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Abstract

The study of environmental problems usually requires the description of variables with differ-

ent nature and the assessment of relations between them. In this work, an algorithm for flexible

estimation of the joint density for a circular and a linear variable is proposed. The method is

applied for exploring the relation between wind direction and SO2 concentration in monitoring

stations close to a power plant located in Galicia (NW–Spain).

1 Introduction

Air pollution studies require the investigation of relationships between emission sources and pol-

lutants concentrations in nearby sites. Hence, the assessment of a relation between air pollutant

concentrations and wind direction, as well as the estimation of the wind direction for the maxi-

mum pollutant concentration, is used with the aim of determining a possible emission source (see

Somerville et al. (1996), among others).

Different statistical methods have been considered for the study of the relation between wind di-

rection and pollutants concentration, taking into account that wind direction is a circular variable,

which requires a special treatment, both for exploratory and for inferential analysis. For instance,

Somerville et al. (1994) use circular–linear rank correlation coefficients for the association between

wind direction and pollutants concentrations. Somerville et al. (1996) propose a regression ap-

proach based on a beta function. Johnson and Wehrly (1978) and more recently Jammalamadaka

and Lund (2006), consider regression models for the pollutant concentration (linear response) over

the wind direction (circular explanatory variable), constructing the regression function in terms of the

sine and cosine components of the circular variable. The same authors also provide an illustrative

case study on the effect of wind direction and ozone levels, considering the relation between circular

and linear variables. The relation between wind direction and ozone levels is also explored using a

bivariate circular–linear correlation coefficient, proposed by Mardia (1976). The appearance of cir-

cular variables in applied fields is not only reduced to environmental problems. Circular data can be
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also encountered in life sciences when studying animal behaviour (direction departure in migration

processes) or molecules composition (angles in their structure).

From a more technical perspective, Johnson and Wehrly (1978) and Wehrly and Johnson (1980)

present a method for obtaining joint circular–linear and circular–circular densities with specified

marginals, respectively. Fernández–Durán (2004) introduces a new family of circular distributions

based on nonnegative trigonometric sums, and this idea is used in Fernández–Durán (2007) in the

construction of circular–linear densities, adapting the proposal of Johnson and Wehrly (1978). The

estimation method is illustrated with a real data example, for modelling the relation between ground–

level ozone and wind direction. The introduction of nonnegative trigonometric sums for modelling

the circular distributions involved in Johnson and Wehrly (1978) formulation allows for more flexible

models, that may present skewness or multimodality, features that cannot be reflected through the

von Mises distribution (the classical model for circular variables). In this work, we propose a pro-

cedure for modelling the relation between a circular and a linear variable through the estimation of

a circular–linear density, also based on the ideas of Johnson and Wehrly (1978), but considering

nonparametric kernel density estimators both in the circular and linear marginals and in the joining

density function. With this approach, the lack of flexibility in the construction of circular–linear densi-

ties noticed by Fernández–Durán (2007) is overcome. Besides, the circular–linear density represen-

tation considered can be interpreted in terms of copula functions, which poses some computational

advantages.

Figure 1: Locations of monitoring stations (squares) and power plant (circle) in Galicia (NW–Spain).

Location of station B1: 7 ◦50’53”W-43 ◦27’14”N. Location of station G2: 8 ◦01’55”W-43 ◦33’17”N.

The practical aim of this work is to explore the relation between wind direction and SO2 levels in two

monitoring stations close to a power plant located in Galicia (NW–Spain). Monitoring station loca-
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Figure 2: Rose diagrams for wind direction in station B1 (left panel) and station G2 (right panel), with

average SO2 concentrations.

tions are shown in Figure 1, around a thermal power plant. Energy is produced from the combustion

of coal, which also generates pollutants as sulphur dioxide (SO2). The analized data corresponds

to measurements taken during August 2009, with one minute frequency. In Figure 2, we show the

rose diagram for wind direction for data taken in station B1 (the one closest to the power plant) and

station G2, in the NE direction. In the rose diagram, the average concentration for each wind direc-

tion sector is also given. It can be seen that B1 presents higher values SO2 concentrations than G2,

which seems reasonable given that G2 is 18’6 km NW far away from the power plant, and there is

not clear dominant wind direction in this case. It can be also noticed that, for B1, the dominant wind

direction is NE. However, the relation between wind direction and SO2 levels is not clear from these

representations, and the dependency (or lack of dependency) between them should be investigated.

This work is organized as follows. Section 2 provides some background on circular random variables

and a brief review on copula methods. The algorithm for estimating a circular–linear density is

detailed and discussed in Section 3. The finite sample properties of the algorithm are illustrated by

a simulation study, considering parametric and nonparametric estimation methods in the circular and

linear components and in the joining density. This algorithm is applied for analysing wind direction

and SO2 concentrations in Section 4. Some final comments are given in Section 5.

2 Background

As commented in the Introduction, the main goal of this work is to analyze the relation between

wind direction and SO2 concentrations in monitoring stations next to a power plant. Bearing in mind

the different nature of the variables and noticing that measurements from wind direction are angles,
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some background on circular random variables is introduced. This methodology will be needed in

order to describe the wind direction itself and the joint relation between the two variables, through

the construction of a circular–linear density introduced by Johnson and Wehrly (1978). As it has

been already mentioned, the circular–linear density representation can be interpreted in terms of

copulas and a brief review on these functions is also provided.

2.1 Circular and circular–linear distributions

Denote by Θ a circular random variable with support in the unit circle S
1. A circular distribution Ψ(·)

for Θ assigns a probability to each direction (cos(θ), sin(θ)) of the plane R
2, characterized by the

angle θ ∈ [0, 2π). Absolutely continuous circular distributions (with respect to the Lebesgue measure

in the circumference) have an associated circular density, denoted by ϕ(·). The circular density must

be positive and integrate one over its support, similar to linear densities. However, it must also satisfy

a periodicity condition: ϕ(θ) = ϕ(θ + 2πk), for all θ ∈ [0, 2π) and for all integer k ∈ Z (see Mardia

and Jupp (2000)). The circular distribution Ψ(·) is also periodic, Ψ(θ + 2πk) = Ψ(θ), k ∈ Z,

verifying that lim
θ→(2πk)−

Ψ(θ) = 1 and lim
θ→(2πk)+

Ψ(θ) = 0 for k ∈ Z. Hence, circular distributions

present a discontinuity at 2πk, for k ∈ Z, which represents the starting point of a new cycle. Some

particular cases of circular distribution models are the uniform circular distribution and the von Mises

distribution.

The uniform circular distribution in [0, 2π) is a constant density. For θ ∈ [0, 2π):

ϕU (θ) =
1

2π
, 0 < θ ≤ 2π. (1)

The von Mises distribution is the analogue of the normal distribution in circular random variables.

This family of distributions, denoted by vM(µ, κ), is characterized by two parameters: 0 ≤ µ < 2π,

the circular mean and κ ≥ 0, a circular concentration parameter around µ. The corresponding

density function is given by:

ϕvM (θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), 0 < θ ≤ 2π, (2)

with I0(·) being the modified Bessel function of first kind and order zero defined by

I0(κ) =
1

2π

∫ 2π

0
eκ cosωdω.

The uniform circular distribution is obtained as a particular case of the von Mises family, for κ = 0.

Circular density estimation can be performed by parametric methods, such as Maximum Likelihood,

or using nonparametric techniques. Some estimators will be introduced in Section 3.

As we pointed in the Introduction, our goal is to explain the relation between a circular and a linear

random variable (specifically, wind direction and SO2 concentration). A circular–linear random vari-

able (Θ, X) is supported in the cylinder S1 × R or in a subset of it and a circular–linear density for

(Θ, X), namely p(·, ·), must satisfy the periodicity condition in the circular argument, that is:

p(θ, x) = p(θ + 2πk, x), ∀θ ∈ [0, 2π), x ∈ R, k ∈ Z,
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as well as the usual assumptions on taking nonnegative values and integrating one. Johnson and

Wehrly (1978) propose a method for obtaining circular–linear densities with specified marginals.

Denote by ϕ(·) and f(·) the circular and linear marginal densities, respectively, and by Ψ(·) and

F (·) their corresponding marginal distributions. Let also g(·) be another circular density. Then:

p(θ, x) = 2πg [2π (Ψ(θ) + F (x))]ϕ(θ)f(x), (3)

is a density for a circular–linear distribution for a random variable (Θ, X), with specified marginal

densities ϕ(·) and f(·) (see Johnson and Wehrly (1978), Theorem 5).

From a data sample of (Θ, X), assuming that the joint density can be represented as in (3), an

estimator of p(·, ·) could be obtained by the estimations of the marginals and the joining density.

The circular marginal ϕ(·) and the joining density g(·) are both circular densities. Fernández–Durán

(2007) proposed estimating them by nonnegative trigonometric sums, using a Maximum Likelihood

method.

In the next section, we will introduce some background on copulas since expression (3) can be writ-

ten in terms of these functions. We will take advantage of this relation for computational purposes.

2.2 Some notes on copulas

Copula functions are multivariate distributions with uniform marginals (see Nelsen (2006) for a com-

plete review on copulas). One of the main results in copulas theory is Sklar’s theorem which, in the

bivariate case, states that if F (·, ·) is a joint distribution function with marginals F1(·) and F2(·) then,

there exist a copula C(·, ·) such that:

F (x, y) = C(F1(x), F2(y)), ∀x, y ∈ R. (4)

If F1(·) and F2(·) are continuous distributions, then C(·, ·) is unique. Conversely, if C(·, ·) is a copula

and F1(·) and F2(·) are distribution functions, then F (·, ·) defined by (4) is a joint distribution with

marginals F1(·) and F2(·).

If the marginal random variables are absolutely continuous, Sklar’s result can be interpreted in terms

of the corresponding densities. Denoting by c(u, v) = ∂2C(u,v)
∂u∂v the copula density, the joint density

of F (·, ·) in (4) can be written as

f(x, y) = c(F1(x), F2(y))f1(x)f2(y), ∀x, y ∈ R. (5)

Similar to the linear case, circular–linear copulas CΘ,X(·, ·) must take into account the characteristics

of the circular marginal and satisfy

cΘ,X(0, x) = cΘ,X(1, x), ∀x ∈ [0, 1],

where cΘ,X(·, ·) is the corresponding circular–linear copula density. Note that this circular–linear

copula can be linked with the circular density g(·) in (3) by identifying

c (Ψ(θ), F (x)) = 2πg [2π (Ψ(θ) + F (x))] . (6)
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This means that, for each circular density g(·), it is possible to construct a circular–linear copula

density:

c (u, v) = 2πg [2π (u+ v)] , ∀u, v ∈ I.

Hence, the circular–linear density in (3) can be written as

p(θ, x) = c(Ψ(θ), F (x))ϕ(θ)f(x),

where ϕ(·) and f(·) are the circular and linear marginal densities and c(·, ·) is a copula density. An

advantage of linking g(·) with a copula is that easy procedures for simulating circular–linear variables

are possible.

3 Estimation algorithm

Recall the expression for the circular–linear density (3) introduced by Johnson and Wehrly (1978)

and denote by {(θi, xi)}ni=1 a data sample from a circular–linear random variable (Θ, X). Assume

that the density p(·, ·) for (Θ, X) admits a representation such as the one in (3).

In this joint circular–linear density model, three density functions must be estimated: the marginal

densities ϕ(·) and f(·) (and also the corresponding distributions) and the joining circular density

g(·). A new natural procedure for estimating p(·, ·) is given in the following algorithm:

Estimation algorithm

Step 1. Obtain estimators for the marginal densities ϕ̂(·), f̂(·) and the corresponding marginal dis-

tributions Ψ̂(·), F̂ (·).

Step 2. Compute an artificial sample
{
2π

(
Ψ̂(θi) + F̂ (xi)

)}n

i=1
and estimate the joining circular

density ĝ(·).

Step 3. Obtain the circular–linear density estimator as

p̂ (θ, x) = 2πĝ
[
2π

(
Ψ̂(θ) + F̂ (x)

)]
ϕ̂(θ)f̂(x). (7)

Note that all the estimators involved in the algorithm are obtained in a strictly univariate way, which

simplifies its computation. The estimation of the marginal densities in Step 1, as well as the circular

joining density in Step 2, can be done by parametric methods or by nonparametric procedures. For

instance, a parametric estimator for f̂(·) (respectively, for F̂ (·)) can be obtained by Maximum Likeli-

hood, as in Fernández–Durán (2007) for nonnegative trigonometric sums. In the circular case, that

is, for obtaining ϕ̂(·) and ĝ(·), Maximum Likelihood approaches are also possible (see Jammala-

madaka and SenGupta (2001), Chapter 4). These estimators are consistent, although we should

restrict to parametric models. In the circular case, it is usual to consider a von Mises distribution or

a mixture of von Mises distributions, although Maximum Likelihood leads to complicated computa-

tions. However, it is also feasible to build nonparametric estimators for the marginals and the joining

circular density using kernel methods.
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Nonparametric kernel density estimation for linear random variables was introduced by Parzen and

Rosenblatt (see Wand and Jones (1995) for references on kernel density estimation) and the proper-

ties of this estimator have been well studied in the statistical literature. Consider {Xi}ni=1 a random

sample of a linear variable X with density f(·). The kernel density estimator of f(·) in a point x ∈ R

is given by

f̂h(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, (8)

where K(·) is a kernel function (usually a symmetric and unimodal density) and h is the bandwidth

parameter. One of the crucial problems in kernel density estimation is the bandwidth choice. There

exist several alternatives for obtaining a global bandwidth minimizing a certain error criterion, usually

the Mean Integrated Squared Error. Some of this methods are the plug–in rule and the least–squares

cross–validatory bandwidth (see Wand and Jones (1995)).

Hall et al. (1987) propose a nonparametric kernel density estimator for directional data in S
q. For the

circular case (q = 1), denoting by Θ a random variable with density ϕ(·), the circular kernel density

estimation from a sample {Θi}ni=1 is given by

ϕ̂ν(θ) =
c0(ν)

n

n∑

i=1

L (ν cos(θ −Θi)) , (9)

where L(·) is the circular kernel, ν is the circular bandwidth and c0(ν) is a constant such that ϕ̂ν(·)
is a density. Some differences should be noted with respect to the linear kernel density estimator in

(8). First, the kernel function L(·) must be a rapidly varying function, such as the exponential, quite

different from the bell shaped linear kernels like Gaussian or Epanechnikov densities. Secondly,

the behaviour of ν is inverse to h: in linear kernel density estimation, small values of the bandwidth

h produce undersmoothed estimators (small values of ν overestimate the density), whereas large

values of h give oversmoothed curves (large values of ν underestimate). See Hall et al. (1987) for a

detailed description of the estimator and its properties.

As in the linear case, bandwidth selection is also an issue in circular kernel density estimation.

Although in the linear case it is a well–studied problem, for circular density estimation there are

still some open questions. Taylor (2008) proposes some automatic bandwidth selection methods

as a rule of thumb based on the von Mises distribution, and the log–likelihood cross–validatory

bandwidth, jointly with some other robust bandwidth selectors. Based on Taylor (2008) results, none

of the selectors proposed seems to show a superior behaviour.

These two estimation alternatives (parametric and nonparametric marginals and joining density),

as well as a mixed approach, considering parametric marginals and nonparametric joining density

estimation, are illustrated in the following simulation study.

3.1 Some simulation results

In order to check the performance of the estimation algorithm for circular–linear densities, we repro-

duce the following two examples given by Johnson and Wehrly (1978).
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Example 1 (Circular uniform and Normal marginal distributions). Let ϕ(·) denote the circular uniform

density (1) and f(·) = φ(·) the standard Normal density. Take g(·), the joining density, as the von

Mises density in (2) with parameters (µ, κ). The circular–linear density with margins ϕ(·) and f(·) is

given by

p1(θ, x) =
1

2πI0(κ)
exp [κ cos(θ − 2πΦ(x)− µ)]φ(x), (10)

where Φ(·) denotes the standard Normal distribution.

theta

x

D
e
n
s
ity

theta

x

D
e
n
s
ity

θ

x

 0.02 

 0.02 

 0.04 

 0.04 

 0.06 

 0.06 

 0.08 

 0.08 

 0.1 

 0.1 

 0.12 

 0.12 

 0.14 

 0.14 

 0.16 

 0.16 

 0.18 

 0.18 

 0.2 

0 π 2 π 3π 2 2π

−
4

−
2

0
2

4

θ

x

 0.1 
 0.1  0.2 

 0.2 
 0.3 

 0.3 

 0.4 

 0.4 

 0.5 

0 π 2 π 3π 2 2π

−
4

−
2

0
2

4

Figure 3: Left column: Example 1 density surface with parameters µ = π and κ = 2. Right column:

Example 2 density surface with parameters µ = π, κ = 5, µ1 =
π
2 and κ1 = 2.

Example 2 (von Mises and Normal marginal distributions). Let ϕvM (·) denote the von Mises marginal

density (2) with parameters (µ1, κ1). With the same f(·) and g(·) as in the previous example, the

joint circular–linear density is given by

p2(θ, x) =
1

I0(κ)
exp [κ cos (2π(ΨvM (θ)− Φ(x))− µ)]ϕvM (θ)φ(x), (11)

where ΨvM (·) denotes the von Mises distribution with parameters (µ1, κ1).
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As it has been commented in the Section 2, the formulation of the joint circular–linear density in

terms of copulas simplifies the simulation of random samples. The general idea is to split the joint

distribution P (·, ·) by Sklar’s Theorem in a copula C(·, ·) and marginals Ψ(·) and F (·). Simulating

a sample from (U, V ), uniform random variables with copula C(·, ·), and applying the marginal

quantiles transformations to get (Ψ−1(U), F−1(V )), we obtain a sample from distribution P (·, ·).

The simulation of (U, V ) values from the copula C(·, ·) can be performed by the conditional method

for simulating multivariate distributions. The conditional distribution of V given U = u, denoted by

Cu(·), can be expressed in terms of the joining circular density g(·) as

Cu(v) =
∂C(u, v)

∂u
=

∫ v

0
c(u, t)dt =

∫ v

0
2πg [2π(u+ t)] dt,

where the first equality is an immediately property of copulas. For Examples 1 and 2, calculus of the

latter integral leads to express Cu(·) as a von Mises distribution:

Cu(v) = ΨvM (2πv;µ− 2πu, κ) . (12)

So, for simulating random samples from joint densities (10) and (11), or more generally, for a random

sample from a circular–linear variable with density (3), we may proceed with the following steps:

Simulation algorithm:

Step 1 Simulate U ∼ U(0, 1), W ∼ U(0, 1).

Step 2 Calculate V = C−1
u (W ).

Step 3 Obtain Θ = Ψ−1(U), X = F−1(V ).

In Step 1, two independent and uniformly distributed random variables are simulated. The con-

ditional simulation method for obtaining (U, V ) from the circular–linear copula C(·, ·) is performed

in Step 2 (see Johnson (1987)). Finally, quantile transformations from the marginals are applied,

obtaining a sample from (Θ, X) following the joint density (3). In Step 2, in our examples, the con-

ditional distribution Cu(·) is related to a von Mises distribution. In the simulations, we consider, for

each u

V = (2π)−1 Ψ−1
vM (W ;µ− 2πu, κ) .

We will apply the estimation algorithm proposed considering parametric and nonparametric esti-

mators for the marginals and the joining density. In the parametric case, density estimators have

been obtained by Maximum Likelihood, specifying the von Mises family for the circular distributions

and the Normal family for the linear marginal. Nonparametric estimation has been carried out us-

ing kernel methods. The kernel density estimator in (8), with Gaussian kernel and cross–validatory

bandwidth, has been used for obtaining f̂(·). For ϕ̂(·) and ĝ(·), the circular kernel density (9) has

been implemented, with exponential kernel and least–squares cross–validatory bandwidth. In the

mixed approach (parametric marginals and nonparametric joining density), Maximum Likelihood has
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Estimation method Relative efficiency

n Parametric Mixed Nonparametric Mixed Nonparametric

50 0.00538 0.00949 0.01680 0.56744 0.32077

200 0.00128 0.00268 0.00518 0.48023 0.24831

500 0.00051 0.00121 0.00249 0.42671 0.20778

1000 0.00025 0.00066 0.00140 0.38969 0.18395

Table 1: MISE for estimating the circular–linear density in Example 1. Relative efficiencies of mixed

and nonparametric estimations with respect to parametric estimation.

been used for obtaining ϕ̂(·) and f̂(·), whereas the circular kernel estimator has been considered

for ĝ(·).

In order to check the performance of the procedure for estimating circular–linear densities, we con-

sider the Mean Integrated Square Error in the estimation of p(·, ·):

MISE =

∫∫
E [p̂(θ, x)− p(θ, x)]2 dθdx.

The MISE is approximated by Monte Carlo simulations, taking M = 1000 replicates. We compare

the performance of the method using parametric estimation, nonparametric estimation and a mixed

approach. Four sample sizes have been used: n = 50, n = 200, n = 500 and n = 1000. In the first

example, the set–up parameters are µ = π and κ = 2. For the second example, we take µ = π,

κ = 5, µ1 = π
2 and κ1 = 2. In Figure 3, surface and contour plots for the first and second examples

densities (left column and right column, respectively) are shown. Simulations have been also run

with different parameter values, obtaining similar results.

Estimation method Relative efficiency

n Parametric Mixed Nonparametric Mixed Nonparametric

50 0.04022 0.04828 0.09773 0.83305 0.41154

200 0.01039 0.01368 0.03630 0.75950 0.28622

500 0.00425 0.00595 0.01851 0.71404 0.22960

1000 0.00213 0.00315 0.01066 0.67829 0.20056

Table 2: MISE for estimating the circular–linear density in Example 2. Relative efficiencies of mixed

and nonparametric estimations with respect to parametric estimation.

Tables 1 and 2 show the simulation results for Examples 1 and 2, respectively. In all the cases, the

MISE is reduced when increasing the sample size. Example 2 presents higher values for the MISE,

and it is due to the estimation of a more complex structure in the circular marginal density (circular

uniform in Example 1 and von Mises in Example 2). Obviously, the parametric method presents

the lowest MISE values for all sample sizes in both examples, so it will be taken as a benchmark for

computing the relative efficiencies of the nonparametric and mixed approaches. Relative efficiencies

are obtained as the ratio between the MISE of the parametric method and the MISE of the mixed
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and nonparametric procedures. The relative efficiencies (see Tables 1 and 2) are higher, in both

examples, for the mixed approach, with better results for Example 2.

4 Application to wind direction and SO 2 concentration

As noticed in the introduction, the goal of this work is to explore the relation between wind incidence

direction and SO2 concentration in two monitoring stations around a power plant (see Figure 1 for

stations B1 and G2 locations). SO2 is measured in µg/m3 and wind direction as a counterclockwise

angle in [0, 2π). With this codification, 0, π
2 , π and 3π

2 represent east, north, west and south direction,

respectively.

The dataset contains observations recorded minutely in August 2009, but due to technical limitations

in the measuring device, SO2 is only registered when it is higher than 3µg/m3. Concentration values

below this threshold are considered as non significative. Data have been hourly averaged, resulting

461 observations for B1 and 456 observations for G2. We have used a Box–Cox transformation for

the SO2 concentrations with λ = −0.50 for B1 and λ = −5.65 for G2, respectively. For the sake of

simplicity, we will refer to these transformed data as SO2 concentrations.

4.1 Data perturbation

The measurement devices, both for the wind direction and for SO2 concentrations, did not present

a sufficient precision to avoid repeated data, and this problem was inherited also for the hourly

averages. The appearance of repeated measurements posed a problem in the application of the

procedure, specifically, in the computation of cross–validatory bandwidths. Since repeated values in

the marginals produce also repeated values in the artificial sample, data perturbation was applied to

both variables. Perturbation in the linear variable, the SO2 concentration, was carried out following

Azzalini (1981). A pseudo–sample of SO2 levels is obtained as follows:

X̃i = Xi + bǫi,

where Xi denote the observed values, b = 1.3σ̂n−1/3 and ǫi, i = 1, . . . , n are iid random variables

from the Epanechnikov kernel in (−
√
5,
√
5). σ̂ is a robust estimator of the variance, which has

been computed using the standardized interquartile range. Azzalini (1981) shows that this choice

of b for the data perturbation allows for consistent estimation of the distribution function, getting a

mean squared error with the same magnitude as the one from the empirical cumulative distribution

function.

The same problem of repeated measures occurred for wind direction. In this case, a perturbation

procedure similar to the linear variable case was used, and the pseudo–sample of wind direction

was obtained as

θ̃i = θi + dεi,
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with θi denoting the wind direction measurements and εi, i = 1, . . . , n were independently generated

from a von Mises distribution with µ = 0 and κ = 1. The selection of the perturbation scale

d, for circular data, has not been studied in the statistical literature, up to our knowledge. We have

considered d = n−1/5, based on the results of Liu and Yang (2008) for multivariate kernel distribution

estimation. This perturbation scale solves the problem of repeated data and does not affect the

underlying distribution. We have also noticed that the value of κ did not influence the perturbation

result. See Section 5 for further discussion.

4.2 Analysis for station B1

The estimation procedure is first applied to B1, considering a nonparametric kernel density estimator

for the SO2 concentration, with biased cross–validatory bandwidth (see Figure 4, left plot). For the

wind direction, circular kernel density estimation has been also used, with least–squares cross–

validatory bandwidth (see Figure 4, right plot). See Wand and Jones (1995) for further details on

bandwidth selection for linear kernel density estimators, and Hall et al. (1987) or Taylor (2008) for

the circular case.

The joining circular density is computed using a circular kernel density estimator, with cross–validatory

bandwidth (see Figure 5). It can be seen that the nonparametric estimator of g(·) is slightly differ-

ent from the uniform circular density, represented with a dashed horizontal line in (2π)−1 indicating

a mild bivariate relationship between wind direction and SO2 concentration. In order to check if

the relation is significative, correlation coefficients have been computed and some tests for circular

uniformity have been applied.

SO2 concentration

D
e
n
s
it
y

0.3 0.5 0.7 0.9 1.1 1.3 1.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Wind direction

D
e
n
s
it
y

0 π 2 π 3π 2 2π

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Figure 4: Monitoring station B1. Marginal densities estimators for SO2 and wind direction, using

linear and circular kernel density with cross–validatory bandwidths.

In Figure 6, the estimation of the joint density surface, with the corresponding contour plot, is shown.
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Two modes can be identified, corresponding to SW direction, accordingly to Figure 2. The modes

present different values of SO2 concentrations, with the smallest one collecting lower values of SO2.

2π(Ψ
^

(θ) + F
^
(x))

D
e
n
s
it
y

0 π 2 π 3π 2 2π

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 5: Monitoring station B1. Solid line: joining density estimator using circular kernel method with

cross–validatory bandwidth. Dashed line: circular uniform density. Histogram for artificial sample

{2π(Ψ̂(θi) + F̂ (xi))}ni=1.
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Figure 6: Monitoring station B1. Joint density estimator for wind direction and SO2 concentrations.

Correlation coefficients between circular and linear variables were introduced by Mardia (1976). A

first coefficient ρcl is defined as a multiple correlation coefficient between a the linear variable and

the sine and cosine components of the circular one. Computing the circular–linear correlation coef-

ficient for wind direction and SO2 concentration, ρcl = 0.1516 is obtained. Mardia (1976) introduced
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Test Statistic p–value

Kuiper 2.8196 < 0.01

Watson 0.6425 < 0.01

Rayleigh 0.1552 < 0.01

Rao 140.85 < 0.05

Table 3: Monitoring station B1. Circular uniformity tests for joining density.

another coefficient based on ranks, namely Dn, with values between 0 and 1, the lowest indicating

independence. A test for independence, that is, taking as null hypothesis Dn = 0, is based on

the asymptotic distribution of a rescaled coefficient, given by a χ2
2 distribution. The rank correla-

tion coefficient was also computed for our data, with value Dn = 0.1422. Performing the test for

independence, we obtain a p–value smaller than 0.01. Hence, the hypothesis of independence was

rejected.
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Figure 7: Monitoring station B1. Nadaraya–Watson estimator (solid line) with circular explanatory

variable for SO2 over wind direction, with cross–validatory bandwidth. SO2 concentrations are shown

in the horizontal axis.

Under formulation (3) for the joint circular–linear density, independence is equivalent to take g(·) as

a circular uniform density. Taking into account Step 2 in the estimation algorithm (see Section 3), we

construct the artificial sample
{
2π

(
Ψ̂(θi) + F̂ (xi)

)}n

i=1
, where Ψ̂(·) and F̂ (·) are the circular and

linear kernel distribution estimators, for the wind direction and the SO2 concentration, respectively.

Based on these artificial data, we have applied some classical uniformity test (see Jammalamadaka

and SenGupta(2001)). The histogram for the artificial data can be seen in Figure 5. Results of these

tests, taking circular uniform distribution as null hypothesis, are presented in Table 3. Note that,
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the p–value is smaller than 0.05 (significance level) for all the tests. We can conclude that there is

evidence of relation between wind direction and SO2 concentrations.

The exploratory analysis has been also completed with the estimation of the regression function of

the SO2 over the wind direction, using a nonparametric kernel regression. In particular, a Nadaraya–

Watson regression estimator, considering a circular explanatory variable with linear response, has

been computed. The adaptation of local polynomial fitting to circular explanatory variables has

been proposed by Di Marzio et al. (2009) and Nadaraya–Watson regression can be interpreted as

a locally–constant polynomial fitting. Bandwidth selection for nonparametric regression has been

done using a least–squares cross–validation criterion.

In Figure 7, the circular dispersion plot of SO2 with respect to wind direction is shown, jointly with the

Nadaraya–Watson regression estimator. As it has been noticed for Figure 6, there are two modes

in the SW direction. It can be clearly seen that the regression function is not constant, confirming

the dependence between SO2 and wind direction. We have also tried nonparametric regression

estimators that do not take into account the circular character of the wind direction, obtaining quite

similar results except in directions close to the fixed circular origin, as expected.

4.3 Analysis for station G2

Station G2 is almost 20 km apart from the power plant, in the NW direction, and it shows a quite dif-

ferent behaviour from B1. The joining density estimation is shown in Figure 8, applying the proposed

estimation algorithm with marginal kernel density estimators.
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Figure 8: Monitoring station G2. Solid line: joining density estimator using circular kernel method

with cross–validatory bandwidth. Dashed line: circular uniform density. Histogram for artificial sam-

ple {2π(Ψ̂(θi) + F̂ (xi))}ni=1.
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Similarly to the analysis carried out for B1, we have computed different correlation coefficients ob-

taining low values: ρCL = 0.0103, for the circular–linear correlation coefficient and Dn = 0.0124,

for the rank correlation coefficient. Based on this correlation coefficient, the p–value for the test for

independence is 0.0622. Tests for circular uniformity on the joining density have been also run, all

of them showing no evidences to reject the null hypothesis of circular uniformity. Hence, there is no

evidence of relation between SO2 concentrations and wind direction in G2.

The contour plot for the estimation of the circular–linear density is shown in Figure 9 jointly with the

bivariate density contour under independence. The plots are quite similar, which is not surprising.

Note that the modes in this figure correspond with western winds (see Figure 2, right plot). The

station is located NW from the power plant and considering it as the main emission source in the

area, low levels of SO2 concentrations are expected.
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Figure 9: Monitoring station G2. Contour plot for joint density estimator for wind direction and SO2

concentrations (left plot). Joint density estimation under independence (right plot).

5 Final comments

The circular–linear density estimation algorithm based on Johnson and Wehrly (1978) proposal

allows for the introduction of flexible estimators in the marginal components. Although we have

consider kernel density estimators for the marginal components, other flexible density estimators

could be used. In addition, the interpretation of the circular–linear density model in terms of copulas,

enables the performance of simulation studies.

A natural question that may arise is the adequacy of model (3) for a certain circular–linear bivariate

variable. In the simulation study presented in this paper, both examples satisfy this condition. How-

ever, for the data analysis, we have implicitly assumed that the underlying density admits such a
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representation. To the best of our knowledge, there are no suitable tests for assessing if a circular–

linear density can be expressed in this way.

In real data application, the precision of measurement devices may pose some extra problems in

the data analysis. In our case, the lack of precision results in the appearance of repeated values,

and a data perturbation procedure was needed in order to apply the algorithm. Data perturbation

for circular data needs further investigation, although it is not in the scope of this work. However,

we have checked by simulations that the applied perturbation did not affected the distribution of

the data. This perturbation is based on Liu and Yang (2008) results, who derive the optimal band-

width for multivariate kernel density estimation. Another possible problem that may be encountered

in practice, for linear variables, is censoring, due to detection limits or other phenomena. Under

censoring, the observation values are only partially known, and suitable estimation procedures for

density estimation with censored data should be applied.

The simulation study and real data analysis has been carried out in R 2.11.1 (R Development Core

Team (2010)), using self–programmed code and packages circular and CircStats. The computa-

tional cost of the method is not high, and makes its application feasible in practice. For the real data

analysis, the average time for B1 is 131.57 seconds, taking the computation of the joining density

75.78 seconds. For G2, the average running time for the algorithm is 127.31 seconds. Running

times were measured in a regular laptop.
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