left\{\frac{1}{n} \sum_{i=1}^{n} \rho\left(y_{i}, \mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}+\sum_{j=1}^{k} \lambda_{j} B_{j}\left(z_{i}\right), \widehat{\kappa}\right) w\left(\mathbf{x}_{i}\right)\right\}+\frac{\log n}{2 n} k .
$$

A possible criterion is to search for the first (i.e. smallest k) local minimum of $B I C(k)$ in the range of

$$
\max \left(\frac{n^{1 / 5}}{2}, 4\right) \leq k \leq 8+2 n^{1 / 5}
$$

when cubic splines are considered.

Assumptions

- $\left(y_{i}, \mathbf{x}_{i}, z_{i}\right)^{\mathrm{T}}$ are i.i.d. observations satisfying a GPLM model with η_{0} non-decreasing
- $\eta_{0} \in C^{r}[0,1]$ and $\eta_{0}^{(r)}$ is Lipschitz continuous
- The maximum spacing of the knots is of order $O\left(n^{-\nu}\right), 0 \leq \nu \leq 1 / 2$
- $k_{n}=O\left(n^{\nu}\right)$ for $1 /(2 r+2)<\nu<1 /(2 r)$
- $\widehat{\kappa} \xrightarrow{\text { a.s. }} \kappa_{0}$

Asymptotic results

Let $\left\|\eta_{0}-\widehat{\eta}\right\|_{L^{2}(Q)}^{2}=\mathbb{E}\left(\eta_{0}\left(t_{1}\right)-\widehat{\eta}\left(t_{1}\right)\right)^{2}$.

- a) $\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|^{2}+\left\|\widehat{\eta}-\eta_{0}\right\|_{L^{2}(Q)}^{2} \xrightarrow{\text { a.s. }} 0$.
- b) $\gamma_{n}\left(\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|^{2}+\left\|\widehat{\eta}-\eta_{0}\right\|_{L^{2}(Q)}^{2}\right)=O_{\mathbb{P}}(1)$, where

$$
\gamma_{n}=n^{\min \left(r \nu, \frac{1-\nu}{2}\right)}
$$

Hence, if $\nu=1 /(1+2 r)$, the estimators converge at the optimal rate $n^{r /(1+2 r)}$ and $\left\|\widehat{\eta}-\eta_{0}\right\|_{\infty} \xrightarrow{p} 0$.

Asymptotic results

Let $\left\|\eta_{0}-\widehat{\eta}\right\|_{L^{2}(Q)}^{2}=\mathbb{E}\left(\eta_{0}\left(t_{1}\right)-\widehat{\eta}\left(t_{1}\right)\right)^{2}$.

- a) $\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|^{2}+\left\|\widehat{\eta}-\eta_{0}\right\|_{L^{2}(Q)}^{2} \xrightarrow{\text { a.s. }} 0$.
- b) $\gamma_{n}\left(\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|^{2}+\left\|\widehat{\eta}-\eta_{0}\right\|_{L^{2}(Q)}^{2}\right)=O_{\mathbb{P}}(1)$, where

$$
\gamma_{n}=n^{\min \left(r \nu, \frac{1-\nu}{2}\right)}
$$

Hence, if $\nu=1 /(1+2 r)$, the estimators converge at the optimal rate $n^{r /(1+2 r)}$ and $\left\|\widehat{\eta}-\eta_{0}\right\|_{\infty} \xrightarrow{p} 0$.

$$
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{D} N\left(0, \boldsymbol{\Sigma}\left(\boldsymbol{\theta}_{0}, \kappa_{0}\right)\right) .
$$

Monte Carlo study

- $N R=1000$ replications,
- samples of size $n=100$,

The uncontaminated sample, C_{0}, is generated as follows:

- $\left(x_{i}, z_{i}\right)$ independent of each other, $x_{i} \sim \mathrm{~N}(0,1), z_{i} \sim \mathcal{U}(0,1)$.
- $y_{i}=\beta_{0} x_{i}+\eta_{0}\left(z_{i}\right)+u_{i}$,
$u_{i} \sim \log (\Gamma(3,1)), \beta_{0}=2$
- Two choices for the nonparametric component:

$$
\begin{array}{ll}
\text { Model } 1 & \eta_{0,1}(t)=\sin (\pi t / 2) \\
\text { Model } 2 & \eta_{0,2}(t)=\pi t+0.25 \sin (4 \pi t)
\end{array}
$$

Contaminations

We generate a sample $v_{i} \sim \mathcal{U}(0,1)$ for $1 \leq i \leq n$ and then:

- C_{1} introduces bad high leverage points in the carriers x, without changing the responses already generated:

$$
y_{i, c}=y_{i} \quad x_{i, c}= \begin{cases}x_{i} & \text { if } v_{i} \leq 0.90 \\ x_{i}^{\star} & \text { if } v_{i}>0.90\end{cases}
$$

where $x_{i}^{\star} \sim N(5,1 / 16)$.

Contaminations

We generate a sample $v_{i} \sim \mathcal{U}(0,1)$ for $1 \leq i \leq n$ and then:

- C_{1} introduces bad high leverage points in the carriers x, without changing the responses already generated:

$$
y_{i, c}=y_{i} \quad x_{i, c}= \begin{cases}x_{i} & \text { if } v_{i} \leq 0.90 \\ x_{i}^{\star} & \text { if } v_{i}>0.90\end{cases}
$$

where $x_{i}^{\star} \sim N(5,1 / 16)$.

- C_{2} introduces outlying observations in the responses generated according to the model but with an incorrect carrier x.

$$
y_{i, c}=\left\{\begin{array}{ll}
y_{i} & \text { if } v_{i} \leq 0.90 \\
y_{i}^{\star} & \text { if } v_{i}>0.90,
\end{array} \quad x_{i, c}=x_{i}\right.
$$

where $y_{i}^{\star}=\beta_{0} x_{i}^{\star}+\eta_{0}\left(z_{i}\right)+u_{i}^{\star}$ with

$$
u_{i}^{\star} \sim \log (\Gamma(3,1)) \quad x_{i}^{\star} \sim N(5,1 / 16),
$$

Contaminations

- C_{3} corresponds to increasing the variance of the carriers x and also to introduce large values on the responses

$$
\begin{aligned}
& x_{i, c}= \begin{cases}x_{i} & \text { if } v_{i} \leq 0.90 \\
\text { a new observation from a } \mathrm{N}(0,25) & \text { if } v_{i}>0.90,\end{cases} \\
& y_{i, c}= \begin{cases}y_{i} & \text { if } v_{i} \leq 0.90 \\
y_{i}^{\star} & \text { if } v_{i}>0.90,\end{cases}
\end{aligned}
$$

with $y_{i}^{\star}=3 \log (10)+u_{i}^{\star}$ and $u_{i}^{\star} \sim \log (\Gamma(3,1))$.

Results under C_{0}

	Model 1										
		Summary measures for $\widehat{\beta}$							MISE $(\hat{\eta})$		
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob					
(a)	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088				
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096				

Results under C_{0}

		Model 1									
		Summary measures for $\widehat{\beta}$							MISE $(\hat{\eta})$		
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob					
(a)	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088				
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096				
(b)	CL	0.0009	0.0613	0.0038	0.0565	0.9280	0.0118				
	ROB	-0.0000	0.0921	0.0085	0.0620	0.9060	0.0157				

a) Monotone B-splines
b) Isotone Modification

$$
\operatorname{ISE}(\widehat{\eta})=\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{\eta}\left(t_{i}\right)-\eta_{0}\left(t_{i}\right)\right)^{2} .
$$

Results under C_{0}

		Model 1						
		Summary measures for $\widehat{\beta}$						
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob		
(a)	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088	
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096	
(b)	CL	0.0009	0.0613	0.0038	0.0565	0.9280	0.0118	
	ROB	-0.0000	0.0921	0.0085	0.0620	0.9060	0.0157	

a) Monotone B-splines
b) Isotone Modification

$$
\operatorname{ISE}(\widehat{\eta})=\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{\eta}\left(t_{i}\right)-\eta_{0}\left(t_{i}\right)\right)^{2} .
$$

We will only present the results obtained when η_{0} is estimated using Monotone B-splines

Density estimators of $\widehat{\boldsymbol{\beta}}_{\mathrm{CL}}$, Model 1.

\bullet \qquad : C_{0}

- --: C_{1}
- C_{2}
- - - - C_{3}
- --: $N\left(0, \hat{\sigma}^{2}\right)$

Workshop Innpar2D, December 10th 2019, USC

Density estimators of $\widehat{\boldsymbol{\beta}}_{\mathrm{R}}$, Model 1.

\bullet \qquad : C_{0}

- --: C_{1}
-: C_{2}
- - - - C_{3}
- --: $N\left(0, \widehat{\sigma}^{2}\right)$

Workshop Innpar2D, December 10th 2019, USC

Performance of $\widehat{\boldsymbol{\beta}}$, Model 1

Performance of $\widehat{\eta}$, Model 1

Performance of $\widehat{\eta}: C_{0}$

CL

ROB

Performance of $\widehat{\eta}: C_{1}$

CL

ROB

Performance of $\widehat{\eta}: C_{2}$

CL

ROB

Performance of $\widehat{\eta}: C_{3}$

CL

ROB

Performance of $\widehat{\eta}: C_{3}$

CL

ROB

Hospital Costs Data (Marazzi and Yohai, 2004)

The data set corresponds to the costs of 100 patients hospitalized at the Centre Hospitalier Universitaire Vaudois in Lausanne (Switzerland) during 1999 for medical back problems.

Aim: Study the relationship between the hospital cost of stay, y, and the following administrative explanatory variables:

LOS length of stay in days
ADM admission type ($0=$ planned; $1=$ emergency)
INS insurance type ($0=$ regular; $1=$ private)
AGE years
SEX ($0=$ female; $1=$ male)
DEST discharge destination ($1=$ home; $0=$ another institution)

Linear fit approach

Cantoni and Ronchetti (2006) and Bianco et al. (2013) fitted a log-Gamma model to the data,

$$
w_{i} \mid \mathbf{v}_{i} \sim \Gamma\left(\alpha, \mu_{i}\right) \quad \log \left(\mu_{i}\right)=\log \left(\mathbb{E}\left(z_{i} \mid \mathbf{v}_{i}\right)\right)=\gamma_{0}^{\mathrm{T}} \mathbf{v}_{i}
$$

which is equivalent to a linear regression model with asymmetric errors

$$
y_{i}=\log \left(w_{i}\right)=\gamma_{0}^{\mathrm{T}} \mathbf{v}_{i}+u_{i}
$$

- $u_{i} \sim \log \Gamma(\alpha, 1)$
- $\mathbf{v}=(A D M, I N S, A G E, S E X, D E S T, \log (L O S), 1)$

Using a robust QL approach Cantoni and Ronchetti (2006) identified 5 outliers ($i=14,21,28,44$ and 63), affecting the classical estimates of $I N S$ and the shape parameter.

Our setting

We will not impose a linear relation between $\log \left(y_{i}\right)$ and the $\log (L O S)$.

$$
y_{i}=\boldsymbol{\beta}_{0}^{\mathrm{T}} \mathbf{x}_{i}+\eta_{0}\left(z_{i}\right)+u_{i}
$$

- $u_{i} \sim \log \Gamma(\alpha, 1)$,
- $\mathbf{x}=(A D M, I N S, A G E, S E X, D E S T), \quad z=\log (L O S)$.
- $\eta_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function.
- BIC criterion:
- $\widehat{\boldsymbol{\beta}}_{\mathrm{CL}} k_{n}=4$
- $\widehat{\boldsymbol{\beta}}_{\mathrm{R}} k_{n}=5 \quad c_{\rho}=0.3515$

Hospital Costs Data

	ADM	INS	AGE	SEX	DEST	$\widehat{\alpha}$
$\widehat{\boldsymbol{\beta}}_{\mathrm{CL}}$	0.2148	$\mathbf{0 . 0 9 8 4}$	-0.0009	0.1088	-0.1358	$\mathbf{2 1 . 0 8 0 9}$
	(0.0497)	(0.0792)	(0.0013)	(0.0529)	(0.0723)	
$\widehat{\boldsymbol{\beta}}_{\mathrm{R}}$	0.1979	-0.0207	-0.0019	0.0615	-0.1673	46.0088
	(0.0339)	(0.0537)	(0.0009)	(0.0358)	(0.0493)	

Hospital Costs Data

	ADM	INS	AGE	SEX	DEST	$\widehat{\alpha}$
$\widehat{\boldsymbol{\beta}}_{\mathrm{CL}}$	0.2148	$\mathbf{0 . 0 9 8 4}$	-0.0009	0.1088	-0.1358	$\mathbf{2 1 . 0 8 0 9}$
	(0.0497)	(0.0792)	(0.0013)	(0.0529)	(0.0723)	
$\widehat{\boldsymbol{\beta}}_{\mathrm{R}}$	0.1979	-0.0207	-0.0019	0.0615	-0.1673	46.0088
	(0.0339)	(0.0537)	(0.0009)	(0.0358)	(0.0493)	
$\widehat{\boldsymbol{\beta}}_{\mathrm{CL}}^{-\{5\}}$	0.2172	-0.0324	-0.0016	0.0820	-0.1608	45.7560
	(0.0345)	(0.0575)	(0.0009)	(0.0354)	(0.0489)	

Analysis of Hospital Costs data, between brackets are reported the estimated asymptotic standard deviations of the estimators.

- As in the linear fit, the classical estimator of $\boldsymbol{\beta}$ are highly affected by the 5 outliers, which were also detected in our study.
- After removing these 5 data points, the classical estimators $\widehat{\boldsymbol{\beta}}_{\mathrm{CL}}^{-\{5\}}$ are very similar to those obtained using $\widehat{\boldsymbol{\beta}}_{\mathrm{R}}$, showing its good performance in presence of outliers.

Hospital Costs Data

$$
\widehat{\eta}(z)=0.8892 z+7.1268
$$

- The linear fit (in black) seems to be a good choice for this data set, however, some discrepancies appear near the boundary.
- It is worth noting that in this case, the shape of the classical estimator (in red) is quite close to that of the robust one (in blue).
$\widehat{\eta}_{\mathrm{CL}}$ in red
$\widehat{\eta}_{\mathrm{R}}$ in blue

Summary

- We have defined a robust estimators for the regression parameter and the nonparametric function under the constraint that η_{0} monotone.
- Our estimators are consistent and attain the optimal convergence rate.
- The estimators of the regression coefficient are asymptotically normally distributed.
- The simulation study illustrate the bad behaviour of the classical estimator when outliers are present.
- In particular, expected large responses affect the classical estimators of the nonparametric component.

Thanks for your attention.

Algorithm

Denote $\psi=\rho^{\prime}$ and

$$
r_{i}(\mathbf{b}, \mathbf{a})=y_{i}-\mathbf{x}_{i}^{\mathrm{T}} \mathbf{b}-\sum_{j=1}^{k_{n}} a_{j} B_{j}\left(z_{i}\right)
$$

- Step 1:

Let $m=0$ and $\left(\mathbf{b}^{(0)}, \mathbf{a}^{(0)}\right)=(\widehat{\boldsymbol{\beta}}, \widehat{\mathbf{a}})$ the MM-estimators computed without restrictions and $\widehat{\sigma}$ the scale given in the S-step.

- Step 2:
- Given m define the weights

$$
w_{i, m}=\psi\left(\frac{r_{i}\left(\mathbf{b}^{(m)}, \mathbf{a}^{(m)}\right)}{\widehat{\sigma}}\right) \frac{\widehat{\sigma}}{r_{i}\left(\mathbf{b}^{(m)}, \mathbf{a}^{(m)}\right)}
$$

- Define

$$
y_{w, i}=w_{i, m}^{1 / 2} y_{i} \quad, \quad x_{w, i \ell}=w_{i, m}^{1 / 2} x_{i \ell} \quad, \quad B_{w, i \ell}=w_{i, m}^{1 / 2} B_{\ell}\left(z_{i}\right)
$$

Algorithm

- Step 2:
- Define

$$
y_{w, i}=w_{i, m}^{1 / 2} y_{i} \quad, \quad x_{w, i \ell}=w_{i, m}^{1 / 2} x_{i \ell} \quad, \quad B_{w, i \ell}=w_{i, m}^{1 / 2} B_{\ell}\left(z_{i}\right)
$$

- Let $\mathbf{v}_{i}=\left(x_{w, i 1}, \ldots, x_{w, i p_{1}}, B_{w, i 1}, \ldots, B_{w, i p_{2}}\right)^{\mathrm{T}}, \mathbf{y}_{w}=\left(y_{w, 1}, \ldots, y_{w, n}\right)^{\mathrm{T}}$ and $\mathbf{d}=\left(\boldsymbol{\beta}^{\mathrm{T}}, \boldsymbol{\lambda}^{\mathrm{T}}\right)^{\mathrm{T}}$. We solve the quadratic problem with monotone restrictions

$$
\widehat{\mathbf{d}}=\min _{\mathbf{b}, a_{1} \leq \cdots \leq a_{k_{n}}}\left\|\mathbf{y}_{w}-\mathbf{V}^{\mathrm{T}} \mathbf{d}\right\|^{2}=\min _{\mathbf{b}, a_{1} \leq \cdots \leq a_{k_{n}}} \sum_{i=1}^{n} w_{i, m} r_{i}^{2}(\mathbf{b}, \mathbf{a})
$$

- Define $\mathbf{b}^{(m+1)}$ as the first p components of $\widehat{\mathbf{d}}$ and $\mathbf{a}^{(m+1)}$ as the last ones.
- Go to step 2 and iterate until convergence.

Algorithm

- Step 1.

Step 1.1 Compute an initial S-estimator $\widetilde{\boldsymbol{\nu}}=\left(\widetilde{\boldsymbol{\beta}}_{n}, \widetilde{\mathbf{a}}_{n}\right)$ as in Bianco et al. (2005), i.e.,

$$
\widetilde{\boldsymbol{\nu}}_{n}=\underset{\mathbf{b}, \mathbf{a}}{\operatorname{argmin}} \sigma_{n}(\mathbf{b}, \mathbf{a})
$$

where

$$
\frac{1}{n} \sum_{i=1}^{n} \rho\left(\frac{\sqrt{d\left(y_{i}-\mathbf{b}^{\mathrm{T}} \mathbf{x}_{i}-\mathbf{a}^{\mathrm{T}} \mathbf{B}_{i}\right)}}{\sigma_{n}(\mathbf{b}, \mathbf{a})}\right)=\frac{1}{2},
$$

$$
\widehat{\sigma}_{n}=\sigma_{n}\left(\widetilde{\boldsymbol{\beta}}_{n}, \widetilde{\mathbf{a}}_{n}\right)
$$

Algorithm

- Step 1.2.

Let $u \sim \log \Gamma(\alpha, 1)$ and $\sigma^{*}(\alpha)$ the solution of

$$
\mathbb{E}\left[\rho\left(\frac{\sqrt{1-u-\exp (u)}}{\sigma^{*}(\alpha)}\right)\right]=\frac{1}{2}
$$

Compute

$$
-\widehat{\alpha}_{n}=\sigma^{*-1}\left(\widehat{\sigma}_{n}\right) \quad \bullet \widehat{\kappa}_{n}=\max \left(\widehat{\sigma}_{n}, C_{e}\left(\widehat{\alpha}_{n}\right)\right) .
$$

- Let $\widehat{\boldsymbol{\nu}}_{n}^{(0)}$ be $W M M$-estimator of $\boldsymbol{\nu}$ defined as

$$
\widehat{\boldsymbol{\nu}}_{n}^{(0)}=\underset{(\mathbf{b}, \mathbf{a})}{\operatorname{argmin}} \sum_{i=1}^{n} \rho\left(\frac{\sqrt{d\left(y_{i}-\mathbf{b}^{\mathrm{T}} \mathbf{x}_{i}-\mathbf{a}^{\mathrm{T}} \mathbf{B}_{i}\right)}}{\widehat{\kappa}_{n}}\right) w\left(\mathbf{x}_{i}\right) .
$$

Algorithm

- Step 2.
* If $\widehat{\mathrm{a}}_{1}^{(0)} \leq \widehat{\mathrm{a}}_{2}^{(0)} \leq \cdots \leq \widehat{\mathrm{a}}_{k_{n}}^{(0)}$, the final estimators are $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}^{(0)}$ and $\widehat{\eta}(t)=\sum_{j=1}^{k_{n}} \widehat{a}_{j}^{(0)} B_{j}(t)$.
* Otherwise, the final estimators are obtained using a standard minimization algorithm with restrictions choosing as initial value $\left(\widehat{\boldsymbol{\beta}}_{n}^{(0)}, \mathbf{a}^{0}\right)$, where $\mathbf{a}^{0} \in \mathcal{L}_{k_{n}}$. One possible choice for a^{0} is $a_{1}^{0}=a_{2}^{0}=0$ and $a_{i}^{0}=i-2$ for $i=3, \ldots, k_{n}$.

Algorithm: Generalised Rosen Algorithm (Jamshidian, 2004)

- Denote $\widehat{\boldsymbol{\nabla}}$ the gradient function and $\widehat{\boldsymbol{H}}$ the gradient and negative Hessian of the objective function Let $\mathcal{A}=\left\{i_{1}, \ldots, i_{m}\right\}$ the set of indices such that $a_{i_{j}}^{(0)}=a_{i_{j}+1}^{(0)}$. If $m>0$ define the working matrix as $\mathbf{A} \in \mathbb{R}^{m \times\left(k_{n}+p\right)}$ in which the j-th row is the vector with its i_{j}-th element equal to 1 and the ($i_{j}+1$)-th element equal to -1 , the remaining ones equal to 0 .
- Fix an initial value $\boldsymbol{\nu}$ (in the first step, $\boldsymbol{\nu}=\left(\widehat{\boldsymbol{\beta}}_{n}^{(0)}, \mathbf{a}^{0}\right)$ and denote $\widehat{\mathbf{H}}=\widehat{\mathbf{H}}(\boldsymbol{\nu})$, $\widehat{\nabla}=\widehat{\nabla}(\nu)$.
- S1 Find the feasible direction as

$$
\eta=\left(\mathbf{I}-\widehat{\mathbf{H}}^{-1} \mathbf{A}^{\mathrm{T}}\left(\mathbf{A} \widehat{\mathbf{H}}^{-1} \mathbf{A}^{\mathrm{T}}\right)^{-1} \mathbf{A}\right) \widehat{\mathbf{H}}^{-1} \widehat{\nabla}
$$

Algorithm

- S2 If $\|\boldsymbol{\eta}\|<\epsilon$ for some $\epsilon>0$ small enough, compute the Lagrange multipliers

$$
\boldsymbol{\mu}=\left(\mathbf{A} \widehat{\boldsymbol{H}}^{-1} \mathbf{A}^{\mathrm{T}}\right)^{-1} \mathbf{A} \widehat{\mathbf{H}}^{-1} \widehat{\boldsymbol{\nabla}}
$$

Let μ_{i} be the $i-$ th component of $\boldsymbol{\mu}$.

- If $\mu_{i} \geq 0$, for all $i \in \mathcal{A}$, then $\widehat{\boldsymbol{\nu}}=\boldsymbol{\nu}$.
- If there exists at least one $i \in \mathcal{A}$ such that $\mu_{i}<0$, determine the index corresponding to the largest μ_{i} and remove it from \mathcal{A} and go to $\mathbf{S 1}$.
- S3 Compute

$$
\theta_{1}=\min _{\eta_{i}>\eta_{i+1}, i \notin \mathcal{A}, 1 \leq i \leq k_{n}-1} \frac{-\left(a_{i+1}-a_{i}\right)}{\eta_{i+1}-\eta_{i}}
$$

and find the smallest r such that $L_{n}\left(\boldsymbol{\nu}+2^{-r} \boldsymbol{\eta}\right)>L_{n}(\boldsymbol{\nu})$. Then replace $\boldsymbol{\nu}$ by $\left.\widetilde{\boldsymbol{\nu}}=\boldsymbol{\nu}+\min \left(2^{-r}, \theta_{1}\right) \boldsymbol{\eta}\right)$, update \mathcal{A} and \mathbf{A} and go to $\mathbf{S} 1$.

Results when $\eta_{0}=\eta_{0,1}$

	Summary measures for $\widehat{\beta}$				
	Estimator	Bias	MSE	Cov.Prob	
C_{0}	CL	0.0002	0.0037	0.9340	0.0088
	ROB	0.0021	0.0045	0.9270	0.0096

Results when $\eta_{0}=\eta_{0,1}$

		Summary measures for $\widehat{\beta}$			
	Estimator	Bias $(\widehat{\eta})$			
C_{0}	CL	0.0002	MSE	Cov.Prob	
	ROB	0.0021	0.0037	0.9340	0.0088
				0.9270	0.0096
C_{1}	CL	$\mathbf{- 0 . 5 4 9 7}$	$\mathbf{0 . 3 4 9 2}$	$\mathbf{0 . 0 0 5 0}$	0.0265
	ROB	-0.0016	0.0050	0.8850	0.0100

Results when $\eta_{0}=\eta_{0,1}$

		Summary measures for $\widehat{\beta}$			$\operatorname{MISE}(\widehat{\eta})$
	Estimator	Bias	MSE	Cov.Prob	
C_{0}	CL	0.0002	0.0037	0.9340	0.0088
	ROB	0.0021	0.0045	0.9270	0.0096

C_{2}	CL	$\mathbf{- 1 . 8 3 5 9}$	$\mathbf{4 . 2 4 2 6}$	$\mathbf{0 . 0 6 9 0}$	$\mathbf{5 4 . 3 3 9 0}$
	ROB	0.0002	0.0051	0.9170	0.0103

Results when $\eta_{0}=\eta_{0,1}$

		Summary measures for $\widehat{\beta}$			$\operatorname{MISE}(\widehat{\eta})$
	Estimator	Bias	MSE	Cov.Prob	
C_{0}	CL	0.0002	0.0037	0.9340	0.0088
	ROB	0.0021	0.0045	0.9270	0.0096

C_{3}	CL	$\mathbf{- 1 . 9 4 0 0}$	$\mathbf{3 . 8 3 7 6}$	$\mathbf{0 . 0 1 0 0}$	$\mathbf{1 5 . 0 4 0 1}$
	ROB	0.0043	0.0053	0.8900	0.0146

Results

		Model 1											
			Summary measures for $\widehat{\beta}$								MISE $(\widehat{\eta})$		
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob							
C_{0}	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088						
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096						

Results

		Model 1										
			Summary measures for $\widehat{\beta}$							$\operatorname{MISE}(\widehat{\eta})$		
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob						
C_{0}	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088					
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096					
C_{1}	CL	$\mathbf{- 0 . 5 4 9 7}$	$\mathbf{0 . 2 1 7 0}$	$\mathbf{0 . 3 4 9 2}$	0.0535	$\mathbf{0 . 0 0 5 0}$	0.0265					
	ROB	-0.0016	0.0706	0.0050	0.0591	0.8850	0.0100					

Results

Model 1										
	Summary measures for $\widehat{\beta}$							MISE $(\widehat{\eta})$		
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob				
C_{0}	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088			
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096			
C_{2}	CL	$\mathbf{- 1 . 8 3 5 9}$	$\mathbf{0 . 9 3 4 3}$	$\mathbf{4 . 2 4 2 6}$	$\mathbf{0 . 3 7 8 1}$	$\mathbf{0 . 0 6 9 0}$	$\mathbf{5 4 . 3 3 9 0}$			
	ROB	0.0002	0.0711	0.0051	0.0639	0.9170	0.0103			

Results

Model 1												
			Summary measures for $\widehat{\beta}$							MISE $(\widehat{\eta})$		
	Estimator	Bias	SD	MSE	AS.SE	Cov.Prob						
C_{0}	CL	0.0002	0.0608	0.0037	0.0568	0.9340	0.0088					
	ROB	0.0021	0.0672	0.0045	0.0620	0.9270	0.0096					
C_{3}	CL	$\mathbf{- 1 . 9 4 0 0}$	0.2721	$\mathbf{3 . 8 3 7 6}$	0.1848	$\mathbf{0 . 0 1 0 0}$	$\mathbf{1 5 . 0 4 0 1}$					
	ROB	0.0043	0.0727	0.0053	0.0598	0.8900	0.0146					

Boxplots for $\widehat{\boldsymbol{\beta}}$, Model 1

$$
C_{0}
$$

C_{1}

Boxplots of $\widehat{\boldsymbol{\beta}}$, under a Gamma Model with $\eta_{0}=\eta_{0,1}, c_{w}=\sqrt{\chi_{0.975,1}^{2}}$.

Boxplots for $\widehat{\boldsymbol{\beta}}$, Model 1

C_{2}

C_{3}

Boxplots of $\widehat{\boldsymbol{\beta}}$, under a Gamma Model with $\eta_{0}=\eta_{0,1}, c_{w}=\sqrt{\chi_{0.975,1}^{2}}$.

