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Abstract

In this paper we introduce a unifying model of contests. We present a class of

non-cooperative games, that we call effort-prize games, and show that they can be

used to model many well known economic situations. First price auctions, all-pay

auctions, politically contestable rents and transfers, Bertrand competition, R&D,. . . are

examples of the models that fall within our framework. Then, we characterize the set of

Nash equilibria of general effort-prize games and discuss the implications of our results

in each one of the specific models. Finally, we briefly discuss about the potential of

our unifying framework to model new economic situations.

JEL classification: C72; D43; D44; D72
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1 Introduction

Models of contests are pervasive in economic literature. Among them, maybe the models of
auctions are the most studied ones, probably because of the simplicity of the model and the
richness of its applications. Also the models of Bertrand competition among different firms
fall within the literature on contests; being the set of consumers the contestable good. But
there are many more situations where different agents are engaged in some competition with
the common objective of getting some prize: rent-seeking, political campaigns, patent races,
R&D, political lobbying, war of attrition models, taxation competition between districts to
attract capital investment. . .

In this paper we present a unifying model that encompasses many of the situations
quoted above. More specifically, the contests we pretend to unify have the following struc-
ture. There is a set of agents that want to get a prize and each of them has to choose the
effort (investment) he wants to make in order to get the prize. Efforts are chosen indepen-
dently and the prize is awarded to the agent that has made the highest effort, provided that

∗The author is grateful to Peter Borm, Diego Domı́nguez, Ehud Kalai, Miguel A. Meléndez-Jiménez, and
Henk Norde for helpful discussions and also to Northwestern University, where most of this research was
carried out, for their hospitality. Moreover, the author acknowledges the financial support of the Spanish
Ministry for Science and Technology and FEDER through project BEC2002-04102-C02-02, and from the
Xunta de Galicia under project PGIDT03PXIC20701PN.
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there are no ties. In case of a tie, some tie-breaking rule has to be fixed to “share” the prize
among the winners. So note that, once the game is over, we can split the players among
losers and winners. Now, we present one more property that characterizes the models of
contests we deal with in this paper. The payoff of each agent at the end of the game only
depends on two things: i) his own effort and ii) if he is a winner or a loser. We model the
contests satisfying this property through what we call effort-prize games. It is important to
note that with the previous property we have excluded, for instance, both war of attrition
models and second-price auctions. This is because in both of them, the payoff of the winners
depends on the effort made by the losers and not on their own effort.

Next, we describe, in contrast with war of attrition models, the following feature of
effort-prize games: an effort-prize game is always a normal form game and, hence, we only
study Nash equilibrium. Suppose that we have a contest that can be modeled as a timing
game, namely, as a war of attrition. In these models, each agent has to choose, at each
moment in time, whether to stay in the game (keep investing effort) or to quit. Hence, we
have a sequential game and subgame perfection is one of the solution concepts to be studied.
This is not the case in an effort-prize game. Whereas our effort-prize games can also model
the latter kind of contests, they implicitly assume that the effort choices of the players are
made once and for all. That is, the players have to say when do they want to quit regardless
of what the other players do in the meantime. A motivation for this assumption would be
a situation in which players do not receive information about what the other players have
done as the time passes; i.e., they are playing a silent timing game. Hence, because of the
previous observations, we do not have an extensive form game anymore. Patent races are
a natural setting for silent timing games. In such a scenario, it might be the case that a
firm, after deciding to quit the patent race, does it in a silent way; depriving its rival of
the possibility of reallocating its resources in the other areas in which they might also be
competitors.

In Section 2 we present several models that have already been studied in the literature
along with the existing results concerning Nash equilibrium in each of them. The reader will
note that many of the results are very similar to each other. Hence, the natural question
is to wonder what are the common features underlying these models that lead to these
similarities. That question is the one that motivated this paper and effort-prize games are
our answer. We show that all these models are special effort-prize games and that the
specific results of each model are special cases of our results for general effort-prize games.
Up to the best of our knowledge, there has been no formal attempt to unify these models
and results under the same framework before.

Summarizing, in this paper we do the following. First, we define a unifying model of
contests: the effort-prize games. Second, we characterize the set of Nash equilibria of any
effort-prize game and discuss the implications of these results within the specific models
we generalize. Third, we discuss how far we can push our model to analyze new economic
situations. Since all the existing results in the specific models can be incorporated to our
framework, it is also the case that some of the proofs can also be adapted, mutatis mutandis,
to our general situation. Nonetheless, our reasons for having carefully written all the proofs
are i) our model is much more general than the existing ones and, hence, although the
underlying arguments are very similar, new proofs are needed, ii) this is the first time that
all the results are proved under the same notation; up to now, the different results were
spread around different papers, with different notations, and with quite different degrees of
mathematical rigor.

The paper is structured as follows. In Section 2 we present various models of contests.
In Section 3 we present our unifying model and formally define the effort-prize games. In
Sections 4 and 5 we present and discuss the main results. Finally, in Section 6 we briefly
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discuss about other possible applications of effort-prize games.

2 Some Models of Contests

In this Section we present an overview of a series of models of contests that have been
studied in economic literature. We assume complete information throughout the paper.
The underlying idea of all the models we present here is the same. There is a set of
agents that want to get a prize. In order to do so, each of them has to make some effort
(investment). These efforts are chosen simultaneously and independently. Finally, the prize
is awarded to the agent that has made the higher effort. In case of a tie, the prize is shared
according to some rule. The results we present in Sections 4 and 5 show that, with a lot of
generality, the selected tie-breaking rule is not relevant for the equilibrium analysis. Hence,
the basic elements of all the models we present below are the same. For deeper motivations
and applications of each specific model we refer the reader to the specific literature.

Primitives: The set of players is N := {1, . . . , n}. Moreover, for each model, we have some
parameters and functions that determine the payoff functions.

Strategies: There is an interval E whose elements represent the levels of effort available
to each player in the model at hand. Let σ = (e1, . . . , en) ∈ En be a profile of efforts.
Then, wσ := argmaxi∈N ei denotes the set of winners under σ and |wσ| denotes its
cardinality.

Payoff Functions: The payoff of a player depends on his effort and on whether he has
received the prize or not. In most of the models below it is implicitly assumed that, in
the case of a tie, the prize is awarded to each one of the winners with equal probability.

Equilibrium Results: For each model, we briefly present the already existing results con-
cerning Nash Equilibrium.

• Model 1. First Price Auction (FPA).
Players have to bid in order to get an object. Each player has a valuation vi of the object.
Players submit their bids simultaneously and independently. The player with the highest
bid gets the object and pays his bid. The losers pay 0.

Primitives: For each i ∈ N , vi is i’s valuation of the object.
Strategies: E = [0,∞). To be interpreted as bids.
Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







vi − ei {i} = wσ

vi−ei

|wσ| {i} ∈ wσ

0 otherwise.

Equilibrium Results: i) If there are at least two players with the highest valuation, then
it is a pure Nash equilibrium for them to bid such valuation whereas the other players
bid 0. Moreover, all players get payoff 0. ii) If there is a unique player with the highest
valuation, then there is no Nash equilibrium in pure strategies.1

• Model 2. Politically Contestable Rents and First Price All-Pay Auctions (APA).
Hilman and Riley [10], Baye et al. [1, 3, 4].

1It is well known that for the first price auction this problem of non-existence of the Nash equilibrium
can be overcome by discretizing the sets of strategies. Nonetheless, this can not be done, for instance, in
the all-pay auction below.
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In this model, all players get a disutility equal to their effort (bid), regardless of whether
get the prize or not. Both politically contestable rents and all-pay auctions are completely
analogous models. For instance, the results in [1] for all-pay auctions are used in [3] to ana-
lyze the lobbying process, a well known representative of the applications of the politically
contestable rents’ models.

Primitives: For each i ∈ N , his valuation of the prize vi.
Strategies: E = [0,∞). To be interpreted as bids.
Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







vi − ei {i} = wσ

vi

|wσ| − ei {i} ∈ wσ

−ei otherwise.

Equilibrium Results: i) There is no Nash equilibrium in pure strategies. ii) A complete
characterization of the set of mixed Nash equilibria and the corresponding payoffs is
provided for the different configurations of the valuations.

• Model 3. Politically Contestable Transfers (PCT).
Hilman and Samet [11], Hilman and Riley [10].

In this model, each loser, apart from paying his investment ei, has to make a transfer Li.
Then, the payoffs Wi of the winners are determined by both the prize and the transfers of
the losers. In case of a tie, the transfers of the losers are shared equally among the agents.

Primitives: For each i ∈ N , we have his transfer Li, his prize payoff is Wi and his “aggre-
gate” valuation of the prize vi = Wi + Li.

Strategies: E = [0,∞). To be interpreted as bids.
Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







Wi − ei {i} = wσ

Wi

|wσ| − ei {i} ∈ wσ

−Li − ei otherwise.

Equilibrium Results: i) There is no Nash equilibrium in pure strategies. ii) Assume,
without loss of generality, that v1 ≥ v2 ≥ . . . ≥ vn. Then, if v2 > v3, the mixed Nash
equilibrium exists and is unique. Only players 1 and 2 put some effort in equilibrium and
the payoffs are η1 = v1 − v2 and, for each i 6= 1, ηi = −Li.

• Model 4. Standard Price Competition: Bertrand Model (BM).
Tirole [17, Chapter 5].

There are several firms that are immersed in a price competition. The firms are assumed to
produce a homogeneous product with cost functions that exhibit weakly decreasing average
costs. Firms competition is in prices and the winner takes all the market. For simplicity,
we assume that the price cannot exceed an exogenously given value p̄; think, for instance,
that there is 0 demand for prices above p̄. Moreover, the demand function is continuous and
decreasing in price and such that, for each i ∈ N , the function (p̄−e)D(p̄−e)−ci(D(p̄−e))
is strictly decreasing in e.2

Primitives: The demand function D(·). For each player i ∈ N , his cost function ci(·).
The price upper bound p̄.

2The latter assumption is not standard in general Bertrand competition models. We discuss a little bit
more on it after introducing assumption A1′ in Sections 3 and 6.
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Strategies: E = [0,∞). To be interpreted as discounts with respect to p̄.
Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







(p̄ − ei)D(p̄ − ei) − ci(D(p̄ − ei)) {i} = wσ

(p̄ − ei)
D(p̄−ei)

|wσ| − ci(
D(p̄−ei)

|wσ| ) {i} ∈ wσ

0 otherwise.

Equilibrium Results: Bertrand Paradox: If cost functions functions are constant and
equal across firms, then the unique equilibrium is the one in which all the firms price
their marginal cost and they make no profits.

• Model 5. Varian’s Model of Sales: Price Competition with Loyal Customers (MS).
Varian [18], Narasimham [14], Deneckere et al. [5], Baye et al. [2].

We have the same setting as above, but now the consumers are divided in loyal and strategic.
Moreover, the total demand is assumed to be constant. Each firm i has ni loyal consumers.
Loyal consumers will buy the product whenever it is below some maximum price p̄. Strategic
consumers buy from the cheapest firm. A firm cannot price-discriminate among consumers.
The firm with the lowest price gets the m strategic consumers.

Primitives: For each player i ∈ N , his cost function ci(·) and i’s loyal customers ni. The
number of strategic consumers m. The price upper bound p̄.

Strategies: E = [0,∞). To be interpreted as discounts with respect to p̄.
Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







(p̄ − ei)(ni + m) − ci(ni + m) {i} = wσ

(p̄ − ei)(ni + m
|wσ| ) − ci(ni + m

|wσ| ) {i} ∈ wσ

(p̄ − ei)ni − ci(ni) otherwise.

Equilibrium Results: If the cost function is common for all the firms and average costs
are strictly decreasing: i) There is no Nash equilibrium in pure strategies. ii) Under
the assumption that all the firms have the same number of loyal consumers, [18] finds
a symmetric mixed Nash equilibrium and, later on, [2] characterizes the whole set of
equilibria under the same assumption. iii) In [14], the equilibrium is shown to be unique
when n = 2; even if the share of loyal consumers is not symmetric.3

• Model 6. Federalism and Economic Growth (FEG).
Hatfield [9].

This model compares the equilibrium taxation schemes when under centralized and decen-
tralized governments. They consider a situation in which the capital investment depends on
the chosen tax policies and show that, in the centralized case, there are equilibria in which
the government does not implement a tax policy that maximizes economic growth. On the
other hand, they show that this it not so when the different districts can choose their own
tax policies to attract investors. The reason is that the latter leads to a Bertrand-like com-
petition between the (homogeneous) districts to choose the tax policy that is more engaging
for investors. A tax policy consists of a capital tax and a labor tax. Given a labor tax,
there is a unique capital tax that makes the joint policy efficient, and vice versa. Moreover,
under efficiency, both taxes are negatively related.

Here, we present a simplified version of the decentralized (federal) model included in [9].
Each district has to chose a labor tax policy, namely e, so as to attract investors (this

3In [5], price-leadership is studied using a 2-stage game. Then, the two-player result obtained in [14] is
used to find the subgame perfect equilibria.
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selection also pins down the capital tax). Investors will go to the district with the best
rate of return on capital ρ(e). The payoff of a district is calculated as the net wage per
capita in such district, ω(ρ(e)). We assume that there is a labor tax m ∈ R such that no
investment is made in districts with labor taxes below m (high capital taxes). On the other
hand, under the assumptions [9], there is ē > m such that ρ(·) has a global maximum at
ē and ω(ρ(ē)) > 0. In [9], labor taxes above ē are dominated strategies. Intuitively, the
rate of return above ē is worse than in ē and the wage per capita decreases. Finally, in
the interval [m, ē], ρ(·) is strictly increasing whereas ω(·) is strictly decreasing. Function
ω(·) is decreasing because it reflects the trade off between the rate of return offered to the
investors and the wage per capita for the citizens in case of investment.4

Primitives: The functions ω(·) and ρ(·). The threshold m ∈ R.
Strategies: E = [m, ē]. To be interpreted as the labor tax charged to the citizens.
Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







ω(ρ(e)) {i} = wσ

ω(ρ(e))
|wσ| {i} ∈ wσ

0 otherwise.

Equilibrium Results: In equilibrium, all the investment is made in districts with labor
tax ē. Moreover, ē maximizes economic growth (similar to marginal cost pricing in BM).
Indeed, the results are shown under two different tie breaking rules, not only the one we
presented above.

• Model 7. Price Competition between Market Makers (MM).
Dennert [6].

Here we present a rough simplification of the model introduced in [6, Section 2] to model
price competition among market makers who want to trade a risky asset.5 There are n firms
that want to sell a product. There are no production costs. Its real value v can be either 1
or −1, each of them with equal probability. Each firm can only sell one unit of the product
to each buyer. First, each firm chooses a price. Then, each buyer has probability µ of being
informed about v. The uninformed buyers split evenly among those who think that v = −1
and those who thing that v = 1; the former do not want to buy the product and the latter
buy it at the lowest price (provided it is not above 1). Informed buyers, that are thought
of as speculators, buy one unit to each firm whenever v = 1 and the price is not above 1.
To accommodate the model in our effort approach, we think of the strategy of a seller as
a discount with respect to 1 (no trade takes place for higher prices). Suppose that firm i
chooses a discount ei. Then, with probability one half, v = 1 and the informed buyers buy
a unit of the product from i and, hence, i looses ei against each informed buyer. On the
other hand, if i has set the lowest price, the (1 − µ)/2 uninformed buyers get the product
from him, regardless of the real value of v. If v = 1, i looses ei against each uninformed
buyer and, if v = −1, he wins 2 − ei.

Primitives: µ ∈ (0, 1).
Strategies: E = [0,∞). To be interpreted as discounts with respect to 1.

4In [9], these functions are obtained from a more complex structure than the one we present here.
5Note that, in our simplification of the model, we change the underlying economic setting. Hence, some

of the assumptions implicit in the model we present might seem unreasonable. We refer the reader to [6]
for the motivations within the real scenario.
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Payoff Functions: Now, for each i ∈ N and each σ ∈ En,

ui(e1) =







−µ
2 ei + 1−µ

2 (1 − ei) {i} = wσ

−µ
2 ei + 1−µ

2|wσ| (1 − ei) {i} ∈ wσ

−µ
2 ei otherwise.

Equilibrium Results: i) There is no Nash equilibrium in pure strategies. ii) There is a
unique symmetric Nash equilibrium in mixed strategies.

• Model 8. (Silent) Timing Games: A Silent Duel/Battle over a Cake (TG).
Hamers [8], González-Dı́az et al. [7].

There is a divisible good of size 1 that has to be shared among the agents.6 Each agent
has an initial right αi over the good and

∑

i∈N αi < 1. Each player has to choose the
moment in time at which he claims his share. The latter choice is made simultaneously and
independently. All the agents get their discounted initial right at the time in which they
claim it. Moreover, the most patient one gets also the discounted extra share 1 −

∑

i∈N αi

(discounted at the time in which he has claimed his share).7

Primitives: For each i ∈ N , the initial right αi. The discount parameter δ ∈ (0, 1).
Strategies: E = [0,∞). To be interpreted as the time the players wait before quitting

(claiming his share).
Payoff Functions: Let P = 1−

∑

i∈N αi denote the undiscounted value of the prize. Now,
for each i ∈ N and each σ ∈ En,

ui(e1) =







(αi + P )δei {i} = wσ

(αi + P
|wσ| )δ

ei {i} ∈ wσ

αiδ
ei otherwise.

Equilibrium Results: i) There is no Nash equilibrium in pure strategies. ii) [8] shows
existence and uniqueness of the mixed Nash equilbrium when n = 2 and [7] shows the
same result for arbitrary number of players under the assumption α1 < α2 < . . . < αn.

Despite of the outstanding similarities between some models and results above, it is not
the case that we can take the results for one model and plug them into some of the others.
Sometimes the new result will also be true, but the adaptations are not immediate. The
model introduced in next Section will formally state the extent up to which the different
results can be adapted across models.

3 The Unifying Model

Now we present a general model for which all the ones discussed above become very specific
cases. Despite of the outstanding extra generality of the model, we show that under very
mild assumptions the results of the papers quoted above carry out. Recall that we have
assumed complete information. The idea of our model is the same one that underlies the
above situations. There are several players that want to get a prize and it will be awarded
to the one that makes the higher effort. In case of a tie, we can think of many different

6For this model we stick to the notations in [8], although the differences between the models in [8] and
[7] do not affect the results.

7Silent timing games have already been applied to different economic situations. See [15] for an applica-
tion to R&D.
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shares of the prize among the tied players. Nonetheless, we show that is not relevant as far
as, roughly speaking, at least one of the tied players does not receive the whole prize (we do
even allow to share “more than one prize” when ties appear). Indeed, the later requirement
is the source of the discontinuity in the payoffs and the main reason for the non-existence
of a Nash equilibrium in pure strategies in most of the models introduced in Section 2.

The set N is assumed to be fixed throughout the paper. Let 2N denote the set of all
possible subsets of N and, for each S ⊆ N , |S| denotes its cardinality. Informally, in a effort-
prize game each player chooses the effort he wants to make, that is, a number in [m,M ],
where m ∈ R, M ∈ R∪{∞}, and M > m.8 Then, the prize is awarded to the player that has
made the highest effort (ties are discussed below). Each player, depending on his effort and
on whether he has achieved the prize or not, gets a certain payoff. Before formally defining
an effort-prize game, we define a effort-prize form as a triple ({bi}i∈N , {pi}i∈N , {Ti}i∈N ) as
follows:

• Base payoff functions. For each i ∈ N , there is a weakly decreasing and continuous
function bi : [m,M ] → R. For each level of effort e ∈ [m,M ], bi(e) denotes the payoff of
player i when his effort is e but he does not get the prize (i.e., his effort is not among
the highest ones).

• Prize payoff functions. For each i ∈ N , there is a weakly decreasing and continuous
function pi : [m,M ] → R with pi(m) > 0. For each level of effort e ∈ [m,M ], pi(e)
denotes the extra payoff of player i when his effort is e and it is the highest one (no ties)
and, hence, he gets the prize.

• Tie payoff functions. For each i ∈ N , Ti : [m,M ] × 2N\{∅} → R, determines i′s “share
of the prize” when there is a tie. The element in [m,M ] denotes the effort made by
player i and the subset of N is the set of players with the highest effort. These functions
Ti have the following properties:

T1) Ti(e, {i}) = pi(e), i.e., if i is the only winner he gets the prize.

T2) For each S such that i /∈ S, Ti(e, S) = 0, i.e., if i is not a winner he gets no extra
payoff.

T3) For each e ∈ [m,M ], each S ∈ 2N\{∅}, with |S| > 1, we have

i) for each i ∈ S, if pi(e) ≥ 0, then Ti(e, S) ≤ pi(e). Winners get at most their prize
payoff at e, provided that it is non negative,

ii) for each i ∈ S, if pi(e) < 0, then Ti(e, S) < 0. If i’s valuation of the prize at e is
negative, he must get something negative,9

iii) if
∑

i∈S pi(e) > 0, then there is j ∈ S such that Tj(e, S) < pj(e). If the sum of
the prize payoffs of the tied players at e is positive, then at least one of them
would be better off if he were the only winner.

Note that both base and prize payoff functions can be different for the different play-
ers. Hence, situations where the valuation of the prize may be different across players are
included. Note as well that we allow for constant prize functions, i.e., the effort does not
necessarily affect the extra payoff when getting the prize. We have defined tie functions in
a very general way, indeed, unnatural shares of the prize can be defined within our family

8We are making the following abuse of notation. If M = +∞, then [m, M ] := [m,∞).
9Here we even allow for situations in which players “lose more” when they are tied than they would lose

being alone. Note that this is the case, for instance, in first price auctions when players are tied at bids
that exceed their valuations.
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of tie functions. Nonetheless, we show below that most of the results do not depend on the
chosen tie functions as far as they satisfy properties T1-T3.

Let f := ({bi}i∈N , {pi}i∈N , {Ti}i∈N ) be an effort-prize form. Now, the associated effort-
prize game with pure strategies for the players in N , denoted by EP f

pure, is defined as

EP f
pure := ({Ei}i∈N , {ui}i∈N ), where, for each i ∈ N , Ei := [m,M ] and the payoff functions

are defined as follows. For each effort profile σ = (e1, . . . , en) ∈ [m,M ]n, let wσ denote the
set of winners, i.e., wσ := argmaxi∈N{ei}. Now, for each i ∈ N and each σ = (e1, . . . , en) ∈
[m,M ]n, ui(σ) := bi(ei) + Ti(ei, w

σ).
The effort-prize form f is fixed throughout the paper. Moreover, we assume, without

loss of generality, that m = 0, that is, players have to make non-negative efforts.10 Now,
according to the definition of game EP f

pure, for each i ∈ N , bi(0) can be interpreted as the
minimum right of player i, i.e., regardless of what the other players do, player i can always
ensure himself bi(0) with the strategy 0.

We show below what the effort-prize form is for each of the models discussed in Section 2.
Let i ∈ N and S ⊆ N such that i ∈ S. Then,

Model 1. FPA: bi(e) = 0, pi(e) = vi − e, and Ti(e, S) = pi(e)|S|
−1.

Model 2. APA: bi(e) = −e, pi(e) = vi, and Ti(e, S) = pi(e)|S|
−1.

Model 3. PCT: bi(e) = −Li − e, pi(e) = Li + Wi, and Ti(e, S) = Li + Wi|S|
−1.

Model 4. BM: bi(e) = 0, pi(e) = (p̄− e)D(p̄− e)− ci(D(p̄− e)), and the tie function now
is Ti(e, S) = (p̄ − e)D(p̄ − e)|S|−1 − ci(D(p̄ − e)|S|−1).

Model 5. MS: bi(e) = (p̄ − e)ni − ci(ni), pi(e) = (p̄ − e)m − ci(ni + m) + ci(ni), and the
tie function now is Ti(e, S) = (p̄ − e)m|S|−1 − ci(ni + m|S|−1) + ci(ni).

Model 6. FEG: bi(e) = 0, pi(e) = ω(ρ(e)), and Ti(e, S) = ω(ρ(e))|S|−1.

Model 7. MM: bi(e) = −µ
2 e, pi(e) = 1−µ

2 (1 − e), and Ti(e, S) = 1−µ
2 (1 − e)|S|−1.

Model 8. TG: bi(e) = αiδ
e, pi(e) = Pδe, and Ti(e, S) = Pδe|S|−1.

Now it is immediate to check that, for each model, the functions above lead to a well
defined effort-prize form. Indeed, the only thing that is not entirely straightforward is to
check that the tie payoff functions in models BM and MS satisfy T3; but they do because
we have assumed that the cost functions exhibit decreasing average costs.

Remark 1. Note that our effort-prize games do not extend other well known models of
contests such as the war of attrition, the second price auction, or the second price all-pay
auction. In an effort-prize game, if a player is the only winner, his payoff only depends on
the effort he has made, whereas in the latter models it only depends on the losers’ efforts.
Indeed, this is also the reason why subgame perfection plays no role in effort-prize games.
In our model, the players have to decide their effort once and for all. This is not the case,
for instance, in the war of attrition, where at each time, players have to choose whether
they stay in the game ( i.e., they put some more effort) or they quit.11

Note that in the general definition of the model, both the base and prize payoff functions
are weakly decreasing. Nonetheless, it is quite natural to assume that either the bi functions

10Let f = ({bi}i∈N , {pi}i∈N , {Ti}i∈N ) be an effort-prize form such that, in EP
f
pure, Ei := [m, M ] and

m 6= 0. Then, we just need to consider the effort-prize form f ′ = ({b′i}i∈N , {p′i}i∈N , {T ′
i}i∈N ), where each

b′i : [0, M − m] → R is defined by b′i(e) := bi(e + m), and similarly for the p′i and T ′
i functions. The games

EP
f
pure and EP

f ′

pure are equivalent from the strategic point of view.
11[13] contains a general model for war of attrition that extends, for instance, second-price all-pay auctions.

Moreover, regarding the discussion we made in the Introduction about silent and non-silent timing games,
refer to [12] for a paper on general non-silent timing games and to [15] for a paper in which silent timing
games are applied to R&D models (patent races).
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or the pi functions are strictly decreasing so that we ensure that the payoff functions are
sensitive to the effort implemented by the players.

Assumption A1. For each i ∈ N , the function bi(·) is strictly decreasing.

Assumption A1′. For each i ∈ N , the function pi(·) is strictly decreasing.

Depending on whether we assume A1 or A1′ a relevant part of the contest at hand
is changed. Under A1, the payoff of the players is strictly decreasing in e, regardless of
whether they get the prize or not; models APA, PCT, MS, MM, and TG fall within this
category. On the other hand, under A1′, only the payoff achieved when getting the prize
has to be strictly decreasing in e; this situation corresponds with the FPA and FEG models.
Moreover, as far as (p̄− e)D(p̄− e)− ci(D(p̄− e)) is strictly decreasing in e, the BM model
also satisfies A1′. Since −ci(D(p̄ − e)) is strictly decreasing in e, a sufficient condition
for the former requirement is that eD(p̄ − e) is weakly increasing in e; that is, given an
increase ∆e in the discount, the corresponding increase ∆D(p̄ − e) in the demand is such

that ∆D(p̄−e)
∆e ≤ 1. In words, provided that a given firm takes the whole market for sure,

then it has no incentives to make further discounts, i.e., if the price decreases, the increase
in demand does not compensate the losses per unit. Refer to Section 6 for a discussion on
the necessity of this requirement.

Now, for each i ∈ N , let ēi := maxe∈[0,M ]{bi(0) ≤ bi(e) + pi(e)}. The interpretation of
the ēi is as follows. If ēi < M , then bi(0) = bi(ēi)+pi(ēi). That is, ēi is an upper bound for
the effort that i is willing to make because higher efforts are weakly dominated by 0 and,
under A1, they are strictly dominated. Henceforth, we assume, without loss of generality,
that players are ordered such that i < j implies that ēi ≥ ēj . That is, the players with
lower indices are the ones willing to make higher efforts.

Assumption A2. For each i ∈ N , ēi < M .

Note that A2 is satisfied by all the models presented in Section 2 with the exception of
FEG. Moreover, this requirement becomes very natural when translated into the different
cases. Next result shows that, under A1 and A2, effort-prize games do not have Nash
equilibria (in pure strategies).

Proposition 1. If the effort-prize game EP f
pure

satisfies A1 and A2, then it does not have
any Nash equilibrium.

Proof. Suppose σ = (e1, . . . , en) ∈ [m,M ]n is a Nash equilibrium of EP f
pure. By A1 and A2,

strategies above ēi are strictly dominated for player i. Hence, for each i ∈ N , ei ≤ ēi < M .
By A1, for each i ∈ N , the function bi(·) + pi(·) is strictly decreasing. Hence, if |wσ| = 1,
the winner would be better off by doing less effort, but still ensuring himself to be the only
winner. Hence, |wσ| > 1. So there is a tie at e ∈ [m,M). We distinguish two cases:
∑

i∈wσ pi(e) > 0: By T3, there is i ∈ wσ such that Ti(e, w
σ) < pi(e). Now, since functions

bi(·) and pi(·) are continuous, there is ε > 0 such that ui(σ) = bi(e) + Ti(e, w
σ) <

bi(e + ε) + pi(e + ε) = ui(σ−i, e + ε). Hence, player i would deviate.

∑

i∈wσ pi(e) ≤ 0: Now, there is i ∈ wσ such that pi(e) ≤ 0. Hence, by T3, Ti(e, w
σ) ≤ 0.

Hence, ui(σ) = bi(e) + Ti(e, w
σ) ≤ bi(e). Hence, since bi(·) is strictly decreasing, player

i would be better off by playing 0 and getting bi(0) > bi(e).

Remark 2. In general, when two players are tied, one of them can get a higher payoff by
putting ε effort more and getting the whole prize. The problem in many similar models is

10



that, since the sets of strategies are continuous, there is no optimal reply. Hence, one could
argue that the non-existence result presented above relies on the fact that players can have a
continuum of strategies, but this is not the case here. The reader can verify that we cannot
get rid of the latter non-existence result by discretizing the sets of strategies.

So, for an appropriate analysis of effort-prize games we need to consider mixed strategies.
Before stating formally what a mixed strategy is, we introduce some notation concerning
distribution functions.

Let F : R → [0, 1] be a function satisfying i)F is non decreasing, ii) F is right-continuous,
and iii) limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1. Such a function is always a distribution
function, corresponding to some probability measure P in R, such that, for each x ∈ R,
F (x) = P ({y ∈ R : x ≥ y}). On the other hand, each probability measure P in R

defines, by the previous formula, a distribution function F .12 We introduce now some other
notations related to a distribution function F . For each x ∈ R we denote limy↑x F (y) =
P ({y ∈ R : x > y}) by F (x−). If there is x > 0 such that for each a, b ∈ R with a < x < b
we have F (b−) > F (a), i.e., the probability of choosing an element in (a, b) is positive, then
x is an element of the support of F . The support of the distribution function F is denoted
by S(F ). One easily verifies that S(F ) is a closed set. The set of jumps (discontinuities)
of F is J(F ) := {x ∈ R : F (x) > F (x−)}, i.e., the set real numbers which are chosen with
positive probability.

Now, we go back to the effort-prize game. Formally, we define a mixed strategy as a
distribution function G such that S(G) ⊆ [0,M ], i.e., the support of a mixed strategy must
be a subset of the set of pure strategies. Let G denote the set of all mixed strategies. Note
that for, a mixed strategy G ∈ G, the set J(G) denotes those pure strategies which are
chosen with positive probability.

If player i chooses pure strategy e and all other players choose mixed strategies {Gj}j 6=i,
then the expected payoff for player i is

ui(G1, . . . , Gi−1, e,Gi+1, . . . , Gn) = A + B + C,

where

A =
∏

j 6=i

Gj(e
−)(bi(e) + pi(e)), B =

(

1 −
∏

j 6=i

Gj(e)
)

bi(e), and

C =
∑

i∈S,S⊆N

(

∏

j /∈S

Gj(e
−)

∏

j∈S\{i}

(

Gj(e) − Gj(e
−)

)

)

Ti(e, S).

That is, A is the probability that i wins alone multiplied by the corresponding payoff, B
is the probability that i does not win multiplied by the corresponding payoff, and C is the
payoff originated in the different ties in which i can be involved.

If player i also chooses a mixed strategy Gi, whereas all other players stick to mixed
strategies {Gj}j 6=i, then the expected payoff for player i can be computed by the use of the
Lebesgue-Stieltjes integral:

ui(G1, . . . , Gn) =

∫

ui(G1, . . . , Gi−1, e,Gi+1, . . . , Gn)dGi(e). (1)

Note that, with a slight abuse of notation, the functions ui do not only denote payoffs to
players when pure strategies are played, but also when mixed strategies are used.13

12See [16] for more details.
13We have to mention a subtle technical detail. To rigorously define the Lebesgue-Stieltjes integrals
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Hence, given the effort-prize form f := ({bi}i∈N , {pi}i∈N , {Ti}i∈N ), the associated effort-
prize game for the players in N , denoted by EP f , is defined as EP f := ({Xi}i∈N , {ui}i∈N ),
where for each i ∈ N , i’s set of mixed strategies is defined by Xi := G and i’s (expected)
payoff function is defined by Eq. (1).

Finally, for notational convenience, for each strategy profile G = (G1, . . . , Gn) ∈ Gn and
each e ∈ [0,M ], we denote the payoff ui(G1, . . . , Gi−1, e,Gi+1, . . . , Gn) by uG

i (e). That is,
uG

i (e) is the expected payoff of player i when he chooses the pure strategy e and all the
other players act in accordance with G.

4 Characterization of the Nash Equilibria under A1

We assume A1 throughout this Section.
In this Section we present the main results we get for the models in which A1 holds.

Hence, regarding the models presented in Section 2, the results in this Section apply to
APA, PCT, MS, MM, and TG. Our results extend, to our unifying model, the stronger
equilibrium results that had already been proved for any of the specific models. Because of
the extra generality of our model, some technicalities have to be addressed. Nonetheless,
the arguments underlying the proofs remain the same. Thus, since our proofs do not bring
new insights, we relegate them to the Appendix.

Note that, if both A1 and A2 are assumed and G ∈ Gn is a Nash equilibrium of EP f ,
then we have that, for each i ∈ N , S(Gi) ⊆ [0, ēi]. Moreover, once player 1 knows that none
of the other players puts positive probability above ē2, the efforts in (ē2, ē1] are strictly
dominated for him. Hence, S(G1) ⊆ [0, ē2].

Next Lemma shows that in a Nash equilibrium of EP f no one assigns positive probability
to any effort different from 0. Moreover, this leads to a remarkable simplification in the
expression of uG

i (e).

Lemma 1. Assume A1. Let G ∈ Gn be a Nash equilibrium of EP f . Then, for each i ∈ N ,

i) J(Gi) ∩ (0,M) = ∅,

ii) for each e ∈ (0,M), uG
i (e) = bi(e) +

∏

j 6=i Gj(e)pi(e).

iii) moreover, under A2, M /∈ J(Gi) and uG
i (M) = bi(M) +

∏

j 6=i Gj(M)pi(M).

The interpretation of uG
i (e) becomes very simple now. In a Nash equilibrium, the

expected payoff of each effort in (0,M) is at least its base payoff, but when the player is the
only winner he also gets the prize payoff (no tie-payoffs since, as far as e ∈ (0,M), they have
probability 0). Moreover, under A1 and A2, the pure strategy M is strictly dominated for
every player and, hence, the previous result would be also true at M .

Now, we introduce a last element into the model. For each i ∈ N and each e ∈ [0,M ],
bi(0) − bi(e) is a way of measuring the impact of effort e in i’s base payoff; similarly, pi(e)
measures the impact of e in i’s prize payoff (if this is finally achieved). Now, for each i ∈ N ,
let Ii : [0,M ] → R be the impact function of player i, defined as Ii(e) := (bi(0)−bi(e))/pi(e).
The functions Ii provide a way of measuring the aggregate impact of an effort e in i’s
potential payoff; being this impact measured with respect to i’s minimum right bi(0). Note

with respect to the distribution functions we should integrate over R. Hence, we should also define payoff
functions over R. But note that, no matter the extension of the ui functions we consider, the integrals over
[0, M ] remain the same (just because the support of the mixed strategies is restricted to [0, M ]). If we do not
consider integrals defined over R, then we might have problems when calculating expected payoffs of mixed
strategies that put positive probability at 0. Hence, we use

R

ui(G1, . . . , Gi−1, e, Gi+1, . . . , Gn)dGi(e) to
mean

R

R
u∗

i (G1, . . . , Gi−1, e, Gi+1, . . . , Gn)dGi(e), where u∗
i can be any arbitrarily chosen extension of ui

to R.
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that, under A1, for each i ∈ N , Ii(0) = 0 and Ii is a strictly increasing function. Note that
Ii(e) = 1 if and only if e = ēi. Recall that, under A1, efforts above ēi are strictly dominated
for player i.

For the characterization result we present below we need to assume A2. Moreover, we
need to introduce two more assumptions: A3 and A4. These assumptions are complements
to A2. More specifically, we only assume A3 as a complement to A2 and A4 as a complement
to A3. The relevance of these assumptions is discussed in Subsection 4.1.

Assumption A3. Fixed ordering of the impact functions. For each pair i, j ∈ N , if there
is e∗ ∈ (0,M ] such that Ii(e

∗) < Ij(e
∗) then, for each e ∈ (0,M ], Ii(e) < Ij(e).

Informally, this Assumption says that, if the impact of a certain effort is higher for i
than for j, then, for every effort the same relation holds. Note that it also implies that, if
there is e∗ ∈ (0,M ] such that Ii(e

∗) = Ij(e
∗) then, for each e ∈ [0,M ], Ii(e) = Ij(e).

A3 is eventually satisfied by all the models at hand in this Section and its expression
becomes very natural when translated into the different models.14 Recall that, under A2,
we have that i < j implies i) ēi ≥ ēj and now, because of A3, ii) for each e ∈ [0,M ],
Ii(e) ≤ Ij(e).

Now we introduce the last assumption in the model. Suppose that ē1 > ē2. Since
player 1 knows that no one but him is willing to put any effort above ē2 (they are strictly
dominated strategies), he can ensure himself a payoff as close to b1(ē2) + p1(ē2) as desired.
So, somehow, he can ensure himself a minimum right of b1(ē2) + p1(ē2). Now, using the
idea of the definition of the impact functions we define I∗1 : [0,M ] → R by I∗1 (e) := (b1(ē2)+
p1(ē2) − b1(e))/p1(e). That is, the impact of an effort e in player 1’s potential payoff but
with respect to b1(ē2) + p1(ē2) instead of b1(0). Since we are assuming A1, I∗1 (·) is strictly
increasing. Note that I∗1 (0) > 0 = I2(0) and I∗1 (ē2) = 1 = I2(ē2). Next assumption just
says that functions I∗1 (·) and I2(·) cannot cross below ē2.

Assumption A4. If ē1 > ē2 and ē2 = ē3, then, for each e ∈ (0, ē2), I2(e) < I∗1 (e).

We only use the previous assumption combined with A3. It is a weak requirement
and, moreover, as a complement to A3, it turns to be even weaker. Indeed, it follows the
same motivation but only applies in very specific cases; that is, if it is not the case that
ē1 > ē2 = ē3, then A4 is not needed. Again, the reader can check that the models discussed
above satisfy this property.14

Let G∗ ∈ Gn be the strategy profile defined for players 1, 2, and each i ∈ N\{1, 2} as
follows:

G∗
1(e) =







0 e < 0
I2(e) 0 ≤ e ≤ ē2 ,
1 e > ē2

G∗
2(e) =







0 e < 0
I∗1 (e) 0 ≤ e ≤ ē2 ,
1 e > ē2

G∗
i (e) =

{

0 e < 0
1 e ≥ 0

.

The payoffs associated with G∗ are b1(ē2) + p1(ē2) for player 1 and, for each i 6= 1, bi(0). If
ē1 > ē2, then b1(ē2) + p1(ē2) > b1(0). On the other hand, if ē1 = ē2, then b1(ē2) + p1(ē2) =
b1(0) and I∗1 (·) = I1(·) = I2(·). Hence, in the latter case players 1 and 2 play the same
mixed strategy (and get the same payoffs). Now, we are ready to present the characterization
result. It shows that, under Assumption A1, the use of mixed strategies allows to recover
the existence of the Nash equilibrium with few extra requirements.

Theorem 1. Assume A1, A2, A3, and A4. Then,

14Only model MS might not met the assumption if we allow simultaneously for different numbers of loyal
consumers and different cost functions for the different firms.
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i) If either n = 2 or ē1 > ē2 > ē3, then G∗ is the unique Nash equibrium of EP f .

ii) Otherwise, EP f has a continuum of Nash equibria and G∗ is one of them.

All the Nash equilibria of EP f give raise to the same payoffs: η1 = b1(ē2) + p1(ē2) and, for
each i 6= 1, ηi = bi(0).

We refer the reader to the Appendix for the expressions of the Nash equilibria referred
to in the previous result.15

4.1 Implications of the Characterization Result under A1

The main implication of Theorem 1 is the following: the characterization results presented
in [4] can be translated to any other of the models satisfying A1-A4 and they remain valid.
Indeed, every existing equilibrium result in any of the models satisfying A1-A4 can be
translated to any other model satisfying A1-A4. Note that, with our general model, we
have provided the appropriate language to do such translations and, moreover, to do them
in a completely rigorous way.16

More specifically, the implications of our characterization result are noteworthy in the
MS model. It extends the results included in [14] to an arbitrary number of firms. That
is, even if the number of loyal consumers is different for the different firms, Theorem 1 can
be applied regardless of the number of firms. Moreover, we can go even further and allow
as well for different cost functions across firms and still apply Theorem 1; in this case we
just have to ensure that A3 and A4 and are still met. On the other hand, the existing
results for models PCT and TG only refer to very specific configurations of the parameters.
Theorem 1 extends them to any chosen configuration of the primitives of the two models.

Discussion of the Assumptions

Setting aside A1, which is the assumption that characterizes the type of effort-prize games
at hand in this Section, it is natural to wonder what happens if some of the assumptions
A2-A4 are not met; A2 is the most relevant of the three. If A2 is not satisfied it is possible
that, in equilibrium, ties happen with positive probability at M (by Lemma 1 this was
not possible under A2). Hence, the role of tie functions becomes more important now.
Below, we briefly discuss some of the different possibilities for the Nash equilibria when A2
is violated. In particular, the existence of pure Nash equilibria is sometimes recovered:17

i) If M = ē1 > ē2, we are almost in the same situation as before. If A3 and A4 are met,
then the same result as in Theorem 1 still holds (with ē1 > ē2).

ii) If there is S ⊆ N , |S| > 1, such that ei = M if and only if i ∈ S. Then, for each S′ ⊆ S
such that

a) for each i ∈ S′, Ti(M,S′) + bi(M) ≥ bi(0) and

b) for each j ∈ S\S′, Tj(M,S′ ∪ {j}) + bj(M) ≤ bj(0),

there is a Nash equilibrium in which players in S′ put probability 1 at M and players
in N\S′ put probability 1 at 0.

15The reader can also check that the existing results for the models discussed in this Section are particular
cases of Theorem 1 and of the equilibrium expressions presented in the Appendix.

16In [4], apart from giving a complete characterization of the Nash equilibria for the all-pay auction, it is
also discussed whether they are revenue equivalent or not depending on the configurations of the valuations.

17Now we do not try to give a characterization result as Theorem 1. This is because the set of Nash
equilibria would depend on the specific configurations of the ēi parameters, on the tie payoff functions, and
on whether A3 and A4 are met or not. Hence, a clean result as Theorem 1 is not possible here (at least we
have not been able to find it).
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iii) Moreover, depending on the tie functions and on the extent up to which A3 and A4
hold for the different configurations of the ēi parameters, there can exist mixed Nash
equilibria similar to those in Theorem 1.

Finally, the assumptions A1-A4 are sufficient conditions to get Theorem 1. For this
characterization result A2 is crucial, but it would also be interesting to explore the tightness
of the result and study whether some of the assumptions A3 and A4 can be weakened.

5 Characterization of the Nash Equilibria under A1′

We assume A1′ throughout this Section. Then, we present two characterization results
depending on whether A2 is met or not. Hence, the result under A2 applies to FPA and
BM (again, (p̄− e)D(p̄− e)− ci(D(p̄− e)) has to be strictly decreasing in e) and the result
when A2 is not satisfied applies to FEG.

First of all, we introduce a preliminary result.

Lemma 2. Assume A1′. Let G ∈ Gn be a Nash equilibrium of EP f . Let e ∈ [0,M ] and let
i ∈ N be such that ēi > e. Then, the probability that i participates in a tie at e is 0.

Proof. Suppose that there is positive probability that i participates in a tie at e. Let S ⊆ N
be a coalition containing i for which a tie at e has positive probability. If

∑

j∈S pj(e) > 0,
by T3, there is j ∈ S such that Tj(e, S) < pj(e). Now, since functions bj(·) and pj(·) are
continuous, there is ε > 0 such that bj(e)+Tj(e, S) < bj(e+ε)+pj(e+ε). Now, it is easy to
check that the same holds for uG

j (e). That is, there is ε′ > 0 such that uG
j (e) < uG

j (e+ε′).18

Hence, player j would be better off by moving his probability in e to somewhere in (e, e+ε′].
Suppose now that

∑

j∈S pj(e) ≤ 0. Since e < ēi, pi(e) > 0. Hence, there is j ∈ S such that

pj(e) < 0. Hence, by T3, Tj(e, S) < 0 and uG
j (e) = bj(e) + Tj(e, S) < bj(e). Hence, player

j would be better off by moving his probability at e to 0.

Under A1′, the prize payoff functions are strictly decreasing and the base payoff functions
are weakly decreasing. Within this framework, once A1 is not assumed, the more natural
case is the one in which the base payoff functions, apart from not being strictly decreasing,
are constant; indeed, this is the case in FPA, BM, and FEG. Henceforth, we assume that,
for each i ∈ N , there is bi ∈ R such that, for each e ∈ [0,M ], bi(e) = bi. Recall that, for each
player i ∈ N , ēi is such that efforts above ēi are weakly dominated strategies (under A1,
they were strictly dominated). Since we are assuming that the base payoffs are constant, if
ēi < M , then bi = bi + pi(ēi) and, hence, pi(ēi) = 0.

Now, given a mixed strategy profile G ∈ Gn, we define eG := inf{e ∈
⋃

i∈N S(Gi) :
∏

i∈N Gi(e) > 0}. If eG < M , then eG is the smallest effort such that e > eG implies that,
for each i ∈ N , Gi(e) > 0. Similarly, if eG < M , given G ∈ Gn and an effort e ∈ [0,M ], the
probability of getting the prize at e is: i) zero if e < eG and ii) strictly positive if e > eG (at
eG both things might happen). The effort level eG is essential for the characterization result
we present in Theorem 2. Before we introduce a Lemma that almost pins down the value
eG must take in a Nash equilibrium (if any). Moreover, it shows that no one puts positive
probability above eG. Since, by definition of eG, there is i ∈ N such that Gi(e

−
G) = 0,

we have that player i puts probability 1 at eG. Furthermore, the latter implies that, with
probability 1, the prize will be awarded at effort eG.

18If there are no discontinuities in (e, e + ε], then a continuity argument for that interval does the job. If
there are discontinuities of uG

j (·) in (e, e + ε], then they make the function take even higher values.
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Lemma 3. Assume A1′ and that, for each i ∈ N , bi(·) equals constant bi ∈ R. Let G ∈ Gn

be a Nash equilibrium of EP f . Then,

i) for each i ∈ N , Gi(eG) = 1,

ii) eG ∈ [ē2, ē1], and

iii) for each i ∈ N , if ēi < eG, then Gi(eG) − Gi(e
−
G) = 0.

Proof. i) If eG = M , then there is nothing to prove. Hence, we assume that eG < M . We
divide the proof in two steps:

There is no i ∈ N such that Gi(eG) < 1 and, for each j 6= i, Gj(eG) = 1:

Suppose there is such i. Let e > eG be such that e ∈ S(Gi). Now, since for each j 6= i,
Gj(eG) = 1, there is ε > 0 such that eG + ε < e and uG

i (eG + ε) = bi + pi(eG + ε) >
bi + pi(e) = uG

i (e). Contradiction with e ∈ S(Gi) (e is not a best reply for i against
G−i).

There is no S ⊆ N , |S| > 1, such that, for each i ∈ S, Gi(eG) < 1:

Suppose there is such S and assume, without loss of generality, that S is maximal, i.e.,
if j /∈ S, then Gj(eG) = 1. For each i ∈ S, ēi > eG, since, otherwise, by definition
of eG, strategies above eG would be strictly dominated for player i. Now, if, for each
i ∈ S, Gi(eG) − Gi(e

−
G) > 0, then, by definition of eG, the probability that players in S

participate in a tie at eG is positive and we get a contradiction with Lemma 2. Hence,
there is j ∈ S such that Gj(eG)−Gj(e

−
G) = 0 and the probability of a tie at eG is zero.

Now, combining the latter with the definition of eG, the probability of winning with a
strategy e ≤ eG, is zero. Let i ∈ S. There is ε > 0 such that, if e ≤ eG, e is strictly
dominated by eG + ε < ēi. Hence, Gi(eG) = 0. Now, uG

i (eG) = bi and, since |S| > 1,
the function uG

i (·) = bi +
∏

j 6=i Gj(·)pi(·) is continuous at eG. Hence, since eG ∈ S(Gi)

and Gi(eG) = 0, there is ε > 0 such that [eG, eG + ε] ∈ S(Gi). Now, uG
i (eG + ε) > bi

and limδ→0+ uG
i (eG + δ) = bi. But, since all the strategies in the support of a Nash

equilibrium must lead to the same payoff, the latter is not possible.

ii) By i), for each i ∈ N , Gi(eG) = 1. Hence, by definition of eG, there is i ∈ N such
that Gi(eG) = 1 and Gi(e

−
G) = 0, i.e., player i puts probability 1 at eG. Fix player i. Also

by i), the probability of winning at eG is 1. Hence, we immediately have that eG ≤ ē1, since,
otherwise, player i would be better off by moving his probability at eG to 0. Now, suppose
that eG < ē2. Then, there is j 6= i such that eG < ēj . By Lemma 2, the probability that j
participates in a tie at eG is 0. Now, since ēj > eG and, for each e ∈ [0, eG), uG

j (e) = bj ,
there is again ε > 0 such that player j can improve by playing pure strategy eG + ε < ēj ,
winning the prize for sure and getting a payoff bj + pj(eG + ε) > bj + pj(ēj) = bj .

iii) Let j ∈ N be such that ēj < eG and Gj(eG) − Gj(e
−
G) > 0. Then, by i), the

probability that j wins at eG is positive. Now, for each S ⊆ N , j ∈ S, by T3, Tj(eG, S) ≤
pj(eG) < 0. Hence, uG

j (eG) < bj and player j would be better off moving his probability at
eG to 0.

Next Theorem fully characterizes the structure of the Nash equilibria under A2.

Theorem 2. Assume A1′, A2, and that, for each i ∈ N , bi(·) equals constant bi ∈ R.

i) Let ē1 > ē2. Then, EP f has no Nash equilibrium in pure strategies but it has a
continuum of mixed Nash equilibria. Moreover, the equilibrium payoffs are such that
η1 ∈ (b1, b1 + p1(ē2)] and, for each i 6= 1, ηi = bi.

ii) Let ē1 = ē2. Then, the set of Nash equilibria of EP f is nonempty if and only if there is
S ⊆ N , |S| > 1, such that, for each i ∈ S, Ti(ē2, S) = 0.
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Indeed, whenever players in S play pure strategy ē2 and players in N\S put probability
0 at ē2 we have a Nash equilibrium of EP f . Moreover, the equilibrium payoffs are
constant across equilibria: for each i ∈ N , ηi = bi. Finally, if n = 2 and T1(ē2, {1, 2}) =
T2(ē2, {1, 2}) = 0, then the strategy profile in which both players play the pure strategy
ē2 is the unique Nash equilibrium.

Proof. Let G ∈ Gn be a Nash equilibrium of EP f . By Lemma 3, eG ∈ [ē2, ē1] and there is
i ∈ N such that Gi(e

−
G) = 0 and Gi(eG) = 1. That is, player i plays pure strategy eG.

i) ē1 > ē2. Now, i = 1, since, otherwise, either player 1 would like to deviate to
eG + ε < ē1 or player i would like to deviate to e = 0. Now, we claim that player 1 wins
for sure at eG with no ties. Ties at eG can only have positive probability when eG = ē2.
But, since player 1 would participate in such ties and ē1 > ē2, the latter is ruled out by
Lemma 2. Hence, when G is played, player 1 gets b1 + p1(eG) and each i 6= 1 gets bi. Now,
for each i 6= 1 and each e ∈ [0,M ], uG

i (e) ≤ bi. Hence, for each i 6= 1, i) S(Gi) ⊆ [0, eG],
ii) since ties at eG have probability 0, Gi(eG) − Gi(e

−
G) = 0, and iii) i has no incentive to

deviate from G.
Now, we show that eG < ē1. Suppose eG = ē1. Then, player 1 gets payoff b1 +

p1(ē1) = b1. Then, since there is e < ēG such that
∏

j 6=1 Gj(e) > 0, we have uG
1 (e) =

b1 +
∏

j 6=1 Gj(e)p1(e) > b1. Hence, player 1 would move his probability in eG to e. Hence,
in a Nash equilibrium, eG ∈ [ē2, ē1). To ensure that player 1 has no incentive to deviate we
need that, for each e ∈ [0,M ], uG

1 (eG)−uG
1 (e) ≥ 0. If e > eG, since p(·) is strictly decreasing,

uG
1 (e) = b1 − p1(e) < b1 − p1(eG) = uG

1 (eG) and we are done. Hence, we need that, for
each e ∈ [0, ēG), uG

1 (eG) − uG
1 (e) = b1 +

∏

j 6=1 Gj(eG)p1(eG) − b1 −
∏

j 6=1 Gj(e)p1(e) =
p1(eG) −

∏

j 6=1 Gj(e)p1(e) ≥ 0. Hence, for each e ∈ [0, ēG), the following equation must

hold,19
∏

j 6=1

Gj(e) ≤
p1(eG)

p1(e)
. (2)

Now, there is a continuum of mixed strategies that can be defined so that Eq. (2) is satisfied.
Note that, once Eq. (2) is met, player 1 has no incentives to put efforts below ē2. Finally,
when eG takes the different values in [ē2, ē1] we get the different payoffs for player 1.

ii) ē1 = ē2. Now, eG = ē2 and player i is such that ēi = ē2 = eG. Hence, pi(ē2) = 0
and uG

i (ē2) = bi + pi(ē2) = bi. Now, we show that if there is no coalition S, |S| > 1, such
that, for each i ∈ S, Ti(ē2, S) = 0, then G cannot be a Nash equilibrium. Suppose there
is j ∈ N , j 6= i, such that Gj(ē2) − Gj(ē

−
2 ) > 0. Now, by statement i) of Lemma 3, the

probability of a tie at ē2 is positive. But, by assumption, some of the the tied players has a
negative tie payoff at ē2. Hence, such player would be better off moving his probability at ē2

to 0. Suppose, on the other hand, that for each j ∈ N , j 6= i, we have Gj(ē2)−Gj(ē
−
2 ) = 0

and Gj(ē2) = 1. Now, there is e < ē2 such that
∏

j 6=i Gj(e) > 0 and, hence, uG
i (e) =

bi +
∏

j 6=i Gj(e)pi(e) > bi. So player i would move his probability in ē2 to e.

Let S̄ := {i ∈ N : ēi = ē2}. Now, G satisfies the following properties:

1) For each j ∈ N , S(Gj) ⊆ [0, ē2] (Lemma 3)

2) For each j /∈ S̄, j puts probability 0 at ē2, i.e., Gj(ē2) − Gj(ē
−
2 ) = 0 (Lemma 3).

3) There are at least two players that play pure strategy ē2. Suppose, on the contrary, that
only player i plays pure strategy ē2. Then, there is e < ē2 such that

∏

j 6=i Gj(e) > 0.

Then, uG
i (e) = bi +

∏

j 6=i Gj(e)pi(e) > bi. So player i would move his probability in ē2

to e.

19Note that Eq. (2) is consistent with the requirement
Q

j 6=1 Gj(eG) = 1 imposed by statement i) of
Lemma 3.
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4) If S′ ⊆ S̄ is such that the probability of a tie at ē2 among the players in S′ is positive
according to G, then, for each i ∈ S′, Ti(ē2, S

′) = 0. Suppose there is j ∈ S′ such that
Tj(ē2, S

′) 6= 0. Since Tj(ē2, S
′) ≤ pj(ē2) = 0, we have Tj(ē2, S

′) < 0. So player j would
move his probability in ē2 to 0.

Now it is straightforward to check that every strategy profile satisfying properties 1)-4)
is a Nash equilibrium of EP f . The existence of one such profile is ensured just by defining
G as the strategy profile in which players in S play pure strategy ē2 and all the others play,
for instance, a pure strategy e ∈ [0, ē2). Finally, the uniqueness when n = 2 follows from
property 3) above.

Remark 3. Note that the proof of Theorem 2 fully characterizes the set of Nash equilibria
in the different cases. In particular, it shows that, if ē1 = ē2, then the Nash equilibrium
may fail to exist. Theorem 2 also shows the non-existence of Nash equilibrium in pure
strategies when ē1 > ē2. The source of the latter non-existence is the fact that, when player
2 is playing ē2, there is no optimal reply for player 1. Hence, as in standard FPA, we can
recover existence by discretizing the sets of strategies of the players (indeed, doing it for
player 1 would suffice).

After the result above it is natural to wonder why, if ē1 > ē2, we do loss the uniqueness
of the equilibrium payoffs that we had under A1. The answer is as follows. Under A1,
pure strategies above ē2 were strictly dominated for players different from player 1. Now,
since we are assuming the bi(·) functions are constant, such strategies are only weakly
dominated. Hence, players different from 1 can use them to threaten player 1 and, hence,
new equilibrium payoffs can be supported. Nonetheless, it is clear that many refinements
of Nash equilibrium concept would allow us to get rid of the equilibria in which player 1
gets less that b1 + p1(ē2). On the other hand, being the bi(·) functions constant, it is not
possible to coordinate players’ mixed strategies over a common support, as we could do
under A1; this is explicitly used in the proof of Lemma 3 when we show that “There is no
S ⊆ N , |S| > 1, such that, for each i ∈ S, Gi(eG) < 1”.

Now, we turn to the characterization result when A2 is not met. Let SM := {i ∈ N :
ēi = M}.

Theorem 3. Assume A1′, that A2 is not satisfied, and that, for each i ∈ N , bi(·) equals
constant bi ∈ R.

i) Let |SM | = 1, i.e., M = ē1 > ē2. Then, EP f has no Nash equilibrium in pure strategies
but it has a continuum of mixed Nash equilibria. Moreover, the equilibrium payoffs are
such that η1 ∈ [b1 + p1(M), b1 + p1(ē2)]\{b1} and, for each i 6= 1, ηi = bi.

ii) Let |SM | > 1, i.e., M = ē1 = ē2. Then, the set of Nash equilibria of EP f is nonempty if
there is S ⊆ N such that, for each i ∈ S, Ti(M,S) ≥ 0; if S = {i}, then Ti(M,S) > 0;
and, for each j /∈ S, Tj(M,S ∪ {j}) ≤ 0.

Indeed, whenever players in S play pure strategy ē2 and players in N\S put probability
0 at ē2 we have a Nash equilibrium of EP f . Finally, ηi = bi if either ēi < M or
pi(M) = 0.

iii) Let |SM | > 1, i.e., M = ē1 = ē2. If for each S ⊆ N and each i ∈ S, Ti(M,S) = pi(M)
|S| ,

then G ∈ Gn is a Nash equilibrium of EP f if and only if

• for each i /∈ SM , i puts probability 0 at M and

• for each i ∈ SM , if pi(M) > 0, then i puts probability 1 at M.

Proof. i) follows very similar lines to the proof of i) in Theorem 2 and ii) and iii) follow
immediately from Lemma 3.
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Remark 4. There are two important differences between the statement ii) in Theorem 2
and that in Theorem 3. First, although the conditions for existence of Nash equilibria are
very similar, the one in Theorem 2 is a necessary and sufficient condition and the one in
Theorem 3 is only sufficient. The reason for this is the following. Since A2 is not met,
players can get positive payoffs at eG (under A2, if ē1 = ē2, then the highest payoff at eG

was 0). Now, using the freedom we have in the tie payoff functions we can construct games
with Nash equilibria that do not satisfy the sufficient condition. Second, if A2 is not met,
then the equilibrium payoffs need not be unique. Just think of a situation in which at M all
players get 1 if they are the only winners and 0 otherwise. Then, whenever a player puts
probability 1 at M and all the other put probability 0 at M we have a Nash equilibrium and
the payoffs are not always the same. Finally, iii) illustrates that for “normal” tie payoff
functions a full characterization is easy to achieve.

5.1 Implications of the Characterization Result under A1′

According to the discussion in Remark 3, some of the technical difficulties that arise when
studying Nash equilibrium in effort-prize games can be overcome by discretizing the sets
of strategies of the players. Nonetheless, Theorem 2 shows that mixed strategies can also
be used to recover existence of equilibrium in situations where pure equilibria do not exist.
Moreover, some of the mixed equibria involve strategic behaviors that had not been noticed
before in any of the specific models at hand. The discussion below illustrates this point.

We begin with the FPA model. Theorem 2 says that, when the two highest valuations
are different, i.e., v1 > v2, there is no equilibrium in pure strategies but the existence of
equilibrium is always recovered with the use of mixed strategies. In this case, instead of
mixing we could also use the discretizing technique to recover existence. Moreover, player 1
does not get v1−v2 in all the equilibria. Indeed, all the payoffs in the interval (0, v1−v2] can
be achieved as equilibrium payoffs for player 1; the latter leading to different revenues for the
auctioneer. Nonetheless, these equilibria in which player 1 gets less that v1−v2 are based on
“incredible” threats of the other players. Hence, many equilibrium refinements can be used
to pin down the equilibria with payoff v1−v2 for player 1. On the other hand, when v1 = v2,
since, for each S ⊆ N and each i ∈ S such that vi = v2, we have Ti(v2, S) = 0 = Ti(v2, {i}),
Theorem 2 ensures the existence of at least one Nash equilibrium. In all these equilibria
there are two players that bid v2 with probability one. Moreover, all the players get a
expected payoff of 0; indeed, in this case we might even omit the word expected, i.e., all
the players get payoff 0 for sure.

Now, we discuss BM. We begin by identifying Bertrand Paradox as a special implication
of Theorem 2. When the cost functions are constant and equal across firms, we have that
the marginal cost is common for all firms, say c = p̄ − e for some discount e. Marginal
cost is chosen with probability one in equilibrium. This is an equilibrium because, when
cost functions are constant, we have that, for each S ⊆ N and each i ∈ S, Ti(v2, S) =
0 = Ti(v2, {i}). However, even if the cost functions are equal across firms, if they exhibit
strictly decreasing average costs, we have that Ti(v2, S) < 0 whenever |S| > 1 and i ∈ S.
Hence, Theorem 2 says that in this case there is no Nash equilibrium, even if the firms can
use mixed strategies. Moreover, for the latter non-existence result, discretization would not
help either. Next Corollary formally states the result sketched above.

Corollary 1. Take a general Bertrand competition model (BM) with n firms. If the cost
function is common for all firms and exhibits strictly decreasing average costs, then the
associated effort-prize game does not have any Nash equilibrium (neither pure, nor mixed).

Proof. Immediate from Theorem 2.
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Now, let firms 1 and 2 be the ones with the “cheapest” production costs and let firm 1
have the cheapest of the two. Then, Theorem 2 says that there is an equilibrium in which
firm 1 gets the whole market at the price at which firm 2 would get 0 profit if getting all the
market. Hence, player 1 would make a positive profit. Nonetheless, as in the FPA model,
we can also support in equilibrium all the profits for firm 1 between 0 and the previous one;
firms different from 1 always get 0 in equilibrium.

Finally, the FEG model. Theorem 3 extends the results presented for [9]. This model is
special because it is the only one for which A2 is not met. This leads to a kind of effort-prize
games for which the payoffs may be different across equilibria depending on the specific tie
functions at hand.

6 New Applications and Further Extensions

So far we have discussed the implications of our main results, Theorems 1 and 2, in already
existing models. We want to emphasize that the scope of our general effort-prize game goes
beyond that. We think that the main objective of future research would be to look for
economic situations that can be modeled as effort-prize games and study the implications
of our results within that situations. Indeed, most of the models we have discussed in
this paper present very simple effort-prize forms, whereas our model allows for much more
general ones. Moreover, it might be interesting to elaborate more on the tightness of the
assumptions we have taken in the different results. Below, as a matter of example, we
present two different situations that can be modeled using effort-prize games.

Combination of FPA and APA: Consider the following auction. First, players submit
bids. The player with the higher bid pays his bid and gets the object. Now, for each loser,
there is a positive probability that he has also to pay his bid (similarly, we could assume
that each loser has to pay a given percentage of his bid). Now, it is easy to check that this
new auction can be modeled as an effort-prize game which, moreover, satisfies A1. Hence,
the results in Section 4 immediately apply for this type of auctions.

Combination of BM and MS: In Varian’s model of sales it is assumed that the number
of strategic consumers does not vary as a function of the price. Hence, this model could be
extended to a situation in which, as we had in BM, the demand of the strategic consumers
decreases as price increases (in BM all the players are strategic). Doing this, we have a
common model for BM and MS, being the former the one in which all firms have 0 loyal
consumers. Now, this leads to a new effort-prize game with the following primitives: i)
The demand function for the strategic consumers, ii) the cost functions, iii) the number
of loyal consumers of each firm, and i) the upper bound for the price to be set. Hence, it
might be worth to study the extent up to which our results can be applied for the different
configurations of the latter primitives.

6.1 A Possible Extension of our Unifying Model

Finally, we also want to discuss on a further generalization of our model. Since the payoff of
a player should not increase with his effort unless he gets the prize, it is natural to assume
that the base payoff functions are weakly decreasing. On the other hand, there are natural
situations in which the prize payoff might increase as a function of the effort; maybe for some
intervals or maybe for the whole set of efforts. Indeed, this is what might happen in general
Bertrand competition models where, for high prices, the demand function might be very
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responsive to small changes; although, at the end, for very low prices, they responsiveness
would be negligible (the latter might lead to changes in the growth of (p̄ − e)D(p̄ − e) −
ci(D(p̄ − e)) as a function of e). Hence, below we present an extension of our model that
would account for these situations. First, we remove the requirement of weakly decreasing
prize payoff functions (WDP). Second, consider the following assumptions:

Assumption B1. For each i ∈ N , there is a unique ēi ≤ M such that b1(0) = bi(ēi) +
p1(ēi). Moreover, for each e > ēi, bi(0) < bi(ēi) + p1(ēi).

This assumption follows the same idea of A2, i.e., player i does not want to get the prize
with efforts above ēi. That is, even if the payoff of the prize is increasing in e, at some point
the decrease in the base payoff should dominate the increase in in the prize payoff.

Assumption B2. If ē1 > ē2, then b1(·) + p1(·) is strictly decreasing in [ē2,M ].

B2 says that, for player 1, the impact of the effort in the base payoff should dominate that
in the prize payoff no later than ē2.

Note that the combination of A1, B1, and B2 is weaker than the combination of A1, A2, and
WDP. Similarly, the combination of B1 and B2 is weaker than the combination of A1′, A2,
and WDP. Nonetheless, we claim that, if WDP is not assumed, then B1 and B2 are basically
what we need for the essence of the results we have presented in this paper to carry out, i.e.,
A2 has to replaced by B1 and B2, and A1′ is removed. The word essence is because, in the
situations where there are a continuum of Nash equibria, new equilibria might appear, but
no new equilibrium payoffs. The above generalization, would allow in particular, to account
for Bertrand competition models without assuming that (p̄ − e)D(p̄ − e) − ci(D(p̄ − e)) is
strictly decreasing in e.

A Appendix

Some of the proofs in this Appendix are straightforward adaptations of some others already
published for some of the models we generalized in this paper. On the other hand, many
others require to be more careful. Moreover, this is the first time that the complete series
of results we present below are stated and proved all together under the same notation.

Proof of Lemma 1. i) Suppose that there is i ∈ N such that J(Gi) ∩ (0,M) 6= ∅. Without
loss of generality assume that i = 1. Let a ∈ J(G1) ∩ (0,M). Now, if there is i 6= 1 such
that Gi(a) = 0, then for each e ∈ [0, a], uG

1 (e) = b1(e). Since function uG
1 (·) is strictly

decreasing on [0, a], player 1 would be better off moving the probability in a to 0. Hence,
for each i ∈ N , Gi(a) > 0. Now, for each i 6= 1, the function uG

i (·) is discontinuous at a,
i.e., since G1(a) > G1(a

−), there are a1 < a, a2 > a, and ε > 0 such that for each i 6= 1
and each e ∈ [a1, a), uG

i (a2) − uG
i (e) ≥ ε. Hence, if player i 6= 1 puts positive probability

on [a1, a), then he can increase his payoff by at least ε(Gi(a
−) − Gi(a

−
1 )) by moving all

this probability to a2. Hence, for each i 6= 1 and each e ∈ [a1, a), Gi(e) = Gi(a), i.e.,
the distribution functions of the players different from 1 are constant in [a1, a). Now, if
no player j 6= i puts positive probability at a, we have that uG

1 (·) is strictly decreasing in
[a1, a]. Hence, player 1 can improve his payoff by moving some probability from a to a1. So
there is j 6= i such that a ∈ J(Gj). Let S := {j ∈ N : a ∈ J(Gj)}. Hence, the probability
of a tie at a is positive. As we did in the proof of Proposition 1, we distinguish two cases:
∑

i∈S pi(a) > 0: By T3, there is j ∈ S such that Tj(a, S) < pj(a). Now, since functions
bj(·) and pj(·) are continuous, there is ε > 0 such that bj(a) + Tj(a, S) < bj(a + ε) +
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pj(a + ε). Now, it is easy to check that the same holds for uG
j (a). That is, there is

ε′ > 0 such that uG
j (a) < uG

j (a + ε′).20 Hence, player j would be better off by moving
his probability in a to somewhere in (a, a + ε′].

∑

i∈S pi(a) ≤ 0: Now, there is j ∈ S such that pj(a) ≤ 0. Hence, by T3, Tj(a, S) ≤ 0 and

uG
j (a) = bj(a) + Tj(a, S) ≤ bj(a). Now, since bj(·) is strictly decreasing, player j would

be better off by moving his probability at a to 0.

ii) Let e ∈ (0,M) and i ∈ N . Because of i), for each j ∈ N , Gj(e) = Gj(e
−). Hence,

uG
i (e) =

∏

j 6=i Gj(e)(bi(e) + pi(e)) +
(

1 −
∏

j 6=i Gj(e)
)

bi(e) = bi(e) +
∏

j 6=i Gj(e)pi(e).

iii) Under A2, the strategy M is strictly dominated for every player and the result is
straightforward.

Recall that by Lemma 1 we now that, in a Nash equilibrium G ∈ Gn, for each i ∈ N
and each e ∈ (0,M), Gi(e) = Gi(e

−). The latter implies that the payoff functions are
continuous on (0,M). Moreover, recall that, under A2, the previous consideration is true
also at M . Next we present a series of results that are needed to prove Theorems 4, 5,
and 6.

Lemma 4. Assume A1. Let G ∈ Gn be a Nash equilibrium of EP f . Then, the probability
of a tie under G in [0,M) is 0 and there is i ∈ N such that Gi(0) = 0. Moreover, under A2
the probability of a tie at M is also 0.

Proof. Because of Lemma 1, the only tie that can happen with positive probability in [0,M)
is at 0. This can only happen if, for each i ∈ N , Gi(0) > 0. Since for each i ∈ N , Gi(0

−) = 0,
then for each i ∈ N , uG

i (0) = (1 −
∏

j 6=i Gj(0))bi(0) +
∏

j∈N Gj(0)Ti(0, N). Now, since for

each i ∈ N , pi(0) > 0, by T3, there are i ∈ N and ε > 0 such that uG
i (ε) > uG

i (0). Hence,
player i would deviate from G. The observation for ties at M under A2 is implied by
Lemma 1.

Next result shows that, in equilibrium, an effort cannot belong to the support of the
strategy of exactly one player.

Lemma 5. Assume A1 and A2. Let G ∈ Gn be a Nash equilibrium of EP f . Let i ∈ N and
e ∈ S(Gi). Then, there is j 6= i such that e ∈ S(Gj).

Proof. Let e ∈ S(Gi) such that e /∈
⋃

j 6=i S(Gj). By A2, e < M . We distinguish two cases:

Case 1: e > 0. Since for each j ∈ N , S(Gj) is a closed set, also ∪j 6=iS(Gj) is a closed
set. Hence, its complement is an open set. Hence, there are e1 < e < e2 such that
[e1, e2] ⊆ [0,M ] \ ∪j 6=iS(Gj). Moreover, since the functions Gj are constant outside the
support, for each j 6= i, Gj(e2) = Gj(e1). Hence, for each a ∈ [e1, e2] and each j 6= i,
Gj(a) = Gj(e2). So the function uG

i (·) = bi(·) +
∏

j 6=i Gj(·)pi(·) is strictly decreasing

on [e1, e2]. Since e ∈ S(Gi), Gi(e
−
2 ) > Gi(e1), i.e., player i puts positive probability on

(e1, e2). Hence, i can strictly improve his payoff by moving all this probability to e1.

Case 2: e = 0. Let b > 0 be the smallest element in ∪j 6=iS(Gj) (recall that all the S(Gj)
are closed). Now, for each j 6= i, Gj(b) = 0. Again, if Gi(b

−) > Gi(0), i.e., if player i
puts positive probability on (0, b), then similar arguments as in Case 1 can be used to
show that player i can strictly improve his payoff by moving this probability to 0. So
Gi(b

−) = Gi(0) and hence, since 0 ∈ S(Gi), we have Gi(0) > 0. Moreover, for each
a ∈ (0, b], Gi(a) = Gi(b) (this is relevant only for the case n = 2). Hence, for each

20If there are no discontinuities in (a, a + ε], then a continuity argument for that interval does the job. If
there are discontinuities of uG

j (·) in (a, a + ε], then they make the function take even higher values.
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j 6= i, the function uG
j (·) = bj(·) +

∏

k 6=j Gk(·)pj(·) is strictly decreasing on (0, b]. Let

a ∈ (0, b) and j 6= i be such that b ∈ S(Gj). Now, ε := uG
j (a)−uG

j (b) > 0. Since uG
j (·) is

continuous on (0,M ], there is δ > 0 such that for each a′ ∈ [b, b+δ], uG
j (a)−uG

j (a′) > 1
2ε.

Since b ∈ S(Gj), Gj(b + δ) > 0 = Gj(b). Hence, player j can improve his payoff by
moving the probability he assigns to [b, b + δ) to a. Contradiction.

Next Lemma shows that, if some effort e does not belong the the support of any of the
equilibrium strategies, then no higher effort does.

Lemma 6. Assume A1. Let G ∈ Gn be a Nash equilibrium of EP f . Let e ∈ [0,M ] be such
that e /∈

⋃

i∈N S(Gi). Then, (e,M ] ∩
⋃

i∈N S(Gi) = ∅.

Proof. Let K :=
⋃

i∈N S(Gi). Then, K is closed and e /∈ K. Suppose that (e,M ] ∩ K 6= ∅.
Let ê := min{a ∈ K : a > e}. Let i ∈ N be such that ê ∈ S(Gi). Since for each j ∈ N ,
[e, ê) ∩ S(Gj) = ∅, we have that, for each j ∈ N , Gj(e) = Gj(ê). Since for each a ∈ [e,M ],
uG

i (a) = bi(a) +
∏

j 6=i Gj(a)pi(a), the function uG
i (·) is strictly decreasing on [e, ê]. By the

continuity of uG
i (·) at ê, there is ε > 0 such that for each a ∈ [ê, ê + ε], uG

i (e) > uG
i (a).

Hence, efforts in [ê, ê + ε] are strictly dominated for player i. Hence, Gi is constant on
[ê, ê + ε]. Contradicting the fact that ê ∈ S(Gi).

Lemma 7. Assume A1. Let G ∈ Gn be a Nash equilibrium of EP f . Then, for each i ∈ N ,
0 ∈ S(Gi).

Proof. Let i ∈ N be such that 0 /∈ S(Gi). Let a > 0 be the smallest element in S(Gi).
Then, for each e ∈ [0, a), Gi(e) = 0. Hence, for each j 6= i and each e ∈ [0, a], uG

j (e) =

bj(e)+
∏

k 6=j Gk(e)pj(e) = bj(e). So the function uG
j (·) is strictly decreasing on [0, a]. Hence,

for each j 6= i, (0, a)∩S(Gj) = ∅. Now, we can take a∗ ∈ (0, a) such that a∗ /∈
⋃

j∈N S(Gj).
Then, by Lemma 6, [a∗,M ] ∩

⋃

j∈N S(Gj) = ∅. Contradiction with a ∈ S(Gi).

Recall now that whenever we assume A2 and A3 we also assume, without loss of gener-
ality, that players are ordered so that ē1 ≥ ē2 ≥ . . . ≥ ēn.

Lemma 8. Assume A1, A2, and A3. Let G ∈ Gn be a Nash equilibrium of EP f . If ē1 > ē2,
then G1(0) = 0 and, for each i 6= 1, Gi(0) > 0.

Proof. Suppose there is i 6= 1 such that Gi(0) = 0. Then, the function uG
1 (·) = b1(·) +

∏

j 6=1 Gj(·)pi(·) is continuous at 0. We already now that for each j ∈ N , Gj(ē2) = 1.
Hence,

uG
1 (ē2) = b1(ē2) + p1(ē2) > b1(0) = uG

1 (0).

Now, due to the continuity of uG
1 (·) at 0, we have that there is ε > 0 such that for each

e ∈ [0, ε], uG
1 (ē2) > uG

1 (e). Hence, [0, ε] ∩ S(G1) = ∅, contradicting the fact that 0 ∈ S(G1)
(Lemma 7).

Now, since, by Lemma 4, there is i ∈ N such that Gi(0) = 0, we have G1(0) = 0.

In the next results we study how the equilibrium payoffs must be. Since each player can
ensure himself a payoff bi(0) by playing pure strategy 0, we know that for each i ∈ N , his
equilibrium payoff must be at least bi(0). Moreover, recall that, by a straight forward best
reply argument, we know that in a Nash equilibrium G ∈ Gn, for each i ∈ N , the function
uG

i (·) is constant in S(Gi).

Lemma 9. Assume A1, A2, and A3. Let G ∈ Gn be a Nash equilibrium of EP f . For each
i ∈ N , let ηi denote i’s equilibrium payoff. Let i, j ∈ N be such that ηi = bi(0), ηj ≥ bj(0),
and ēi > ēj. Let e > 0, e ∈ S(Gj). Then, Gi(e) > Gj(e).
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Proof. Since e ∈ S(Gj), uG
j (e) = ηj . On the other hand, uG

i (e) ≤ ηi since, otherwise, player
i would deviate to pure strategy e. Now

bi(0) = ηi ≥ uG
i (e) = bi(e) +

∏

k 6=i

Gk(e)pi(e) ⇒
∏

k 6=i

Gk(e) ≤
bi(0) − bi(e)

pi(e)
= Ii(e), and

bj(0) ≤ ηj = uG
j (e) = bj(e) +

∏

k 6=j

Gk(e)pj(e) ⇒
∏

k 6=j

Gk(e) ≥
bj(0) − bj(e)

pj(e)
= Ij(e).

Since e > 0, by Lemma 7, for each k ∈ N , Gk(e) > 0. Hence, dividing the two expressions

above and using A3, we get
Gj(e)
Gi(e)

≤ Ii(e)
Ij(e)

< 1. Hence, Gi(e) > Gj(e).

Lemma 10. Assume A1, A2, and A3. Let G ∈ Gn be a Nash equilibrium of EP f . For
each i ∈ N , let ηi denote i’s equilibrium payoff. If there is i ∈ N such that ηi > bi(0), then

i) Gi(0) = 0,

ii) for each j 6= i, Gj(0) > 0 and ηj = bj(0), and

iii) if j 6= i is such that ēj < maxk 6=i ēk, then Gj(0) = 1.

Proof. i) Since uG
i (0) = bi(0) < ηi, it has to be the case that Gi(0) = 0.

ii) By Lemma 7, 0 belongs to the support of player i’s strategy. Hence, there is ε > 0,
such that Gi is strictly increasing in (0, ε]. Moreover, for each e ∈ (0, ε], uG

i (e) = ηi.
Hence, the function uG

i (·) = bi(·) +
∏

j 6=i Gj(·)pi(·) has a discontinuity at 0. Hence, it has
to be the case that for each j 6= i, Gj(0) > 0. Moreover, this implies that for each j 6= i,
ηj = uG

j (0) = bj(0).

iii) Let j 6= i be such that ēj < maxk 6=i ēk. Suppose that Gj(0) < 1. Let ê be the
maximum effort in S(Gj). Note that, Gj(ê) = 1. Now, let k 6= i be such that ēk ≥ ēj . We
have ηj = bj(0), ηk = bk(0), ēk > ēj , and ê ∈ S(Gj). Hence, by Lemma 9, Gk(ê) > Gj(ê) =
1, but this is not possible.

Next Proposition pins down what the equilibrium payoffs must be (if any).

Proposition 2. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f .
For each i ∈ N , let ηi denote i’s equilibrium payoff. Then, η1 = b1(ē2) + p1(ē2) and, for
each i 6= 1, ηi = bi(0).

Proof. We distinguish several cases.

Case 1: ē1 > ē2. According to Lemma 8, G1(0) = 0 and, for each i 6= 1, Gi(0) > 0.
Hence, for each i 6= 1, ηi = uG

i (0) = bi(0). Moreover, since for each i ∈ N , Gi(ē2) = 1,
we have η1 ≥ uG

1 (ē2) = b1(ē2) + p1(ē2). Now, suppose that η1 > uG
1 (ē2). Then, we

distinguish two cases:

Case 1.1: ē2 > ē3. By the continuity of uG
1 (·) at ē2, there is ε > 0 such that for each

e ∈ [ē2 − ε, ē2], η1 > uG
1 (e). Hence, S(G1) ⊆ [0, ē2 − ε]. Now there is δ > 0 such that

player 2 can get more than b2(0) by putting all his probability at ē2 − ε + δ.

Case 1.2: ē2 = ē3. Let ê be the maximum effort in S(G1). Since η1 > uG
1 (ē2), ê < ē2.

Now, by Lemma 5 there is i 6= 1 such that ê ∈ S(Gi). Now, since η1 > uG
1 (ē2) =

b1(ē2) + p1(ē2), we have

η1 = uG
1 (ê) = b1(ê) +

∏

j 6=1

Gj(ê)p1(ê) ⇒
∏

j 6=1

Gj(ê) =
η1 − b1(ê)

p1(ê)
> I∗1 (ê), and

bi(0) = ηi = uG
i (ê) = bi(ê) +

∏

j 6=i

Gj(ê)pi(ê) ⇒
∏

j 6=i

Gj(ê) =
bi(0) − bi(ê)

pi(ê)
= Ii(ê).

24



Hence, dividing these two expressions we get Gi(ê)
G1(ê)

>
I∗
1 (ê)

Ii(ê)
≥ I∗

1 (ê)
I2(ê)

. Now, by A4, since

G1(ê) = 1 and ê < ē2, we have Gi(ê) > 1, but this is not possible.

Case 2: ē1 = ē2. Now we have to prove that for each i ∈ N , ηi = bi(0).

Step 1: If ē1 > ēi, then ηi = bi(0). Suppose, on the contrary, that there is i ∈ N
such that ē1 > ēi and ηi > bi(0). By Lemma 10 we have i) Gi(0) = 0, ii) for each j 6= i,
Gj(0) > 0 and ηj = bj(0), and iii) if j 6= i is such that ēj < ē1, then Gj(0) = 1. Let ê
be the maximum effort in S(Gi). Note that, by continuity, Gi(ê) = 1. By Lemma 5
there is j 6= i such that ê ∈ S(Gj). Indeed, by iii) we must have ēj = ē1 > ēi. Now,
by Lemma 9, Gj(ê) > Gi(ê) = 1. Hence, we have a contradiction.

Step 2: There is i ∈ N such that ē1 = ēi and ηi = bi(0). Let j ∈ N be such that
ē1 = ēj . If j puts positive probability at 0, then ηj = uG

j (0) = bj(0) and we are done.
If Gj(0) = 0, let i 6= j be such that ē1 = ēi (it exists because we are assuming ē1 = ē2).
Now, since i) i’s payoff function is continuous at 0, ii) by Lemma 7, 0 ∈ S(Gi), and
iii) uG

i (0) = bi(0), we have that ηi = bi(0).

Step 3: If ē1 = ēi, then ηi = bi(0). Suppose there is i ∈ N such that ē1 = ēi and
ηi > bi(0). Let ê be the maximum effort in S(Gi). Note that ê < ē1. Now, let j ∈ N
be the one found in Step 2. That is, ē1 = ēi and ηj = bj(0). Now,

bi(0) = ηi ≥ uG
i (ê) = bi(ê) +

∏

k 6=i

Gk(ê)pi(ê) ⇒
∏

k 6=i

Gk(ê) ≤
bi(0) − bi(ê)

pi(ê)
= Ii(ê), and

bj(0) < ηj = uG
j (ê) = bj(ê) +

∏

k 6=j

Gk(ê)pj(ê) ⇒
∏

k 6=j

Gk(ê) >
bj(0) − bj(ê)

pj(ê)
= Ij(ê).

But now, by A3 and using that Gi(a) = 1 ≥ Gj(a),
∏

k 6=j Gk(ê) > Ij(ê) = Ii(ê) =
∏

k 6=i Gk(ê) ≥
∏

k 6=j Gk(ê). Hence, we have a contradiction.

Note that, according to the previous result, if ē1 = ē2, then η1 = b1(ē2) + p1(ē2) =
b1(ē1) + p1(ē1) = b1(0).

Next Corollary says that, if the players are ordered according to their maximum admis-
sible efforts, then the players whose higher admissible effort is smaller that the one of player
2 put no effort in equilibrium. That is, they play pure strategy 0 and get their minimum
right bi(0).

Corollary 2. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f

and let i ∈ N . Then,

i) Gi(ē2) = 1,

ii) if ē2 > ēi, then Gi(0) = 1,

iii) if ē1 > ēi, then Gi(0) > 0, and

iv) if ē1 > ē2, then G1(0) = 0.

Proof. i) Straightforward from the equilibrium payoffs.
ii) Suppose Gi(0) < 1. Let ê be the maximum effort in S(Gi). Now, ē2 > ēi and by

Proposition 2, η2 = b2(0) and ηi = bi(0). Hence, by Lemma 9, G2(ê) ≥ Gi(ê) = 1 and we
have a contraditcion.

iii) If ē1 > ē2, then, by Proposition 2, η1 = b1(ē2)+p1(ē2) > b1(0). Hence, by Lemma 10,
for each i 6= 1, Gi(0) > 0. If ē1 = ē2, then ē2 > ēi and hence, by i), Gi(0) = 1 > 0.

iv) By Proposition 2, if ē1 > ē2, then η1 = b1(ē2)+p1(ē2) > b1(0). Hence, by Lemma 10,
G1(0) = 0.
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Some of the Lemmas below can be proved without using all the assumptions, but we have
tried to find a compromise between the tightness of the partial results and the complexity
of the proofs. Next Lemma says that, in equilibrium, every effort in [0, ē2] has to belong to
the support of the strategy of at least two players.

Lemma 11. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f and
let i ∈ N . Then, each e ∈ [0, ē2] belongs to the support of at least two players.

Proof. First, we show that ē2 belongs to the support of at least two players. If there
is i ∈ N such that ē2 ∈ S(Gi), then, by Lemma 5, we are done. Hence, suppose that
ē2 /∈

⋃

i∈N S(Gi). Now, let ê = max{e ∈
⋃

i∈N S(Gi)}. Note that, by Corollary 2, for each
i ∈ N , Gi(ē2) = 1. Hence, ê < ē2. Now, there is ε > 0 such that player 2 can get more
than b2(0) = b2(ē2) + p2(ē2) by playing the pure strategy ē2 − ε.

Now, we already now that the statement is true for e = ē2. Let e ∈ (0, ē2). By Lemma 6,
since both 0 and ē2 belong to the support of some player, there is i ∈ N such that e ∈ S(Gi).
Now, by Lemma 5, there is j 6= i such that e ∈ S(Gj).

Lemma 12. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f . Let
i, j ∈ N be such that ēi = ēj. Let e > 0, e ∈ S(Gi) ∩ S(Gj). Then, Gi(e) = Gj(e).

Proof. By Proposition 2, ηi = bi(0) and ηj = bj(0). Now,

bi(0) = ηi = uG
i (e) = bi(e) +

∏

k 6=i

Gk(e)pi(e) ⇒
∏

k 6=i

Gk(e) =
bi(0) − bi(e)

pi(e)
= Ii(e), and

bj(0) = ηj = uG
j (e) = bj(e) +

∏

k 6=j

Gk(e)pj(e) ⇒
∏

k 6=j

Gk(e) =
bj(0) − bj(e)

pj(e)
= Ij(e).

Since e > 0, by Lemma 7, for each k ∈ N , Gk(e) > 0. Hence, dividing the two expressions

above and using A3, we get
Gj(e)
Gi(e)

= Ii(e)
Ij(e)

= 1. Hence, Gi(e) = Gj(e).

In words, previous Lemma says that, if the mixed strategies of two “equal” players are
increasing at some e, then they must coincide at e.

Lemma 13. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f . Let
i ∈ N be such that ēi = ē2 and let a > 0 belong to S(Gi). Then, [a, ē2] ( S(Gi).

Proof. Since a ∈ S(Gi) and a > 0, there are a1 and a2 such that a1 < a < a2 and Gi is
increasing in (a1, a2). Suppose now that the statement in this Lemma is not true. That
is, there is b > a2 such that b < ē2 and (a2, b) /∈ S(Gi). Then, by the continuity of Gi

away from 0, Gi(a2) = Gi(b). Now, by Lemma 11, there are ε > 0 and players j, j′ 6= i
such that [a2, a2 + ε] ( S(Gj) ∩ S(Gj′). Moreover, by Corollary 2, either ēj = ē2 or
ēj′ = ē2 (or both). Assume, without loss of generality, that ēj = ē2. Hence, by Lemma 12,
Gj(a2) = Gi(a2) > 0. Now, by Proposition 2, for each e ∈ [a2, a2 +ε], bj(0) = ηj = uG

j (e) =

uG
i (a2) = ηi = bi(0) ≥ uG

i (e). Hence, for each e ∈ [a2, a2 + ε],

bi(0) = ηi ≥ uG
i (e) = bi(e) +

∏

k 6=i

Gk(e)pi(e) ⇒
∏

k 6=i

Gk(e) ≤
bi(0) − bi(e)

pi(e)
= Ii(e), and

bj(0) = ηj = uG
j (e) = bj(e) +

∏

k 6=j

Gk(e)pj(e) ⇒
∏

k 6=j

Gk(e) =
bj(0) − bj(e)

pj(e)
= Ij(e).
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Since e > 0, by Lemma 7, for each k ∈ N , Gk(e) > 0. Hence, dividing the two expressions

above and using A3, we get
Gj(e)
Gi(e)

≤ Ii(e)
Ij(e)

= 1. Hence, Gj(e) ≤ Gi(e). Contradicting that

Gi(a2) = Gj(a2), Gj(·) increasing on (a2, a2 + ε), and Gi(·) constant on (a2, a2 + ε).

Corollary 3. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f . Let
i ∈ N and a > 0 be such that a /∈ S(Gi). Then, for each e ∈ (0, a), a /∈ S(Gi). Moreover,
Gi(0) > 0.

Proof. The first part follows from Lemma 13. The second one follows from Lemma 7.

Next Lemma says, among other things, that the support of at least two players must
coincide with [0, ē2].

Lemma 14. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f .
Then,

i) there are i, j ∈ N , i 6= j, such that S(Gi) = S(Gj) = [0, ē2] and Gi(0) = 0, i.e., Gi(·) is
continuous.

ii) if ē1 = ē2, then ēi = ēj = ē1 and Gi(0) = Gj(0) = 0, i.e., Gj(·) is also continuous,

iii) if ē1 > ē2, then i = 1.

iv) if ē2 > ē3, then i = 1 and j = 2.

Proof. i) By Lemma 4, there is i ∈ N such that Gi(0) = 0. Hence, there is ε > 0 such that
[0, ε] ∈ S(Gi). By Lemma 5 there is j 6= i and δ > 0 such that [0, δ] ∈ S(Gj). Now, by
Lemma 13, S(Gi) = S(Gj) = [0, ē2].

ii) Suppose now that ē1 = ē2. By Corollary 2, if ē2 = ēk, then Gk(0) = 1. Hence, for
the i and j found above it must hold that ēi = ēj = ē1. Now, using Lemma 12, we easily
conclude that also Gj(0) = 0.

iii) If ē1 > ē2, by Lemma 8, G1(0) = 0 and we are done.
iv) if ē2 > ē3, then, by Corollary 2, for each k > 2, Gk(0) = 1. Hence, we have i = 1

and j = 2.

Lemma 15. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f . If
ē1 > ē2, then

∏

i6=i Gi(0) = I∗1 (0).

Proof. By Proposition 2, η1 = b1(ē2)+p1(ē2). By Lemma 8, G1(0) = 0. And, by Lemma 7,
0 ∈ S(G1). Hence, using the continuity of G1(·) away from 0 (Lemma 1), there is ε > 0
such that [0, ε] ∈ S(G1). Now, for each e ∈ (0, ε], uG

1 (e) = η1 = b1(e) +
∏

j 6=1 Gj(e)p1(e),
and hence,

∏

j 6=1 Gj(e) = I∗1 (e). Now, recall that the distribution functions are right-
continuous and I∗1 (·) is continuous in [0,M ]. Hence,

∏

j 6=1 Gj(e) = lime→0

∏

j 6=1 Gj(e) =
lime→0 I∗1 (e) = I∗1 (0).

Now we are ready to present the main theorems. For simplicity, we present them assum-
ing that n ≥ 3. The case n = 2 and ē1 > ē2 is covered by Theorem 4. The case n = 2 and
ē1 = ē2 is covered by Theorem 6. These results show that, under A1, A2, A3, and A4, the
Nash equilibrium always exists. Moreover, they provide a characterization of the whole set
of Nash equilibrium depending on the values of the ēi parameters. Nonetheless, note that
because of Proposition 2 we already know that all the equilibria lead to the same payoffs.

In Theorem 4, we show the existence and uniqueness result of the Nash equilibrium
when ē1 > ē2 > ē3.

21

21This result is an adaptation of [7, Theorem 2] to our framework.
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Theorem 4. Assume A1, A2, and A3. Let G∗ = (G∗
i )i∈N be the strategy profile defined

for players 1, 2, and i /∈ N\{1, 2} as follows:

G∗
1(e) =







0 e < 0
I2(e) 0 ≤ e ≤ ē2 ,
1 e > ē2

G∗
2(e) =







0 e < 0
I∗1 (e) 0 ≤ e ≤ ē2 ,
1 e > ē2

G∗
i (e) =

{

0 e < 0
1 e ≥ 0

.

If ē1 > ē2 > ē3, then G∗ is the unique Nash equilibrium of EP f . Moreover, the equilibrium
payoffs are η1 = b1(ē2) + p1(ē2) and, for each i 6= 1, ηi = bi(0).

Proof. “⇒” Note that in this Theorem we do not need A4 because the case ē1 > ē2 = ē3 is
ruled out by assumption. Suppose G ∈ Gn is a Nash equilibrium of EP f . By Corollary 2,
for each i ∈ N , Gi = G∗

i . By Lemma 14, S(G1) = S(G2) = [0, ē2]. By Proposition 2, η1 =
b1(ē2) + p1(ē2) and η2 = b2(0). Now, for each e ∈ (0, ē2], η1 = uG

1 (e) = b1(e) + G2(e)p1(e).
Hence, G2(e) = I∗1 (e) = G∗

1(e). Similarly, using uG
2 (e) we get G2(e) = G∗

2(e). Hence, G∗ is
the unique possible Nash equilibrium.

“⇐” Straightforward computations show that for each i ∈ N , if e ∈ S(G∗
i ), then

uG∗

i (e) = ηi. Now we check that no player has incentives to deviate from G∗. Let i ∈ N .

Case 1: ēi = ē1. We have i = 1. Player 1 cannot get more than b1(ē2) + p1(ē2) outside
S(G∗

1) = [0, ē2].

Case 2: ēi = ē2. We have i = 2. Player 2 cannot get more than b2(0) outside S(G∗
2) =

[0, ē2].

Case 3: ēi < ē2. We have i ≥ 3. Since ēi < ē2, player i cannot get more that bi(0) with
strategies in [e2,M ]. Let e ∈ (0, ē2). Then,

uG
i (e) = bi(e) +

∏

j 6=i

G∗
j (e)pi(e) = bi(e) + G∗

1(e)G
∗
2(e)pi(e) = bi(e) + I2(e)I

∗
1 (e)pi(e).

Suppose now that uG
i (e) > bi(0). Then, bi(e) + I2(e)I

∗
1 (e)pi(e) > bi(0). Hence, Ii(e) <

I2(e)I
∗
1 (e). Recall that for each e ∈ (0, ē2), J(e) < 1. Hence, Ii(e) < I2(e)I

∗
1 (e) < I2(e),

contradiction with ēi < ē2.

Now, we formally define the set of strategy profiles NE1. All of them lead to the
equilibrium payoffs and, indeed, Theorem 5 shows that all them are Nash equilibria and,
moreover, they are the only ones when ē1 > ē2 = ē3.

22

Henceforth, let m ∈ {2, . . . , n} denote the player such that ēm = ē2 > ēm+1. Assume
that ē1 > ē2 = ē3 (m ≥ 3). By Lemma 6, in a Nash equilibrium player 1 randomizes
continuously in [0, ē2]. On the other hand, by Corollary 2, for each i ∈ N such that ēi < ē2,
i plays the pure strategy 0. Hence, we only need to worry about the players in {2, . . . ,m}.
A strategy profile in NE1 is characterized by a vector b = (b2, . . . , bm) ∈ [0, ē2]

m−1 such
that there is i ∈ {2, . . . ,m} such that bi = 0. Let B denote the set of all such vectors.
Now, let b ∈ B. The interpretation of the vector b is the following: i) if bi < ē2, then
S(Gi) = {0}∪ [bi, ē2] and ii) if bi = ē2, S(Gi) = {0}. For each j ∈ {2, . . . ,m}, let H(bj) and
L(bj) be the sets of players i ∈ {2, . . . ,m} such that bi > bj and bi ≤ bj , respectively. For
simplicity, assume that 0 = b2 ≤ . . . ≤ bm. We define Gb = (Gb

i )i∈N as follows. If i > m,
player i plays the pure strategy 0. Now,

22The forthcoming descriptions of the equilibrium strategy profiles and the statements of Theorems 5 and 6
are adaptations to our general framework of the ones in [1, Theorem 1] and [4, Theorem 2], respectively.
On the other hand, our proofs address a pair of inaccuracies in the proofs included in the papers above.

28



e ∈ [bm, ē2]:

For each i ∈ {2, . . . ,m}, Gb
i (e) = I∗1 (e)

1
m−1 = I∗1 (e)

1
|L(bj)| .

For player 1, Gb
1(e) = I2(e)I

∗
1 (e)−

m−2
m−1 = I2(e)I

∗
1 (e)

−
|L(bj)|−1

|L(bj)| .

e ∈ [bj, bj+1), j ∈ {m − 1, . . . , 2}:

For each i ∈ H(bj), Gb
i (e) = Gb

i (bi).

For each i ∈ L(bj), Gb
i (e) = I∗1 (e)

1
|L(bj)|

(

∏

k∈H(bj)
Gb

k(bk)
)− 1

|L(bj)|

.

For player 1, Gb
1(e) = I2(e)I

∗
1 (e)

−
|L(bj)|−1

|L(bj)|

(

∏

k∈H(bj)
Gb

k(bk)
)− 1

|L(bj)|

.

Straightforward computations show that for each b ∈ B,
∏

i6=1 Gb
i =

∏

i∈{2,...,n} Gb
i =

I∗1 (0).
Now we formally define the set NE1. Let G ∈ Gn. Then, G ∈ NE1 if and only

if there is b ∈ B such that G = Gb. In words, the strategy profiles in NE2 can be
summarized as follows. There is a continuum of Nash equilibria. In each of them the
following statements hold: i) players i ∈ N such that ē2 > ēi play pure strategy 0, ii) Player
1 randomizes continuously in [0, ē2], iii) each other player i 6= 1 puts positive probability at
0 and randomizes continuously on some interval (bi, ē2] with bi = 0 for at least one i 6= 1
(bi = 1 implies that i plays pure strategy 0), iv) whenever an effort e > 0 belongs to the
support of 2 players different from player 1, their distribution functions coincide at e, and
v) the product of the probabilities put at 0 by players different from player 1 is I∗1 (0).

Theorem 5. Assume A1, A2, A3, and A4. Let G ∈ Gn be a Nash equilibrium of EP f . If
ē1 > ē2 = ē3, then G is a Nash equilibrium of EP f if and only if G ∈ NE1. Again, the
equilibrium payoffs are η1 = b1(ē2) + p1(ē2) and, for each i 6= 1, ηi = bi(0).

Proof. “⇒” First we show that, if G ∈ Gn is Nash equilibrium, then it belongs to NE1. We
show that the five points presented above must be satisfied. i) is implied by Corollary 2,
ii) is is implied by Lemma 14, iii) is implied by the combination of Corollary 2, Lemma 13,
and Lemma 14; being the latter for the part bi = 0 for at least one i 6= 1), iv) is Lemma 12,
and, finally, v) is Lemma 15.

“⇐” Let b ∈ B. Straightforward computations show that for each i ∈ N , if e ∈ S(Gb
i ),

then uGb

i (e) = ηi. We check that no player has incentives to deviate from Gb. Let i ∈ N .

Case 1: ēi = ē1. We have i = 1. Player 1 cannot get more than b1(ē2) + p1(ē2) outside
S(G∗

1) = [0, ē2].

Case 2: ēi = ē2. We have i ∈ {2, . . . ,m}. Player i cannot get more than bi(0) with

strategies in [e2,M ]. Suppose that there is a ∈ [0, ē2] such that uGb

i (a) > bi(0). We

already know that for each e ∈ S(Gb
i ), uGb

i (e) = bi(0) and also that uGb

i (0) = bi(0).
Hence, a ∈ (0, bi). Now, by iii) above, there is j ∈ {2, . . . ,m}, j 6= i be such that

[a, ē2] ∈ S(Gj). Now, uGb

i (bi) = uGb

j (bi) and Gj is strictly increasing in (a, bi). Hence,

Gj(a) < Gj(bi) = Gi(bi) = Gi(a). Now, uGb

i (a) = bi(a) +
∏

k 6=i Gk(a)pi(a) and, since

ēi = ēj and Gj(a) < Gi(a), we have uGb

i (a) < bj(a) +
∏

k 6=j Gk(a)pj(a) = ηj = bj(0) =
bi(0), and we have a contradiction.

Case 3: ēi < ē2. Analogous to Case 3 in the proof of Theorem 4.
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Whenever n > 2, the set B has a continuous of elements. Hence, the previous result
says that there is a continuous of Nash equilibria, all of them leading to the same profile of
payoffs.

Now, we turn to the case ē1 = ē2 and define the set of strategy profiles NE2. By
Corollary 2, for each i ∈ N such that ēi < ē2, i plays the pure strategy 0. We need to
worry about the players in {1, . . . ,m}. Again, a strategy profile in NE2 is characterized by
a vector b = (b1, . . . , bm) ∈ [0, ē2]

m−1 such that there are i, j ∈ {1, . . . ,m}, i 6= j, such that
bi = bj = 0. Let B̄ denote the set of all such vectors. Now, let b ∈ B̄. The interpretation
of the vector b is the same as above. Now, for each j ∈ {1, . . . ,m}, let H̄(bj) and L̄(bj) be
the sets of players i ∈ {1, . . . ,m} such that bi > bj and bi ≤ bj , respectively. For simplicity,
assume that 0 = b1 ≤ . . . ≤ bm. We define Ḡb = (Ḡb

i )i∈N as follows. If i > m, player i plays
the pure strategy 0. Now,23

e ∈ [bm, ē2]:

For each i ∈ {1, . . . ,m}, Ḡb
i (e) = I1(e)

1
m = I1(e)

1
|L̄(bj)| .

e ∈ [bj, bj+1), j ∈ {m − 1, . . . , 1}:

For each i ∈ H̄(bj), Ḡb
i (e) = Ḡb

i (bi).

For each i ∈ L̄(bj), Ḡb
i (e) = I∗1 (e)

1
|L̄(bj)|

(

∏

k∈H̄(bj)
Ḡb

k(bk)
)− 1

|L̄(bj)|
.

Now we formally define the set NE2. Let G ∈ Gn. Then, G ∈ NE2 if and only if there
is b ∈ B̄ such that G = Ḡb. In words, the strategy profiles in NE2 can be summarized as
follows. If n = 2 or ē1 = ē2 > ē3, the Nash equilibrium is unique and players 1 and 2 play
the same strategy. If n > 2 and ē1 = ē2 = ē3, then there is a continuum of Nash equilibria.
In each of them the following statements hold: i) players i ∈ N such that ē2 > ēi play
pure strategy 0, ii) at least two players randomize continuously in [0, ē2], iii) each other
player i randomizes continuously on some interval [bi, ē2] and puts positive probability at
0 whenever bi > 0 (bi = 1 implies that i plays pure strategy 0), and iv) whenever an effort
e > 0 belongs to the support of 2 or more players, their distribution functions coincide at e.

Theorem 6. Assume A1, A2, and A3. Let G ∈ Gn be a Nash equilibrium of EP f . If
ē1 = ē2, then G is a Nash equilibrium of EP f if and only if G ∈ NE2. Moreover, the
equilibrium payoffs are, for each i ∈ N , ηi = bi(0).

Proof. “⇒” First we show that, if G ∈ Gn is Nash equilibrium, then it belongs to NE2. We
show that the five points presented above must be satisfied. i) is implied by Corollary 2, ii)
is is implied by Lemma 14, iii) is implied by the combination of Corollary 2 and Lemma 13,
and, finally, iv) is Lemma 12.

“⇐” Let b ∈ B. Straightforward computations show that for each i ∈ N , if e ∈ S(Gb
i ),

then uGb

i (e) = ηi. We check that no player has incentives to deviate from Gb. Let i ∈ N .

Case 1: ēi = ē2. Analogous to Case 2 in the proof of Theorem 5.

Case 2: ēi < ē2. Analogous to Case 3 in the proof of Theorem 4.

Again, whenever n > 2, the set B has a continuous of elements (otherwise it has only
one b = (0, 0)). Hence, the previous result says that there is a continuous of Nash equilibria,
all of them leading to the same profile of payoffs.

23In the corresponding expressions for the equilibrium strategies when ē1 = ē2 included in [1, 4] there is
a minor typo. They wrote |L̄(bj)| − 1 instead of |L̄(bj)| in the expressions of the Gi functions.
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