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Abstract

The receiver operating characteristic curve (ROC curve) is a tool of extensive use
to analyse the discrimination capability of a diagnostic variable in medical studies.
In certain situations, the presence of a covariate related to the diagnostic variable
can increase the discriminating power of the ROC curve. In this article we model
the effect of the covariate over the diagnostic variable by means of nonparametric
location-scale regression models. We propose a new nonparametric estimator of the
conditional ROC curve and study its asymptotic properties. We also present some
simulations and an illustration to a data set concerning diagnosis of diabetes.
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1 Introduction

1.1 ROC curves

In medical studies, or in general in health studies, the diagnosis of an individual or a

patient is very often based on a characteristic of interest, which may lead to some clas-

sification errors. These classification errors are calibrated on the basis of two indicators:

sensitivity (probability of diagnosing a diseased person as diseased) and specificity (prob-

ability of diagnosing a healthy person as healthy).

When the diagnostic characteristic, or diagnostic variable, is of a continuous type, here

denoted by Y , the classification will necessarily be based on a cutoff value, c: if Y ≥ c

then the individual is classified as diseased, and if Y < c then the individual is classified

as healthy. Let F1 denote the distribution of Y in the diseased population, and let F0

denote the distribution of Y in the healthy population. In that case, the geometrical locus

is of special interest : {
(1− F0(c), 1− F1(c)) , c ∈ R

}
, (1.1)

which is obtained by varying the cutoff values in the complement of the specificity versus

the sensitivity. The geometrical locus (1.1) is called the receiver operating characteristic

curve (ROC curve), and it is a very extensively used tool to analyse the discrimination

power of the diagnostic variable. In practice, the ROC curve is usually reparametrized in

the interval (0, 1), as follows:

{ (
p, 1− F1(F

−1
0 (1− p))

)
, p ∈ (0, 1)

}
.

The estimation of the ROC curve has been intensively treated in the literature, spe-

cially during the last ten years, both from parametric and non-parametric points of view.

The book of Pepe (2004) is a general and good reference on this topic.

Several estimators have been proposed when the ROC curve is identified as

ROC(p) = 1− F1(F
−1
0 (1− p)), 0 < p < 1.

For that, assume that two samples, {Y01, . . . , Y0n0} and {Y11, . . . , Y1n1}, are available from

the populations F0 and F1, respectively. Those estimates are of the form

R̂OC(p) = 1− F̂1(F̂
−1
0 (1− p)),

2



where F̂0 and F̂1 are either empirical estimates F̂j(t) = Fjnj(t) = n−1
j

∑nj
i=1 I(Yji ≤ t),

or smooth estimates F̂j(t) = (Fjnj ∗ Kh)(t) (here Kh(u) =
∫ u
−∞ h

−1k(h−1u)du is the

cumulative distribution function of the rescaled version of the kernel k, h is a bandwidth or

smoothing parameter, and ∗ denotes convolution). See, among others, the aforementioned

book of Pepe (2004) and the papers by Lloyd (1998), Lloyd and Yong (1999), Zou, Hall

and Shapiro (1997), Zhou and Harezlak (2002) and Hall and Hyndman (2003). Other

smoothing procedures are treated in the papers by Qiu and Le (2001) and by Peng and

Zhou (2004), while Wan and Zhang (2007) present a semiparametric approach. Besides,

the ROC curve can also be interpreted in terms of the relative distribution or relative

density, see e.g. Handcock and Morris (1999) and Molanes-López (2007).

Related to the ROC curve, several markers, such as the area under the curve (AUC)

or the index of Youden, are considered as summaries of the discrimination capability of

the ROC curve. The AUC is the most commonly used one and it is given by

AUC =

∫ 1

0

ROC(p)dp.

Clearly, under the assumption of independence between populations, AUC = P (Y1 > Y0),

where Y0 and Y1 are random variables with distributions F0 and F1, respectively. The

AUC takes values between 0.5 (low discrimination power) and 1 (high discrimination

power).

A widely used family of ROC curves is obtained when the distributions F0 and F1 only

differ from their location parameters, µ0 and µ1, and scale parameters σ0 and σ1. More

specifically, when the distributions F0 and F1 are Gaussian, the obtained ROC curve is

called a binormal ROC curve:

ROC(p) = Φ(a+ b Φ−1(p)),

where Φ is the cumulative distribution function of a standard normal, Φ−1 is the corre-

sponding quantile function, a = (µ1−µ0)/σ1 and b = σ0/σ1. In that case, the area under

the curve is simply AUC = Φ(a/
√

1 + b2) (see e.g. Pepe (2004), page 83).

1.2 ROC curves with covariates

In many studies, a covariate (or vector of covariates), X, is available along with the

diagnostic variable, Y . The information contained in X may increase the discrimination
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capability of the ROC curve. A general framework to incorporate the information in the

covariate is given by location-scale regression models:

Y0 = µ0(X0) + σ0(X0)ε0, (1.2)

Y1 = µ1(X1) + σ1(X1)ε1, (1.3)

where, for j = 0, 1, µj(·) = E(Yj|Xj = ·) and σ2
j (·) = V ar(Yj|Xj = ·) are the condi-

tional mean and conditional variance of the response Yj given the covariate Xj in each

population, respectively, and the error εj is independent of Xj.

The parametric case, with µj(x) = αj+βjx (j = 0, 1) and constant variances, has been

studied and applied in the recent literature. See, for instance, Pepe (1997, 1998, 2004) or

Faraggi (2003). In the latter paper by Faraggi, a data set concerning fingerstick glucose

measurements as a marker for diabetes is analysed and the age of the patients is considered

as the covariate. This data set was previously discussed in Smith and Thompson (1996),

and we will reconsider it in our illustration in Section 5.

More recently, Zheng and Heagerty (2004) in a context where the diagnostic marker

changes over time, estimated the ROC curve induced from model (1.2)-(1.3) on the basis

of pilot spline estimators for the mean functions and variance functions.

In other contributions in nonparametric setups, the ROC curve is directly modelled

through a generalized linear model of a semiparametric type where the ROC curve is

considered as the response variable (see, for instance, Cai and Pepe, 2002).

In this paper, we present a new nonparametric estimator of the conditional ROC

curve under the general model (1.2)-(1.3). The estimating process, which makes use of

the estimation of the distribution of the regression errors, is described in Section 2. In

Section 3 we state several theoretical results concerning the asymptotic behaviour of the

proposed estimator. Some simulations are presented in Section 4, and Section 5 contains

an illustration to the abovementioned data set. Finally, the appendix contains the proofs

of the theoretical results.

2 Methodology

Consider that along with the diagnostic variables in the healthy population, Y0, and in the

diseased population, Y1, we have two univariate continuous covariates, X0 and X1. The
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relation between the diagnostic variables and the covariates is established in terms of the

nonparametric location-scale regression model (1.2)-(1.3), where we assume for j = 0, 1

that µj(·) = E(Yj|Xj = ·) and σ2
j (·) = Var(Yj|Xj = ·) are unknown smooth functions, and

εj is independent of Xj. For j = 0, 1, let Gj(y) = P (εj ≤ y), Fj(y|x) = P (Yj ≤ y|Xj = x)

and FXj(x) = P (Xj ≤ x), and denote the support of Xj by RXj . The intersection of RX0

and RX1 is denoted by RX and is supposed to be non-empty. The probability density

functions of the above distributions will be denoted by lower case letters (i.e., gj(y),

fj(y|x) and fXj , for j = 0, 1).

For a fixed value x in RX , the conditional ROC curve is defined by, for 0 < p < 1,

ROCx(p) = 1− F1(F
−1
0 (1− p|x)|x)

= 1−G1

(
σ−1

1 (x){G−1
0 (1− p)σ0(x) + µ0(x)− µ1(x)}

)
= 1−G1

(
G−1

0 (1− p)b(x)− a(x)
)
,

where

a(x) =
µ1(x)− µ0(x)

σ1(x)
and b(x) =

σ0(x)

σ1(x)
,

and where for any distribution function F and any 0 ≤ s ≤ 1, F−1(s) = inf{y : F (y) ≥ s}.
Suppose we have a sample (X01, Y01), . . . , (X0n0 , Y0n0) of i.i.d. data generated from model

(1.2) and another sample (X11, Y11), . . . , (X1n1 , Y1n1) of i.i.d. data generated from model

(1.3), that is independent of the first sample. Let N = n0 + n1. Based on these data, we

propose the following estimator of the conditional ROC curve:

R̂OCx(p) = 1−
∫
Ĝ1

(
Ĝ−1

0 (1− p+ hu)b̂(x)− â(x)
)
k(u)du, (2.1)

where k is a probability density function (kernel), h = hN is a bandwidth sequence, and

for j = 0, 1,

Ĝj(y) = n−1
j

nj∑
i=1

I(ε̂ji ≤ y),

ε̂ji =
Yji − µ̂j(Xji)

σ̂j(Xji)
(i = 1, . . . , nj),

µ̂j(x) =

nj∑
i=1

Wji(x, g)Yji, σ̂2
j (x) =

nj∑
i=1

Wji(x, g)[Yji − µ̂j(Xji)]
2,
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and

Wji(x, g) =
kg(x−Xji)∑nj
l=1 kg(x−Xjl)

,

with g = gN a second bandwidth sequence, and kg(·) = k(·/g)/g. Finally, â(x) = [µ̂1(x)−
µ̂0(x)]/σ̂1(x) and b̂(x) = σ̂0(x)/σ̂1(x). Note that R̂OCx(p) can also be written as :

R̂OCx(p) = 1− 1

n1

n1∑
i=1

K

(
Ĝ0({ε̂1i + â(x)}/b̂(x))− 1 + p

h

)
,

where K is the distribution function corresponding to the kernel k.

The ROC curve is defined in terms of distribution functions of continuous random

variables, and hence it is a continuous curve. This motivates the construction of the

smooth estimator proposed in (2.1), which ensures that the estimated ROC curve is also

continuous. The bandwidth h determines the smoothness of the estimated ROC curve.

Also note that the estimator of the conditional ROC curve given in (2.1) can be

considered simply in terms of empirical distributions of the regression residuals, without

adding any smoothing to the ROC curve, by taking h = 0:

R̃OCx(p) = 1− Ĝ1

(
Ĝ−1

0 (1− p)b̂(x)− â(x)
)
. (2.2)

This estimator, which we can call the “empirical” conditional ROC curve estimator, is

also a valid estimator of the conditional ROC curve, but it has the drawback of not being

continuous.

On the other hand, the bandwidth g is used to locally estimate the regression and

variance functions. In principle, one could use different bandwidths for each of the curves

µ0(x), µ1(x), σ0(x) and σ1(x), but for simplicity of presentation we will restrict here to

one bandwidth.

Other estimators of ROCx(p) can be considered, based on smoothing of each of the

empirical distributions Ĝ0(·) and Ĝ1(·). See e.g. Hall and Hyndman (2003) and Qiu and Le

(2001) for the case without covariates. We follow here the approach used, among others,

by Peng and Zhou (2004) and López-de Ullibarri et al. (2008) and apply smoothing on

the ROC curve itself.
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3 Main result

The following result is an i.i.d. representation for the ROC-process R̂OCx(p)−ROCx(p).

Note that the main term of this representation does not depend on the bandwidth h, as

its contribution is asymptotically negligible. The assumptions under which the results

below are valid, are given in the appendix.

Theorem 3.1 Assume (A1)-(A3). Then, for 0 < p < 1 and for a fixed x in RX ,

R̂OCx(p)− ROCx(p)

= g1(G
−1
0 (1− p)b(x)− a(x))

{
Âx +G−1

0 (1− p)B̂x

}
+ g2βx(p) + R̂x(p),

where

Âx = σ−1
1 (x)

1∑
j=0

(−1)j+1f−1
Xj

(x)n−1
j

nj∑
i=1

kg(x−Xji)(Yji − µj(Xji)),

B̂x =
1

2
σ−2

1 (x)
1∑
j=0

(−1)j+1
(σ0(x)

σ1(x)

)2j−1

f−1
Xj

(x)n−1
j

nj∑
i=1

kg(x−Xji)σ
2
j (Xji)(ε

2
ji − 1),

βx(p) = −1

2
µk2

∫
∂2

∂t2
E[ϕ(t, Y1, cx(1− p))|X1 = v]|t=v dFX1(v)

+
1

2
µk2g1(G

−1
0 (1− p)b(x)− a(x))

{
σ−1

1 (x)
1∑
j=0

(−1)j+1
[
µ′′j (x) + 2µ′j(x)

f ′Xj(x)

fXj(x)

]

+G−1
0 (1− p)σ−2

1 (x)
1

2

1∑
j=0

(−1)j+1
(σ0(x)

σ1(x)

)2j−1[
(σ2

j (x))′′ + 2(σ2
j (x))′

f ′Xj(x)

fXj(x)

]}
,

ϕ(x, y, z) = g1(z)σ−1
1 (x)

[
y − µ1(x) +

z

2σ1(x)

{
(y − µ1(x))2 − σ2

1(x)
}]
,

and where µk2 =
∫
u2k(u) du and supδ<p<1−δ |R̂x(p)| = oP ((Ng)−1/2), for any small δ > 0.

As a consequence, we get the weak convergence of the ROC-process. The proof can

be obtained by applying the central limit theorem for triangular arrays to the random

variables (Ng)1/2Âx and (Ng)1/2B̂x. Both the case of undersmoothing (C = 0) and the

optimal bandwidth g = C1/5N−1/5 with 0 < C <∞ are considered.
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Corollary 3.2 Assume (A1)-(A3). Then, for a fixed x in RX and for a small δ > 0, the

process (Ng)1/2(R̂OCx(p) − ROCx(p)) (δ < p < 1 − δ) converges weakly to a Gaussian

process

Wx(p) = g1(G
−1
0 (1− p)b(x)− a(x))

{
W1x +G−1

0 (1− p)W2x

}
+ C1/2βx(p),

where C is defined in assumption (A1), and where W1x and W2x are normal random

variables with zero mean, and

Var(W1x) = σ−2
1 (x)‖k‖22

1∑
j=0

f−1
Xj

(x)λ−1
j σ2

j (x)

Var(W2x) =
1

4

σ2
0(x)

σ2
1(x)
‖k‖22

1∑
j=0

f−1
Xj

(x)λ−1
j E(ε4

j − 1)

Cov(W1x,W2x) =
1

2

σ0(x)

σ2
1(x)
‖k‖22

1∑
j=0

f−1
Xj

(x)λ−1
j σj(x)E(ε3

j),

with λj = limN→∞ nj/N (j = 0, 1), and where ‖k‖22 =
∫
k2(u) du.

This result can now be used to obtain the limiting distribution of any continuous

functional of the ROC-process. A well known particular case is the conditional version of

the so-called area under the curve (AUC), which, for a fixed x in RX , we define by

AUCx =

∫ 1−δ

δ

ROCx(p) dp. (3.1)

For technical reasons, we restrict the integration to the interval to [δ, 1 − δ], which can

however be made arbitrarily close to [0, 1]. The estimator is

ÂUCx =

∫ 1−δ

δ

R̂OCx(p) dp.

The proof of the following result is an immediate consequence of the continuous map-

ping theorem.

Corollary 3.3 Assume (A1)-(A3). Then, for a fixed x in RX ,

(Ng)1/2(ÂUCx − AUCx)
d→ N(0, s2

x),
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where

s2
x = Var

(∫ 1−δ

δ

Wx(p) dp
)

= γ2
1xVar(W1x) + γ2

2xVar(W2x) + 2γ1xγ2xCov(W1x,W2x),

γ1x =

∫ 1−δ

δ

g1

(
G−1

0 (1− p)b(x)− a(x)
)
dp,

γ2x =

∫ 1−δ

δ

g1

(
G−1

0 (1− p)b(x)− a(x)
)
G−1

0 (1− p) dp.

4 Simulations

In this section we present a small simulation study. We are mainly interested in the global

performance of the proposed estimator of the conditional ROC curve and in the effect of

the smoothing parameter h. We have simulated data from two scenarios:

• Scenario 1:

Regression functions: µ0(x) = 0; µ1(x) = x.

Conditional variance functions: σ2
0(x) = σ2

1(x) = 0.52.

• Scenario 2:

Regression functions: µ0(x) = 0.5 sin(2πx); µ1(x) = sin(πx).

Conditional variance functions: σ2
0(x) = σ2

1(x) = (0.25 + 0.5x)2.

In both scenarios, the covariates X0 and X1 are uniformly distributed on [0,1], and

the regression errors ε0 and ε1 have standard normal distribution. The true ROC curves,

presented here as a surface, and the true conditional AUC, presented as a function of the

values of the covariate, are depicted in Figure 1 (scenario 1) and Figure 4 (scenario 2).

The estimator of the conditional ROC curves was calculated on a grid of points of the

form {(xl, pr) ∈ (0, 1)× (0, 1), l = 1, . . . , nx, r = 1, . . . , np}. More precisely, in all cases we

take

xl = 0.05 + (l − 1)
0.90

nx − 1
, for l = 1, . . . , nx,

pr = 0.05 + (r − 1)
0.90

np − 1
, for r = 1, . . . , np,
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with nx = 25 and np = 25. The estimators of the regression curves, µ0(·) and µ1(·), and

variance curves, σ2
0(·) and σ2

1(·), which are needed in the construction of the estimator

of the conditional ROC curve, are based on the kernel of Epanechnikov k(u) = 0.75(1 −
u2)I(|u| < 1) and on cross-validation bandwidths: for j = 0, 1, a regular cross-validation

procedure is used to estimate µj, and then the same bandwidth is used to estimate σ2
j .

The discrepancy between the estimator and the true ROC surface is measured in terms

of the empirical version of the global mean squared error (MSE):

MSE =
1

nx

nx∑
l=1

1

np

np∑
r=1

(
R̂OCxl(pr)− ROCxl(pr)

)2

.

Table 1 displays the averages and standard deviations of the MSEs obtained in 1000

data sets simulated from Scenario 1. The estimators of the ROC curves were calculated

with different values of the smoothing parameter h, ranging from 0 to 0.25. The case h = 0

corresponds to the empirical estimator given in (2.2). As expected, the MSE decreases as

the sample sizes increase. The effect of the parameter h is not very important, although

introducing a small amount of smoothing in the estimator produces a better behaviour in

terms of MSE with respect to the empirical estimator. The required amount of smoothing

to improve the MSE decreases as the sample sizes get larger. Figure 2 shows the boxplots

of the 1000 estimated MSEs for several sample sizes and several values of the smoothing

parameter. Finally, we have also considered the estimation of the conditional AUC, as

defined in (3.1), where we take δ = 0.05. Figure 3 shows the average of the estimated AUC

for several sample sizes, with h = 0.10. As a reference, we have also included in the graph

two bands which correspond to ±2 times the standard deviation of the estimator of the

AUC in the 1000 data sets. The general performance of the estimator of the conditional

AUC is good.

Table 2, Figure 5 and Figure 6 show the corresponding results when the data sets are

simulated from Scenario 2. Similar conclusions can be stated in this case. The lowest

values of the MSE are achieved with values of the smoothing parameter h smaller than

the corresponding ones in Scenario 1.
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5 Data analysis

As an illustration of the proposed methodology, we present an application to a data set

concerning diagnosis of diabetes. This data set has also been analysed in Faraggi (2003)

and Smith and Thompson (1996).

The data come from a population-based pilot survey of diabetes mellitus in Cairo

(Egypt), and consist of post-prandial blood glucose measurements of 286 subjects ob-

tained from a fingerstick. According to the gold standard criteria of the World Health

Organization for diagnosing diabetes, 88 subjects were classified as diseased and 198 sub-

jects were classified as healthy. The age of the subject was considered as a relevant

covariate in this example, because due to medical reasons (see Smith and Thompson

(1996) for the details) glucose levels are expected to be higher for older persons who do

not suffer from diabetes.

Figure 7 shows the scatter plot of the data for both the healthy and diseased popu-

lation. The glucose concentration is considered as the diagnostic variable, and the age

of the subject as a covariate. We have estimated the conditional ROC curves with the

methodology proposed in Section 2 in the values of the covariate x = 20, 21, . . . , 90. The

analysis has been performed with several values for the smoothing parameter h, and very

similar results were obtained. Figure 8-(a) shows the complete ROC surface estimated

with h = 0.10. We will keep this value of the smoothing parameter in the rest of the

figures. To check visually the effect of the age on the ROC curves, the conditional ROC

curves for ages 30, 50 and 70 are depicted in Figure 8-(b). Clearly, the aging process

reduces the capability of the ROC curve to discriminate between diseased and healthy

subjects.

The effect of the age on the discrimination power of the ROC curve can be summarized

by means of the AUC. Figure 9 shows the AUC as a function of the values of the covariate.

As in the simulation study, we use definition (3.1) with δ = 0.05. We have also included in

the graph confidence intervals for the AUC obtained by bootstrap. Asymptotic confidence

intervals for AUCx could be obtained from Corollary 3.3, but the asymptotic variance

of the estimator depends on certain unknown quantities that are difficult to estimate.

Alternatively, we use the following bootstrap procedure: for fixed x, and for b = 1, ..., B,

1. For j = 0, 1, let {ε∗ji,b, i = 1, . . . , nj} be an i.i.d. sample from Ĝj.
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2. Reconstruct the bootstrap samples {(Xji, Y
∗
ji), i = 1, . . . , nj}, for j = 0, 1, where

Y ∗ji,b = µ̂j(Xji) + σ̂j(Xji)ε
∗
ji,b.

3. Repeat the estimation process with the bootstrap samples to obtain AUC∗x,b.

Let AUC∗x,(b) be the order statistics of the values AUC∗x,1, . . . ,AUC∗x,B obtained in step 3.

According to the percentile method, (AUC∗x,(bBα/2c),AUC∗x,(bB(1−α/2)c)) is a bootstrap con-

fidence interval for AUCx of confidence level 1− α (b·c denotes the integer part). In the

graph, we represent the bootstrap confidence intervals of levels 90% and 95% obtained

with B = 1000 replications for the AUC with respect to the values of the covariate. As

seen before, the age of the subject clearly has an important impact on the discrimination

power of the glucose measurements as an indicator of diabetes.

Similar conclusions can be found in Faraggi (2003), although this author works under a

much more restrictive model (linear regression models with homoscedastic normal errors).

The advantage of our method is the flexibility incorporated by the nonparametric and

heteroscedastic regression models.

Appendix : Proofs

Assumptions

(A1) (i) nj/N → λj for some 0 < λj < 1 (j = 0, 1). Moreover, Ng5 → C for some

0 ≤ C <∞, Ng3+α(log g−1)−1 →∞ for some α > 0 and Nh4g → 0.

(ii) RXj is a bounded interval in IR (j = 0, 1).

(iii) k has compact support,
∫
uk(u)du = 0 and k is twice continuously differen-

tiable.

(A2) (i) FXj is three times continuously differentiable and infx∈RXj fXj(x) > 0 (j = 0, 1).

(ii) µj and σj are twice continuously differentiable and infx∈RXj σj(x) > 0 (j = 0, 1).

(A3) Gj is three times continuously differentiable and supy |y2G
(k)
j (y)| <∞ for k = 1, 2, 3

and j = 0, 1. Moreover, for any δ > 0, infδ<p<1−δ g0(G
−1
0 (p)) > 0.
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Proof of Theorem 3.1. For any 0 < s < 1, let cx(s) = G−1
0 (s)b(x) − a(x) and ĉx(s) =

Ĝ−1
0 (s)b̂(x)− â(x). Write

R̂OCx(p)− ROCx(p)

= −
∫ {

Ĝ1(ĉx(1− p+ hu))− E[Ĝ1(s)]|s=ĉx(1−p+hu)
}
k(u) du

−
∫ {

E[Ĝ1(s)]|s=ĉx(1−p+hu) −G1(ĉx(1− p+ hu))
}
k(u) du

−
∫ {

G1(ĉx(1− p+ hu))−G1(cx(1− p+ hu))
}
k(u) du

−
∫ {

G1(cx(1− p+ hu))−G1(cx(1− p))
}
k(u) du

= T1x(p) + T2x(p) + T3x(p) + T4x(p).

We start with T1x(p). Using Corollary 2 in Akritas and Van Keilegom (2001) it follows that

supy |Ĝ1(y)−E[Ĝ1(y)]| = OP (N−1/2), and hence, supδ<p<1−δ |T1x(p)| = oP ((Ng)−1/2). On

the other hand,

T2x(p) = −1

2
g2µk2

∫ ∫
∂2

∂t2
E[ϕ(t, Y1, s)|X1 = v]|t=v,s=ĉx(1−p+hu) dFX1(v)k(u) du+ oP (g2)

= −1

2
g2µk2

∫
∂2

∂t2
E[ϕ(t, Y1, cx(1− p))|X1 = v]|t=v dFX1(v) + oP (g2).

Next, by condition (A3) we have that supδ<p<1−δ |T4x(p)| = O(h2) = o((Ng)−1/2) if

Nh4g → 0. It remains to consider T3x(p) :

T3x(p) = −
∫
g1(G

−1
0 (1− p+ hu)b(x)− a(x))

{
G−1

0 (1− p+ hu)[b̂(x)− b(x)]

−[â(x)− a(x)]
}
k(u) du+OP ((Ng)−1 logN) +OP (n

−1/2
0 (log n0)

1/2)

= −g1(G
−1
0 (1− p)b(x)− a(x))

{
G−1

0 (1− p)[b̂(x)− b(x)]− [â(x)− a(x)]
}

+OP (N−1/2(logN)1/2) +O(h2), (A.1)

which follows from Lemma A.1 below and since µ̂j(x)−µj(x) = OP ((Ng)−1/2) and σ̂j(x)−
σj(x) = OP ((Ng)−1/2) (j = 0, 1). Next, note that

G−1
0 (1− p)[b̂(x)− b(x)]− [â(x)− a(x)]

= G−1
0 (1− p)σ−2

1 (x)
[
(σ̂0(x)− σ0(x))σ1(x)− (σ̂1(x)− σ1(x))σ0(x)

]
−σ−1

1 (x)
[
µ̂1(x)− µ1(x)− µ̂0(x) + µ0(x)

]
+OP ((Ng)−1 logN), (A.2)
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and that for j = 0, 1,

µ̂j(x)− µj(x) = f−1
Xj

(x)n−1
j

nj∑
i=1

kg(x−Xji)(Yji − µj(Xji))

+
g2

2

[
µ′′j (x) + 2µ′j(x)

f ′Xj(x)

fXj(x)

]
µk2 + oP ((Ng)−1/2), (A.3)

σ̂j(x)− σj(x) =
1

2
σ−1
j (x)f−1

Xj
(x)n−1

j

nj∑
i=1

kg(x−Xji)[(Yji − µj(Xji))
2 − σ2

j (Xji)]

+
g2

4σj(x)

[
(σ2

j (x))′′ + 2(σ2
j (x))′

f ′Xj(x)

fXj(x)

]
µk2 + oP ((Ng)−1/2). (A.4)

The result now follows, by combining (A.1), (A.2), (A.3) and (A.4). �

Lemma A.1 Assume (A1)-(A3). Then, for any small δ > 0,

sup
δ<s<1−δ

|Ĝ−1
0 (s)−G−1

0 (s)| = OP (n
−1/2
0 ).

Proof. Let Iδ = [δ, 1− δ], let αn = Kεn
−1/2
0 for some Kε > 0 and some ε > 0. Then,

P
(

sup
s∈Iδ
|Ĝ−1

0 (s)−G−1
0 (s)| > αn

)
≤ P

(
Ĝ−1

0 (s) > G−1
0 (s) + αn for some s ∈ Iδ

)
+P
(
Ĝ−1

0 (s) < G−1
0 (s)− αn for some s ∈ Iδ

)
= T1 + T2.

In what follows, we consider the term T1. The term T2 can be treated in a very similar

way.

T1 ≤ P
(
Ĝ0(G

−1
0 (s) + αn) < s for some s ∈ Iδ

)
≤ P

(
sup
y
|Ĝ0(y)−G0(y)| > G0(G

−1
0 (s) + αn)− s for some s ∈ Iδ

)
= P

(
sup
y
|Ĝ0(y)−G0(y)| > inf

s∈Iδ
{G0(G

−1
0 (s) + αn)− s}

)
≤ P

(
sup
y
|Ĝ0(y)−G0(y)| > K1αn

)
,

14



since infs∈Iδ{G0(G
−1
0 (s)+αn)−s} > infδ/2<s<1−δ/2 g0(G

−1
0 (s))αn > K1αn for some K1 > 0.

The latter probability is bounded by ε for Kε and n0 large enough, since supy |Ĝ0(y) −
G0(y)| = OP (n

−1/2
0 ) (see Corollary 2 in Akritas and Van Keilegom (2001)). �
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Figure 1: Conditional ROC curves (left) and conditional AUC (right) for Scenario 1.

h

n0 n1 0.00 0.05 0.10 0.15 0.20 0.25

100 100 average 6.411 6.097 5.820 5.644 5.570 5.597
sd 4.370 4.304 4.178 4.058 3.965 3.903

100 200 average 4.622 4.372 4.170 4.074 4.077 4.178
sd 3.160 3.111 2.998 2.909 2.856 2.836

200 200 average 3.122 2.994 2.927 2.954 3.067 3.269
sd 1.905 1.880 1.836 1.818 1.829 1.866

Table 1: Average and standard deviation (sd) of the estimated MSE (×1000) obtained
from 1000 data sets simulated according to Scenario 1, for different sample sizes and
different values of the smoothing parameter h.

17



●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●
●

●

h=0 h=0.05 h=0.15 h=0.25

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●●
●

●
●●

●

●

●

●
●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

h=0 h=0.05 h=0.15 h=0.25

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●

●●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●●●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●
●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

h=0 h=0.05 h=0.15 h=0.25

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

n0 = 100, n1 = 100 n0 = 100, n1 = 200 n0 = 200, n1 = 200

Figure 2: Boxplots of the estimated MSE obtained from 1000 data sets simulated from
Scenario 1, for different sample sizes and different values of the smoothing parameter h.
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Figure 3: Average of the estimated conditional AUC (solid line) ±2 times its standard
deviation (dotted lines) obtained from 1000 data sets simulated from Scenario 1, for
different sample sizes. In all cases h = 0.10. The dashed line represents the true AUC.

18



p

x

R
O

C

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

x

A
U

C

Figure 4: Conditional ROC curves (left) and conditional AUC (right) for Scenario 2.

h

n0 n1 0.00 0.05 0.10 0.15 0.20 0.25

100 100 average 8.849 8.587 8.383 8.360 8.477 8.714
sd 4.376 4.310 4.224 4.149 4.095 4.062

100 200 average 6.704 6.492 6.349 6.398 6.587 6.896
sd 3.215 3.155 3.086 3.038 3.014 3.006

200 200 average 4.529 4.424 4.460 4.678 5.021 5.473
sd 2.092 2.071 2.068 2.089 2.128 2.179

Table 2: Average and standard deviation (sd) of the estimated MSE (×1000) obtained
from 1000 data sets simulated according to Scenario 2, for different sample sizes and
different values of the smoothing parameter h.
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Figure 5: Boxplots of the estimated MSE obtained from 1000 data sets simulated from
Scenario 2, for different sample sizes and different values of the smoothing parameter h.
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Figure 6: Average of the estimated conditional AUC (solid line) ±2 times the standard
deviation (dotted lines) obtained from 1000 data sets simulated from Scenario 2, for
different sample sizes. In all cases h = 0.10. The dashed line represents the true AUC.
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Figure 7: Scatter plot of the diagnostic variable ‘glucose concentration’ with respect to
the covariate ‘age of the subject’. The diseased population is represented by crosses and
the healthy population is represented by circles.
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Figure 8: (a) Estimated conditional ROC curves. (b) Conditional ROC curves for ages
30 (solid line), 50 (dashed line) and 70 (dotted line).
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Figure 9: AUC as a function of age (solid line). The dotted and dashed lines represent
90% and 95% pointwise bootstrap confidence intervals, respectively.

22



Reports in Statistics and Operations Research 
 

2004 
 
04-01 Goodness of fit test for linear regression models with missing response data. 

González Manteiga, W., Pérez González, A. 
Canadian Journal of Statistics (to appear). 

 
04-02 Boosting for Real and Functional Samples. An Application to an Environmental 

Problem. B. M. Fernández de Castro and W. González Manteiga. 
 
04-03 Nonparametric classification of time series: Application to the bank share prices 

in Spanish stock market. Juan M. Vilar, José A. Vilar and Sonia Pértega. 
 
04-04 Boosting and Neural Networks for Prediction of Heteroskedatic Time Series. J. 

M. Matías, M. Febrero, W. González Manteiga and J. C. Reboredo. 
 
04-05 Partially Linear Regression Models with Farima-Garch Errors. An Application to 

the Forward Exchange Market. G. Aneiros Pérez, W. González Manteiga and J. 
C. Reboredo Nogueira. 

 
04-06 A Flexible Method to Measure Synchrony in Neuronal Firing. C. Faes, H. Geys, 

G. Molenberghs, M. Aerts, C. Cadarso-Suárez, C. Acuña and M. Cano. 
 
04-07 Testing for factor-by-curve interactions in generalized additive models: an 

application to neuronal activity in the prefrontal cortex during a discrimination 
task. J. Roca-Pardiñas, C. Cadarso-Suárez, V. Nacher and C. Acuña. 

 
04-08 Bootstrap Estimation of the Mean Squared Error of an EBLUP in Mixed Linear 

Models for Small Areas. W. González Manteiga, M. J. Lombardía, I. Molina, D. 
Morales and L. Santamaría. 

 
04-09 Set estimation under convexity type assumptions. A. Rodríguez Casal. 

 
 

2005 
 
05-01 SiZer Map for Evaluating a Bootstrap Local Bandwidth Selector in 

Nonparametric Additive Models. M. D. Martínez-Miranda, R. Raya-Miranda, W. 
González-Manteiga and A. González-Carmona. 

 
05-02 The Role of Commitment in Repeated Games. I. García Jurado, Julio González 

Díaz. 
 
05-03 Project Games. A. Estévez Fernández, P. Borm, H. Hamers 
 
05-04 Semiparametric Inference in Generalized Mixed Effects Models. M. J. 

Lombardía, S. Sperlich 
 
 



2006 
 
06-01 A unifying model for contests: effort-prize games. J. González Díaz 
 
06-02 The Harsanyi paradox and the "right to talk" in bargaining among coalitions. J. J. 
Vidal Puga 
 
06-03 A functional analysis of NOx levels: location and scale estimation and outlier 
detection. M. Febrero, P. Galeano, W. González-Manteiga 
 
06-04 Comparing spatial dependence structures. R. M. Crujeiras, R. Fernández-Casal, 
W. González-Manteiga 
 
06-05 On the spectral simulation of spatial dependence structures. R. M. Crujeiras, R. 
Fernández-Casal 
 
06-06 An L2-test for comparing spatial spectral densities. R. M. Crujeiras, R. 
Fernández-Casal, W. González-Manteiga. 
 
2007 
 
07-01 Goodness-of-fit tests for the spatial spectral density. R. M. Crujeiras, R. 
Fernández-Casal, W. González-Manteiga. 
 
07-02 Presmothed estimation with left truncated and right censores data. M. A. Jácome, 
M. C. Iglesias-Pérez 
 
07-03 Robust nonparametric estimation with missing data. G. Boente, W. González-
Manteiga, A. Pérez-González 
 
07-04 k-Sample test based on the common area of kernel density estimators, P. 
Martínez-Camblor, J. de Uña Álvarez, N. Corral-Blanco 
 
07-05 A bootstrap based model checking for selection-biased data, J. L. Ojeda, W. 
González-Manteiga, J . A. Cristobal 
 
07-06 The Gaussian mixture dynamic conditional correlation model: Bayesian 
estimation, value at risk calculation and portfolio selection, P. Galeano, M. C. Ausín 
 
2008 
 
08-01 ROC curves in nonparametric location-scale regression models, W. González-
Manteiga, J. C. Pardo Fernández, I. Van Keilegom 
 

 
 

 
Previous issues (2001 – 2003): 
http://eio.usc.es/pub/reports.html 


	portada
	reporjc
	listareports 2005

